KR20190072507A - 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
KR20190072507A
KR20190072507A KR1020190071328A KR20190071328A KR20190072507A KR 20190072507 A KR20190072507 A KR 20190072507A KR 1020190071328 A KR1020190071328 A KR 1020190071328A KR 20190071328 A KR20190071328 A KR 20190071328A KR 20190072507 A KR20190072507 A KR 20190072507A
Authority
KR
South Korea
Prior art keywords
pucch
ack
harq
transmission
resource
Prior art date
Application number
KR1020190071328A
Other languages
English (en)
Other versions
KR102077043B1 (ko
Inventor
박한준
김선욱
양석철
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20190072507A publication Critical patent/KR20190072507A/ko
Application granted granted Critical
Publication of KR102077043B1 publication Critical patent/KR102077043B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/1278
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에서는 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치를 개시한다.

Description

무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치 {Method and device for transmitting and receiving scheduling request between a user equipment and base station in a wireless communication system}
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
이와 같이 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.
[특허문헌 1] KR 공개특허 10-2009-0028443 호
본 발명의 목적은 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치들을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명은 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청 송수신 방법 및 이를 지원하는 장치들을 제공한다.
본 발명의 일 양태로서, 무선 통신 시스템에서 단말이 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 방법에 있어서, 상기 기지국으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신; 및 N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 전송;하는 것을 포함하는, 스케줄링 요청 전송 방법을 제안한다.
여기서, 상기 제1 설정 정보는 상위 계층 시그널링을 통해 수신될 수 있다.
또한, 상기 제2 설정 정보는 하향링크 제어 정보 (downlink control information; DCI)를 통해 수신될 수 있다.
여기서, 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는, 상기 N 개의 SR 설정 중 하나의 SR 설정에 대한 정보 및 상기 하나의 SR 설정에 대응하는 포지티브 (positive) SR 정보를 나타낼 수 있다.
또는, 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는, 상기 N 개의 SR 설정들 각각에 대응하는 SR 정보들이 포지티브 (positive) SR 인지 또는 네거티브 (negative) SR 인지 여부를 지시하는 복수 개의 비트들로 구성될 수 있다.
이때, 상기 복수 개의 비트들 각각은, 대응하는 SR 정보가 포지티브 SR인 경우 1의 값을 가지고, 대응하는 SR 정보가 네거티브 SR인 경우 0의 값을 가질 수 있다.
또한, 상기 복수 개의 비트들은, 상기 N 개의 SR 설정들의 식별 정보에 기반한 순서로 구성될 수 있다.
상기 구성에 있어, 상기 N 개의 제1 상향링크 자원 및 상기 제2 상향링크 자원은 시간 영역에서 전체 또는 일부 중첩될 수 있다.
이때, 상기 제2 상향링크 자원은, 상기 UCI를 전송하는 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH) 자원에 대응할 수 있다.
또한, 상기 비트 정보는, 상기 UCI와 결합되어 생성된 코딩된 비트 (coded bits) 포맷으로 상기 제2 상향링크 자원에서 전송될 수 있다.
상기 구성에 있어, 상기 UCI는, 채널 상태 정보 (channel state information; CSI) 또는, HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 포함할 수 있다.
본 발명의 다른 양태로서, 무선 통신 시스템에서 기지국이 단말로부터 스케줄링 요청 (scheduling request; SR)을 수신하는 방법에 있어서, 상기 단말로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송; 및 N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 수신;하는 것을 포함하는, 스케줄링 요청 수신 방법을 제안한다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 단말에 있어서, 수신부; 송신부; 및 상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 상기 기지국으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신; 및 N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 전송;하도록 구성되는, 단말을 제안한다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 단말로부터 스케줄링 요청 (scheduling request; SR)을 수신하는 기지국에 있어서, 수신부; 송신부; 및 상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 상기 단말로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 상향링크 제어 정보 (uplink control information; UCI)를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송; 및 N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 수신;하도록 구성되는, 기지국을 제안한다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 단말이 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 방법에 있어서, SR 정보를 전송하는 제1 물리 상향링크 제어 채널 (physical uplink control channel; PUCCH) 포맷 및 HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 전송하는 제2 PUCCH 포맷을 결정; 및 상기 제1 PUCCH 포맷이 하나 또는 두 개의 심볼로 구성되며 최대 2 비트 크기의 상향링크 제어 정보 (uplink control information; UCI)를 지원하는 PUCCH 포맷에 대응하고, 상기 제2 PUCCH 포맷이 네 개 이상의 심볼로 구성되며 최대 2 비트 크기의 UCI를 지원하는 PUCCH 포맷에 대응하며, 상기 SR 정보가 포지티브(positive) SR인 경우, 상기 상기 HARQ-ACK 정보만을 상기 제2 PUCCH 포맷을 이용하여 전송함으로써 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송을 수행;하는 것을 포함하는, 스케줄링 요청 전송 방법을 제안한다.
여기서, 상기 SR 정보를 전송하는 제1 상향링크 자원과 상기 HARQ-ACK 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송이 수행될 수 있다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 기지국으로 스케줄링 요청 (scheduling request; SR)을 전송하는 단말에 있어서, 수신부; 송신부; 및 상기 수신부 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, SR 정보를 전송하는 제1 물리 상향링크 제어 채널 (physical uplink control channel; PUCCH) 포맷 및 HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 전송하는 제2 PUCCH 포맷을 결정; 및 상기 제1 PUCCH 포맷이 하나 또는 두 개의 심볼로 구성되며 최대 2 비트 크기의 상향링크 제어 정보 (uplink control information; UCI)를 지원하는 PUCCH 포맷에 대응하고, 상기 제2 PUCCH 포맷이 네 개 이상의 심볼로 구성되며 최대 2 비트 크기의 UCI를 지원하는 PUCCH 포맷에 대응하며, 상기 SR 정보가 포지티브(positive) SR인 경우, 상기 상기 HARQ-ACK 정보만을 상기 제2 PUCCH 포맷을 이용하여 전송함으로써 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송을 수행;하도록 구성되는, 단말을 제안한다.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시 예들에 따르면 다음과 같은 효과가 있다.
본 발명에 따르면, 복수 개의 스케줄링 요청 정보를 전송하는 제1 상향링크 자원과 확인 응답 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 단말은 상기 복수 개의 스케줄링 요청 정보에 대응하는 비트 정보를 상기 확인 응답 정보와 함께 상기 제2 상향링크 자원에서 전송할 수 있다.
이에 따라, 단말은 상황에 따라 상기 복수 개의 스케줄링 요청 정보를 적응적으로 전송할 수 있다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 무선 프레임의 구조의 일례를 나타내는 도면이다.
도 3는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 4는 상향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 5는 하향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 6은 본 발명에 적용 가능한 자립적 서브프레임 구조 (Self-contained subframe structure)를 나타낸 도면이다.
도 7 및 도 8은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.
도 9는 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다.
도 10은 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 11은 본 발명의 일 예에 따른 제3 SR 전송 방법을 간단히 나타낸 도면이다.
도 12는 본 발명에 따라 SR이 HARQ-ACK 보다 높은 우선 순위를 갖는 경우의 단말의 SR 전송 방법을 간단히 나타낸 도면이다.
도 13 및 도 14는 본 발명에 따라 HARQ-ACK이 SR 보다 높은 우선 순위를 갖는 경우의 단말의 SR 전송 방법을 간단히 나타낸 도면이다.
도 15는 본 발명에 따라 단말이 스케줄링 요청을 전송하는 방법을 나타낸 흐름도이다.
도 16은 제안하는 실시 예들이 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
예를 들어, 전송기회구간(TxOP: Transmission Opportunity Period)라는 용어는 전송구간, 전송 버스트(Tx burst)또는 RRP(Reserved Resource Period)라는 용어와 동일한 의미로 사용될 수 있다. 또한, LBT(Listen Before Talk) 과정은 채널 상태가 유휴인지 여부를 판단하기 위한 캐리어 센싱 과정, CCA(Clear Channel Assessment), 채널 접속 과정(CAP: Channel Access Procedure)과 동일한 목적으로 수행될 수 있다.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다.
본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP LTE/LTE_A 시스템
1.1 물리 채널들 및 이를 이용한 신호 송수신 방법
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송(S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신(S16)과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 자원 구조
도 2는 본 발명의 실시예들에서 사용되는 무선 프레임의 구조를 나타낸다.
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.
하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성된다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.
전이중 FDD 시스템에서는 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과 수신을 동시에 할 수 없다.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프프레임(half-frame)으로 구성된다. 각 하프프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i+1에 해당하는 각 Tslot = 15360*Ts = 0.5ms의 길이를 가지는 2개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다.
타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
다음 표 1은 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure pat00001
또한, LTE Rel-13 시스템에서는 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)가 하기 표와 같이 X (추가적인 SC-FDMA 심볼 개수, 상위 계층 파라미터 srs-UpPtsAdd 에 의해 제공되며, 상기 파라미터가 설정되지 않으면 X는 0과 같음)를 고려하여 설정되는 구성이 새로이 추가되었고, LTE Rel-14 시스템에서는 Special subframe configuration #10이 새로이 추가되었다. 여기서, UE는 하향링크 에서의 일반 CP를 위한 special subframeconfigurations {3, 4, 7, 8} 및 하향링크에서의 확장된 CP를 위한 special subframeconfigurations {2, 3, 5, 6}에 대해 2개의 추가 UpPTS SC-FDMA 심볼들이 설정될 것을 기대하지 않을 수 있다. 추가적으로, 상기 UE는 하향링크 에서의 일반 CP를 위한 special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} 및 하향링크에서의 확장된 CP를 위한 special subframeconfigurations {1, 2, 3, 5, 6}에 대해 4개의 추가 UpPTS SC-FDMA 심볼들이 설정될 것을 기대하지 않을 수 있다. (The UE is not expected to be configured with 2 additional UpPTS SC-FDMA symbols for special subframeconfigurations {3, 4, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {2, 3, 5, 6} for extended cyclic prefix in downlink and 4 additional UpPTS SC-FDMA symbols for special subframeconfigurations {1, 2, 3, 4, 6, 7, 8} for normal cyclic prefix in downlink and special subframeconfigurations {1, 2, 3, 5, 6} for extended cyclic prefix in downlink.)
Figure pat00002
도 3은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
도 4는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH가 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이러한 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
도 5는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 서브 프레임내의 첫 번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
2. 새로운 무선 접속 기술 (New Radio Access Technology) 시스템
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술 (radio access technology, RAT)에 비해 향상된 단말 광대역 (mobile broadband) 통신에 대한 필요성이 대두되었다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 (massive) MTC (Machine Type Communications) 역시 필요하게 되었다. 뿐만 아니라 신뢰성 (reliability) 및 지연 (latency) 에 민감한 서비스/UE 를 고려한 통신 시스템의 디자인이 제시되었다.
이와 같이 향상된 단말 광대역 통신 (enhanced mobile broadband communication), 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 새로운 무선 접속 기술로써 새로운 무선 접속 기술 시스템이 제안되었다. 이하, 본 발명에서는 편의상 해당 기술을 New RAT 또는 NR (New Radio)이라 명명한다.
2.1. 뉴머롤로지들 (Numeriologies)
본 발명이 적용 가능한 NR 시스템에서는 하기 표와 같은 다양한 OFDM 뉴머롤로지를 지원한다. 이때, 반송파 대역폭 부분 (carrier bandwidth part)별 μ 및 순환 전치 (Cyclic prefix) 정보는 하향링크 (DL) 또는 상향링크 (UL) 별로 각각 시그널링될 수 있다. 일 예로, 하향링크 반송파 대역폭 부분 (downlink carrier bandwidth part)을 위한 μ 및 순환 전치 (Cyclic prefix) 정보는 상위 계층 시그널링 DL-BWP-mu 및 DL-MWP-cp를 통해 시그널링될 수 있다. 다른 예로, 상향링크 반송파 대역폭 부분 (uplink carrier bandwidth part)을 위한 μ 및 순환 전치 (Cyclic prefix) 정보는 상위 계층 시그널링 UL-BWP-mu 및 UL-MWP-cp를 통해 시그널링될 수 있다
Figure pat00003
2.2. 프레임 구조
하향링크 및 상향링크 전송은 10ms 길이의 프레임으로 구성된다. 상기 프레임은 1ms 길이의 서브프레임이 10개 모여 구성될 수 있다. 이때, 각 서브프레임 별 연속하는 OFDM 심볼의 개수는
Figure pat00004
이다.
각 프레임은 2개의 동일한 크기를 갖는 하프-프레임(half frame)으로 구성될 수 있다. 이때, 각 하프-프레임은 각각 서브프레임 0 - 4 및 서브프레임 5- 9 로 구성될 수 있다.
부반송파 간격(subcarrier spacing) μ 에 대해, 슬롯은 하나의 서브프레임 내 오름차순으로
Figure pat00005
와 같이 넘버링되고, 하나의 프레임 내 오름차순으로
Figure pat00006
와 같이 넘버링될 수 있다. 이때, 하나의 슬롯내 연속하는 OFDM 심볼 개수 (
Figure pat00007
)는 순환 전치에 따라 하기 표와 같이 결정될 수 있다. 하나의 서브프레임 내 시작 슬롯 (
Figure pat00008
)은 동일한 서브프레임 내 시작 OFDM 심볼 (
Figure pat00009
) 과 시간 차원에서 정렬되어 있다 (aligned). 하기 표 4는 일반 순환 전치 (normal cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타내고, 표 5는 확장된 순환 전치 (extended cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타낸다.
Figure pat00010
Figure pat00011
본 발명이 적용 가능한 NR 시스템에서는 상기와 같은 슬롯 구조로써 자립적 슬롯 구조 (Self-contained slot structure)가 적용될 수 있다.
도 6은 본 발명에 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 6에서 빗금친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 또는 수신모드에서 송신모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간 (guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 발명에 따른 자립적 슬롯 구조는 도 6과 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
일 예로, 슬롯은 다양한 슬롯 포맷을 가질 수 있다. 이때, 각 슬롯의 OFDM 심볼은 하향링크 ('D'로 표기함), 플렉시블('X'로 표기함), 상향링크 ('U'로 표기함)로 분류될 수 있다.
따라서, 하향링크 슬롯에서 UE는 하향링크 전송이 'D' 및 'X' 심볼들에서만 발생한다고 가정할 수 있다. 이와 유사하게, 상향링크 슬롯에서 UE는 상향링크 전송이 'U' 및 'X' 심볼에서만 발생한다고 가정할 수 있다.
2.3. 아날로그 빔포밍 (Analog beamforming)
밀리미터 파 (Millimeter Wave, mmW)에서는 파장이 짧아 동일 면적에 다수개의 안테나 요소(element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm이므로, 5 * 5 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-차원 (2-dimension) 배열을 하는 경우 총 100개의 안테나 요소를 설치할 수 있다. 이에 따라, 밀리미터 파 (mmW)에서는 다수개의 안테나 요소를 사용하여 빔포밍 (beamforming, BF) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)을 높일 수 있다.
이때, 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 각 안테나 요소는 TXRU(Transceiver Unit)을 포함할 수 있다. 이를 통해, 각 안테나 요소는 주파수 자원 별로 독립적인 빔포밍을 수행할 수 있다.
그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 시프터 (analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍이 어렵다는 단점을 갖는다.
이에 대한 해결 방안으로, 디지털 빔포밍과 아날로그 빔포밍의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍 (hybrid BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔(beam)의 방향은 B개 이하로 제한될 수 있다.
도 7 및 도 8은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다. 여기서 TXRU 가상화 (virtualization) 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호의 관계를 나타낸다.
도 7은 TXRU가 서브 어레이 (sub-array)에 연결된 방식을 나타낸 도면이다. 도 7의 경우, 안테나 요소는 하나의 TXRU에만 연결된다.
반면, 도 8은 TXRU가 모든 안테나 요소에 연결된 방식을 나타낸 도면이다. 도 8의 경우, 안테나 요소는 모든 TXRU에 연결된다. 이때, 안테나 요소가 모든 TXRU에 연결되기 위하여 도 8에 도시된 바와 같이 별도의 덧셈기를 필요로 한다.
도 7 및 도 8에서, W는 아날로그 위상 시프터 (analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W는 아날로그 빔포밍의 방향을 결정하는 주요 파라미터이다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1:1 또는 1:다(多) (1-to-many) 일 수 있다.
도 7의 구성에 따르면, 빔포밍의 포커싱이 어려운 단점이 있으나, 전체 안테나 구성을 적은 비용으로 구성할 수 있다는 장점이 있다.
도 8의 구성에 따르면, 빔포밍의 포커싱이 쉽다는 장점이 있다. 다만, 모든 안테나 요소에 TXRU가 연결되는 바, 전체 비용이 증가한다는 단점이 있다.
본 발명이 적용 가능한 NR 시스템에서 복수의 안테나가 사용되는 경우, 디지털 빔포밍 (Digital beamforming) 및 아날로그 빔포밍 (Analog beamforming)을 결합한 하이브리드 빔포밍 (Hybrid beamforming) 기법이 적용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF (Radio Frequency) 빔포밍)은 RF 단에서 프리코딩 (또는 콤바이닝 (Combining))을 수행하는 동작을 의미한다. 그리고, 하이브리드 빔포밍에서 베이스밴드 (Baseband) 단과 RF 단은 각각 프리코딩 (또는 콤바이닝)을 수행한다. 이로 인해 RF 체인 수와 D/A (Digital-to-Analog) (또는 A/D (Analog-to-Digital) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다.
설명의 편의상, 상기 하이브리드 빔포밍 구조는 N개 송수신단 (Transceiver unit, TXRU)과 M개의 물리적 안테나로 표현될 수 있다. 이때, 송신단에서 전송할 L개 데이터 계층 (Data layer)에 대한 디지털 빔포밍은 N * L (N by L) 행렬로 표현될 수 있다. 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환되고, 상기 변환된 신호에 대해 M * N (M by N) 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 9는 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다. 이때, 상기 도 9에서 디지털 빔의 개수는 L개이며, 아날로그 빔의 개수는 N개이다.
추가적으로, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방법을 고려하고 있다. 더 나아가, 도9와 같이 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 본 발명에 따른 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 이에 따라, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 특정 서브프레임 (SF) 내에서 심볼 별로 상이한 아날로그 빔을 적용하여 (적어도 동기 신호, 시스템 정보, 페이징 (Paging) 등) 신호를 전송함으로써 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 (Beam sweeping) 동작이 고려되고 있다.
도 10은 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 10에 있어, 본 발명이 적용 가능한 NR 시스템의 시스템 정보가 브로드캐스팅 (Broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시에 전송될 수 있다.
또한, 도 10에 도시된 바와 같이, 본 발명이 적용 가능한 NR 시스템에서는 아날로그 빔 별 채널을 측정하기 위한 구성으로써 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 참조 신호 (Reference signal, RS)인 빔 참조 신호 (Beam RS, BRS)의 도입이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 이때, BRS와 달리, 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
3. 제안하는 실시예
이하에서는, 상기와 같은 기술적 사상에 기반하여 본 발명에서 제안하는 구성에 대해 보다 상세히 설명한다.
특히, 본 발명에서는 단말이 UL 데이터 스케줄링을 요청하는 SR (scheduling request)를 기지국으로 전송하는 방법에 대해 상세히 설명한다.
무선 통신 시스템에서 기지국(또는 네트워크)은 DL 데이터 전송뿐만 아니라 단말의 UL 데이터 전송을 제어한다. 단말은 UL 데이터 전송을 위해 기지국 (또는 네트워크)으로부터 UL 데이터 전송 목적의 물리 채널인 PUSCH (physical uplink shared channel)를 할당 받는다. 이어, 기지국(또는 네트워크)은 UL grant로 명명되는 DCI (downlink control information)를 통해 단말에게 특정 PUSCH를 통한 UL 데이터 전송을 스케줄링 (scheduling) 할 수 있다.
이때, 기지국 (또는 네트워크는 단말이 전송하고자 하는 UL 데이터 (또는 UL 트래픽 (traffic))의 존재 여부를 알 수 없다. 따라서 단말이 먼저 기지국에게 UL 데이터 스케줄링을 요청하는 방안이 지원될 필요가 있다.
이를 위한 방법으로써, 단말은 UL 데이터 트래픽 등을 포함하는 UL 스케줄링 요청 메시지 (이하 SR (scheduling request))를 기지국 (또는 네트워크)에게 전달할 수 있다. 일 예로, 단말은 상기 SR을 UCI (uplink control information) 전송 목적의 물리 채널인 PUCCH로 전송할 수 있다. 상기 SR을 포함한 PUCCH는 기지국 (또는 네트워크)이 상위 계층 신호로 설정한 시간 자원 및 주파수 자원에서 전송될 수 있다.
