KR101367702B1 - A manufacturing method of steel having multi-coating layer - Google Patents

A manufacturing method of steel having multi-coating layer Download PDF

Info

Publication number
KR101367702B1
KR101367702B1 KR1020130129301A KR20130129301A KR101367702B1 KR 101367702 B1 KR101367702 B1 KR 101367702B1 KR 1020130129301 A KR1020130129301 A KR 1020130129301A KR 20130129301 A KR20130129301 A KR 20130129301A KR 101367702 B1 KR101367702 B1 KR 101367702B1
Authority
KR
South Korea
Prior art keywords
layer
metal steel
coating layer
voltage
crn
Prior art date
Application number
KR1020130129301A
Other languages
Korean (ko)
Inventor
이대희
Original Assignee
(주)아시아써모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아시아써모텍 filed Critical (주)아시아써모텍
Priority to KR1020130129301A priority Critical patent/KR101367702B1/en
Application granted granted Critical
Publication of KR101367702B1 publication Critical patent/KR101367702B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Abstract

The present invention relates to a manufacturing method of steel including a multi-layered coating layer and more specifically, to a manufacturing method of steel including a multi-layered coating layer where a first CrN layer laminated on the surface of steel; a TiAlN layer laminated on the first CrN layer; and a second CrN layer laminated on the TiAlN layer and forming the outer surface of a multi-layered coating layer; are laminated in order. The steel according to the present invention is able to prevent damage to a film due to external impacts by including a high-hardness multi-layered coating layer; maintain excellent surface properties such as heat-resisting limit, friction coefficient, and corrosion resistance; simplify the production process and reduce the production cost, thereby improving the production efficiency; and secure reliable quality.

Description

다층코팅층을 포함하는 금속강재 제조방법{A Manufacturing Method of Steel having multi-coating layer} A manufacturing method of steel having multi-coating layer

본 발명은 다층코팅층을 포함하는 금속강재 제조방법에 관한 것으로, 보다 상세하게는 금속강재 표면에 적층된 제1 CrN층, 상기 제1 CrN층 위에 적층되는 TiAlN층 및 상기 TiAlN층 위에 적층되어 다층코팅층의 외측 표면을 형성하는 제2 CrN층이 순차적으로 형성된 다층코팅층을 포함하는 금속강재 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a metal steel comprising a multi-layer coating layer, and more particularly, a first CrN layer laminated on a metal steel surface, a TiAlN layer stacked on the first CrN layer, and a multi-layer coating layer laminated on the TiAlN layer. It relates to a metal steel manufacturing method comprising a multi-layer coating layer sequentially formed of a second CrN layer forming an outer surface of the.

일반적으로 자동차 부품 등의 기계 구조물과 이러한 기계 구조물을 제작하는데 필요한 금형 등이나 이러한 부품들을 가공하는데 필요한 절삭 공구 등은 그 사용 시에 대기 분위기에서 온도가 고온까지 올라가게 되므로 고온에서의 안정성 뿐 아니라 상온에서의 높은 경도 및 내마모성이 크게 요구된다.In general, mechanical structures such as automobile parts, molds required to fabricate such mechanical structures, and cutting tools required to process such components are used in the atmosphere so that the temperature rises to a high temperature in the atmosphere, and thus not only stability at high temperatures but also room temperature. High hardness and wear resistance are greatly required.

각종 기계 구조물, 금형, 절삭공구의 성능은 표면 부위의 물성에 의해 결정된다. 이러한 표면층의 물성을 향상시킬 수 있는 가장 일반적인 방법은 사용온도에서 경도, 내열한계, 마찰계수 등의 기계적 물성이 우수한 막을 피복(코팅)하는 것이다. The performance of various mechanical structures, molds and cutting tools is determined by the physical properties of the surface area. The most common method of improving the physical properties of such a surface layer is to coat (coating) a film having excellent mechanical properties such as hardness, heat resistance limit, and friction coefficient at use temperature.

통상적으로 피복용 표면층 소재로는 복합적인 성능의 구현을 위하여 기계 구조물, 금형, 절삭공구 등의 기재 위에 Ti 등의 IV-A원소나 Cr 등의 탄화물이나 질화물의 피복층을 물리증착법(physical vapor deposition, PVD)이나 화학증착법(chemical vapor deposition, CVD)으로 코팅한 경질막이 일반적으로 사용되고 있다.In general, the coating surface layer material is a physical vapor deposition method of coating the coating layer of carbide or nitride such as IV-A element such as Ti or Cr such as Cr on the base of mechanical structure, mold, cutting tool, etc. to realize complex performance. Hard films coated by PVD) or chemical vapor deposition (CVD) are generally used.

이와 같은 경질 박막 역시 경도, 내마모 등의 특성이 우수해야 함은 물론이고, 고온 안정성 역시 매우 중요한 요소 중 하나이다. 이는 고온에서 형성되는 산화물 등이 내마모성을 크게 저하시키기 때문으로, 최근 TiN에 내산화성이 우수한 Al 원소를 첨가하여 피복층의 경도 및 내산화성이 향상된 TiAlN 피복층이 기존의 피복 공구를 대체하고 있는 실정이다. 그러나, TiAlN계 코팅 소재의 경우 Al의 첨가로 인해 내산화성은 우수하나, 경도가 매우 약하여 그 사용에 제한을 가져올 수밖에 없다.Such a hard thin film should also have excellent properties such as hardness and wear resistance, and high temperature stability is also one of the very important factors. This is because oxides formed at high temperatures significantly reduce abrasion resistance, and the TiAlN coating layer, which has been improved in hardness and oxidation resistance of the coating layer by adding Al element having excellent oxidation resistance to TiN, has recently replaced the existing coating tool. However, in the case of TiAlN-based coating material, the oxidation resistance is excellent due to the addition of Al, but the hardness is very weak, which inevitably limits the use thereof.