한편, 본 발명이 적용 가능한 NR 시스템은 단일 물리 시스템에서 복수의 논리 네트워크를 지원할 수 있고, 다양한 요구 조건을 갖는 서비스 (예: eMBB (enhanced Mobile BroadBand), mMTC (massive Machine Type Communication), URLLC (Ultra Reliable and Low Latency Communication) 등)를 지원하도록 설계될 수 있다.
일 예로, UCI 전송 목적의 물리 채널인 PUCCH는 비교적 많은 OFDM 심볼들 (예: 4 심볼 이상)로 구성되어 넓은 UL 커버리지를 지원하는 PUCCH (이하 Long PUCCH)와 비교적 적은 OFDM 심볼들 (예: 1개 또는 2개 심볼)로 구성되어 낮은 지연 (Low latency) 전송을 지원하는 PUCCH (이하 Short PUCCH)로 구성될 수 있다.
상기 Short PUCCH는 하나 이상의 전송 구조를 가질 수 있다. 일 예로, Short PUCCH로 전송될 UCI (uplink control information)의 정보량이 적은 경우 (예: 1 또는 2 bits), 기지국은 단말에게 복수의 시퀀스 (sequence)들로 구성된 시퀀스 집합을 Short PUCCH 자원으로 할당하고, 단말은 상기 Short PUCCH 자원으로 할당된 시퀀스들 중 전송할 UCI 정보에 대응되는 특정 시퀀스를 선택하여 전송할 수 있다. 이때, 상기 시퀀스는 Low PAPR (peak power to average power ratio) 특성을 만족하도록 설계될 수 있다. 이하에서는 설명의 편의상 상기와 같은 시퀀스 기반 Short PUCCH 구조를 SEQ-PUCCH로 명명한다.
한편, 상기 Short PUCCH로 전송될 UCI의 정보량이 많은 경우 (예: 3 bits 이상), 기지국은 단말에게 UCI 전송을 위한 RE(Resource Element)들과 RS (reference signal) 전송을 위한 RE들로 구성된 Short PUCCH 자원을 할당할 수 있다. 이때, 상기 RS 전송 RE와 UCI 전송 RE는 심볼 별로 FDM (Frequency Division Multiplexing) 방식에 따라 구분될 수 있다. 이에, 단말은 UCI에 대한 Coded bits를 생성한 후 상기 Coded bits에 대한 변조 심볼 (modulated symbol)들을 상기 UCI 전송을 위한 RE들을 통해 전송할 수 있다. 이하에서는 설명의 편의 상 상기와 같이 RS와 UCI 간 (심볼 별) FDM 방식이 적용된 Short PUCCH 구조를 FDM-PUCCH로 명명한다.
이하 본 발명에서는 상기와 같은 Short PUCCH와 Long PUCCH를 이용한 단말의 SR 전송 방법에 대해 상세히 설명한다. 이하 설명에서는 본 발명에 따른 동작을 NR 시스템에서의 단말 및 기지국의 동작으로 구체화하여 설명하나, 본 발명에서 제안하는 방안들은 일반적인 무선 통신 시스템에도 동일하게 적용될 수 있다.
이하, 본 발명에서 DM-RS (demodulation reference signal)은 데이터 복조 용 참조 신호를 의미하고, SRS (sounding reference signal)은 UL 채널 측정 용 참조 신호를 의미하며, ACK/NACK은 데이터 디코딩 결과에 대한 확인 응답 정보를 의미하고, CSI (channel state information)은 채널 측정 결과에 대한 피드백 (feedback) 정보를 의미한다. 또한, 특정 시퀀스에 대한 CS (cyclic shift) 자원은 해당 시퀀스에 대해 시간 축 (또는 주파수 축)으로 Cyclic time shift (또는 Cyclic frequency shift)가 적용된 자원을 의미하고, 루트 인덱스 (Root index)는 시퀀스 생성 시 사용되는 시드 (Seed) 값을 의미한다.
또한, 본 발명에서 PRB (Physical Resource Blok)는 주파수 축 자원 할당 단위를 의미할 수 있다.
3.1 제1 SR 전송 방법
기지국은 단말에게 SR 전송을 위한 (잠재적인) 시간 자원 (또는 Slot 집합)을 다음 중 하나 이상의 방법으로 설정할 수 있다.
(1) 사전에 약속된 방식으로 설정
(2) 방송 채널 (Broadcast channel) 또는 시스템 정보를 통해 설정
(3) (단말 특정한) 상위 계층 신호를 통해 설정
이에 대응하여, 단말은 상기 SR 전송을 위한 (잠재적인) 시간 자원 (또는 Slot 집합)에서 다음 중 하나 이상의 방법으로 실제 SR 전송 여부를 결정할 수 있다.
1) 별도의 확인 과정 없이 SR 전송
이때, 단말은 사전에 약속된 방식 또는 방송 채널 또는 시스템 정보를 통해 설정된 시간 자원 (또는 Slot)에 대해서만 상기 동작을 수행할 수 있음
2) 시간 자원 (또는 Slot) 내 그룹 공통 (Group-common) PDCCH로 SR 전송이 허용된 경우에만 SR 전송
이때, 단말은 (단말 특정한) 상위 계층 신호를 통해 설정된 시간 자원 (또는 Slot)에 대해서만 상기 동작을 수행할 수 있음
여기서, 상기 그룹 공통 PDCCH는 복수의 단말 그룹을 대상으로 하는 DL 제어 정보의 물리적 전송 채널을 의미한다.
상기와 같은 자원 할당 및 이에 기반한 신호 전송 방법은 (Periodic) SRS 전송에 대해서도 동일하게 적용될 수 있다.
보다 구체적으로, 본 발명에 따른 NR 시스템은 시간 축에서 정의된 슬롯 단위의 DL 또는 UL 데이터 전송을 지원할 수 있다. 이때, NR 시스템에서는 데이터 트래픽 (traffic)에 따른 유연한 스케줄링을 지원하기 위해 DL 데이터만 전송될 수 있는 슬롯 (이하 Fixed DL slot) 또는 UL 데이터만 전송할 수 있는 슬롯 (이하 Fixed UL slot)의 사용을 최소화하는 방안이 적용될 수 있다.
이에, 만약 Fixed UL slot들에 한정하여 (주기적인) SR 전송이 허용되는 경우, 단말에 있어 SR을 전송할 수 있는 시간 자원은 상대적으로 작아지고 SR 전송 주기는 길어지게 된다. 이와 같은 동작은 단말의 지연 (Latency) 관점에서 바람직하지 않을 수 있다.
상기와 같은 문제를 해결하기 위해, Fixed UL slot 이외에 DL/UL 데이터 전송 목적으로 유연하게 전환될 수 있는 슬롯 (이하 Flexible DL/UL slot)이 SR 전송에 지원될 수 있다.
다만, 기지국이 잠재적으로 SR 전송이 가능한 슬롯 집합을 단말에게 설정하는 경우, 단말은 (상기 잠재적인 SR 전송 Slot 집합 내) Fixed UL slot이 아닌 Flexible DL/UL slot에 대해 SR 전송이 허용되는지 여부를 확신할 수 없다.
이에, 기지국은 잠재적인 SR 전송 Slot 집합 내 특정 Slot에 대해 실제 SR 전송이 허용되는 지 여부를 그룹 공통 PDCCH를 통해 단말에게 지시할 수 있다. 일 예로, 기지국은 그룹 공통 PDCCH를 통해 잠재적인 SR 전송 Slot 내 특정 Slot 구조를 지시하고, 이에 대응하여 단말은 지시된 Slot 구조가 (SR 전송이 가능한) UL control 전송 영역을 포함하는 구조라면 해당 Slot에서 SR 전송이 가능하다고 판단할 수 있다.
상기 제1 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.2. 제2 SR 전송 방법
기지국은 단말에게 M개 상태(State)를 갖는 SR에 대한 전송 자원으로써 M개 시퀀스 집합을 다음 중 하나 이상의 방법으로 설정할 수 있다.
(1) (M개 시퀀스가 할당된) SEQ-PUCCH
- 여기서, 상기 SEQ-PUCCH를 구성하는 시퀀스들은 시간 자원/주파수 자원/CS (Cyclic Shift) 자원/루트 인덱스 관점에서 구분될 수 있음
(2) M개 SRS (들)을 할당
- 여기서, 상기 SRS (들)은 시간 자원/주파수 자원/CS 자원/루트 인덱스 관점에서 구분될 수 있음
이에 대응하여, 단말은 SR에 대한 M개 상태들 중 단말이 요청하고자 하는 상태에 대응하는 시퀀스를 선택하여 SR를 전송할 수 있다.
여기서, 상기 M개 상태는 Negative SR (즉, 단말이 UL 스케줄링을 요청하지 않는 상태)를 포함하지 않을 수 있다. 다시 말해, 단말은 UL 스케줄링을 요청하지 않음을 기지국에게 SR을 전달하지 않음으로써 표현할 수 있다.
보다 구체적으로, SR은 단말이 UL 데이터 스케줄링을 요청하는 상태 (이하 Positive SR)와 UL 데이터 스케줄링을 요청하지 않는 상태 (Negative SR)을 포함할 수 있다. 이때, Negative SR은 단말이 아무런 UL 신호를 전송하지 않음으로써 표현될 수 있다. 이에, SR은 정보 관점에서 Positive SR이라는 1개 상태를 가질 수 있다.
본 발명의 실시예에 따른 NR 시스템에서 단말은 상기 Positive SR을 전달할 UL 신호로 1개 시퀀스가 할당된 SEQ-PUCCH를 활용할 수 있다.
상기 특징을 보다 일반적으로 설명하면, 본 발명에 따른 NR 시스템에서 단말은 M개 상태를 갖는 SR 전송을 위해 M개 시퀀스가 할당된 SEQ-PUCCH를 활용할 수 있다.
한편, 단말이 SR을 전송하면, 기지국은 해당 단말에 대한 UL 데이터 스케줄링을 하기 위해 UL 채널 측정을 수행할 필요가 있다. 일 예로, 상기 UL 채널 측정의 한 방안으로 기지국은 단말에게 UL 채널 측정용 RS인 SRS (sound reference signal)을 전송하도록 지시할 수 있다.
이때, 단말이 SR 전송 과정과 SRS 전송 과정을 2 단계로 (구분하여) 진행하는 동작은 지연 (Latency) 측면에서 바람직하지 않을 수 있다. 이러한 관점에 따를 때, 단말의 SR 전송 과정과 SRS 전송 과정은 하나의 과정으로 결합될 수 있다. 즉, 단말은 SR을 기지국에게 전달하는 UL 신호로써 SRS 자원을 활용할 수 있다.
일 예로, SR 이 M개 상태를 가질 때, 기지국은 상기 M개 상태에 대응되는 M개 SRS 자원을 할당할 수 있다. 단말이 SR의 특정 상태를 기지국에게 전달할 때, 상기 단말은 상기 특정 상태에 대응되는 SRS 자원을 전송함으로써 기지국에게 SR 정보를 전달할 수 있다.
상기와 같이 단말이 SR 전송 자원으로 SRS 자원을 활용할 경우, 단말은 SR 전송과 동시에 UL 채널 추정용 RS를 전송하여 지연을 줄일 수 있다는 장점이 있다.
이때, SR의 상태에 따라 SRS 자원의 (주파수 축) 자원량이 차등적으로 할당될 수 있다. 일 예로, SR 정보의 각 상태들이 UL 트래픽의 크기를 나타내는 경우, UL 트래픽의 크기가 클수록 SRS 자원이 주파수 축에서 많은 자원을 갖도록 설정될 수 있다.
추가적으로, 본 발명에 따른 단말은 UL 스케줄링을 요청하는 SR (예: Data-SR)과 빔 재련 (Beam refinement)을 요청하는 SR (예: Beam-SR)을 전송할 수 있다. 이 경우, 상기 Data-SR과 Beam-SR은 각각에 대해 독립적으로 설정된 SR 전송 자원을 통해 전송되거나 Data-SR과 Beam-SR의 조인트 코딩 (Joint coding) 결과가 단일 SR 전송 자원을 통해 전송될 수 있다.
일 예로, Data-SR과 Beam-SR이 각각 Positive SR과 Negative SR일 수 있는 경우, 단말은 하기 표와 같이 조인트 코딩된 결과를 3개 상태 (및 대응되는 3개 시퀀스)를 갖는 SEQ-PUCCH를 이용하여 전송할 수 있다. 단, Data-SR과 Beam-SR 둘 다 Negative SR인 경우, 상기 단말은 어떠한 신호도 전송하지 않을 수 있다.
Figure pat00012
상기와 같은 동작은 서로 다른 서비스에 대한 SR에 대해서도 적용될 수 있다. 일 예로, eMBB 데이터에 대한 SR (예: eMBB-SR)과 URLLC 데이터에 대한 SR (예: URLLC-SR)은 각각에 대해 각각 독립적으로 설정된 SR 전송 자원으로 전송되거나 eMBB-SR과 URLLC-SR의 조인트 결과가 단일 SR 전송 자원으로 전송될 수 있다. 이때, eMBB-SR과 URLLC-SR이 각각 Positive SR과 Negative SR일 수 있는 경우, 표 6과 유사하게 조인트 코딩된 결과는 3개 상태 (및 대응되는 3개 시퀀스)를 갖는 SEQ-PUCCH로 전송될 수 있다. 이 경우에도 eMBB-SR과 URLLC-SR 둘 다 Negative SR인 경우, 단말은 아무 신호도 전송하지 않을 수 있다.
상기 제2 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.3. 제3 SR 전송 방법
UCI (예: ACK/NACK 그리고/또는 CSI)에 대한 PUCCH 전송이 예정된 슬롯 내에 단말이 추가적으로 SR 전송을 수행하고자 하는 경우, 상기 단말은 다음과 같이 SR 그리고/또는 UCI를 전송할 수 있다.
(1) SR 전송 자원과 UCI 전송 자원이 시간 축에서 중첩되지 않는 경우 (예: TDM (Time Division Multiplexing) 된 경우)
- Option 1: SR과 UCI는 각각의 전송 자원을 이용하여 전송됨 (Method 1)
- Option 2: SR과 UCI가 결합하여 UCI 전송 자원으로 전송됨
단, 상기 동작은 SR 전송 자원과 UCI 전송 자원이 시간 축에서 인접하고, 상기 두 전송 자원 간 전송 전력 (power) 차이가 일정 크기 이상인 경우에 적용될 수 있다. 일 예로, SR 전송 자원이 시퀀스이고, UCI 전송 자원이 상기 SR 전송 자원에 시간 축에서 연접하여 전송되는 FDM PUCCH인 경우에 적용될 수 있다.
(2) SR 전송 자원과 UCI 전송 자원이 시간 축에서 중첩되는 경우 (예: FDM (Frequency Division Multiplexing) 또는 CDM (Code Division Multiplexing)된 경우)
- Option 1: SR과 UCI는 각각의 전송 자원을 이용하여 전송됨 (Method 2)
단, SR 전송 자원과 UCI 전송 자원이 모두 시퀀스 자원인 경우, 상기 SR 시퀀스와 UCI 시퀀스에 적용되는 CS (cyclic shift)/루트 인덱스 (Root index)는 상이하게 설정될 수 있다. 일 예로, SR 시퀀스와 UCI 시퀀스에 적용되는 CS (cyclic shift)/루트 인덱스 값들은 서로 일정 갭을 갖도록 설정될 수 있다.
- Option 2: SR과 UCI가 결합하여 UCI 전송 자원으로 전송됨
단, 상기 동작은 단말이 SR과 UCI를 각각의 전송 자원으로 전송하기 위해 (사전에 설정된) 최대 전송 전력을 넘는 경우에 적용될 수 있다.
또한, UCI 전송 자원이 DM-RS를 갖는 PUCCH 자원인 경우, SR 정보는 PUCCH DM-RS와 CDM 방식으로 다중화되는 시퀀스로 표현될 수 있다.
상기 구성들에 있어, 상기 UCI 전송 자원은 대응하는 슬롯이 (잠재적인) SR 전송 슬롯 또는 상기 (잠재적인) SR 전송 슬롯이 아닌지 여부에 따라 서로 상이한 PUCCH 전송 구조로 설정될 수 있다. 일 예로, 대응하는 슬롯이 (잠재적인) SR 전송 슬롯인 경우 UCI 전송 자원은 FDM-PUCCH으로 설정되고, SR 전송 슬롯이 아닌 경우 UCI 전송 자원은 SEQ-PUCCH으로 설정될 수 있다.
상기 Method 1/2은 SRS과 UCI가 동일 슬롯 내 전송되는 경우 (SR이 SRS로 대체되어) 적용되거나 또는 SR과 SRS가 동일 슬롯 내 전송되는 경우에 (UCI가 SRS로 대체되어) 적용될 수 있다.
도 11은 본 발명의 일 예에 따른 제3 SR 전송 방법을 간단히 나타낸 도면이다.
보다 구체적으로, 종래 LTE 시스템에서는 SR과 UCI (예: ACK/NACK, CSI (Channel State Information))이 동일 서브프레임에서 전송될 경우, 상기 SR과 UCI는 결합되어 단일 PUCCH 자원으로 전송되었다.
다만, 본 발명이 적용 가능한 NR 시스템에서는 SR 전송 자원과 UCI 전송 자원이 하나의 슬롯 내 TDM 방식으로 다중화되어 전송될 수 있다. 이에, SR 전송 자원과 UCI 전송 자원이 시간 축에서 중첩되지 않는 경우, 상기 SR 및 UCI는 각각에 대해 할당된 전송 자원으로 전송되는 것이 기본 동작일 수 있다.
그러나 SR 전송 자원과 UCI 전송 자원이 시간 축에서 중첩되지 않더라도 서로 인접한 심볼에서 전송되고, 두 전송 자원 간 전송 전력 차이가 큰 경우, 단말은 SR과 UCI 를 결합하여 단일 전송 자원 (예: short PUCCH)로 전송할 수 있다.
일 예로, 단말이 인접한 2개 OFDM 심볼에 대해 첫 번째 심볼에서 (Low PAPR (peak power to average power ratio) 특성을 만족하는) SEQ-PUCCH로 SR을 전송하고, 두 번째 심볼에서 ACK/NACK을 FDM-PUCCH로 전송하는 경우를 가정한다. SEQ-PUCCH와 비교할 때, FDM-PUCCH은 높은 PAPR을 가지게 되며, PA (power amplifier)의 비선형성 (non-linearity)으로 인한 왜곡을 피하기 위해 전송 전력에 대한 백-오프 (Back-off)가 적용될 수 있다. 이때, SR 전송 심볼과 ACK/NACK 전송 심볼 간 전송 전력 차이가 발생할 수 있고, 전송 전력이 즉각적으로 변화하지 않고 느리게 변화하는 전력 전이 (Power transient) 구간에 따른 신호 왜곡이 유발될 수 있다.
상기와 같은 문제를 해결하기 위한 방안으로써, 서로 인접하여 전송되는 SR 전송 자원과 UCI 전송 자원 간 전송 전력 차이가 일정 크기 이상인 경우, 단말은 SR 정보를 UCI 전송 자원 (PUCCH)에 포함시켜 전송할 수 있다. 예를 들어, 상기 예시에서 단말은 SR과 ACK/NACK을 결합한 정보를 두 번째 심볼 내 ACK/NACK 전송 목적으로 할당된 FDM-PUCCH로 전송할 수 있다.
SR 전송 자원과 UCI (예: ACK/NACK, CSI) 전송 자원이 시간 축에서 중첩되는 경우에도 각 전송 자원에 할당된 전송 전력의 합이 단말의 최대 전송 전력을 초과하는 경우 (이하 Power limited case)가 아니라면, 단말은 SR과 UCI를 각각의 전송 자원으로 전송할 수 있다.
만약 SR 전송 자원과 UCI (예: ACK/NACK, CSI) 전송 자원이 시간 축에서 중첩되고 Power limited case라면, 단말은 SR과 UCI를 결합하여 UCI 전송 자원으로 전송할 수 있다. 이때, UCI 전송 자원이 DM-RS를 갖는 PUCCH 구조이면, SR 정보는 상기 PUCCH 내 DM-RS과 CDM이 지원되는 특정 시퀀스로 표현될 수 있다. 이 경우, 단말은 PUCCH DM-RS와 CDM이 지원되는 시퀀스 M개 중 1개를 선택하여 동일 시간/주파수 자원으로 전송함으로써 M개 상태를 갖는 SR 정보를 전달할 수 있다.