국내공개특허 제10-2007-0105614호Domestic Publication No. 10-2007-0105614 국내공개특허 제10-2007-0080885호Domestic Publication No. 10-2007-0080885

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 고경도의 다층코팅층을 포함하여 기존 코팅 박막에 비해 경도가 현저히 향상되어 외부의 충격으로 인한 막 손상을 효율적으로 방지할 수 있는 다층코팅층을 포함하는 금속강재 제조방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention includes a multi-layer coating layer that can effectively prevent the damage to the film due to the external impact by the hardness is significantly improved compared to the conventional coating thin film, including a high hardness multilayer coating layer. An object of the present invention is to provide a method for producing a metal steel material.

또한 본 발명은 내열한계, 마찰계수, 내부식성 등 표면물성이 우수한 다층코팅층을 포함하는 금속강재 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for manufacturing a metal steel material including a multilayer coating layer having excellent surface properties such as heat resistance limit, friction coefficient, and corrosion resistance.

또한 본 발명은 생산공정이 간단하고 생산비용을 절감할 수 있어 생산효율을 높일 수 있으며, 안정된 품질의 금속강재를 얻는 다층코팅층을 포함하는 금속강재제조방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for manufacturing a metal steel material comprising a multi-layer coating layer that can increase the production efficiency, the production process is simple and can reduce the production cost, and obtain a stable quality metal steel material.

상기 목적을 달성하기 위하여, 본 발명은 금속강재 표면에 적층된 제1 CrN층, 상기 제1 CrN층 위에 적층되는 TiAlN층 및 상기 TiAlN층 위에 적층되어 다층코팅층의 외측 표면을 형성하는 제2 CrN층이 순차적으로 형성된 것을 특징으로 하는 다층코팅층을 포함하는 금속강재를 제공한다.In order to achieve the above object, the present invention is a first CrN layer laminated on a metal steel surface, a TiAlN layer stacked on the first CrN layer and a second CrN layer stacked on the TiAlN layer to form an outer surface of the multilayer coating layer. It provides a metal steel comprising a multi-layer coating layer characterized in that formed sequentially.

상기 제1 CrN층의 두께는 1~2㎛이고, TiAlN층의 두께는 3~5㎛이고, 제2 CrN층의 두께는 2~3㎛인 것이 좋다.The thickness of the first CrN layer is 1 to 2 µm, the thickness of the TiAlN layer is 3 to 5 µm, and the thickness of the second CrN layer is 2 to 3 µm.

상기 금속강재의 경도는 2,500~3,300㎏f/㎟의 고경도인 것이 바람직하다.It is preferable that the hardness of the said metal steel is high hardness of 2,500-3,300 kgf / mm <2>.

또한 본 발명은 금속강재 표면에 금속 스퍼터링을 통하여 순차적으로 제1 CrN층, TiAlN층 및 제2 CrN층을 순차적으로 형성하는 단계를 포함하는 것을 특징으로 하는 다층코팅층을 포함하는 금속강재의 제조방법을 제공한다.In another aspect, the present invention comprises the step of sequentially forming the first CrN layer, TiAlN layer and the second CrN layer on the surface of the metal steel by metal sputtering method of manufacturing a metal steel comprising a multi-layer coating layer to provide.

상기 금속 스퍼터링은 타겟 및 금속강재가 설치된 진공챔버를 이용하여, 챔버 내부의 진공도를

Figure 112013098131460-pat00001
내지 15mtorr로 유지하면서, N2 가스를 주입하고, 상기 타겟 및 금속강재에 전압을 인가하여 수행될 수 있다.The metal sputtering is performed by using a vacuum chamber in which a target and a metal steel are installed.
Figure 112013098131460-pat00001
While maintaining at 15 mtorr, it may be performed by injecting N 2 gas and applying a voltage to the target and the metal steel.

상기 타겟은 Cr, Ni 및 Al이며, 상기 타겟의 전압은 80~85V이고, 상기 금속강재의 전압은 80~90V인 것이 좋다.The target is Cr, Ni and Al, the voltage of the target is 80 ~ 85V, the voltage of the metal steel is preferably 80 ~ 90V.

또한 본 발명은 상기 금속 스퍼터링 이전에 금속강재의 표면을 클리닝하는 단계 및 금속강재 표면으로부터 불순물을 제거하는 단계로 이루어지는 전처리 단계를 추가로 더 실시할 수 있다. In addition, the present invention may further perform a pretreatment step consisting of cleaning the surface of the metal steel material and removing impurities from the metal steel surface before the metal sputtering.

뿐만 아니라, 상기 금속 스퍼터링 이후에는 광택부가 단계를 추가로 더 실시할 수 있다.In addition, after the metal sputtering, the gloss portion may further perform a step.

본 발명에 따른 금속강재는, 고경도의 다층코팅층을 포함하여 기존 코팅 박막에 비해 경도가 현저히 향상되어 외부의 충격으로 인한 막 손상을 효율적으로 방지할 수 있을 뿐 아니라 내열한계, 마찰계수, 내부식성 등 우수한 표면물성을 지속적으로 유지할 수 있다. 또한 본 발명에 따르면 생산공정이 간단하고 생산비용을 절감할 수 있어 생산효율을 높일 수 있으며, 안정된 품질의 금속강재를 얻을 수 있다.Metallurgical steel according to the present invention, including a high hardness multilayer coating layer is significantly improved in hardness compared to the existing coating thin film not only effectively prevents damage to the film due to external impact, but also heat limit, friction coefficient, corrosion resistance And excellent surface properties can be maintained continuously. In addition, according to the present invention, the production process is simple, and the production cost can be reduced, thereby increasing production efficiency, and obtaining a stable quality metal steel.