앞서 상술한 제3 SR 전송 방법을 보다 일반적으로 확장하면, 단말은 UCI (예: SR, CSI, ACK/NACK)를 복수의 서브셋 (Subset)으로 분할하여 상기 복수의 서브셋(들)을 (동일 Slot 내) 상이한/동일한 심볼 상의 복수 PUCCH를 통해 전송할 수 있다.
추가적으로, 단말은 SR과 UCI가 동시 스케줄링 된 슬롯에서 아래 중 하나의 방법을 적용할 수 있다.
- 방법 1: (UCI 전송 목적) PUCCH 자원을 (SR state에 대응하여) 복수 개 설정하고, SR state에 따라 특정 PUCCH 자원으로 UCI 전송
- 방법 2: SR과 UCI를 (TDM/FDM/CDM 방식으로 구분되는) 서로 다른 PUCCH 자원으로 전송
- 방법 3: SR과 UCI를 결합하여 단일 PUCCH 자원으로 전송 (단, PUCCH format이 SR only 또는 UCI only인 경우와 다를 수 있음)
또한, DCI (내 ARI (ACK/NACK resource indicator))를 통해 UCI 전송 PUCCH 자원이 지시될 때, DCI (내 ARI (ACK/NACK resource indicator))가 지시하는 PUCCH 자원이 SR 전송 목적으로 할당된 PUCCH 자원과 서로 다른 심볼이면 단말은 앞서 상술한 방법 2를 수행하고 서로 같은 심볼이면 앞서 상술한 방법 1을 수행할 수 있다.
상기 제3 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.4. 제4 SR 전송 방법
SR과 UCI가 하나의 PUCCH 자원으로 전송되고 상기 PUCCH 자원이 DM-RS를 포함할 때, 상기 PUCCH DM-RS에 대한 후보 (또는 DM-RS 자원)는 N개 설정될 수 있다. 이때, 단말은 상기 N개 RS 후보 (또는 DM-RS 자원)들 중 1개 선택하여 전송하는 방식을 이용하여 (N-1)개 상태를 갖는 SR 정보 또는 Negative SR을 표현할 수 있다.
여기서, 상기 Negative SR은 단말이 UL 데이터 스케줄링을 요청하지 않는 상태를 의미한다.
또한, 상기 복수의 DM-RS에 대한 후보 (또는 DM-RS 자원)들은 CS (cyclic shift)/OCC (orthogonal cover code) 관점에서 구분될 수 있다.
보다 구체적으로, DM-RS가 CAZAC (Constant Amplitude Zero Autocorrelation) 시퀀스로 설계된 단일 FDM-PUCCH를 통해 SR과 UCI가 전송되는 경우, 상기 UCI에 대한 코딩된 비트 (Coded bits)는 FDM-PUCCH의 UCI 전송을 위한 RE들로 전송될 수 있다. 이때, (N-1)개 State를 갖는 SR 정보 또는 Negative SR은 PUCCH DM-RS가 지원하는 N개 CS (cyclic shift) 자원 (또는 OCC 자원) 중 1개를 선택하는 방식으로 전송될 수 있다.
보다 일반적으로, FDM-PUCCH 내 DM-RS에 대한 RS 후보들이 설정되는 경우, 단말은 상기 RS 후보들에 대한 RS 선택을 통해 SR 정보를 표현할 수 있다.
상기 제4 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.5. 제5 SR 전송 방법
단말이 전송 전력 (power)이 상이한 복수의 PUCCH를 시간 축에서 인접하여 전송하는 경우, 상기 단말은 다음 중 하나와 같이 상기 복수의 PUCCH를 전송할 수 있다.
(1) 복수 PUCCH들에 대해 (단일) 전송 전력으로 전송
- 상기 (단일) 전송 전력은 우선 순위가 높은 PUCCH의 전송 전력 또는 복수 PUCCH의 전송 전력들 중 최대 (또는 최소) 값일 수 있음
(2) 복수 PUCCH들에 대해 각각의 전송 전력으로 전송하되, PUCCH 별로 전력 전이 (Power transient) 구간을 차등적으로 설정
- UCI에 대한 우선 순위가 낮거나 또는 UCI 페이로드 크기가 작을수록 전력 전이 구간이 크게 설정될 수 있음
보다 구체적으로, 단말이 (동일 Slot 내) 전송 전력이 크게 상이한 복수의 PUCCH를 시간 축에서 인접하여 전송하는 경우, 전력 전이 (Power transient) 구간에 의해 신호가 왜곡되는 현상이 발생할 수 있다. 상기 전력 전이 구간에 따른 신호 왜곡을 완화하기 위해 (동일 Slot 내) 시간 축에서 인접하여 전송되는 복수 PUCCH들에 대해 동일 전송 전력이 적용될 수 있다.
이때, 상기 복수 PUCCH들에 대해 동일하게 적용할 전송 전력은 상기 복수 PUCCH들 중 UCI에 대한 우선 순위가 가장 높은 PUCCH에 할당된 전송 전력이거나 또는 상기 복수 PUCCH들에 대해 할당된 전송 전력들의 최대 값 (또는 최소 값)일 수 있다. 또는 단말은 상기 복수 PUCCH들을 각각 할당된 전송 전력으로 전송하되, PUCCH별로 차등적으로 전송 전력 차이로 인해 발생하는 전력 전이 구간을 적용할 수 있다. 일 예로, UCI에 대한 우선 순위가 낮은 PUCCH가 전력 전이 구간을 더 길게 갖도록 설정될 수 있다.
상기 제5 SR 전송 방법은 Short PUCCH와 Short PUCCH가 (시간 축에서 인접하게) TDM된 경우뿐만 아니라 Long PUCCH와 Short PUCCH가 (시간 축에서 인접하게) TDM된 경우 및 Long PUCCH와 Long PUCCH가 (시간 축에서 인접하게) TDM된 경우에 대해서도 적용될 수 있다. 추가적으로, Short PUCCH와 Short PUCCH가 (시간 축에서 인접하게) TDM된 경우, 두 채널 간 전송 전력 차이가 일정 이상이면 단말은 두 PUCCH 중 UCI 우선 순위가 낮은 Short PUCCH를 포기 (Drop) 하거나 각 Short PUCCH로 전송될 예정이었던 UCI를 결합하여 결합된 UCI를 상기 두 Short PUCCH 중 하나의 Short PUCCH (또는 제 3의 PUCCH)로 전송할 수 있다. 특히 Long PUCCH와 Short PUCCH가 (시간 축에서 인접하게) TDM된 경우, 상기 단말은 Short PUCCH의 전송 전력을 Long PUCCH의 전송 전력과 동일하도록 맞출 수 있다. 또는, 상기 경우에 Short PUCCH의 우선 순위가 높다면 상기 단말은 Long PUCCH의 전송 전력을 Short PUCCH의 전송 전력과 동일하게 맞출 수 있다.
앞서 상술한 제5 SR 전송 방법을 보다 일반화하면, PUSCH/PUCCH 또는 PUCCH/PUCCH가 서로 (시간 축에서 인접하게) TDM된 상황에서 단말은 다음 중 하나의 동작을 수행할 수 있다.
1) Opt 1: 작은 전력으로 설정된 채널의 전력을 큰 전력을 가진 채널의 전력으로 맞춤
2) Opt 2: 짧은 채널의 전력을 긴 채널의 전력으로 맞추거나, 또는 긴 채널 쪽에 전력 전이 구간 (power transient period)을 구성함 (단, power transient period가 구성되는 채널은 심볼 내 power가 일정하지 않을 수 있고, power transient period를 구성하지 않는 채널은 심볼 내 power가 일정하게 유지된다.)
3) Opt 3: 우선순위 (priority)가 낮은 채널의 전력을 우선순위가 높은 채널의 전력으로 맞추거나, 또는 우선순위가 낮은 채널 쪽에 전력 전이 구간을 구성
추가적으로 단말이 2-symbol PUCCH를 전송할 때, 2개 심볼 간 주파수 호핑이 적용되거나 2개 심볼 간 전력 차이가 클 수 있다. 이 경우, 전력 전이 구간에 따른 성능 저하를 피하기 위해 단말은 아래의 동작을 수행할 수 있다.
- 2-symbol PUCCH를 구성하는 2개의 1-symbol PUCCH 간 시간 갭 (Time gap)을 설정
> 여기서, 상기 시간 갭은 심볼 단위로 설정될 수 있다. 일 예로, 상기 시간 갭은 1 심볼로 설정될 수 있다.
> 또한, 상기 시간 갭을 설정하는 동작은 2-symbol PUCCH가 전송되는 주파수 대역 (frequency band) 또는 2-symbol PUCCH에 적용된 SCS (subcarrier spacing)에 따라 선택적으로 적용될 수 있다.
추가적으로, 2개의 1-symbol PUCCH (또는 SRS)가 TDM되어 전송될 때, 1-symbol PUCCH (또는 SRS) on/off으로 발생하는 전력 전이 구간에 따른 성능 저하를 피하기 위해 단말은 아래의 동작을 수행할 수 있다.
- 2개의 1-symbol PUCCH (또는 SRS) 간 시간 갭을 설정
> 여기서, 상기 시간 갭은 심볼 단위로 설정될 수 있다. 일 예로, 상기 시간 갭은 1 심볼로 설정될 수 있다.
> 또한, 상기 시간 갭을 설정하는 동작은 1-symbol PUCCH가 전송되는 주파수 대역 (frequency band) 또는 1-symbol PUCCH에 적용된 SCS (subcarrier spacing)에 따라 선택적으로 적용될 수 있다.
추가적으로, 2개의 (short) PUCCH가 (시간 축에서 인접하게) TDM된 상황에서 단말은 아래 중 하나의 옵션을 적용할 수 있다.
이때, 상기 단말이 제1 옵션 수행 시 조인트 코딩 이후의 코딩 레이트가 일정 수준 이상이면 상기 단말은 제2 내지 제4 옵션 중 하나를 적용할 수 있다.
- 제2 옵션: 2개 (short) PUCCH 모두에 대해 power transient period 설정
- 제3 옵션: 우선 순위가 낮은 (short) PUCCH에 대해 power transient period 설정
- 제4 옵션: 2개 (short) PUCCH간 동일 power 설정 (power transient period 설정하지 않음)
- 제5 옵션: 2개 (short) PUCCH 중 하나 이상의 (short) PUCCH 전송 생략 (즉, (short) PUCCH drop)
상기 제5 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.6. 제6 SR 전송 방법
SEQ-PUCCH에 할당된 시퀀스 집합 SA 내 (동일 시간 자원 및 주파수 자원을 갖고) CS 자원으로 구분되는 임의의 시퀀스 집합 SB에 포함된 M개 시퀀스들은 CS index의 오름차순 (또는 내림차순)으로 (연속된) M개 그레이 코드 (Gray code)가 대응할 수 있다.
여기서, 상기 SEQ-PUCCH를 위한 시퀀스 집합 내 시퀀스들은 서로 상이한 시간 자원, 주파수 자원, 길이, CS 자원, 루트 인덱스 중 하나를 가질 수 있다.
보다 구체적으로, 시간 자원 T1 및 주파수 자원 F1을 갖고 각각 CS index 0, 3, 6으로 구분되는 지원되는 SEQ1, SEQ2, SEQ3와 상기 (시간 자원 T1 및 주파수 자원 F1과 구분되는) 시간 자원 T2 및 주파수 자원 F2을 갖는 SEQ4가 SEQ-PUCCH에 할당될 수 있다. 이때, 동일 시간 및 주파수 자원 내 CS 자원으로 구분되는 시퀀스들 간에는 각 시퀀스가 표현하는 UCI 비트들 간 해밍 거리 (Hamming distance)가 작도록 설정될 수 있다. 2 비트들에 대한 그레이 코드는 00, 01, 11, 10으로 주어지는 바, 상기 그레이 코드는 아래와 같이 SEQ-PUCCH 내 각 시퀀스에 대응할 수 있다.
Figure pat00013
보다 구체적으로, SEQ-PUCCH에 대해 복수 시퀀스들이 할당될 때, 상기 복수 시퀀스들에 대해 동일 시간 및 주파수 자원 상에서 (CS 자원이 구분되는) 시퀀스들에 대해 CS 인덱스의 오름차순 (또는 내림차순)으로 연속된 인덱스가 할당되는 조건 하에서 인덱스가 적용될 수 있다. 이후, N 비트 UCI에 대한 k번째 그레이 코드는 상기 SEQ-PUCCH 내 k번째 인덱스를 갖는 시퀀스로 전송될 수 있다.
특히 SEQ-PUCCH가 복수 시간 자원으로 전송될 때, 시간 자원 별로 사용되는 시퀀스 집합의 CS 자원이 다르다면 (예: CS hopping) CS 자원 상 인접한 시퀀스 간에는 (연속적인) Gray code가 대응되도록 시간 자원 별로 Gray code와 시퀀스 간 매핑이 다르게 설정될 수 있다.
상기 시간 자원 별 Gray code와 시퀀스 간 매핑 원리는 앞서 상술한 제6 SR 전송 방법이 적용될 수 있다.
상기 제6 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.7. 제7 SR 전송 방법
단말은 SR과 ACK/NACK이 결합된 정보를 다음 중 하나의 방법으로 (단일) SEQ-PUCCH로 전송할 수 있다.
- ACK/NACK에 대해 번들링을 적용한 뒤 SR과 Bundled ACK/NACK에 대한 정보를 (단일) SEQ-PUCCH로 전송
- 시퀀스 자원 간 거리가 Negative/Positive SR간에 가장 크도록 (예: 다른 심볼상의 시퀀스로) 할당하고, ACK/NACK은 Gray coding을 고려하여 (예: CS 간격에 따라) 할당하여 전송
보다 구체적으로, SR이 Positive SR (UL scheduling을 요청하는 상태)과 Negative SR (UL scheduling을 요청하지 않는 상태)으로 구분되고, ACK/NACK의 페이로드 크기가 2 bits일 때, SR과 ACK/NACK을 결합한 정보는 전체 8개 상태로 표현될 수 있다. 즉, {Positive SR, 00}, {Positive SR, 01}, {Positive SR, 10}, {Positive SR, 11}, {Negative SR, 00}, {Negative SR, 01}, {Negative SR, 10}, {Negative SR, 11}로 표현될 수 있다.
그러나 SEQ-PUCCH가 주로 1 bit 또는 2 bits을 대상으로 하는 바, 8개 시퀀스를 갖도록 할당하기 위해서는 1bit 또는 2bits를 대상으로는 SEQ-PUCCH 구조와 일관되는 구조를 유지하기 어려울 수 있다. (예: 주파수 자원 길이 등이 달라질 수 있음) 상기 경우, ACK/NACK에 대한 번들링을 적용함으로써 SEQ-PUCCH로 전송할 전체 상태의 수를 감소시킬 수 있다.
일 예로, 앞서 상술한 8 개 상태는 {Positive SR, 0 (bundled ACK/NACK of 00 or 01 or 10)}, {Positive SR, 1 (bundled ACK/NACK of 11)}, {Negative SR, 00}, {Negative SR, 01}, {Negative SR, 10}, {Negative SR, 11}과 같이 6개 상태로 축소되거나, {Positive SR, 0 (bundled ACK/NACK of 00 or 01 or 10)}, {Positive SR, 1 (bundled ACK/NACK of 11)}, {Negative SR, 0 (bundled ACK/NACK of 00 or 01 or 10)}, {Negative SR, 1 (bundled ACK/NACK of 11)}와 같이 4개 상태로 축소될 수 있다.
또는 8개 시퀀스를 활용하는 경우, Positive SR을 의미하는 시퀀스 자원들과 Negative SR을 의미하는 시퀀스 자원들 간에는 직교 성이 가장 잘 보장되도록 시퀀스 자원이 할당될 수 있다. 일 예로, SEQ-PUCCH 내 전체 8개 시퀀스가 존재하고, 상기 8개 시퀀스는 2개 심볼에 대해 심볼 별로 CS 자원으로 구분되는 4개 시퀀스들로 구성되는 경우를 가정한다. 이때, 상기 2개 심볼 중 첫 번째 심볼에서는 Positive SR + ACK/NACK 정보만이 표현되고 두 번째 심볼에서는 Negative SR + ACK/NACK 정보만이 표현되도록 시퀀스가 할당될 수 있다.
추가적으로, (Frequency domain 및 Code domain에서 구분되는) M개 시퀀스 (sequence) 자원을 활용하여, 단말은 SR 상태 (예: N1개)와 HARQ-ACK 상태 (예: N2개)에 대한 (전체 또는 일부) 조합들 (예: N1*N2개) 중에서 특정 단일 조합을 아래 중 하나의 방식으로 전송할 수 있다.
(1) 방식 #1: 특정 단일 시퀀스 전송
- SR 상태와 HARQ-ACK 상태에 대한 최대 MC1개 조합을 표현 가능
(2) 방식 #2: (상기 M개 시퀀스 중) 특정 L개 시퀀스 전송
- 주어진 L 값에 대해, SR 상태와 HARQ-ACK 상태에 대한 최대 MCL개 조합을 표현 가능
여기서, 상기 Frequency domain 및 Code domain에서 시퀀스가 구분된다는 의미는 시퀀스 간 할당된 주파수 축 자원 그리고/또는 CS (cyclic shift) 또는 OCC (orthogonal cover code)가 구분됨을 의미한다.
또한, 특정 SR과 HARQ-ACK 조합에 대해 단말은 어떠한 시퀀스도 전송하지 않을 수 있다. (즉, DTX로 표현)
또한, 단말은 4개 시퀀스 (예: Seq. 1, Seq. 2, Seq. 3, Seq. 4)를 활용하여 SR 상태 (예: Positive SR or Negative SR)과 2 bits HARQ-ACK 상태 (예: {ACK, ACK}, {ACK, NACK}, {NACK, ACK}, {NACK, NACK})에 대한 8개 조합 중 특정 조합을 아래 방식과 같이 (전체 4개 시퀀스 자원 중) 단일 또는 복수 시퀀스들을 전송하여 표현할 수 있다. (즉, M=4)
1) Positive SR + {ACK, ACK}
- Seq. 1 전송
2) Positive SR + {NACK, NACK} (또는 Positive SR only)
- Seq. 2 전송
3) Negative SR + {ACK, ACK}
- Seq. 3 전송
4) Negative SR + {NACK, NACK}
- Seq. 4 전송 (단, Negative SR only이면 아무 신호도 전송하지 않음)
5) Positive SR + {ACK, NACK} 또는 Positive SR + {NACK, ACK} 또는 Negative SR + {ACK, NACK} 또는 Negative SR + {NACK, ACK}
5-1) 복수 시퀀스에 대한 동시 전송이 가능한 경우
- 각 (SR과 HARQ-ACK) 조합에 대해 4개 시퀀스 중 시퀀스 쌍 (= 2개 시퀀스)을 뽑는 경우의 수 (예: Seq. 1 + Seq. 2 또는 Seq. 1 + Seq. 3 또는 Seq. 1 + Seq. 4 또는 Seq. 2+ Seq. 3 또는 Seq. 2+ Seq. 4 또는 Seq. 3 + Seq. 4) 중 특정 (단일) 시퀀스 쌍을 할당 및 전송
- 여기서, 단말은 서로 다른 SR과 HARQ-ACK 조합에 대해 서로 다른 시퀀스 쌍을 할당 및 전송
5-2) 단일 시퀀스에 대한 전송만 가능한 경우 (예: power limited case)
- Positive SR이고 {ACK, NACK} (또는 {NACK, ACK})이면 Seq. 2 전송
- Negative SR이고 {ACK, NACK} (또는 {NACK, ACK})이면 Seq. 4 전송
Positive or Negative SR + 2 bit HARQ-ACK를 표현하기 위해 M=4개 시퀀스 (Seq. 1, Seq. 2, Seq. 3, Seq. 4)만 활용하는 경우, 단말은 하기와 같이 시퀀스를 전송할 수 있다. 이때, 하기 표에 있어, 'O'는 해당 시퀀스 전송을 의미한다.
[1] Case 1: 복수 시퀀스에 대한 동시 전송이 가능한 경우
Figure pat00014
[2] Case 2: 단일 시퀀스에 대한 전송만 가능한 경우 (예: power limited case)
Figure pat00015
또는, 기지국이 단말에게 Case 1 또는 Case 2에 따라 시퀀스(들)을 전송하도록 설정할 수 있다.