도 1은 본 발명의 일실시예에 따라 제1 CrN층-TiAlN층-제2 CrN층이 순차 적층된 다층코팅층을 포함하는 금속강재의 단면도이다.1 is a cross-sectional view of a metal steel including a multilayer coating layer in which a first CrN layer, a TiAlN layer, and a second CrN layer are sequentially stacked according to an embodiment of the present invention.

이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

이하 본 발명에서 설명하는 금속강재는 차체용, 전기· 전자부품용 등의 금형을 의미하는 것으로, 본 발명의 다층코팅층을 포함하는 금속강재는 상기와 같은 금형의 표면에 CrN층-TiAlN층-CrN층이 순차적으로 적층된 것을 의미하는 것이다.Hereinafter, the metal steel described in the present invention means a mold for a vehicle body, an electric / electronic component, and the like, and the metal steel material including the multilayer coating layer of the present invention has a CrN layer-TiAlN layer-CrN on the surface of the mold as described above. This means that the layers are sequentially stacked.

본 발명의 다층코팅층을 포함하는 금속강재는 금속강재 표면에 제1 CrN층이, 상기 제1 CrN층 위에는 TiAlN층이, 그리고 상기 TiAlN층 위에는 제2 CrN층이 순차적으로 적층되어 더욱 향상된 경도를 나타내는 것을 특징으로 한다.In the metal steel including the multilayer coating layer of the present invention, a first CrN layer is formed on the surface of the metal steel, a TiAlN layer is sequentially stacked on the first CrN layer, and a second CrN layer is sequentially stacked on the TiAlN layer to further improve hardness. It is characterized by.

상기 금속강재는 이후 이어지는 금속 스퍼터링 공정 시 금속의 전착이 용이하게 진행되도록 하기 위하여 표면을 전처리하는 단계를 실시할 수 있다.The metal steel may be subjected to a step of pretreating the surface in order to facilitate the electrodeposition of the metal during the subsequent metal sputtering process.

이러한 전처리 단계는 금속강재를 클리닝하는 단계와, 상기 금속강재 표면으로부터 불순물을 제거하는 단계로 이루어질 수 있다. The pretreatment step may include cleaning the metal steel and removing impurities from the metal steel surface.

상기 클리닝 단계는 내부에 금속강재가 설치된 진공챔버를 이용하여, 550~650V의 전압, 350~450℃의 온도에서 Ar 가스를 주입하여 10~20분 동안 1차 플라즈마 클리닝하고, 650~750V의 전압, 350~450℃의 온도에서 10~20분 동안 2차 플라즈마 클리닝을 수행할 수 있다. 이때, 고른 클리닝을 위하여 금속강재를 1~5rpm의 회전수로 회전시킬 수도 있다.In the cleaning step, the first plasma cleaning for 10 to 20 minutes by injecting Ar gas at a temperature of 550 ~ 650V, a temperature of 350 ~ 450 ℃ using a vacuum chamber in which a metal steel is installed therein, the voltage of 650 ~ 750V Secondary plasma cleaning may be performed for 10 to 20 minutes at a temperature of 350 to 450 ° C. In this case, the metal steel may be rotated at a rotational speed of 1 to 5 rpm for even cleaning.

또한 상기 클리닝된 금속강재를 350~450V의 전압, 진공도 0.1~0.3mtorr, 350~450℃의 온도에서 챔버 내부에 N2 가스를 100~1,000sccm으로 주입하여 1~5분 동안 세척한 다음, 150~250V의 전압, 진공도 0.1~0.3mtorr, 350~450℃의 온도에서 N2 가스를 100~1.000sccm으로 주입하여 1~5분 동안세척하여 금속강재 표면으로부터 불순물을 제거하였다. 이때에도 금속강재를 1~5rpm의 회전수로 회전시킬 수 있다.In addition, the cleaned metal steel was injected with N 2 gas at a voltage of 350 to 450 V, a vacuum degree of 0.1 to 0.3 mtorr, and a temperature of 350 to 450 ° C. at 100 to 1,000 sccm, and then washed for 1 to 5 minutes. N 2 gas was injected at 100 to 1.000 sccm at a voltage of ˜250 V, a vacuum degree of 0.1 to 0.3 mtorr, and a temperature of 350 to 450 ° C. to wash for 1 to 5 minutes to remove impurities from the surface of the metal steel. In this case, the metal steel may be rotated at a rotational speed of 1 to 5 rpm.

그 다음 상기와 같이 전처리를 거친 금속강재의 표면에 CrN, TiAlN 및 CrN을 순차적으로 코팅시킨다. 즉, 본 발명에서는 금속강재 표면에 CrN, TiAlN 및 CrN을 순차적으로 코팅시킴으로써 TiAlN층에 의해 기존 코팅 박막 대비 막 경도를 현저히 향상시키고, TiAl층의 상, 하부면에 CrN층을 형성시킴으로써 윤활성 및 밀착성을 부여하여 고경도의 TiAlN층의 막 손상을 방지하고, 다층코팅층의 마찰계수(내마모성), 내부식성 등을 더욱 향상시킬 수 있다. Then, CrN, TiAlN and CrN are sequentially coated on the surface of the pretreated metal steel as described above. That is, in the present invention, by coating CrN, TiAlN and CrN on the surface of the metal steel sequentially, the TiAlN layer significantly improves the film hardness compared to the existing coating thin film, and by forming a CrN layer on the upper and lower surfaces of the TiAl layer, lubricity and adhesion It is possible to prevent damage to the film of the high hardness TiAlN layer and further improve the coefficient of friction (wear resistance), corrosion resistance and the like of the multilayer coating layer.

이하에서는 편의를 위하여 금속강재의 표면에 형성되는 CrN층은 제1 CrN층으로, TiAlN층 위에 형성되어, 금속강재 표면에 형성된 다층코팅층의 최외각을 형성하는 CrN층은 제2 CrN층으로 구분하여 설명한다.Hereinafter, for convenience, the CrN layer formed on the surface of the metal steel is formed as the first CrN layer, and the CrN layer formed on the TiAlN layer to form the outermost part of the multilayer coating layer formed on the surface of the metal steel is divided into the second CrN layer. Explain.

상기 다층코팅층을 형성을 위한 증착방법으로 당업계에서 사용되는 통상의 방법이 사용될 수 있음은 물론이다.Of course, a conventional method used in the art may be used as a deposition method for forming the multilayer coating layer.

본 발명의 상기 다층코팅층의 형성은 타겟 및 금속강재가 설치된 진공챔버를 이용하여, 챔버 내부의 진공도를

Figure 112013098131460-pat00002
내지 15mtorr로 유지하면서, N2 가스를 주입하고, 상기 타겟 및 금속강재에 전압을 인가하여 수행되는 통상의 마그네트론 스퍼터링법을 사용하여 수행될 수 있다. Formation of the multilayer coating layer of the present invention by using a vacuum chamber in which the target and the metal steel is installed, the degree of vacuum inside the chamber
Figure 112013098131460-pat00002
It can be carried out using a conventional magnetron sputtering method, which is performed by injecting N 2 gas and applying a voltage to the target and the metal steel while maintaining at 15 to 15 mtorr.

구체적으로 , 상기 금속강재 표면에 형성된 제1 CrN층은 금속강재 표면에 윤활성을 부여하여 밀착력이 떨어지거나 단단해지는 것을 방지하기 위하여 형성되는 것으로, 금속강재 전압 80~90V, 타겟 전압 80~85V, 진공도 14~15mtorr, 350~450℃에서 N2 가스를 100~1,000sccm으로 주입된 진공챔버 내에서, Cr 타겟에 전압을 인가하여 발생된 Cr 이온을 금속강재 표면에 충돌시켜 활성화함으로써 금소강재 표면에 제1 CrN층을 증착시킬 수 있다. 이때, 금속강재 전압 및 타겟 전압의 범위가 전술한 범위를 벗어날 경우 코팅층 형성이 빨리 이루어질 수 있으나, 금속강재 표면에 고르게 형성되지 않을 수 있다. 따라서, 금속강재 및 타겟 전압은 전술한 범위 내인 것이 균일하고 고른 코팅층 형성을 위하여 더욱 좋다. 또한 상기 코팅층의 형성 시에는 필요에 따라 코팅시간을 조절하여 막두께를 조절할 수 있다.Specifically, the first CrN layer formed on the surface of the metal steel is formed to impart lubricity to the surface of the metal steel to prevent the adhesion strength or hardening, the metal steel voltage 80 ~ 90V, target voltage 80 ~ 85V, vacuum degree In a vacuum chamber in which N 2 gas is injected at 100 to 1,000 sccm at a temperature of 14 to 15 mtorr and 350 to 450 ° C, Cr ions generated by applying a voltage to the Cr target collide with the surface of the metal steel to activate it. One CrN layer can be deposited. In this case, when the range of the metal steel voltage and the target voltage is outside the above-described range, the coating layer may be formed quickly, but may not be evenly formed on the surface of the metal steel. Therefore, the metal steel material and the target voltage are better to form a uniform and even coating layer in the above-described range. In addition, when forming the coating layer, it is possible to control the film thickness by adjusting the coating time as necessary.

상기 제1 CrN층은 1~2㎛의 두께로 형성되는 것이 바람직하며, 더욱 바람직하게는 1.5~2㎛로 형성되는 것이다. 그 두께가 1㎛ 미만일 경우에는 조기 박리 될 수 있고, 2㎛를 초과할 경우에는 제조원가가 상승할 수 있다.The first CrN layer is preferably formed to a thickness of 1 to 2㎛, more preferably 1.5 to 2㎛. If the thickness is less than 1㎛ premature peeling, if it exceeds 2㎛ may increase the manufacturing cost.

그 다음, 본 발명의 다층코팅층에 경도를 부여하기 위한 층으로, 금속강재 전압 80~90V, 타겟 전압 80~85V, 진공도 14~15mtorr, 350~450℃에서 N2 가스를 100~1,000sccm으로 주입된 진공챔버 내에서, Ti 및 Al 타겟에 전압을 인가하여 발생된 Ti, Al 이온을 제1 CrN층 위에 충돌시켜 활성화함으로써 TiAlN층을 증착시킨다.Next, as a layer for imparting hardness to the multilayer coating layer of the present invention, metal steel voltage 80 ~ 90V, target voltage 80 ~ 85V, vacuum degree 14 ~ 15mtorr, injection of N 2 gas at 100 ~ 1,000sccm at 350 ~ 450 ℃ In the vacuum chamber, the TiAlN layer is deposited by energizing Ti and Al ions generated by applying voltages to the Ti and Al targets on the first CrN layer.