상기 예시에서 Negative SR이고 DTX인 경우에는 단말은 어떠한 신호도 전송하지 않을 수 있다.
단, 상기 예시에서 Positive SR (only)인 경우, 이를 표현하기 위해 단말은 Positive SR + {NACK, NACK}과 동일한 시퀀스(예: Seq. 2)를 전송할 수 있다.
또한, 상기 예시에서 기지국은 검출된 시퀀스(들)을 토대로 다음과 같이 SR과 HARQ-ACK에 대한 조합을 판별할 수 있다.
1] Seq. 1만 검출 시: Positive SR + {ACK, ACK}으로 판단
2] Seq. 2만 검출 시: Positive SR + {NACK, NACK}으로 판단
3] Seq. 3만 검출 시: Negative SR + {ACK, ACK}으로 판단
4] Seq. 4만 검출 시: Negative SR + {NACK, NACK}으로 판단
5] Seq. 1 + Seq. 2 검출 시: Positive SR + {ACK, NACK}으로 판단
6] Seq. 2 + Seq. 3 검출 시: Positive SR + {NACK, ACK}으로 판단
7] Seq. 1 + Seq. 4 검출 시: Negative SR + {ACK, NACK}으로 판단
8] Seq. 3 + Seq. 4 검출 시: Negative SR + {NACK, ACK}으로 판단
앞서 상술한 예시에서 Seq. 1과 Seq. 3이 심볼 A에서 전송되고, Seq. 2와 Seq. 4가 심볼 B (≠ 심볼 A)로 TDM되어 전송되는 경우, 단말은 항상 Case 1으로 동작할 수 있다. 즉, 동시 전송하는 시퀀스들이 TDM되어 있는 경우, Power limited인 경우가 발생하지 않으므로 단말은 항상 동시 전송하는 동작을 수행할 수 있다.
상기 구성을 보다 일반화하면, Seq. 1과 Seq. 3가 심볼 A에서 전송되고 Seq. 2, Seq. 4가 심볼 B (≠ 심볼 A)로 TDM되어 전송되는 경우, 단말은 SR과 HARQ-ACK에 대한 특정 조합을 시퀀스를 전송하는 다음 8가지 경우들 중 하나를 이용하여 표현할 수 있다.
<1> Seq. 1
<2> Seq. 2
<3> Seq. 3
<4> Seq. 4
<5> Seq. 1 + Seq. 2
<6> Seq. 1 + Seq. 4
<7> Seq. 3 + Seq. 2
<8> Seq. 3 + Seq. 4
이때, 상기 8개 시퀀스 전송 조합은 SR과 2 bits HARQ-ACK에 대한 전체 8개 조합 즉, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, Negative SR + {NACK, ACK}, Negative SR + {NACK, NACK}, Positive SR + {ACK, ACK}, Positive SR + {ACK, NACK}, Positive SR + {NACK, ACK}, Positive SR + {NACK, NACK})으로 일대일 대응될 수 있다.
구체적인 일 예로, 상기 8개 시퀀스 전송 조합은 앞서 상술한 Case 1에 대응되는 표와 같이 일대일 대응될 수 있다.
또는, Seq. 1이 심볼 A에서 전송되고 Seq. 2, Seq. 3, Seq. 4가 심볼 B (≠ 심볼 A)로 TDM되어 전송되는 경우, 단말은 SR과 HARQ-ACK에 대한 특정 조합을 시퀀스를 전송하는 다음 7가지 경우들 중 하나를 이용하여 표현할 수 있다.
1> Seq. 1
2> Seq. 2
3> Seq. 3
4> Seq. 4
5> Seq. 1 + Seq. 2
6> Seq. 1 + Seq. 3
7> Seq. 1 + Seq. 4
이때, 상기 7개 시퀀스 전송 조합은 SR과 2 bits HARQ-ACK에 대한 전체 조합 중 Negative SR + {NACK, NACK}인 경우를 제외한 7개 조합 즉, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, Negative SR + {NACK, ACK}, Positive SR + {ACK, ACK}, Positive SR + {ACK, NACK}, Positive SR + {NACK, ACK}, Positive SR + {NACK, NACK}에 일대일 대응될 수 있다.
또는, 상기 7개 시퀀스 전송 조합 중 6개 시퀀스 전송 조합은 2 bits HARQ-ACK에 대한 다음 6개 조합 즉, Negative SR + {ACK, ACK}, Negative SR + {ACK, NACK}, Negative SR + {NACK, ACK}, Negative SR + {NACK, NACK}, Positive SR + All ACK (i.e., {ACK, ACK})}, Positive SR + Bundled NACK (i.e., {NACK, ACK}, {ACK, NACK})에 일대일 대응될 수 있다. 이때, 상기 7개 시퀀스 전송 조합 중 나머지 1개 시퀀스 전송 조합은 복수 시퀀스를 전송하는 전송 조합 (예: Seq. 1 + Seq. 2, Seq. 1 + Seq. 3, Seq. 1 + Seq. 4) 중 하나에 대응할 수 있다.
일 예로, 단말은 하기 표와 같이 SR과 2 bits HARQ-ACK 조합 별 시퀀스 전송을 수행할 수 있다.
Figure pat00016
또 다른 예시로, 단말은 6개 시퀀스 (예: Seq. 1, Seq. 2, Seq. 3, Seq. 4, Seq. 5, Seq. 6)를 활용하여 SR 상태 (예: Positive SR or Negative SR)과 2 bits HARQ-ACK 상태 (예: {ACK, ACK}, {ACK, NACK}, {NACK, ACK}, {NACK, NACK})에 대한 8개 조합 중 특정 조합을 아래 방식과 같이 (전체 6개 시퀀스 자원 중) 단일 또는 복수 시퀀스들을 전송하여 표현할 수 있다. (즉, M=6)
(A) Negative SR + {ACK, ACK}
- Seq. 1 전송
(B) Negative SR + {ACK, NACK}
- Seq. 2 전송
(C) Negative SR + {NACK, ACK}
- Seq. 3 전송
(D) Negative SR + {NACK, NACK}
- Seq. 4 전송 (단, Negative SR only이면 아무 신호도 전송하지 않음)
(E) Positive SR only
- Seq. 5 전송
(F) Positive SR + {ACK, ACK}
- Seq. 6 전송
(G) Positive SR + {ACK, NACK} 또는 Positive SR + {NACK, ACK} 또는 Positive SR + {NACK, NACK}
(G-1) 복수 시퀀스에 대한 동시 전송이 가능한 경우
- 각 (SR과 HARQ-ACK) 조합에 대해 6개 시퀀스 중 시퀀스 쌍 (= 2개 시퀀스)을 뽑는 경우의 수 (예: Seq. 1 + Seq. 2 또는 Seq. 1 + Seq. 3 또는 Seq. 1 + Seq. 4 또는 Seq. 1 + Seq. 5 또는 Seq. 1 + Seq. 6 또는 Seq. 2+ Seq. 3 또는 Seq. 2+ Seq. 4 또는 Seq. 2+ Seq. 5 또는 Seq. 2+ Seq. 6 또는 Seq. 3 + Seq. 4 또는 Seq. 3 + Seq. 5 또는 Seq. 3 + Seq. 6) 중 특정 (단일) 시퀀스 쌍을 할당 및 전송
- 여기서, 서로 다른 SR과 HARQ-ACK 조합에 대해 단말은 서로 다른 시퀀스 쌍을 할당 및 전송
(G-2) 단일 시퀀스에 대한 전송만 가능한 경우 (예: power limited case)
- Positive SR이고 {ACK, NACK} (또는 {NACK, ACK} 또는 {NACK, NACK})이면 Seq. 5 전송
Positive or Negative SR + 2 bit HARQ-ACK를 표현하기 위해 M=6개 시퀀스 (Seq. 1, Seq. 2, Seq. 3, Seq. 4, Seq. 5, Seq. 6)만 활용하는 경우, 단말은 하기와 같이 시퀀스를 전송할 수 있다. 이때, 하기 표에 있어, 'O'는 해당 시퀀스 전송을 의미한다.
A) Case 3: 복수 시퀀스에 대한 동시 전송이 가능한 경우
Figure pat00017
B) Case 4: 단일 시퀀스에 대한 전송만 가능한 경우 (예: power limited case)
Figure pat00018
또는, 기지국이 단말에게 Case 3 또는 Case 4에 따라 시퀀스(들)을 전송하도록 설정할 수 있다.
상기 예시에서 Negative SR이고 DTX인 경우, 단말은 어떠한 신호도 전송하지 않을 수 있다.
또한, 상기 예시에서 기지국은 검출된 시퀀스(들)을 토대로 다음과 같이 SR과 HARQ-ACK에 대한 조합을 판별할 수 있다.
[A] Seq. 1만 검출 시: Negative SR + {ACK, ACK}으로 판단
[B] Seq. 2만 검출 시: Negative SR + {ACK, NACK}으로 판단
[C] Seq. 3만 검출 시: Negative SR + {NACK, ACK}으로 판단
[D] Seq. 4만 검출 시: Negative SR + {NACK, NACK}으로 판단
[E] Seq. 5만 검출 시: Positive SR + bundled NACK (또는 DTX)으로 판단
[F] Seq. 6만 검출 시: Positive SR + {ACK, ACK}으로 판단
[G] Seq. 5 + Seq. 2 검출 시: Positive SR + {ACK, NACK}으로 판단
[H] Seq. 5 + Seq. 3 검출 시: Positive SR + {NACK, ACK}으로 판단
[I] Seq. 5 + Seq. 4 검출 시: Positive SR + {NACK, NACK}으로 판단
추가적으로, 단말은 Positive SR + {NACK, NACK}과 Positive SR + DTX (즉, Positive SR only)에 대한 시퀀스 전송을 하기 표 13 또는 표 14와 같이 변형할 수 있다.
Figure pat00019
Figure pat00020
표 13에 따를 때, 기지국은 검출된 시퀀스(들)을 토대로 다음과 같이 SR과 HARQ-ACK에 대한 조합을 판별할 수 있다.
A] Seq. 1만 검출 시: Negative SR + {ACK, ACK}으로 판단
B] Seq. 2만 검출 시: Negative SR + {ACK, NACK}으로 판단
C] Seq. 3만 검출 시: Negative SR + {NACK, ACK}으로 판단
D] Seq. 4만 검출 시: Negative SR + {NACK, NACK}으로 판단
E] Seq. 5만 검출 시: Positive SR + {NACK, NACK} (또는 DTX)으로 판단
F] Seq. 6만 검출 시: Positive SR + {ACK, ACK}으로 판단
G] Seq. 5 + Seq. 2 검출 시: Positive SR + {ACK, NACK}으로 판단
H] Seq. 5 + Seq. 3 검출 시: Positive SR + {NACK, ACK}으로 판단
또는, 표 14에 따를 때, 기지국은 검출된 시퀀스(들)을 토대로 다음과 같이 SR과 HARQ-ACK에 대한 조합을 판별할 수 있다.
<A> Seq. 1만 검출 시: Negative SR + {ACK, ACK}으로 판단
<B> Seq. 2만 검출 시: Negative SR + {ACK, NACK}으로 판단
<C> Seq. 3만 검출 시: Negative SR + {NACK, ACK}으로 판단
<D> Seq. 4만 검출 시: Negative SR + {NACK, NACK}으로 판단
<E> Seq. 5만 검출 시: Positive SR + bundled NACK (또는 DTX)으로 판단
<F> Seq. 6만 검출 시: Positive SR + {ACK, ACK}으로 판단
<G> Seq. 5 + Seq. 2 검출 시: Positive SR + {ACK, NACK}으로 판단
<H> Seq. 5 + Seq. 3 검출 시: Positive SR + {NACK, ACK}으로 판단
<I> Seq. 5 + Seq. 4 검출 시: Positive SR + {NACK, NACK} (또는 DTX)으로 판단
또한, 단말이 1 bit HARQ-ACK과 SR을 전송하는 경우, 아래와 같은 시퀀스 할당을 고려할 수 있다.
구체적으로, 단말이 (Positive or Negative) SR + 2 bit HARQ-ACK에 대해 M=2개 시퀀스 (예: Seq. 1, Seq. 2)만 활용하는 경우, 상기 단말은 다음과 같이 동작할 수 있다.
A> Case 1: 복수 시퀀스에 대한 동시 전송이 가능한 경우
이 경우, 단말은 하기 표들 중 하나와 같이 동작할 수 있다.
Figure pat00021
Figure pat00022
Figure pat00023
상기 예시에 있어, 단말은 항상 복수 시퀀스를 전송할 수 있다고 가정하며, Positive SR (only)인 경우 단말은 Positive SR + NACK인 경우와 동일한 시퀀스 (즉, Seq. 2)를 전송하고, Negative SR + NACK인 경우 상기 단말은 어떠한 신호도 전송하지 않을 수 있다.
또한, 단말이 2개 심볼에 대해 심볼 별로 (N개 시퀀스 중 하나를 선택하여 전송하는) (2-symbol) SEQ-PUCCH 전송 구조에서 SR (예: positive SR, negative SR)과 2 bits HARQ-ACK 정보를 결합하여 전송하는 경우, 상기 단말은 2개 심볼에 대해 전송하는 전체 N*N개 시퀀스 쌍 중 8개 쌍을 활용하여 SR과 2 bits HARQ-ACK에 대한 8개 조합을 표현할 수 있다.
추가적으로, 단말은 M-bits UCI (예: HARQ-ACK)에 대해 2M개 시퀀스 중 하나를 선택하여 전송함으로써 상기 M-bits UCI의 특정 상태를 표현하는 PUCCH (이하 SEQ-PUCCH) 구조를 활용할 수 있다. 이때, 상기 M-bits UCI 전송을 위해 사용될 수 있는 2M개 시퀀스가 동일 주파수 자원 (예: PRBs)을 가지고 서로 간 (CS (cyclic shift) domain에서) 동일 간격을 갖는 2M개의 CS (cyclic shift) 값들로 구분되는 경우, PUCCH 자원은 주파수 자원 인덱스 (예: PRB index)와 해당 주파수 자원 내 CS 시작 값으로 표현될 수 있다. 이때, 단말은 나머지 2M-1개 CS 값에 기초하여 상기 CS 시작 값과 상기 CS간 간격을 유추할 수 있다. 상기 CS 간 간격은 UCI 페이로드 크기에 따라 결정되거나 또는 기지국이 상위 계층 신호를 통해 설정한 값에 기초하여 결정될 수 있다.
또한 기지국은 복수의 PUCCH 자원을 단말에게 설정하고, 이후 DCI로 상기 복수 개의 PUCCH 자원들 중 UCI 전송에 활용할 특정 PUCCH 자원을 선택하여 지시할 수 있다.
추가적으로, SR only 전송인 경우 단말은 Positive SR 또는 Negative SR인지 여부에 따라 다음과 같이 동작할 수 있다. 구체적으로, 상기 단말은 Positive SR only이면 특정 단일 시퀀스를 전송하고, Negative SR only이면 해당 시퀀스를 전송하지 않을 수 있다 (즉, 특정 시퀀스 기반 On/Off keying). 또한, N bits HARQ-ACK only 전송인 경우 단말은 2N개 시퀀스 중 (HARQ-ACK state에 대응되는) 특정 한 시퀀스를 선택하여 전송할 수 있다 (즉, 시퀀스 선택 기반 PUCCH). 이때, SR에 대한 전송과 HARQ-ACK에 대한 전송이 동일 시간 자원에 발생하는 경우, 단말은 다음과 같이 동작할 수 있다.
A. Positive SR인 경우, SR only 전송에 대응하는 동작 수행
- 즉, SR 전송 목적으로 할당된 특정 단일 시퀀스만 전송
- 단, 상기 경우 기지국은 HARQ-ACK에 대해 DTX 또는 All NACK으로 간주할 수 있다.
B. Negative SR인 경우, HARQ-ACK only 전송에 대응하는 동작 수행
- 즉, HARQ-ACK 전송 목적으로 할당된 2N개 시퀀스 중 (HARQ-ACK state에 대응되는) 특정 한 시퀀스를 전송
다만, 만약 SR에 대한 전송과 HARQ-ACK에 대한 전송이 동일 시간 자원에 발생하고, 단말이 Power limited case가 아니어서 2개 시퀀스를 동시 전송할 수 있는 경우, 상기 단말은 다음과 같이 동작할 수 있다.
C. Positive SR인 경우, SR only 전송에 대응하는 동작 수행
- SR 전송 목적으로 할당된 특정 단일 시퀀스 전송
- 추가로, HARQ-ACK 전송 목적으로 할당된 2N개 시퀀스 중 (HARQ-ACK state에 대응되는) 특정 한 시퀀스를 전송
D. Negative SR인 경우, HARQ-ACK only 전송에 대응하는 동작 수행
- 즉, HARQ-ACK 전송 목적으로 할당된 2N개 시퀀스 중 (HARQ-ACK state에 대응되는) 특정 한 시퀀스를 전송
상기 제7 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.8. 제8 SR 전송 방법
이하 설명에 있어, SR (scheduling request)은 단말이 기지국에게 UL 전송 자원 요청 (또는 UL 전송 데이터)에 대한 유무를 전달하는 물리 계층 신호를 의미하며, Positive SR은 UL 전송 자원 요청 (또는 UL 전송 데이터)이 있음을 의미하고, Negative SR은 UL 전송 자원 요청 (또는 UL 전송 데이터)이 없음을 의미한다고 가정한다.
이때, 서비스 타입 A에 대한 SR을 전송하는 (short) PUCCH 자원과 서비스 타입 B (≠ 서비스 타입 A)에 대한 데이터를 전송하는 PUSCH 자원이 시간 축에서 중첩되는 경우, 단말은 아래 중 하나 이상의 방식을 적용할 수 있다.
(1) PUSCH로 할당 받은 (시간 및 주파수) 자원 내 SR 정보 (예: Positive SR 또는 Negative SR 여부)를 UCI 피기백 형태로 전송함
- 여기서, SR에 대한 UCI 피기백 수행 시, 단말은 PUSCH 내 일부 UL 데이터에 대한 펑쳐링 (또는 레이트-매칭)을 적용한 뒤 (1 bit) SR에 대한 (encoded) UCI bits를 (기지국과 단말 간 약속된 RE mapping pattern에 따라) PUSCH 내 특정 RE들로 전송할 수 있다.
(2) PUCCH 자원에 PUSCH 내 심볼들에 대해 Puncturing을 수행하고, 상기 심볼들 상에서 SR 정보 (예: Positive SR 또는 Negative SR 여부)를 PUCCH로 전송
- 여기서, SR 정보를 전송하는 PUCCH 자원은 특정 시퀀스에 대한 On/Off keying 형태일 수 있다.
(3) PUSCH DM-RS 시퀀스를 스위칭하여 SR 정보 (예: Positive SR 또는 Negative SR 여부)를 전송하는 방안
- 여기서, SR 정보에 따라 시퀀스가 스위칭되는 PUSCH DM-RS는 SR 전송 목적으로 할당된 PUCCH 자원과 가장 인접한 PUSCH DM-RS (또는 SR 전송 목적으로 할당된 PUCCH 자원 이후의 가장 빠른 PUSCH DM-RS)일 수 있다.
- 또한, PUSCH DM-RS 시퀀스를 스위칭한다고 함은 DM-RS에 대한 스크램블링 또는 순환 시프트 (Cyclic shift) 값을 Switching하는 것을 의미할 수 있다.
(4) PUSCH 전송을 생략하고 (즉, PUSCH drop), SR 전송을 위한 (short) PUCCH 자원만 전송
상기 구성에 있어, 상기 (short) PUCCH 자원은 1개 또는 2개 OFDM 심볼들에 대응되는 전송 구간을 가질 수 있다.
또한, 상기 구성은 SR을 전송하는 (short) PUCCH 자원과 (SR 이외의) UCI (예: HARQ-ACK 또는 CSI)를 전송하는 DM-RS 기반 (long) PUCCH 자원 간에도 동일하게 적용될 수 있다. 다시 말해서, 상기 구성에 있어 ‘PUSCH’는 ‘DM-RS 기반 (long) PUCCH’로, ‘PUSCH DM-RS’는 ‘PUCCH DM-RS’로 치환될 수 있다.