상기 TiAlN층은 3~5㎛의 두께로 형성되는 것이 바람직하며, 더욱 바람직하게는 3.5~4.5㎛로 형성되는 것이다. 그 두께가 3㎛ 미만일 경우에는 내마모성이 떨어진다. 5㎛를 초과할 경우에는 제조원가 상승과 막이 터 질수 있다.The TiAlN layer is preferably formed to a thickness of 3 to 5㎛, more preferably 3.5 to 4.5㎛. Abrasion resistance is inferior when the thickness is less than 3 micrometers. If the thickness exceeds 5 µm, manufacturing costs may rise and the membrane may burst.

마지막으로, 상기 TiAlN층의 막손상을 방지하고, 윤활성을 부여하기 위하여 금속강재 전압 80~90V, 타겟 전압 80~85V, 진공도 14~15mtorr, 350~450℃에서 N2 가스를 100~1,000sccm으로 주입된 진공챔버 내에서, Cr 타겟에 전압을 인가하여 발생된 Cr 이온을 TiAlN층 위에 충돌시켜 활성화함으로써 다층코팅층의 최외각층을 형성하는 제2 CrN층을 증착시킨다.Finally, in order to prevent film damage of the TiAlN layer and to impart lubricity, the N 2 gas is 100 to 1,000 sccm at a metal steel voltage of 80 to 90 V, a target voltage of 80 to 85 V, a vacuum degree of 14 to 15 mtorr, and 350 to 450 ° C. In the injected vacuum chamber, Cr ions generated by applying a voltage to the Cr target are collided onto the TiAlN layer to activate a second CrN layer which forms the outermost layer of the multilayer coating layer.

상기 제2 CrN층은 2~3㎛의 두께로 형성되는 것이 바람직하며, 더욱 바람직하게는 2.5~3㎛로 형성되는 것이다. 그 두께가 2㎛ 미만일 경우에는 조기 박리 될 수 있고, 3㎛를 초과할 경우에는 제조원가상승 및 막이 터 질 수 있다.The second CrN layer is preferably formed to a thickness of 2 to 3㎛, more preferably 2.5 to 3㎛. If the thickness is less than 2㎛ may be premature peeling, if it exceeds 3㎛ the manufacturing cost rise and the film may burst.

상기와 같이 제1 CrN층-TiAlN층-제2 CrN층을 순차적으로 적층된 다층코팅층을 포함하는 금속강재는 금속강재 전압 80~90V, 타겟 전압 80~85V, 진공도 14~15mtorr, 350~450℃에서 N2 가스를 100~1,000sccm를 주입된 진공챔버 내에서 금속강재를 1~5rpm회 회전시키면서 다층코팅층의 표면에 질소가스에 의해 광택을 부가하는 단계를 추가로 더 실시할 수도 있다. As described above, the metal steel material including the multilayer coating layer in which the first CrN layer, the TiAlN layer, and the second CrN layer are sequentially stacked has a metal steel voltage of 80 to 90 V, a target voltage of 80 to 85 V, and a vacuum degree of 14 to 15 mtorr and 350 to 450 ° C. In the vacuum chamber in which the N 2 gas is injected 100 ~ 1,000sccm may be further performed by adding a gloss by nitrogen gas to the surface of the multilayer coating layer while rotating the metal steel 1-5rpm times.

이하에서는 첨부된 도면을 참고하여 본 발명의 다층코팅층이 형성된 금속강재에 대하여 상세히 설명한다 .이하 설명되는 본 발명의 다층코팅층이 형성된 금속강재는 여러 가지 상이한 형태로 구현될 수 있음은 물론이며, 여기에서 설명하는 다층코팅층이 형성된 금속강재에 한정되지 않는다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the metal steel formed with a multi-layer coating layer of the present invention. Metal layer formed with a multi-layer coating layer of the present invention described below can be implemented in a number of different forms, of course, here It is not limited to the metal steel in which the multilayer coating layer demonstrated by this is formed.

도 1은 본 발명의 일실시예에 따른 다층코팅층이 형성된 금속강재의 단면도이다.1 is a cross-sectional view of a metal steel having a multi-layer coating layer according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 본 발명의 다층코팅층이 형성된 금속강재(1)는 금속강재(10)와, 상기 금속강재(10) 표면에 1~2㎛의 두께로 형성되는 제1 CrN층(21), 상기 제1 CrN층(21) 위에 3~5㎛의 두께로 형성되는 TiAlN층(22) 그리고 상기 TiAlN층(22) 위에 2~3㎛의 두께로 형성되어 다층코팅층의 최외각층을 이루는 제2 CrN층(23)으로 이루어진다.As shown in FIG. 1, the metal steel material 1 having the multilayer coating layer of the present invention includes a metal steel material 10 and a first CrN layer having a thickness of 1 μm to 2 μm on the surface of the metal steel material 10. 21), the TiAlN layer 22 is formed on the first CrN layer 21 to a thickness of 3 ~ 5㎛ and the TiAlN layer 22 is formed to a thickness of 2 ~ 3㎛ to form the outermost layer of the multilayer coating layer The second CrN layer 23 is formed.

상기 금속강재 표면에 제1 CrN층-TiAl층-제2 CrN층이 순차적으로 적층된 본 발명의 금속강재는 경도가 2,500~3,300㎏f/㎟의 고경도로, 내열한계와 마찰계수 및 내부식성 등의 표면물성이 뛰어난 장점이 있다.The metal steel of the present invention, in which the first CrN layer, the TiAl layer, and the second CrN layer are sequentially stacked on the surface of the metal steel, has a high hardness of 2,500 to 3,300 kgf / mm 2, a heat resistance limit, a friction coefficient, and corrosion resistance. It has the advantage of excellent surface properties.

이하에서는 실시예를 들어 본 발명에 관하여 더욱 상세하게 설명할 것이나. 이들 실시예는 단지 설명의 목적을 위한 것으로 본 발명의 보호 범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. These embodiments are for purposes of illustration only and are not intended to limit the scope of protection of the present invention.

실시예 1Example 1

금속강재와 타겟이 내부어 설치된 진공챔버를 이용하여 금속강재 표면에 제1 CrN층, TiAlN층, 제2 CrN층을 순차적으로 형성하였다. The first CrN layer, the TiAlN layer, and the second CrN layer were sequentially formed on the metal steel surface by using the vacuum chamber in which the metal steel and the target were installed.

먼저, 600V의 전압, 420℃의 온도에서 Ar 가스를 주입하여 14분 동안 Ar 가스에 의해 1차 플라즈마 클리닝하고(금속강재 회전수 5회), 700V의 전압, 420℃의 온도에서 14분 동안 2차 플라즈마 클리닝을 수행할 수 있다(금속강재 회전수 5회). 이어서, 400V의 전압, 진공도 5mtorr, 420℃의 온도에서 N2 가스를 300sccm으로 주입하여 2분 동안 세척한 다음(금속강재 회전수 4회), 200V의 전압, 진공도 7mtorr, 420℃의 온도에서 N2 가스를 320sccm으로 주입하여 2분 동안 세척하여 금속강재 표면으로부터 불순물을 제거하였다(금속강재 회전수 4회).First, Ar gas was injected at a voltage of 600 V and a temperature of 420 ° C., followed by primary plasma cleaning by Ar gas for 14 minutes (5 revolutions of metal steel), and a voltage of 700 V and 14 minutes at a temperature of 420 ° C. for 2 minutes. Primary plasma cleaning can be performed (5 revolutions of metal steel). Subsequently, N 2 gas was injected at 300 sccm at a voltage of 400 V, a vacuum of 5 mtorr and a temperature of 420 ° C., followed by washing for 2 minutes (four revolutions of metal steel), followed by a voltage of 200 V, a vacuum of 7 mtorr, and a temperature of 420 ° C. 2 gases were injected at 320 sccm and washed for 2 minutes to remove impurities from the metal steel surface (4 times of metal steel revolutions).

그 다음, 금속강재 전압 80V, 타겟 전압 80V, 진공도 15mtorr, 420℃에서 N2 가스를 420sccm으로 주입된 진공챔버 내에서, Cr 타겟에 상기 전압을 인가하여 발생된 Cr 이온을 금속강재 표면에 충돌시켜 활성화하여 금소강재 표면에 제1 CrN층을 약1.5㎛ 두께로 증착시켰다(금속강재 회전수 4회). 금속강재 전압 80V, 타겟 전압 80V, 진공도 15mtorr, 420℃에서 N2 가스를 420sccm으루 주입하고, Ti 및 Al 타겟에 전압을 인가하여 발생된 Ti, Al 이온을 제1 CrN층 위에 충돌시켜 활성화하여 TiAlN층을 4㎛ 두께로 증착시켰다(금속강재 회전수 4회). 마지막으로, 금속강재 전압 80V, 타겟 전압 80V, 진공도 15mtorr, 420℃에서 N2 가스를 420sccm으루 주입하고, Cr 타겟에 전압을 인가하여 발생된 Cr 이온을 TiAlN층 위에 충돌시켜 활성화하여 제2 CrN층을 2.5㎛ 두께로 증착시켰다(금속강재 회전수 4회).Next, in a vacuum chamber in which N 2 gas was injected at 420 sccm at a metal steel voltage of 80 V, a target voltage of 80 V, a vacuum degree of 15 mtorr, and 420 ° C., Cr ions generated by applying the voltage to the Cr target were collided with the surface of the metal steel. After activation, the first CrN layer was deposited to a thickness of about 1.5 μm on the surface of the gold steel (metal revolutions of four times). Injecting N 2 gas into 420sccm at a metal steel voltage of 80V, a target voltage of 80V, a vacuum degree of 15mtorr, and 420 ° C, and applying Ti and Al targets to Ti and Al ions by impinging on the first CrN layer to activate TiAlN. The layer was deposited to 4 μm thickness (4 metal steel revolutions). Finally, injecting N 2 gas into 420sccm at a metal steel voltage of 80 V, a target voltage of 80 V, a vacuum of 15 mtorr, and at 420 ° C., applying Cr to the Cr target and impinging Cr ions generated on the TiAlN layer to activate the second CrN layer. Was deposited to a thickness of 2.5 mu m (4 revolutions of metal steel).

실시예 2Example 2

상기 실시예 1에서 제1 CrN층, TiAlN층, 제2 CrN층을 순차적으로 적층된 다층코팅층을 이용하여 금속강재 전압 80V, 타겟 전압 80V, 진공도 30mtorr, 420℃의 진공챔버 내에 N2 가스 520sccm를 주입된 진공챔버 내에서 질소 가스에 의해 광택을 더 부가한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다. In Example 1, a N 2 gas 520 sccm in a vacuum chamber at 80 V, a target voltage of 80 V, a vacuum degree of 30 mtorr, and a 420 ° C. was fabricated using a multilayer coating layer in which the first CrN layer, the TiAlN layer, and the second CrN layer were sequentially stacked. The same procedure as in Example 1 was carried out except that gloss was further added by nitrogen gas in the injected vacuum chamber.