또한, 상기 SR을 전송하는 (short) PUCCH와 UL 데이터를 전송하는 (long) PUSCH 간 주파수 자원이 다르고 단말이 FDM된 PUCCH와 PUSCH를 동시 전송할 수 있는 경우, 상기 단말은 상기 (short) PUCCH와 (long) PUSCH를 동시 전송할 수 있다.
보다 구체적인 예로, SR이 1개 심볼 내 시퀀스 선택 (Sequence selection) 기반의 PUCCH 자원 (예: SEQ-PUCCH, 복수 시퀀스 중 하나를 선택 및 전송하여 UCI를 표현하는 PUCCH 자원)으로 전송되고, 상기 SR에 대한 전송 주기가 1개 OFDM 심볼로 설정된 경우, 슬롯 내 다른 PUSCH 전송과 SR 전송이 충돌하는 경우가 발생할 수 있다. 이 경우, SR과 PUSCH가 동일 서비스 타입에 대한 전송이라면 단말은 이미 PUSCH를 전송하고 있는 상태이므로 물리 계층 (또는 PHY layer)에서 별도로 SR을 전송하지 않고 PUSCH를 통해 MAC 계층 (또는 MAC layer) 또는 상위 계층 정보로 BSR (buffer state report) 또는 UL 스케줄링 요청을 전송할 수 있다.
반면, SR과 PUSCH가 서로 다른 서비스 타입인 경우, 서비스 타입 별로 요구되는 전송 신뢰성에 대한 요구치 (Requirement)가 다를 수 있다. 이에, SR과 PUSCH는 각각 물리 계층 신호로 전송되는 것이 바람직할 수 있다.
따라서 본 발명에서는 서비스 타입이 서로 다른 SR과 PUSCH가 전송될 때, PUSCH 내 일부 RE 또는 일부 심볼들에 대해 펑쳐링 (또는 Rate-matching)을 수행한 뒤 해당 자원으로 SR 정보를 담은 UCI RE들 또는 PUCCH 자원을 전송하는 방법 또는 PUSCH DM-RS의 시퀀스를 SR 정보에 따라 변경함으로써 PUSCH DM-RS에 SR 정보를 실어 보내는 방법을 제안한다.
상기 제8 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.9. 제9 SR 전송 방법
SR 전송을 위한 (short) PUCCH 자원과 특정 UCI (예: HARQ-ACK 또는 CSI) 전송을 위한 (Sequence modulation 기반의) (long) PUCCH 자원이 시간 축에서 중첩되는 경우, 단말은 아래 중 하나 이상의 방식을 적용할 수 있다.
(1) (Sequence modulation 기반) (long) PUCCH 자원 내 특정 심볼(들)에서 전송되는 시퀀스(들)을 스위칭하여 SR 정보 (에; Positive SR 또는 Negative SR 여부)를 전송
- 여기서, 상기 (long) PUCCH 자원 내 특정 심볼(들)은 SR 전송을 위한 (shot) PUCCH 자원의 (시간 축) 전송 자원에 대응되는 심볼들일 수 있다.
- 또한, 상기 (long) PUCCH 자원 내 특정 심볼(들) 내 시퀀스(들)을 스위칭하는 경우, 해당 시퀀스에 대한 스크램블링 또는 순환 시프트 (Cyclic shift) 값을 스위칭하는 것일 수 있다.
(2) (Sequence modulation 기반) (long) PUCCH 전송을 생략하고 (즉, PUCCH drop), SR 전송을 위한 (short) PUCCH 자원만 전송
- 여기서, 상기 (short) PUCCH 자원은 1개 또는 2개 OFDM 심볼들에 대응되는 전송 구간을 가질 수 있다.
- 또한, 상기 Sequence modulation 기반의 (long) PUCCH 자원은 복수 심볼 (예: 4개 이상)에서 각 심볼 별로 UCI에 대한 변조된 심볼 (Modulated symbol)과 시퀀스가 곱해진 형태로 전송되는 PUCCH 자원을 의미한다.
- 또한, 상기 SR을 전송하는 (short) PUCCH와 특정 UCI를 전송하는 (long) PUCCH 간 주파수 자원이 다르고, 단말이 FDM된 (short) PUCCH와 (long) PUCCH를 동시 전송할 수 있는 경우, 상기 단말은 상기 (short) PUCCH와 (long) PUCCH를 동시 전송할 수 있다.
보다 구체적으로, 단말은 일정 개수 이상의 복수 심볼들에 대해 심볼 별로 특정 시퀀스와 UCI에 대한 변조된 심볼 (예: BPSK (Binary Phase Shift Keying) 또는 QPSK (Quadrature Phase Shift Keying)에 대한 변조 심볼)이 곱해진 신호를 전송하는 시퀀스 변조 (Sequence modulation) 기반 (long) PUCCH를 지원할 수 있다.
한편, SR이 1개 심볼 내 Sequence selection 기반의 PUCCH 자원 (예: SEQ-PUCCH, 복수 시퀀스 중 하나를 선택 및 전송하여 UCI를 표현하는 PUCCH 자원)으로 전송되고, 상기 SR에 대한 전송 주기가 1개 OFDM 심볼로 설정된 경우, 상기 SR을 전송하는 PUCCH 자원은 상기 (SR 이외의) UCI를 전송하는 Sequence modulation 기반 (long) PUCCH 내 특정 전송 심볼(들)에서 중첩될 수 있다. 이때, 단말은 상기 특정 전송 심볼(들)에 대응되는 Sequence modulation 기반 (long) PUCCH의 시퀀스(들)을 스위칭하여 해당 심볼(들)에서 SR 정보가 전달되었음을 표현할 수 있다.
특히 시퀀스가 Low PAPR을 충족하는 경우, 단말이 SR과 (long) PUCCH를 동시 전송하지 않음으로써 Low PAPR 특성을 유지한 채 이미 Sequence modulation 기반 (long) PUCCH 자원으로 할당된 주파수 자원 내에서 SR 정보를 더 보낼 수 있는 장점이 있다.
보다 구체적으로 기지국은 상기 동작을 위해 Sequence modulation 기반 (long) PUCCH에 대해 2개 이상의 Cyclic shift offset 값 (예: CS offset 0, CS offset 1)을 설정해 주고, Sequence modulation 기반 (long) PUCCH 내 특정 심볼에서 SR 전송 여부를 지시함으로써 단말이 상이한 CS offset 을 적용하도록 할 수 있다. 일 예로, 기지국이 Sequence modulation 기반 (long) PUCCH 내 특정 심볼에서 SR 전송을 지시한 경우, 단말은 해당 심볼 내 시퀀스에 대해 CS offset 1을 적용하고, 상기 기지국이 Sequence modulation 기반 (long) PUCCH 내 특정 심볼에서 SR 전송을 지시하지 않은 경우, 상기 단말은 해당 심볼 내 시퀀스에 대해 CS offset 0을 적용할 수 있다.
상기 제9 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.10. 제10 SR 전송 방법
2개 (OFDM) 심볼에 대해 각 심볼 별로 N개 HARQ-ACK 상태가 N개 시퀀스에 일대일 대응되고 단말은 HARQ-ACK 상태에 대응되는 시퀀스를 선택하여 전송한다고 가정한다. 이때, 첫 번째 심볼 그리고/또는 두 번째 심볼 내 N개 HARQ-ACK state과 시퀀스 간 일대일 대응 방식을 바꿈으로써 하기와 같이 SR 정보가 표현될 수 있다.
일 예로, 1 bit HARQ-ACK이 2개 (OFDM) 심볼에 대해 시퀀스 선택 방식으로 전송되는 경우, 하기 표와 같이 각 심볼 별로 2개 HARQ-ACK 상태(ACK, NACK)에 대한 2개 시퀀스가 일대일 대응될 수 있다. 이때, 아래 Seq. 1, Seq. 2, Seq. 3. Seq. 4는 모두 서로 다르거나 또는 일부는 동일한 시퀀스일 수 있다.
Figure pat00024
특히, 본 발명에 따라 단말이 SR + 1 bit HARQ-ACK 정보를 나타내고자 하는 경우, 단말은 첫 번째 그리고/또는 두 번째 심볼에서 HARQ-ACK 상태와 시퀀스 간 일대일 대응 방식을 바꿈으로써 SR 정보를 표현할 수 있다. 하기 표는 이에 대한 예시를 나타낸다. 이때, p-SR과 n-SR은 각각 positive SR과 negative SR을 의미한다.
Figure pat00025
Figure pat00026
다른 예로, 본 발명에 따라 단말이 2 bit HARQ-ACK을 2개 (OFDM) 심볼에 대해 시퀀스 선택 방식으로 전송할 경우, 상기 단말은 하기 표와 같이 각 심볼 별로 4개 HARQ-ACK State (ACK/ACK, ACK/NACK, NACK/ACK, NACK/NACK)에 대한 4개 시퀀스를 일대일 대응 시킬 수 있다. 이때, 아래 Seq. 1, Seq. 2, …. Seq. 8는 모두 서로 다르거나 또는 일부는 동일한 시퀀스일 수 있다.
Figure pat00027
또한, 본 발명에 따라 단말이 SR + 2 bit HARQ-ACK 정보를 나타내고자 하는 경우, 상기 단말은 첫 번째 그리고/또는 두 번째 심볼에서 HARQ-ACK 상태와 시퀀스 간 일대일 대응 방식을 바꿈으로써 SR 정보를 표현할 수 있다. 하기 표는 이에 대한 예시를 나타낸다. 이때, p-SR과 n-SR은 각각 positive SR과 negative SR을 의미한다.
Figure pat00028
Figure pat00029
상기 구성들을 보다 일반적으로 설명하면, N개 HARQ-ACK 상태를 표현하기 위해 첫 번째 심볼과 두 번째 심볼에서 전송되는 시퀀스 쌍 N개가 (Seq. X1, Seq. Y1), (Seq. X2, Seq. Y2), … , (Seq. XN, Seq. YN)와 같이 설정된 경우, 단말은 시퀀스 집합 {Seq. X1, Seq. X2, …, Seq. XN}과 시퀀스 집합 {Seq. Y1, Seq. Y2, …, Seq. YN} 간 가능한 N2개의 시퀀스 쌍 중 N개 시퀀스 쌍을 이용하여 HARQ-ACK + positive SR을 표현하고 다른 N개 시퀀스 쌍을 이용하여 HARQ-ACK + negative SR을 표현할 수 있다.
상기 제10 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.11 제11 SR 전송 방법
단말이 SR과 2 bits HARQ-ACK에 대한 UCI state를 복수 개의 시퀀스 중 하나를 선택하여 전송하는 방식으로 표현할 때, 기지국은 상기 SR과 2 bits HARQ-ACK에 대한 UCI state들 중 일부를 하나의 상태로 번들링할지 여부에 대해 단말에게 설정할 수 있다.
여기서, 기지국은 (RRC signaling 등의) 상위 계층 신호 그리고/또는 DCI (downlink control information)를 통해 상기 번들링 여부를 설정할 수 있다.
또한, 상기 번들링 지시 여부에 따라 단말이 SR과 2 bits HARQ-ACK을 표현하기 위해 가정하는 시퀀스 수는 달라질 수 있다.
보다 구체적으로, 단말이 SR과 2 bits HARQ-ACK에 대한 UCI state를 별도의 번들링 과정 없이 시퀀스 선택 방식으로 표현하는 경우, 상기 단말은 하기 표와 같이 전체 8개 UCI state에 따른 8개 시퀀스를 필요로 할 수 있다.
Figure pat00030
다만, 상기 표와 같이 단말이 8개 시퀀스를 사용할 경우, 필요한 시퀀스 자원이 지나치게 많을 수 있다. 이에, 단말이 일부 상태들을 번들링하여 하나의 시퀀스로 표현하는 방식이 고려될 수 있다.
일 예로, 2 bits HARQ-ACK에 대한 공간 번들링 (Spatial bundling) 관점에서 단말은 동일한 HARQ-ACK 정보를 갖는 상태들을 번들링하여 하기 표와 같이 하나의 시퀀스로 표현할 수 있다.
Figure pat00031
이때, 단말이 항상 표 24와 같이 동작하게 되면 자원 낭비가 심할 수 있고, 상기 단말이 항상 표 25와 같이 동작하게 되면 HARQ-ACK 정보에 대한 해상도 (Resolution)가 떨어질 수 있다. 이에, 기지국이 PUCCH 자원 상태에 따라 앞서 상술한 두 가지 모드 중 하나의 모드를 준-정적으로 설정하거나 또는 동적으로 설정해줄 수 있다.
일 예로, 기지국은 RRC signaling 그리고/또는 DCI를 통해 단말에게 SR과 2 bits HARQ-ACK에 대한 UCI 상태들 중 일부를 하나의 상태로 번들링할지 여부를 설정해 줄 수 있다.
상기 제11 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.12. 제12 SR 전송 방법
기지국은 상위 계층 신호를 통해 단말에게 (HARQ-ACK 전송을 위한) PUCCH 자원 집합을 설정하고, DCI 그리고/또는 Implicit mapping 방식에 따라 상기 집합 내에서 적용할 PUCCH 자원을 지시할 수 있다. 이때, 상기 기지국은 상기 (HARQ-ACK 전송을 위한) PUCCH 자원 집합은 SR이 전송되는 (mini-) Slot과 SR이 전송되지 않는 (mini-) Slot에 대해 독립적으로 설정할 수 있다.
구체적인 일 예로, SR이 전송되도록 설정된 Slot에서는 HARQ-ACK 전송을 위한 PUCCH 자원과 SR 전송을 위한 PUCCH 자원이 공존하기 때문에 기지국이 HARQ-ACK 전송을 위한 PUCCH 자원 집합을 설정함에 있어 제약을 받을 수 있다.
반면, SR이 전송되지 않는 Slot에서는 HARQ-ACK 전송을 위한 PUCCH 자원의 후보 군이 보다 많을 수 있고, 이에 따라 기지국이 PUCCH 자원 집합을 설정함에 있어서 보다 자유로울 수 있다.
일 예로, 후자의 경우 기지국은 PUCCH 자원 집합이 주파수 축에서 보다 넓은 대역에 분산되도록 설정하여 주파수 다이버시티 (Frequency diversity)를 얻기에 용이하도록 할 수 있다. 따라서 바람직하게 기지국은 SR이 전송되는 (mini-) Slot과 SR이 전송되지 않는 (mini-) Slot에 대해 HARQ-ACK 전송을 위한 PUCCH 자원 집합을 독립적으로 설정해 줄 수 있다.
상기 제12 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.13. 제13 SR 전송 방법
기지국으로부터 SR 전송 (short) PUCCH 자원과 log2(N) bit(s) (단, N=2 또는 4) HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 단말은 SR과 HARQ-ACK에 대한 UCI 상태를 표현하기 위해 복수 개의 시퀀스 중 하나를 선택하여 전송할 수 있다. 이때, 기지국은 하기와 같이 상기 SR 전송 (short) PUCCH와 HARQ-ACK 전송 (short) PUCCH 자원을 설정할 수 있다.
(1) Opt. 1: SR 전송 (short) PUCCH 자원으로 4개 시퀀스를 할당하고, HARQ-ACK 전송 (short) PUCCH 자원으로 N개 시퀀스를 할당하는 방안
(1-1) SR 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 (동일) PRB 내 특정 (Low PAPR/CM (Peak-to-Average Power Ratio / Cubic Metric)) 시퀀스에 대해 (Cyclic shift index 관점에서) 균등한 간격을 갖는 4개의 Cyclic shift 값들 중 하나가 적용된 시퀀스일 수 있다.
구체적인 예로, PRB 내 L개의 Cyclic shift가 존재하고 SR 전송 (short) PUCCH 자원에 할당된 초기 순환 시프트 인덱스 (Initial cyclic shift index)가 k일 때, 상기 4개 시퀀스에 대응되는 Cyclic shift 값들은 Cyclic shift index의 관점에서 k, (k+L/4) mod L, (k+2L/4) mod L, (k+3L/4) mod L에 대응되는 Cyclic shift 값들로 설정될 수 있다.
(1-2) SR 전송 (short) PUCCH 자원 내 상기 4개 중 1개 시퀀스는 SR only 전송인 경우 On/Off keying 방식으로 SR 여부를 알려주는 자원으로 활용될 수 있다. 이때, 상기 SR only에 대응되는 시퀀스 자원은 SR 전송 주기에서 예약되는 자원일 수 있다.
구체적인 예로, 상기 시퀀스는 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index에 대응할 수 있다.
(1-3) HARQ-ACK 전송 (short) PUCCH 자원 내 N개 시퀀스는 HARQ-ACK only 전송인 경우 N개 HARQ-ACK 상태에 대응할 수 있다. 이에, 단말은 보고할 HARQ-ACK 상태에 대응되는 시퀀스를 선택하여 전송할 수 있다.
(1-4) 기지국으로부터 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 각 UCI 상태에 대응되는 시퀀스는 아래와 같이 정의될 수 있다. 이때, 단말은 해당 UCI 상태를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.
(1-2-1) N=2인 경우
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.
- 구체적인 예로, SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스는 Cyclic shift index 관점에서 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다.
- 또한, {Positive SR, NACK}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다.
(1-2-2) N=4인 경우
- SR 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N}, {Positive SR, N/A}, {Positive SR, N/N}에 대응할 수 있다.
- 구체적인 예로, {Positive SR, N/N}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다.
(2) Opt. 2: SR 전송 (short) PUCCH 자원으로 2개 시퀀스를 할당하고, HARQ-ACK 전송 (short) PUCCH 자원으로 N개 시퀀스를 할당하는 방안
(2-1) SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 (동일) PRB 내 특정 (Low PAPR/CM) 시퀀스에 대해 (Cyclic shift index 관점에서) 균등한 간격을 갖는 2개의 Cyclic shift 값들 중 하나가 적용된 시퀀스일 수 있다.
구체적인 예로, PRB 내 L개의 Cyclic shift가 존재하고 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스에 대응되는 Cyclic shift 값들은 Cyclic shift index의 관점에서 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다.
(2-2) SR 전송 (short) PUCCH 자원 내 상기 2개 중 1개 시퀀스는 SR only 전송인 경우 On/Off keying 방식으로 SR 여부를 알려주는 자원으로 활용되며, 상기 SR only에 대응되는 시퀀스 자원은 SR 전송 주기에서 예약되는 자원일 수 있다.
구체적인 예로, 상기 시퀀스는 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index에 대응할 수 있다.
(2-3) HARQ-ACK 전송 (short) PUCCH 자원 내 N개 시퀀스는 HARQ-ACK only 전송인 경우 N개 HARQ-ACK 상태에 대응하고, 단말은 보고할 HARQ-ACK state에 대응되는 시퀀스를 선택하여 전송할 수 있다.
(2-4) 기지국으로부터 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 각 UCI 상태에 대응되는 시퀀스는 아래와 같이 정의될 수 있다. 이때, 단말은 해당 UCI 상태를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.
(2-4-1) N=2인 경우
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.
- 구체적인 예로, SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스는 Cyclic shift index 관점에서 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다.
- 또한, {Positive SR, NACK}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다.
(2-4-2) N=4인 경우
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N or N/A or N/N}에 대응할 수 있다.
- 구체적인 예로, 상기 2개 시퀀스 중 하나의 시퀀스는 Positive SR이고 2 bits HARQ-ACK에 대한 (Logical AND 연산 기반) ACK/NACK bundling 결과가 NACK인 경우에 대응할 수 있다. 또한, {Positive SR, A/N or N/A or N/N}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다.
(3) Opt. 3: SR 전송 (short) PUCCH 자원으로 1개 시퀀스를 할당하고, HARQ-ACK 전송 (short) PUCCH 자원으로 (2N-1)개 시퀀스를 할당하는 방안
(3-1) SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index에 대응되는 Cyclic shift 값일 수 있다.
(3-2) SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 SR only 전송인 경우 On/Off keying 방식으로 SR 여부를 알려주는 자원으로 활용되며, 상기 SR only에 대응되는 시퀀스 자원은 SR 전송 주기에서 예약되는 자원일 수 있다.
(3-3) HARQ-ACK 전송 (short) PUCCH 자원 내 상기 (2N-1)개 시퀀스 중 N개 시퀀스는 HARQ-ACK only 전송인 경우 N개 HARQ-ACK 상태에 대응하고, 단말은 실제 보고할 HARQ-ACK 상태에 대응하는 시퀀스를 선택하여 전송할 수 있다.
(3-4) 기지국으로부터 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 각 UCI 상태에 대응되는 시퀀스는 아래와 같이 정의될 수 있다. 이때, 단말은 해당 UCI 상태를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.
(3-4-1) N=2인 경우
- SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 {Positive SR, NACK}에 대응할 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 3개 시퀀스는 각각 {Positive SR, ACK}, {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다.
(3-4-2) N=4인 경우
- SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 {Positive SR, N/N}에 대응할 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 7개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N}, {Positive SR, N/A}, {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다.
(4) Opt. 4: SR 전송 (short) PUCCH 자원으로 1개 시퀀스를 할당하고, HARQ-ACK 전송 (short) PUCCH 자원으로 2N개 시퀀스를 할당하는 방안
(4-1) SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index에 대응되는 Cyclic shift 값일 수 있다.
(4-2) SR 전송 (short) PUCCH 자원 내 1개 시퀀스는 SR only 전송인 경우 On/Off keying 방식으로 SR 여부를 알려주는 자원으로 활용되며, 상기 SR only에 대응되는 시퀀스 자원은 SR 전송 주기에서 예약되는 자원일 수 있다.
(4-3) HARQ-ACK 전송 (short) PUCCH 자원 내 상기 2N개 시퀀스 중 N개 시퀀스는 HARQ-ACK only 전송인 경우 N개 HARQ-ACK 상태에 대응하고, 단말은 실제 보고할 HARQ-ACK 상태에 대응되는 시퀀스를 전송할 수 있다.
(4-4) 기지국으로부터 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 각 UCI 상태에 대응되는 시퀀스는 아래와 같이 정의될 수 있다. 이때, 단말은 해당 UCI 상태를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.
(4-4-1) N=2인 경우
- HARQ-ACK 전송 (short) PUCCH 자원 내 특정 2개 시퀀스는 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 상기 2개 시퀀스를 제외한 나머지 2개 시퀀스는 각각 {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다. 이때, 상기 2개 시퀀스는 HARQ-ACK only를 위한 2개 시퀀스일 수 있다.
(4-4-2) N=4인 경우
- HARQ-ACK 전송 (short) PUCCH 자원 내 특정 4개 시퀀스는 {Positive SR, A/A}, {Positive SR, A/N}, {Positive SR, N/A}, {Positive SR, N/N}에 대응할 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 상기 4개 시퀀스를 제외한 나머지 4개 시퀀스는 각각 {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다. 이때, 상기 4개 시퀀스는 HARQ-ACK only를 위한 2개 시퀀스일 수 있다.
앞서 상술한 설명에서, A/A, A/N, N/A, N/N은 각각 ACK/ACK, ACK/NACK, NACK/ACK, NACK/NACK을 나타낸다.
상술한 구성에 있어, 상기 (short) PUCCH 자원 또는 SR과 HARQ-ACK에 대한 UCI 상태에 대응되는 시퀀스는 1개 또는 2개 OFDM 심볼에 걸쳐 전송될 수 있다. 두 심볼 간 실제 전송되는 시퀀스는 특정 기본 시퀀스 호핑 (base sequence hopping) 또는 순환 시프트 호핑 (cyclic shift hopping)에 따라 달라지더라도 UCI 정보는 반복되어 전송될 수 있다.
또한, SR 전송 (short) PUCCH 자원 내 N개 시퀀스가 할당되고, 상기 시퀀스가 경우에 따라 SR only 또는 Positive SR + 특정 HARQ-ACK 상태가 지시되는 경우, 상기 UCI 상태와 N개 시퀀스 간의 대응 관계는 Slot 그리고/또는 심볼 단위로 (특정 규칙에 따라) 변경될 수 있다.
또한, HARQ-ACK 전송 (short) PUCCH 자원이 4개를 넘는 시퀀스 자원을 포함하는 경우, 시퀀스 자원이 존재하는 PRB 자원은 2개 이상 구성될 수 있다. 특히 2N개 시퀀스 자원이 있는 경우, 2개 PRB의 각 PRB 당 N개 시퀀스 자원을 포함하고, 각 PRB 내 N개 시퀀스는 각각 특정 (Low PAPR/CM) 시퀀스에 (Cyclic shift index 관점에서) 균등한 간격을 갖는 N개의 Cyclic shift 값들 중 하나가 적용된 시퀀스일 수 있다.
또한, 상기에서 Cyclic shift 값은 Low PAPR 시퀀스의 특정 Cyclic shift 값이 적용된 형태를 의미할 수 있다.
보다 구체적으로, 기지국으로부터 SR 전송 (short) PUCCH 자원과 1 또는 2 bit(s) HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 단일 반송파 특성 (Single carrier property) (또는 Low PAPR/CM 특성)을 충족하기 위해 단말은 SR과 HARQ-ACK에 대한 (joint) UCI 상태를 복수 시퀀스 중 하나를 선택하여 전송할 수 있다.
바람직하게, 상기 SR 전송 (short) PUCCH 자원은 적어도 SR only 전송을 위한 시퀀스 자원을 포함할 수 있다. 또한, HARQ-ACK 전송 (short) PUCCH 자원은 SR 요청이 없는 경우에도 유효해야 하는 바, HARQ-ACK 전송 (short) PUCCH 자원은 적어도 Negative SR + 특정 HARQ-ACK 상태에 대한 시퀀스 자원들을 포함할 수 있다.
이때, 상기 SR과 HARQ-ACK에 대한 (joint) UCI state들 중 Positive SR + 특정 HARQ-ACK state을 표현할 시퀀스 자원들은 SR 전송 (short) PUCCH 자원과 HARQ-ACK 전송 (short) PUCCH 자원 중 어떤 PUCCH 자원 내 포함되도록 설정하는지에 대한 문제가 있을 수 있다. 이를 해결하기 위한 2가지 방법으로써, 첫 번째 방법인 SR 전송 (short) PUCCH 자원에 포함시키는 방안 (Opt. 1, Opt. 2), 두 번째 방법인 HARQ-ACK 전송 (short) PUCCH 자원에 포함시키는 방안 (Opt. 3, Opt. 4)이 고려될 수 있다.
앞서 상술한 제13 SR 전송 방법을 보다 일반적으로 정리하면 다음과 같다.
기지국으로부터 SR 전송 (short) PUCCH 자원과 log2(N) bit(s) (단, N=2 or 4) HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시되면, 단말은 SR과 HARQ-ACK의 (joint) UCI state를 전송할 수 있다. 이때, 상기 SR 전송 (short) PUCCH와 상기 HARQ-ACK 전송 (short) PUCCH 자원은 각각 다음과 같이 SR과 HARQ-ACK에 대한 (joint) UCI state 전송을 지원할 수 있다.
<1> Opt. A
<1-1> SR 전송 (short) PUCCH 자원으로 SR only, HARQ-ACK (with positive SR)에 대응하는 UCI state들에 대한 전송 지원
<1-1-1> SR only는 상위 계층으로 설정 받은 (단일) PUCCH 자원 또는 (단일) 시퀀스에 대한 On/Off keying 방식으로 표현될 수 있다.
<1-1-2> SR only와 All NACK (with positive SR)은 동일 UCI state로 간주될 수 있다.
<1-1-3> HARQ-ACK (with positive SR)에 대해 ACK/NACK bundling (예: logical AND 연산)이 적용될 수 있다.
<1-1-4> SR 전송 (short) PUCCH 자원이 Sequence selection 방식인 경우, 다음과 같이 UCI state들이 표현될 수 있다. 이때, 단말은 해당 UCI state를 표현하기 위해 대응되는 시퀀스를 전송할 수 있다.
<1-1-4-1> Opt. A-1: SR 전송 (short) PUCCH 자원을 4개 시퀀스로 구성
<1-1-4-1-1> N=2인 경우
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.
- 일 예로, SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스는 Cyclic shift index 관점에서 (동일) PRB 내 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다. (단, L은 PRB 내 최대 cyclic shift 개수)
- 또한, {Positive SR, NACK}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.
<1-1-4-1-2> N=4인 경우
- SR 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N}, {Positive SR, N/A}, {Positive SR, N/N}에 대응할 수 있다.
- 일 예로, {Positive SR, N/N}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.
<1-1-4-2> Opt. A-2: SR 전송 (short) PUCCH 자원을 2개 시퀀스로 구성
<1-1-4-2-1> N=2인 경우
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, ACK}, {Positive SR, NACK}에 대응할 수 있다.
- 일 예로, SR 전송 (short) PUCCH 자원에 할당된 Initial cyclic shift index가 k일 때, 상기 2개 시퀀스는 Cyclic shift index 관점에서 (동일) PRB 내 k, (k+L/2) mod L에 대응되는 Cyclic shift 값들일 수 있다. (단, L은 PRB 내 최대 cyclic shift 개수)
- 또한, {Positive SR, NACK}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Negative SR, ACK}, {Negative SR, NACK}에 대응할 수 있다.
<1-1-4-2-2> N=4인 경우
- SR 전송 (short) PUCCH 자원 내 2개 시퀀스는 각각 {Positive SR, A/A}, {Positive SR, A/N or N/A or N/N}에 대응할 수 있다.
- 일 예로, 상기 중 하나의 시퀀스는 Positive SR이고 2 bits HARQ-ACK에 대한 (Logical AND 연산 기반) ACK/NACK bundling 결과가 NACK인 경우에 대응할 수 있다.
- 일 예로, {Positive SR, A/N or N/A or N/N}에 대응되는 시퀀스는 SR only에 대응되는 시퀀스일 수 있다.
- HARQ-ACK 전송 (short) PUCCH 자원 내 4개 시퀀스는 각각 {Negative SR, A/A}, {Negative SR, A/N}, {Negative SR, N/A}, {Negative SR, N/N}에 대응할 수 있다.
<1-2> HARQ-ACK 전송 (short) PUCCH 자원 별로 HARQ-ACK only, HARQ-ACK (with negative SR)에 대응되는 UCI state들에 대한 전송 지원
- 여기서, (동일 ACK/NACK 정보에 대한) HARQ-ACK only와 HARQ-ACK (with negative SR)의 각 UCI state들은 동일 UCI state로 간주될 수 있다.
<2> Opt. B
<2-1> SR 전송 (short) PUCCH 자원으로 SR only에 대응되는 UCI state들에 대한 전송 지원
- 여기서, SR only는 상위 계층으로 설정 받은 (단일) PUCCH 자원 또는 (단일) 시퀀스에 대한 On/Off keying 방식으로 표현될 수 있다.
<2-2> HARQ-ACK 전송 (short) PUCCH 자원 별로 HARQ-ACK only, HARQ-ACK (with positive SR), HARQ-ACK (with negative SR)에 대응되는 UCI state들에 대한 전송 지원
- 여기서, (동일 ACK/NACK 정보에 대한) HARQ-ACK only와 HARQ-ACK (with negative SR)의 각 UCI state들은 동일 UCI state로 간주될 수 있다.
<3> Opt. C
<3-1> SR 전송 (short) PUCCH 자원으로 SR only에 대응되는 UCI state들에 대한 전송 지원
- 여기서, SR only는 상위 계층으로 설정 받은 (단일) PUCCH 자원 또는 (단일) 시퀀스에 대한 On/Off keying 방식으로 표현될 수 있다.
<3-2> HARQ-ACK 전송 (short) PUCCH 자원 별로 HARQ-ACK only, HARQ-ACK (with negative SR)에 대응되는 UCI state들에 대한 전송 지원
- 여기서, (동일 ACK/NACK 정보에 대한) HARQ-ACK only와 HARQ-ACK (with negative SR)의 각 UCI state들은 동일 UCI state로 간주될 수 있다.
<3-3> (SR/HARQ-ACK PUCCH 자원과) 별도로 설정되는 (특정) (short) PUCCH 자원으로 HARQ-ACK (with positive SR)에 대응되는 UCI state들에 대한 전송 지원
- 여기서, 상기 (특정) (short) PUCCH 자원은 아래 중 하나의 방법으로 설정될 수 있다.
- Opt. C-1: 단말 별로 단일 자원을 설정
- Opt. C-2: 단말에게 설정된 (HARQ-ACK 전송 용) PUCCH 자원 집합 별로 설정
- Opt. C-3: 단말에게 설정된 PUCCH format 별로 설정
- Opt. C-4: 단말에게 설정된 (HARQ-ACK 전송 용) PUCCH 자원 별로 설정
상기 구성에 있어, All NACK (with positive SR)에 대응되는 전송 자원은 SR only 전송 자원과 동일하거나 또는 독립적으로 설정될 수 있다.
또한, HARQ-ACK 전송 PUCCH 자원은 HARQ-ACK (up to 2 bits)에 대한 Long PUCCH (예: 4 심볼 이상의 길이는 갖는 PUCCH) 자원일 수 있다.
앞서 상술한 제13 SR 전송 방법에서 HARQ-ACK 전송 PUCCH 자원 (또는 자원 집합)과 SR 전송 (short) PUCCH 자원은 상위 계층 신호 그리고/또는 DCI를 통해 설정될 수 있으며, 서로 독립적으로 설정될 수 있다.
상기 제13 SR 전송 방법에 대한 추가 동작으로써 다음의 사항들이 고려될 수 있다. 이때, 단말에게 (하나 이상의) HARQ-ACK 전송 PUCCH 자원 집합이 (상위 계층 신호를 통해) 설정되고, 각 HARQ-ACK 전송 PUCCH 자원 내 (하나 이상의) PUCCH 자원들이 포함되고, 각 HARQ-ACK 전송 PUCCH 자원 내 PUCCH 전송 형태 (PUCCH Format)이 서로 다를 수 있는 경우를 가정한다.
1) 이슈 1: 상기 경우에서 Positive SR + HARQ-ACK 전송자원 설정 방안
- Opt. 1-0: 단말 별로 하나씩 설정
- Opt. 1-1: HARQ-ACK 전송 PUCCH 자원 집합 별로 하나씩 설정
- Opt. 1-2: PUCCH Format 별로 하나씩 설정
- Opt. 1-3: HARQ-ACK 전송 PUCCH 자원 별로 하나씩 설정
- Opt. 1-4: SR 전송 PUCCH 자원 (또는 SR process 또는 SR procedure) 별로 하나씩 설정
2) 이슈 2: 상기 경우에서 Positive SR + HARQ-ACK 전송 자원과 SR only 전송 자원 간의 관계
2-1) Opt. 2-1: Positive SR + HARQ-ACK 전송 자원 중 ACK/NACK state가 ‘All NACK’에 대응되는 자원을 SR only 전송 자원으로 활용 (공유)
- 상기 Opt. 1-0과 결합될 수 있다.
- 상기 Opt. 1-1과 결합될 수 있으며, 어떤 HARQ-ACK 전송 PUCCH 자원 집합에 설정된 Positive SR + All NACK 전송 자원이 SR only로 활용되는 지에 대한 추가 정보가 필요할 수 있다.
- 상기 Opt. 1-2과 결합될 수 있으며, 어떤 PUCCH Format에 설정된 Positive SR + All NACK 전송 자원이 SR only로 활용되는 지에 대한 추가 정보가 필요할 수 있다.
- 상기 Opt. 1-3과 결합될 수 있으며, 어떤 HARQ-ACK 전송 PUCCH 자원에 설정된 Positive SR + All NACK 전송 자원이 SR only로 활용되는 지에 대한 추가 정보가 필요할 수 있다.
- 상기 Opt. 1-4와 결합될 수 있다.
2-2) Opt. 2-2: Positive SR + HARQ-ACK 전송자원과 별도의 독립적으로 설정된 자원을 SR only 전송 자원으로 활용
상기 제13 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.14. 제14 SR 전송 방법
단말이 HARQ-ACK (with or without SR)에 대한 N (예: N=2 or 4)개의 UCI state (예: S0, S1, …, SN-1)를 PRB 내 N개의 Cyclic shift index들 중 하나를 선택하여 전송함으로써 표현할 때, 기지국은 상기 HARQ-ACK 전송 (short) PUCCH 자원으로 Initial cyclic shift index (즉, ∈ {0, 1, …, L-1})를 설정할 수 있다. 이 경우, 단말은 다음 중 하나의 방법으로 순한 시프트로부터 UCI 상태 매핑 (Cyclic shift to UCI state mapping)을 수행할 수 있다.
(1) Opt. 1: k=0, 1, …, N-1에 대해 UCI state Sk를 Cyclic shift index (q+k*L/N) mod L에 대응시키는 방안
(2) Opt. 2: k=0, 1, …, N-1에 대해 각각 Cyclic shift index (q+k*L/N) mod L를 구하고, 상기 N개 Cyclic shift index 값들을 오름차순 (또는 내림차순)으로 정렬한 결과가 CS0, CS1, …, CSN-1일 때, k=0, 1, …, N-1에 대해 UCI state Sk를 CSk에 대응시키는 방안
여기서, 상기 L (예: 12)은 PRB 내 전체 Cyclic shift 개수를 의미한다.
보다 구체적으로, N개 UCI 상태가 PRB 내 N개 Cyclic shift index로 표현되고 기지국이 단말에게 Initial cyclic shift index를 지시한 경우, 단말이 표시하는 UCI state는 상기 Initial cyclic shift index부터 (선형적으로) 증가하는 Cyclic shift index에 순차적으로 대응할 수 있다.
이때, Initial cyclic shift index에 증가분을 더한 값이 PRB 내 전체 Cyclic shift 개수 L을 넘는 경우, 상기 UCI state는 추가적으로 L에 대한 modulo 연산이 적용된 값에 대응할 수 있다.
또는, Initial cyclic shift index에 증가분을 더한 값이 PRB 내 전체 Cyclic shift 개수 L을 넘는 경우, 상기 UCI state는 상기 Initial cyclic shift index부터 (선형적으로) 증가하는 Cyclic shift index들을 구한 뒤 상기 Cyclic shift index 값들을 다시 오름차순 또는 내림차순으로 재정렬한 값에 순차적으로 대응할 수 있다.
상기 제 14 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.15. 제15 SR 전송 방법
기지국으로부터 단말이 SR 전송 (short) PUCCH 자원과 log2(N) bit(s) (예: N > 4) HARQ-ACK 전송 (short) PUCCH 자원이 (일부) 중첩되는 시간 축 자원을 갖도록 신호 전송이 지시된 경우, 상기 단말은 SR 관련 정보를 X bits (단, X≥1)으로 표현하고 상기 X bits을 UCI payload에 추가하여 HARQ-ACK 전송 (short) PUCCH 자원으로 전송할 수 있다.
이때, 상기 SR 관련 정보는 아래 중 하나 이상의 정보를 포함할 수 있다.
(1) Positive SR 또는 Negative SR 여부
(2) (대응되는) SR process index (즉, 어떤 SR process에 대응되는 SR인지에 대한 정보)
이때, 단말은 상기 SR 관련 정보를 아래 중 하나와 같이 전송할 수 있다.
1) 1-bit SR만 보내되, 가장 높은 우선 순위의 SR (process)에 대한 positive/negative SR 여부를 지시
2) X-bit(s) SR을 보내되, (a) SR (process)별 positive/negative SR 여부를 bitmap으로 보내거나, (b) positive SR를 갖는 SR (process)들 중 가장 높은 우선 순위를 갖는 SR (process)에 대한 positive SR 정보만 보낼 수 있다. (이때, (b)에서 상기 SR (process)를 제외한 다른 SR (process)에 대해서는 negative SR로 간주될 수 있다).
- 보다 구체적으로, SR process #1, SR process #2, SR process #3이 #1 > #2 > #3의 우선 순위를 가지고 SR process #1은 negative SR, SR process #2는 positive SR, SR process #3은 positive SR인 경우, (a)를 따르면 단말은 3-bits SR로 ‘011’을 전송하고, (b)를 따르면 상기 단말은 3-bits SR로 ‘010’을 전송할 수 있다.
상기 구성에 있어, 상기 SR 관련 정보인 X bits을 UCI payload size로 추가할 경우, HARQ-ACK 전송 (short) PUCCH 자원에 설정된 최대 코딩 레이트 (max coding rate)를 초과할 수 있다. 이때, 단말은 아래 중 하나의 동작을 수행할 수 있다. 아래 설명에 있어, A/N은 HARQ-ACK을 의미할 수 있다.
<1> Opt 1: SR 1-bit + A/N bits
여기서, 상기 1-bit SR은 복수 개 (예: X개) SR process 중 우선순위가 가장 높은 SR process에 대한 SR 정보 (예: positive SR or negative SR)일 수 있다.
<2> Opt 2: SR X-bit + bundled A/N bits
여기서, 상기 bundling 방식은 공간 도메인 (spatial domain) A/N bundling일 수 있다.