상기 실시예 1 및 2에서 제조한 제1 CrN층-TiAlN층-제2 CrN층이 순차 적층된 다층코팅층을 포함하는 금속강재를 이용하여 경도, 내열한계, 마찰계수 등의 물성을 측정하고, 그 결과를 하기 표 1에 나타내었다. 이때, 비교를 위하여 기존 CrN층이 형성된 금속강재, TiAlN층이 형성된 금속강재, TiN층이 형성된 금속강재를 사용하였다. The physical properties such as hardness, heat resistance, coefficient of friction and the like were measured using a metal steel material including a multilayer coating layer in which the first CrN layer-TiAlN layer-second CrN layer prepared in Examples 1 and 2 were sequentially stacked, and the The results are shown in Table 1 below. In this case, for comparison, a conventional metal steel with a CrN layer, a metal steel with a TiAlN layer, and a metal steel with a TiN layer were used.

경도(Hv)Hardness (Hv) 내열한계(℃)Heat resistance limit (℃) 마찰계수Coefficient of friction 내부식성Corrosion resistance 실시예 1Example 1 3,1003,100 800800 0.80.8 매우 우수Very good 실시예 2Example 2 3,0003,000 850850 0.80.8 매우 우수Very good CrN층 형성 금속강재CrN layer forming metal steel 1,9001,900 700700 0.50.5 매우 우수Very good TiAlN층 형성 금속강재TiAlN layer forming metal steel 2,9002,900 800800 0.80.8 우수Great TiN층 형성 금속강재TiN layer forming metal steel 2,1002,100 550550 0.650.65 우수Great

상기 표 1에 나타낸 바와 같이, 본 발명에 따라 제1 CrN층-TiAlN층-제2 CrN층이 순차 적층된 다층코팅층을 포함하는 실시예 1 및 2의 금속강재의 경우 기존 CrN층이 형성된 금속강재, TiAlN층이 형성된 금속강재, TiN층이 형성된 금속강재와 비교하여 경도가 우수하게 나타났으며, 내열한계, 마찰계수 및 내부식성 또한 우수하게 나타남을 확인할 수 있었다. As shown in Table 1, in the case of the metal steels of Examples 1 and 2 including a multilayer coating layer in which the first CrN layer, the TiAlN layer, and the second CrN layer were sequentially stacked according to the present invention, the metal steel having the existing CrN layer was formed. It was confirmed that the hardness was superior to that of the metal steel with the TiAlN layer and the metal steel with the TiN layer, and the heat limit, friction coefficient and corrosion resistance were also excellent.

비록 본 발명이 상기에 언급된 바람직한 실시예로서 설명되었으나, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 또한 첨부된 청구 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함한다.Although the present invention has been described in terms of the preferred embodiments mentioned above, it is possible to make various modifications and variations without departing from the spirit and scope of the invention. It is also to be understood that the appended claims are intended to cover such modifications and changes as fall within the scope of the invention.

Claims (9)

삭제delete 삭제delete 삭제delete 금속강재의 표면을 클리닝하는 단계 및 금속강재의 표면으로부터 불순물을 제거하는 단계로 이루어진 전처리 단계를 실시한 후 금속강재 표면에 금속 스퍼터링을 통하여 순차적으로 제1 CrN층, TiAlN층 및 제2 CrN층을 순차적으로 형성하는 단계를 포함하되,
상기 클리닝 단계는 1~5rpm의 회전수로 회전하는 금속강재가 내부에 설치된 진공챔버를 이용하여, 550~650V의 전압, 350~450℃의 온도에서 Ar 가스를 주입하여 10~20분 동안 수행되는 1차 플라즈마 클리닝과, 650~750V의 전압, 350~450℃의 온도에서 10~20분 동안 수행되는 2차 플라즈마 클리닝으로 이루어지며,
상기 금속강재의 표면으로부터 불순물을 제거하는 단계는 상기 클리닝된 금속강재를 1~5rpm의 회전수로 회전시키면서 350~450V의 전압, 진공도 0.1~0.3mtorr, 350~450℃의 온도에서 챔버 내부에 N2 가스를 100~1,000sccm으로 주입하여 1~5분 동안 세척한 다음, 150~250V의 전압, 진공도 0.1~0.3mtorr, 350~450℃의 온도에서 N2 가스를 100~1.000sccm으로 주입하여 1~5분 동안세척하여 이루어지는 것을 특징으로 하는 다층코팅층을 포함하는 금속강재의 제조방법.
After performing a pretreatment step of cleaning the surface of the metal steel and removing impurities from the surface of the metal steel, the first CrN layer, the TiAlN layer, and the second CrN layer are sequentially formed through metal sputtering on the metal steel surface. Including forming step,
The cleaning step is performed for 10 to 20 minutes by injecting Ar gas at a voltage of 550 ~ 650V, a temperature of 350 ~ 450 ℃ using a vacuum chamber installed inside the metal steel rotating at a rotational speed of 1 ~ 5rpm It consists of the first plasma cleaning, the second plasma cleaning performed for 10 to 20 minutes at a voltage of 650 ~ 750V, a temperature of 350 ~ 450 ℃,
The removing of impurities from the surface of the metal steel is performed by rotating the cleaned metal steel at a rotational speed of 1 to 5 rpm with a voltage of 350 to 450 V, a vacuum degree of 0.1 to 0.3 mtorr, and a temperature of 350 to 450 ° C. in the chamber. 2 Inject gas at 100 ~ 1,000 sccm and wash it for 1 ~ 5 minutes, then inject N 2 gas at 100 ~ 1.000sccm at the voltage of 150 ~ 250V, vacuum degree 0.1 ~ 0.3mtorr, 350 ~ 450 ℃ Method for producing a metal steel comprising a multi-layer coating layer, characterized in that the washing for 5 minutes.
제4항에 있어서,
상기 금속 스퍼터링은 타겟 및 금속강재가 설치된 진공챔버를 이용하여, 챔버 내부의 진공도를
Figure 112013098131460-pat00003
내지 15mtorr로 유지하면서, N2 가스를 주입하고, 상기 타겟 및 금속강재에 전압을 인가하여 수행되는 것을 특징으로 하는 다층코팅층을 포함하는 금속강재의 제조방법.
5. The method of claim 4,
The metal sputtering is performed by using a vacuum chamber in which a target and a metal steel are installed.
Figure 112013098131460-pat00003
Maintaining from 15 mtorr, injecting N 2 gas, and applying a voltage to the target and the metal steel, characterized in that the manufacturing method of a metal steel comprising a multi-layer coating layer.
제5항에 있어서,
상기 타겟은 Cr, Ni 및 Al 중 선택된 어느 하나 이상인 것을 특징으로 하는 다층코팅층을 포함하는 금속강재의 제조방법.
The method of claim 5,
The target is a method of manufacturing a metal steel material comprising a multilayer coating layer, characterized in that at least any one selected from Cr, Ni and Al.
제5항에 있어서,
상기 타겟의 전압은 80~90V이고, 상기 금속강재의 전압은 80~85V인 것을 특징으로 하는 다층코팅층을 포함하는 금속강재의 제조방법.
The method of claim 5,
The voltage of the target is 80 ~ 90V, the voltage of the metal steel is a manufacturing method of a metal steel comprising a multi-layer coating layer, characterized in that 80 ~ 85V.
삭제delete 제4항에 있어서,
상기 금속 스퍼터링 이후에 광택부가 단계를 추가로 더 실시하는 것을 특징으로 하는 다층코팅층을 포함하는 금속강재의 제조방법.
5. The method of claim 4,
After the metal sputtering method of manufacturing a metal steel comprising a multi-layer coating layer characterized in that further performing the step of the gloss.
KR1020130129301A 2013-10-29 2013-10-29 A manufacturing method of steel having multi-coating layer KR101367702B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130129301A KR101367702B1 (en) 2013-10-29 2013-10-29 A manufacturing method of steel having multi-coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130129301A KR101367702B1 (en) 2013-10-29 2013-10-29 A manufacturing method of steel having multi-coating layer