<3> Opt 3: SR 1-bit + bundled A/N bits
여기서, 단말은 상기 Opt 3에 따른 동작을 바로 수행하거나, 앞서 상술한 Opt 1/2를 적용하였음에도 최대 코딩 레이트가 초과된 경우, 이에 대한 2번째 단계로서 상기 Opt 3에 따른 동작을 수행할 수도 있다.
<4> Opt. 4: 모든 SR 전송을 생략하고 A/N만 전송
<5> Opt. 5: SR 1-bit (or X bits) + (partial) A/N bits (즉, 일부 A/N bits를 생략)
여기서, 상기 SR 관련 정보인 X bits는 HARQ-ACK 전송에 대한 (short) PUCCH 자원 집합 선택 과정에 연관될 수 있다.
구체적인 예로, (HARQ-ACK 전송 시) 단말은 UCI 페이로드 크기를 토대로 (복수의) PUCCH 자원 집합 중 하나를 선택하고, 이후 기지국은 DCI를 이용하여 선택된 PUCCH 자원 집합 내 실제 전송할 특정 PUCCH 자원을 지시할 수 있다. 이때, 단말이 SR 관련 정보를 HARQ-ACK과 함께 전송하는 경우, 단말은 상기 PUCCH 자원 집합을 아래 중 하나의 방식으로 선택할 수 있다.
1> Opt. 1: HARQ-ACK과 SR 관련 정보에 대한 (total) UCI payload size 기준으로 선택
- 여기서, (HARQ-ACK과 SR 이외의) 다른 UCI type이 (상기 HARQ-ACK 전송 (short) PUCCH 자원으로) 같이 전송될 경우, 상기 UCI type에 대한 UCI payload size가 상기 (total) UCI payload size에 반영될 수 있다.
2> Opt. 2: HARQ-ACK에 대한 UCI payload size 기준으로 선택
3> 상기 예시들에 있어, 기지국은 (상위 계층 신호를 통해) 단말에게 UCI payload size 범위 별로 PUCCH 자원 집합을 설정할 수 있다.
앞서 상술한 제15 SR 전송 방법의 모든 동작은 단말이 CSI와 SR을 동시 전송하는 경우에도 확장 적용될 수 있다.
보다 구체적으로, SR 전송 (short) PUCCH 자원과 (2 bits 초과 HARQ-ACK에 대한) HARQ-ACK 전송 (short) PUCCH 자원과 시간 축에서 충돌한 경우, 단말은 상기 SR에 대한 X bits 정보를 상기 HARQ-ACK 전송 (short) PUCCH 자원으로 전송할 수 있다. 이때, 단말은 상기 X bits 정보를 HARQ-ACK payload size에 더한 뒤 상기 합산된 UCI payload에 대한 Coded bits를 HARQ-ACK 전송 (short) PUCCH 자원으로 전송할 수 있다.
이 경우, 상기 SR 관련 X bits는 SR 요청 여부뿐만 아니라 해당 SR이 어떤 SR process (또는 서비스)에 대한 SR인지에 대한 정보도 포함할 수 있다.
상기 제15 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.16. 제16 SR 전송 방법
이하 본 발명에 있어, 단말이 DL assignment로 스케줄링 받은 PDSCH에 대한 HARQ-ACK 또는 CSI와 같은 UCI (Uplink control information)를 전송하는 PUCCH는 해당 UCI의 payload size와 전송 지속시간(PUCCH 전송 심볼 수)에 따라서 아래와 같이 PUCCH의 format이 구분된다고 가정한다.
(1) PUCCH format 0
- 지원 가능한 UCI payload 사이즈: 최대 (up to) K bits (예: K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: 1 ~ X 심볼들 (예: X = 2)
- 전송 구조: DM-RS없이 UCI 신호만으로 구성되며, 단말이 특정 sequence 복수 개 중 하나를 선택/전송함으로써 특정 UCI state를 전송하는 구조일 수 있음
(2) PUCCH format 1
- 지원 가능한 UCI payload 사이즈: 최대 K bits
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼들 (예: Y = 4, Z = 14)
- 전송 구조: DM-RS와 UCI가 서로 다른 심볼에 TDM 형태로 구성/매핑되고, UCI는 특정 sequence에 변조 (예: QPSK) 심볼을 곱해주는 형태임. UCI와 DM-RS에 모두 CS/OCC가 적용되어 (동일 RB내에서) 복수 UE간 다중화가 지원 가능함
(3) PUCCH format 2
- 지원 가능한 UCI payload 사이즈: K bits 이상 (more than)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: 1 ~ X 심볼들
- 전송 구조: DM-RS와 UCI가 동일 심볼 내에서 FDM 형태로 구성/매핑되며, 단말이 coded UCI bits에 DFT(Discrete Fourier Transform) 없이 IFFT (Inverse Fast Fourier Transform) 만을 적용하여 전송하는 구조일 수 있음
(4) PUCCH format 3
- 지원 가능한 UCI payload 사이즈: K bits 이상
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼들
- 전송 구조: DM-RS와 UCI가 서로 다른 심볼에 TDM 형태로 구성/매핑되고, 단말이 coded UCI bits에 DFT를 적용하여 전송하는 형태임. UCI에는 DFT 전단에서 OCC가 적용되고 DM-RS에는 CS (또는 IFDM 매핑)가 적용되어 복수 UE간 다중화가 지원 가능함
(5) PUCCH format 4
- 지원 가능한 UCI payload 사이즈: K bits 이상
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼들
- 전송 구조: DMRS와 UCI가 서로 다른 심볼에 TDM 형태로 구성/매핑되며, 단말이 coded UCI bits에 DFT를 적용하여 UE간 다중화 없이 전송되는 구조일 수 있음
이하 설명에 있어, SR은 단말이 기지국에게 UL 스케줄링을 요청하는 물리 계층 신호를 의미한다. 특히, positive SR은 상기 단말의 UL 스케줄링 요청이 있는 경우를, negative SR은 상기 단말의 UL 스케줄링 요청이 없는 경우를 의미한다.
단말에게 SR (only) 전송을 위한 PUCCH 자원 (이하 SR PUCCH)과 HARQ-ACK (only) 전송을 위한 PUCCH 자원 (이하 A/N PUCCH)에 대해 설정된 PUCCH format 조합에 따라, 상기 단말은 아래와 같이 SR와 HARQ-ACK 동시 전송을 지원할 수 있다.
<1> A/N PUCCH = PUCCH format 0
<1-1> SR PUCCH = PUCCH format 0
- SR only 또는 positive SR + HARQ-ACK은 SR PUCCH로 전송. 이때, SR PUCCH는 SR process 별로 설정될 수 있다.
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송
<1-2> SR PUCCH = PUCCH format 1
- SR only는 SR PUCCH로 전송
- positive SR + HARQ-ACK은 아래 중 하나의 방법으로 전송
- Opt. 1: SR 전송을 생략하고, HARQ-ACK only를 A/N PUCCH로 전송
- Opt. 2: SR PUCCH로 전송
- Opt. 3: 단말이 (SR PUCCH 그리고/또는 A/N PUCCH와는) 별도의 PUCCH format 0 자원을 설정하고, 해당 자원으로 전송. 여기서, 상기 별도의 자원은 SR process 별로 설정될 수 있다.
<1-3> HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송
<2> A/N PUCCH = PUCCH format 1
<2-1> SR PUCCH = PUCCH format 0
- SR only는 SR PUCCH로 전송
- positive SR + HARQ-ACK은 아래 중 하나의 방법으로 전송
- Opt. 1: SR 전송을 생략하고, HARQ-ACK only를 A/N PUCCH로 전송
- Opt. 2: SR PUCCH로 전송
- Opt. 3: (SR PUCCH 그리고/또는 A/N PUCCH와는) 별도의 PUCCH format 1 자원을 설정하고, 해당 자원으로 전송. 여기서, 상기 별도의 자원은 SR process 별로 설정될 수 있다.
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송
<2-2> SR PUCCH = PUCCH format 1
- SR only 또는 positive SR + HARQ-ACK은 SR PUCCH로 전송. 여기서, SR PUCCH는 SR process 별로 설정될 수 있다.
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송
<3> A/N PUCCH = PUCCH format 2 or 3 or 4
<3-1> SR PUCCH = PUCCH format 0
- SR only는 SR PUCCH로 전송
- positive SR + HARQ-ACK은 UCI payload에 추가하여 A/N PUCCH로 전송
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송
<3-2> SR PUCCH = PUCCH format 1
- SR only는 SR PUCCH로 전송
- positive SR + HARQ-ACK은 UCI payload에 추가하여 A/N PUCCH로 전송
- HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송. 여기서, SR PUCCH는 SR process 별로 설정될 수 있다.
상기 구성들에 있어, SR에 대응되는 서비스 종류에 따라 상기 옵션들 중 하나가 선택적으로 적용될 수 있다.
보다 구체적으로, PUCCH 자원에 대한 전송 형태 또는 PUCCH format이 본 발명에서 가정한 것과 같이 format 0 (sequence selection), format 1 (sequence modulation), format 2/3/4 (encoding/modulation) 등으로 다양할 때, SR 전송을 위한 PUCCH 자원 (이하 SR PUCCH)의 PUCCH format과 HARQ-ACK 전송을 위한 PUCCH 자원 (이하 A/N PUCCH)의 PUCCH format이 어떤 조합을 이루는지에 따라 SR과 HARQ-ACK 동시 전송에 대한 효율적인 방법이 달라질 수 있다.
일 예로, SR PUCCH와 A/N PUCCH 간 PUCCH format이 동일한 경우, 단말이 positive SR + HARQ-ACK을 SR PUCCH로 전송하는 것이 효율적일 수 있다 (예: resource selection). 반면, SR PUCCH와 A/N PUCCH 간 PUCCH format이 서로 다르고 A/N PUCCH가 PUCCH format 2/3/4 중 하나인 경우, 상기 PUCCH format이 많은 UCI payload를 담을 수 있으므로 상기 단말이 positive SR + HARQ-ACK을 A/N PUCCH로 전송하는 것이 보다 효율적일 수 있다.
또는, SR PUCCH와 A/N PUCCH 간 PUCCH format이 (지원되는) 최대 UCI payload size 관점에서 동일하되 전송되는 (PUCCH 자원의 시간 축) 길이 관점에서 서로 다른 경우, SR PUCCH가 A/N PUCCH 보다 전송 길이가 길면 단말은 positive SR + HARQ-ACK을 SR PUCCH로 전송하고, 그렇지 않으면 단말은 (SR process 별로) A/N PUCCH 자원의 PUCCH format과 동일한 PUCCH format을 갖는 (SR PUCCH 그리고/또는 A/N PUCCH와는) 별도의 PUCCH 자원을 (추가) 설정하여 상기 자원으로 positive SR + HARQ-ACK을 전송하는 것이 UL 커버리지 등의 관점에서 바람직할 수 있다.
추가적으로, SR PUCCH 자원이 short PUCCH이고 A/N PUCCH 자원이 long PUCCH일 때, 단말은 아래와 같이 SR와 HARQ-ACK 동시 전송을 지원할 수 있다.
[1] SR only은 SR PUCCH로 전송
- 여기서, SR PUCCH는 SR process 별로 설정될 수 있다.
[2] positive SR + HARQ-ACK은 아래 중 하나의 방법으로 전송
- Opt. 1: SR에 대응되는 서비스 종류에 따라 SR PUCCH로 전송하거나 또는 (SR process 별로) (SR PUCCH 그리고/또는 A/N PUCCH와는) 별도로 설정된 long PUCCH로 전송하는 방안. 일 예로, 단말은 Low Latency 요구가 높은 SR (예: URLLC SR)을 SR PUCCH, Low Latency 요구가 높지 않은 SR (예: eMBB SR)을 long PUCCH로 전송할 수 있다.
- Opt. 2: SR에 대응되는 서비스 종류에 따라 SR PUCCH로 전송하거나 또는 A/N PUCCH로 전송하는 방안. 일 예로, 단말은 Low Latency 요구가 높은 SR (예: URLLC SR)을 SR PUCCH, Low Latency 요구가 높지 않은 SR (예: eMBB SR)을 A/N PUCCH로 전송할 수 있다.
[3] HARQ-ACK only 또는 negative SR + HARQ-ACK은 A/N PUCCH로 전송
상기 구성들은 단말이 CSI와 SR을 동시 전송하는 경우에도 확장 적용될 수 있다.
추가적으로, SR (only) 전송을 위한 PUCCH 자원 (이하 SR PUCCH)과 HARQ-ACK (only) 전송을 위한 PUCCH 자원 (이하 A/N PUCCH)에 대해 설정된 PUCCH format 조합에 따라, 단말은 아래와 같이 SR와 HARQ-ACK 동시 전송을 지원할 수 있다.
(A) SR PUCCH = PUCCH format 0
(A-1) A/N PUCCH = PUCCH format 0
- Opt. 1: A/N PUCCH 자원으로부터 암시되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 A/N PUCCH 자원에 CS (cyclic shift) offset (또는 PRB offset)을 적용하여 도출된 PUCCH format 0 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 선택 방식에 따라 HARQ-ACK을 전송할 수 있다.
(A-2) A/N PUCCH = PUCCH format 1
- Opt. 1: A/N PUCCH 자원으로부터 암시되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 A/N PUCCH 자원에 CS offset (또는 OCC (orthogonal cover code) offset 또는 PRB offset)을 적용하여 도출된 PUCCH format 1 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 변조 방식에 따라 HARQ-ACK을 전송할 수 있다.
- Opt. 2: SR PUCCH 자원 (또는 SR PUCCH 자원으로부터 암시되는 PUCCH 자원)으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 SR PUCCH 자원으로 설정된 (또는 SR PUCCH 자원에 CS offset (또는 PRB offset)을 적용하여 도출된) PUCCH format 0 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 선택 방식에 따라 HARQ-ACK을 전송할 수 있다.
- Opt. 3: SR 전송을 생략하고, HARQ-ACK 정보를 A/N PUCCH 자원으로 전송
- Opt. 4: HARQ-ACK 전송을 생략하고, SR 정보를 SR PUCCH 자원으로 전송
- Opt. 5: HARQ-ACK 정보는 A/N PUCCH 자원으로 전송하고, SR 정보는 A/N PUCCH 내 DM-RS 심볼(들) 간 CS offset (또는 위상 차이) 정보를 활용하여 전송. 여기서, 상기 A/N PUCCH 내 DM-RS 심볼 간 위상 차이는 차등 인코딩 (Differential encoding) 방식에 따라 SR 정보에 대한 변조 (예: DPSK (Differential Phase Shift Keying)) 심볼을 곱해주는 형태일 수 있다.
(A-3) A/N PUCCH = PUCCH format 2 or 3 or 4
- Opt. 1: SR 정보를 explicit bit(s)로 표현하여 UCI payload에 포함시킨 후, A/N PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 기지국이 단말에게 복수 개의 SR process (또는 configuration)을 설정한 경우, 상기 SR 정보는 SR 존재 여부 및 어떤 SR process (또는 configuration)에 대한 SR이 존재하는 지에 대한 정보를 포함할 수 있다.
(B) SR PUCCH = PUCCH format 1
(B-1) A/N PUCCH = PUCCH format 0
- Opt. 1: A/N PUCCH 자원으로부터 암시되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 A/N PUCCH 자원에 CS offset (또는 PRB offset)을 적용하여 도출된 PUCCH format 0 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 선택 방식에 따라 HARQ-ACK을 전송할 수 있다.
- Opt. 2: SR PUCCH 자원 (또는 SR PUCCH 자원으로부터 암시되는 PUCCH 자원)으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 SR PUCCH 자원으로 설정된 (또는 SR PUCCH 자원에 CS offset (또는 OCC offset 또는 PRB offset)을 적용하여 도출된) PUCCH format 1 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 변조 방식에 따라 HARQ-ACK을 전송할 수 있다.
- Opt. 3: SR 전송을 생략하고, HARQ-ACK 정보를 A/N PUCCH 자원으로 전송
- Opt. 4: HARQ-ACK 전송을 생략하고, SR 정보를 SR PUCCH 자원으로 전송
(B-2) A/N PUCCH = PUCCH format 1
- Opt. 1: SR PUCCH 자원 (또는 SR PUCCH 자원으로부터 암시되는 PUCCH 자원)으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 상기 (positive SR + HARQ-ACK을 전송하는) PUCCH 자원은 SR PUCCH 자원으로 설정된 (또는 SR PUCCH 자원에 CS offset (또는 PRB offset)을 적용하여 도출된) PUCCH format 0 자원일 수 있다. 이에, 단말은 (A/N PUCCH 자원이 아닌) 해당 자원을 선택하여 전송함으로써 positive SR을 표현하고, 추가로 해당 자원으로 시퀀스 선택 방식에 따라 HARQ-ACK을 전송할 수 있다.
(B-3) A/N PUCCH = PUCCH format 2 or 3 or 4
- Opt. 1: SR 정보를 explicit bit(s)로 표현하여 UCI payload에 포함시킨 후, A/N PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송. 여기서, 기지국이 단말에게 복수 개의 SR process (또는 configuration)을 설정한 경우, 상기 SR 정보는 SR 존재 여부 및 어떤 SR process (또는 configuration)에 대한 SR이 존재하는 지에 대한 정보를 포함할 수 있다.
상기 구성들에 있어, 단말은 SR only를 SR PUCCH로 전송하고, HARQ-ACK only 또는 negative SR + HARQ-ACK를 A/N PUCCH로 전송할 수 있다.
또한, 본 발명에 있어, 시퀀스 선택 방식은 단말이 특정 sequence 복수 개 중 하나를 선택 및 전송함으로써 UCI state를 표현하는 방식을 의미할 수 있다.
또한, 본 발명에 있어, 시퀀스 변조 방식은 단말이 특정 sequence에 변조 (예: QPSK) 심볼을 곱해주는 형태로 UCI state를 표현하는 방식을 의미할 수 있다.
또한, 본 발명에 있어, SR process (또는 configuration)은 (특정 서비스에 대한) SR (scheduling request) 전송을 위한 시간/주파수/코드 영역 (time/frequency/code domain)에서의 자원 설정을 의미할 수 있으며, 복수 개의 SR process (또는 configuration)은 각각 서로 다른 서비스에 대한 SR 정보를 의미할 수 있다.
또한, 본 발명에 있어, 특정 PUCCH 자원에 CS offset/OCC offset/PRB offset을 적용하여 다른 PUCCH 자원을 도출함은 상기 특정 PUCCH 자원에 대해 나머지는 동일하고 CS index/OCC index/PRB index만 일정 offset만큼 차이가 나는 PUCCH 자원을 도출함을 의미할 수 있다.
추가적으로, 기지국이 단말에게 복수의 PUCCH resource set을 (단말 특정한) (상위 계층 신호로) 설정하고, 단말이 UCI payload size에 따라 상기 복수의 PUCCH resource set 중 (UCI 전송에 활용할) 하나의 PUCCH resource set을 선택하는 경우, 상기 PUCCH resource set을 선택하는 UCI payload에서 SR 정보는 제외될 수 있다. 일 예로, 단말은 HARQ-ACK과 CSI에 대한 total UCI payload size를 기준으로 PUCCH resource set 선택을 수행할 수 있다.
이때, 단말은 추가로 수신한 DCI 내 특정 지시자 (예: ACK/NACK resource indication field) (그리고 상기 DCI로부터 암시되는 정보들 (예: CCE (Control Channel Element) index, PDCCH candidate index 등))을 기반으로 상기 선택된 PUCCH resource set 내 특정 PUCCH resource를 선택할 수 있다. 일 예로, A/N PUCCH 자원이 PUCCH format 0 (또는 format 1)이고, positive SR + HARQ-ACK (up to 2 bits) 전송이 A/N PUCCH 자원으로부터 암시되는 (동일 PUCCH format의) PUCCH 자원으로 전송하는 동작이 지원되는 경우, SR 정보가 PUCCH resource set 선택 시 기준이 되는 UCI payload에 포함되면 단말은 positive SR + 2 bits HARQ-ACK을 3 bits 이상의 UCI payload로 판단할 수 밖에 없다. 이에 따라, 상기 단말은 PUCCH format 2/3/4로 구성된 PUCCH resource set만을 선택하게 되어 positive SR + 2 bits HARQ-ACK을 A/N PUCCH 자원으로부터 암시된 PUCCH format 0 (또는 format 1)로 전송할 수 없게 된다.