Publications (1)

Publication Number Publication Date
KR101367702B1 true KR101367702B1 (en) 2014-02-27

Family

ID=50272010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130129301A KR101367702B1 (en) 2013-10-29 2013-10-29 A manufacturing method of steel having multi-coating layer

Country Status (1)

Country Link
KR (1) KR101367702B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060066470A (en) * 2004-12-13 2006-06-16 한국과학기술연구원 Method of manufacturing crn-based multi-layer film
KR20070088451A (en) * 2007-01-17 2007-08-29 오에스지 가부시키가이샤 Hard multilayer coating, and hard multilayer coated tool including the hard multilayer coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060066470A (en) * 2004-12-13 2006-06-16 한국과학기술연구원 Method of manufacturing crn-based multi-layer film
KR20070088451A (en) * 2007-01-17 2007-08-29 오에스지 가부시키가이샤 Hard multilayer coating, and hard multilayer coated tool including the hard multilayer coating

Similar Documents

Publication Publication Date Title
US9133543B2 (en) Coating material for aluminum die casting mold and method for manufacturing the same
US20140044944A1 (en) Coating material for aluminum die casting mold and method of manufacturing the coating material
US20120315453A1 (en) Coating layer structure of basic material of mold
CN105239039B (en) A kind of multi-layer nano composite coating diel and preparation method thereof
US8741111B2 (en) Coated article and method for making said article
CN106574376B (en) Sliding element, in particular piston ring, and method for producing a sliding element
KR101360416B1 (en) Coating layer with low-friction for vehicle component and method for producing the same
KR101353451B1 (en) Coated steel sheet and method for manufacturing the same
US8586175B2 (en) Article having hard film and method for making the article
KR20150116523A (en) Coating layer of zirconium composite material and method of forming the coating layer
KR101367702B1 (en) A manufacturing method of steel having multi-coating layer
JP5530751B2 (en) LAMINATED COATING COATED MEMBER AND METHOD FOR PRODUCING THE SAME
CN103741100B (en) A kind of containing high silicon PVD hard coat technique
CN103215545A (en) Manufacturing process of screw rod of ceramic-phase nanocrystalline composite coating injection molding machine
US8722180B2 (en) Coated article and method for making said article
JP2001107220A (en) Machine parts coated with hard carbon film and its production method
KR101635814B1 (en) Mold for extruding metal with excellent seizure resistance and method of manufacturing the same
KR102317383B1 (en) Covering member and manufacturing method thereof
CN113260735B (en) Coatings for enhanced performance and extended life in plastic processing applications
KR20150118665A (en) Coating material having improved mechanical properties and low friction for sliding part of vehicle and coating method thereof
JP5824010B2 (en) Hard coating coated member
JP5988144B2 (en) Coated article excellent in corrosion resistance and method for producing the same
US20220243318A1 (en) Coated forming tools with enhanced performance and increased service life
TWI471450B (en) Coated article and method for making the same
TWI490351B (en) Coated article and method for making the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161229

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200220

Year of fee payment: 7