또는 단말이 PUCCH resource set을 선택할 때, 2 bits HARQ-ACK만 존재하면 상기 단말은 SR 정보를 PUCCH resource set 선택 과정에서 배제하고 (즉, 2 bits에 대응되는 PUCCH resource set을 선택), 그 밖의 경우 상기 단말은 HARQ-ACK, SR, CSI를 모두 포함하는 UCI payload size를 토대로 PUCCH resource set을 선택할 수도 있다.
추가적으로, N (= 1 or 2) bits HARQ-ACK과 SR 동시 전송을 지원하기 위해, 기지국은 단말에게 M (= 2 or 4)개 시퀀스들로 구성된 format 0 구조의 (단일) (short) PUCCH 자원 (이하 SR-PUCCH)을 (특정 SR process에 대해) 설정할 수 있다. 이때, SR only의 경우 상기 단말은 상기 M개 시퀀스들 중 하나의 시퀀스를 설정하여 OOK (on/off keying) 방식으로 전송하고, HARQ-ACK + positive SR의 경우 상기 단말은 상기 M개 중 2N개 시퀀스를 활용하여 시퀀스 선택 (sequence selection) 방식 (즉, K개 sequence들 중 하나를 선택/전송함으로써 특정 UCI state를 전송하는 방식)으로 UCI state를 표현할 수 있다. 이때, 상기 단말은 추가적으로 아래 동작을 지원할 수 있다.
<A> SR-PUCCH 내 SR only state를 표현할 시퀀스를 Slot 그리고/또는 심볼 단위로 (특정 패턴에 따라) 변경하는 방안 (즉, {+, DTX}-to-Sequence mapping을 Slot 그리고/또는 Symbol 단위로 (특정 패턴에 따라) 변경하는 방안) (예: randomization). 여기서, ‘+’는 positive SR을 의미한다.
<B> SR-PUCCH의 주파수 자원이 Slot 그리고/또는 심볼 단위로 (특정 패턴에 따라) Hopping하도록 설정하는 방안 (예: randomization)
- 상기 (short) PUCCH의 주파수 자원은 특정 주파수 자원 Granularity (예: X (= 8 or 16) PRB)를 기준으로 Hopping될 수 있다. 일 예로, 기준 주파수 자원에 추가로 Slot 그리고/또는 심볼 단위 별로 변경되는 X (= 8 or 16) PRB 배수만큼의 주파수 오프셋이 적용될 수 있다. 이때, 상기 X는 기지국과 단말 간 사전에 약속된 값이거나 또는 기지국이 상위 계층 신호 (예: RRC signaling)으로 설정한 값일 수 있다.
- 상기 Slot 그리고/또는 심볼에 따른 주파수 자원 Hopping은 (RRC signaling 등의 상위 계층 신호를 통해) 준-정적으로 설정되는 (short) PUCCH 자원에만 적용되고, (RRC signaling 등의 상위 계층 신호와 DCI를 통해) 동적으로 지시될 수 있는 (short) PUCCH 자원에는 적용되지 않을 수 있다.
상기 제16 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.17. 제17 SR 전송 방법
기지국이 단말에게 (동일 시점에 SR 전송이 발생할 수 있는) 복수 개의 SR (scheduling request) 프로세스 (또는 configuration)를 설정했을 때, 상기 단말은 아래 중 하나 이상의 방법으로 SR와 HARQ-ACK 동시 전송을 지원할 수 있다.
(1) Opt. 1: A/N PUCCH 자원으로부터 암묵적인 규칙에 따라 상기 복수 개의 SR process (또는 configuration)에 대응되는 복수 개의 PUCCH 자원을 도출하고, 단말이 단일 SR process (또는 configuration)에 대응되는 (A/N PUCCH 자원으로부터 도출된) PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송하는 방안
단말은 복수 개의 PUCCH 자원들 중 하나를 선택하여 전송함으로써 특정 SR process (또는 SR configuration)에 대한 positive SR을 표현하고, 추가로 해당 자원에서 HARQ-ACK을 전송할 수 있다.
이때, 암묵적인 규칙이라 함은 A/N PUCCH 자원에 CS offset/OCC offset/PRB offset을 적용하여 복수 개의 SR process (또는 configuration)에 대응되는 복수 개의 PUCCH 자원을 도출하는 방식을 의미할 수 있다.
(2) Opt. 2: 기지국이 상기 복수 개의 SR process (또는 configuration)에 대해 SR process (configuration) 별로 SR PUCCH를 설정하고, 단말이 단일 SR process (또는 configuration)에 대응되는 SR PUCCH 자원으로 positive SR + HARQ-ACK을 전송하는 방안
단말은 특정 SR PUCCH 자원을 선택하여 전송함으로써 대응되는 SR process (또는 SR configuration)에 대한 positive SR을 표현하고, 추가로 해당 자원에서 HARQ-ACK을 전송할 수 있다.
이때, 상기 동작은 SR PUCCH 자원이 특정 PUCCH format (예: PUCCH format 1)인 경우에만 적용될 수 있다.
(3) Opt. 3: 상기 복수 개의 SR process (또는 configuration)에 대해 multi-bits SR 정보를 구성하고, HARQ-ACK 전송 시 UCI payload로 포함시켜 A/N PUCCH 자원으로 multi-bits SR + HARQ-ACK 정보를 전송하는 방안
- 상기 multi-bits SR은 positive/negative SR 및 어떤 SR process (또는 configuration)에 대한 SR이 존재하는 지에 대한 정보를 포함하거나 그리고/또는 복수 개의 SR process (또는 configuration)들 중 전체 또는 일부 SR process (configuration)들에 대한 SR process (또는 configuration)별 positive/negative SR 정보를 포함할 수 있다.
- 기지국은 (단말 특정한) 상위 계층 신호 (예: RRC signaling)를 통해 단말에게 (동일 시점에) 적어도 하나 SR process (또는 configuration)이 positive SR인지 또는 모든 복수 개의 SR process (또는 configuration)들이 negative SR인지의 정보를 보고하도록 설정하거나, 또는 복수 개의 SR process (또는 configuration)에 대한 상기 multi-bits SR 정보를 보고하도록 설정할 수 있다.
- 기지국이 단말에게 복수의 PUCCH resource set을 (단말 특정한) (상위 계층 신호로) 설정하고, 단말이 UCI payload size에 따라 상기 복수의 PUCCH resource set 중 (UCI 전송에 활용할) 하나의 PUCCH resource set을 선택하는 경우, (기지국이 multi-bit SR 전송을 설정한 경우) multi-bit SR 정보는 상기 PUCCH resource set을 선택하는 UCI payload에 포함될 수 있다.
본 발명에 있어, HARQ-ACK (only) 전송을 위해 지시된 PUCCH 자원은 A/N PUCCH 자원, SR (only) 전송을 위해 지시된 PUCCH 자원은 SR PUCCH 자원으로 명명한다.
또한, 본 발명에 있어, SR PUCCH, A/N PUCCH는 각각 SR only, HARQ-ACK only 전송을 위해 설정된 자원을 의미하며, 단말은 SR only를 SR PUCCH로 전송하고, HARQ-ACK only 또는 negative SR + HARQ-ACK를 A/N PUCCH로 전송할 수 있다.
또한, 본 발명에 있어, SR process (또는 configuration)은 (특정 서비스에 대한) SR (scheduling request) 전송을 위한 시간/주파수/코드 영역 (time/frequency/code domain)에서의 자원 설정을 의미할 수 있으며, 복수 개의 SR process (또는 configuration)은 각각 서로 다른 서비스에 대한 SR 정보를 의미할 수 있다.
또한, 단말이 특정 PUCCH 자원에 CS offset/OCC offset/PRB offset을 적용하여 다른 PUCCH 자원을 도출함은 상기 특정 PUCCH 자원에 대해 나머지는 동일하고 CS index/OCC index/PRB index만 일정 offset만큼 차이가 나는 PUCCH 자원을 도출함을 의미할 수 있다.
보다 구체적으로, 단말이 SR과 HARQ-ACK 동시 전송을 수행하는 경우, SR only를 위해 설정된 PUCCH 자원이 PUCCH format 0이면 상기 단말은 A/N PUCCH 자원으로부터 도출되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송하고, SR only를 위해 설정된 PUCCH 자원이 PUCCH format 1이면 상기 단말은 SR PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송할 수 있다.
기지국이 단말에게 복수 개의 SR process (또는 configuration)을 설정한 경우, 단말은 positive SR 정보뿐만 아니라 상기 positive SR인 SR process (또는 configuration)가 어떤 SR process (또는 configuration)인지에 대한 정보를 추가로 기지국에게 보고하는 것이 기지국의 UL 스케줄링 지연을 줄이는 방향일 수 있다. 일 예로, 단말이 positive/negative SR 정보만 기지국에게 보고하고 (positive SR 인 경우) 어떤 SR process에 대한 positive SR인지에 대한 추가 정보를 알려주지 않을 경우, 기지국은 SR 전송 이후 다시 BSR (buffer status report)를 받은 이후에야 해당 positive SR에 대응하는 서비스 타입 (service type)을 알 수 있다. 이에 따라, UL 스케줄링 지연이 유발될 수 있다.
따라서 본 발명에 따른 단말은 positive/negative SR 정보와 함께 상기 positive SR 정보가 어떤 SR process (또는 configuration)에 대한 정보인지를 추가로 알려줄 수 있다.
구체적으로, 단말이 A/N PUCCH 자원으로부터 도출되는 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송하는 경우, 상기 단말은 상기 A/N PUCCH에 CS offset/OCC offset/PRB offset 등을 적용하여 복수 개의 SR process (또는 configuration)들에 대응되는 복수 개의 PUCCH 자원을 도출하고, 상기 복수 개의 PUCCH 자원들 중 특정 한 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송할 수 있다.
또는 상기 단말이 SR PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송하는 경우, 복수 개의 SR process (또는 configuration)들에 대응되는 각 SR process (또는 configuration) 별 SR PUCCH 자원이 미리 설정될 수 있다. 이에, 상기 단말은 상기 복수 개의 PUCCH 자원들 중 특정 한 PUCCH 자원으로 positive SR + HARQ-ACK 정보를 전송할 수 있다. 이때, 단말은 (복수 개의 SR process (또는 configuration)에 대응되는) 복수 개의 PUCCH 자원들 중 특정 단일 PUCCH 자원을 선택함으로써 특정 SR process (또는 configuration)에 대한 positive SR을 표현하고, 상기 선택된 자원으로 HARQ-ACK을 추가적으로 전송할 수 있다.
또 다른 방법으로, 기지국이 단말에게 복수 개의 SR process (또는 configuration)을 설정한 경우, 단말은 positive/negative SR 및 어떤 SR process (또는 configuration)에 대한 SR이 존재하는 지에 대한 정보 또는 복수 개의 SR process (또는 configuration)들 중 전체 또는 일부 SR process (configuration)들에 대한 SR process (또는 configuration)별 positive/negative SR 정보를 포함하는 multi-bits SR 정보를 UCI payload에 추가하여 상기 multi-bits SR + HARQ-ACK을 A/N PUCCH 자원으로 전송할 수 있다.
상기 제17 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.18. 제18 SR 전송 방법
단말이 전송할 서로 다른 UCI 타입에 대한 PUCCH(들) (예: A/N PUCCH, SR PUCCH, CSI PUCCH)이 시간 축에서 일부 심볼들에 대해서만 중첩되었을 때 (예: partial overlapping), 단말은 아래와 같이 UCI 다중화를 수행하여 (단일 PUCCH 자원으로) 기지국에게 전송할 수 있다.
본 발명에 있어, UCI 타입들 중 최우선 순위를 갖는 UCI 타입 (only) (이하 UCI A) 전송을 위해 설정된 PUCCH 자원은 PUCCH A로 명명하며, 단말이 특정 UCI 타입(들) 집합 S에 대한 UCI 다중화를 수행한다는 가정 하에 선택되는 PUCCH 자원을 PUCCH B로 명명한다. 이때, 초기 상태에서 S는 모든 UCI 타입(들)을 포함할 수 있으며, PUCCH B는 모든 UCI 타입(들)에 대한 UCI 다중화를 가정한 경우의 PUCCH 자원일 수 있다.
(1) PUCCH A = PUCCH B인 경우
- 집합 S 내 UCI 타입(들)에 대해서, 단말은 PUCCH A 전송 시점을 기준으로 해당 UCI 타입 (또는 PUCCH)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 및 상기 시점 전에 UL 전송이 지시된 UCI 타입 (또는 PUCCH)에 대한 UCI 다중화를 수행하고 (집합 S에 포함), 그렇지 않은 UCI 타입은 UCI 다중화에서 배제하는 방안 (집합 S에서 제외)
일 예로, PUCCH B가 변경되는 경우, 단말은 변경된 집합 S 및 PUCCH B에 대해 앞서 상술한 제18 SR 전송 방법을 반복 적용
다른 예로, PUCCH B가 변경되지 않는 경우, 단말은 PUCCH B로 집합 S 내 UCI 타입(들)에 대한 UCI 다중화 정보를 전송
(2) PUCCH A ≠ PUCCH B인 경우
(2-1) PUCCH B 전송 시점을 기준으로 UCI A (또는 PUCCH A)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 및 상기 시점보다 과거에 UCI A (또는 PUCCH A)에 대한 UL 전송이 지시된 경우,
- 집합 S 내 UCI type(들)에 대해, 단말은 PUCCH B 전송 시점을 기준으로 해당 UCI 타입 (또는 PUCCH)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 및 상기 시점 보다 과거에 UL 전송이 지시된 UCI 타입 (또는 PUCCH)에 대한 UCI 다중화를 수행하고 (집합 S에 포함), 그렇지 않은 UCI type은 UCI 다중화에서 배제하는 방안 (집합 S에서 제외)
일 예로, PUCCH B가 변경되는 경우, 단말은 변경된 집합 S 및 PUCCH B에 대해 앞서 상술한 제18 SR 전송 방법을 반복 적용
다른 예로, PUCCH B가 변경되지 않는 경우, 단말은 PUCCH B로 집합 S 내 UCI type(들)에 대한 UCI 다중화 정보를 전송
(2-2) PUCCH B 전송 시점을 기준으로 UCI A (또는 PUCCH A)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 이후에 UCI A (또는 PUCCH A)에 대한 UL 전송이 지시된 경우, 단말은 아래 조건을 충족하는 새로운 S 및 새로운 PUCCH B를 탐색할 수 있다.
- 조건: PUCCH B 전송 시점을 기준으로 UCI A (또는 PUCCH A)에 대한 (최소) UL timing (또는 UE processing time)에 대응되는 특정 시간 이전 시점 및 상기 시점보다 과거에 UCI A (또는 PUCCH A)에 대한 UL 전송이 지시됨
- 여기서, 상기 조건을 충족하는 가장 최소의 UCI multiplexing 대상 UCI 타입(들) 집합 S는 UCI A only이고, 이때의 PUCCH B = PUCCH A일 수 있다.
- 단말은 UCI 타입(들) 간 우선 순위에 기반하여 차례로 UCI 타입을 제외하면서 상기 탐색 과정을 수행할 수 있다.
이때, 상기 단말은 상기 새로운 S 및 PUCCH B를 토대로 앞서 상술한 제18 SR 전송 방법의 (2-1)를 적용할 수 있다.
본 발명에 있어, SR PUCCH, A/N PUCCH, CSI PUCCH는 각각 SR only, HARQ-ACK only, CSI only 전송을 위해 설정된 자원을 의미한다.
또한, 본 발명에 있어, UCI 타입들 간 우선 순위는 HARQ-ACK > CSI > SR이거나, 또는 각 UCI 타입에 대응되는 PUCCH 전송 시점이 빠를수록 높은 우선 순위를 가지거나, 또는 각 UCI 타입에 대응되는 UL 전송 지시 시점이 늦을수록 높은 우선 순위를 가질 수 있다고 가정한다.
또한, PUCCH B 자원 결정 시, 상기 PUCCH B 자원은 UL timing 정보를 배제한 상태에서 UCI multiplexing 대상 UCI type(들) 조합에만 의존하여 결정될 수 있다.
구체적인 예로, SR PUCCH와 A/N PUCCH가 시간 축에서 일부 심볼들에 대해서만 중첩되는 경우, 단말은 A/N PUCCH > SR PUCCH (또는 HARQ-ACK > SR)로 우선 순위를 가정하고 아래와 같이 동작할 수 있다.
1) A/N PUCCH 전송 시점 기준 (최소) UL timing (또는 UE processing time)에 대응되는 과거 일정 시간 구간 이내에 positive SR이 발생한 경우, 단말은 SR 전송을 생략하고 HARQ-ACK 정보만 전송
2) A/N PUCCH 전송 시점 기준 (최소) UL timing (또는 UE processing time)에 대응되는 과거 일정 시간 구간 이내에 positive SR이 발생한 경우, 단말은 SR과 HARQ-ACK을 UCI multiplexing한 정보를 전송. 여기서, 단말이 SR과 HARQ-ACK이 UCI multiplexing된 정보 (예: positive SR + HARQ-ACK)를 전송하는 방식은 앞서 상술한 제16 SR 전송 방법을 따를 수 있다.
이와 같은 방법에 따르면, 단말에게 복수의 UCI type들에 대한 복수의 PUCCH 전송이 적어도 일부 심볼들에 대해서 중첩되도록 지시되고 단말이 상기 복수 UCI type들에 대한 일부 또는 전체 UCI 정보를 UCI multiplexing하여 전송할 수 있는 경우, 상기 복수 UCI type들 중 가장 우선 순위가 높은 UCI type (UCI A)에 대한 전송은 항상 보장되면서 UL timing (또는 UE processing time) 관점에서 준비가 된 UCI type들에 대한 UCI 다중화가 가능한 많이 지원될 수 있다.
추가적으로, (Case 1) 상이한 시작 심볼 그리고/또는 전송 구간(duration)을 갖는 다수의 PUCCH들이 일부 시간 자원에서 부분적으로 중첩되는 경우와 (Case 2) 상이한 시작 심볼 그리고/또는 전송 구간(duration)을 갖는 PUCCH와 PUSCH가 일부 시간 자원에서 부분적으로 중첩되는 경우, 각 Case 별로 단말은 아래와 같이 동작할 수 있다. 이때, 상기 Case 1과 Case 2에서 적어도 하나의 PUCCH는 HARQ-ACK 전송을 위한 PUCCH일 수 있다.
<1> Case 1
<1-1> HARQ-ACK 전송을 위한 UE processing time (또는 UL timing)이 충분한 경우
- 상기 복수 PUCCH 자원으로 전송되도록 설정된 복수의 UCI를 (상기 복수 PUCCH들 중) (복수 UCI들에 대한 UCI type의 조합에 따라) 약속된 방식에 의해 선택된 단일 PUCCH 자원으로 (UCI multiplexing하여) 전송
<1-2> HARQ-ACK 전송을 위한 UE processing time (또는 UL timing)이 충분하지 않은 경우
- 복수 PUCCH 자원 중 우선 순위가 높은 단일 PUCCH만 전송하고, 나머지 PUCCH들은 전송 생략
<2> Case 2
<2-1> HARQ-ACK 전송을 위한 UE processing time (또는 UL timing)이 충분한 경우
- PUCCH로 전송되도록 설정된 UCI (예: HARQ-ACK)를 PUSCH로 UCI piggyback하여 전송
<2-2> HARQ-ACK 전송을 위한 UE processing time (또는 UL timing)이 충분하지 않은 경우
- PUSCH 전송을 생략하고 PUCCH를 전송
또는, 단말은 PUCCH들간 또는 PUSCH와 PUCCH 간 중첩되는 일부 심볼들에 대해서 PUCCH 또는 PUSCH에 대한 레이트 매칭 또는 펑쳐링을 수행할 수도 있다.
추가적으로, 단말이 전송할 서로 다른 UCI 타입에 대한 PUCCH(들) (예: A/N PUCCH, SR PUCCH, CSI PUCCH)이 시간 축에서 일부 심볼들에 대해서만 중첩되었을 때 (예: partial overlapping), 단말은 아래와 같이 UCI multiplexing을 수행하여 (단일 PUCCH 자원으로) 기지국에게 전송할 수 있다.
본 발명에 있어, SR PUCCH, A/N PUCCH, CSI PUCCH는 각각 SR (only), HARQ-ACK (only), CSI (only) 전송을 위해 설정 그리고/또는 지시된 PUCCH 자원을 의미한다.
또한, 본 발명에 있어, PF0, PF1, PF2, PF3, PF4는 각각 PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, PUCCH format 4를 의미한다.
또한, 본 발명에 있어, PF X/Y는 PF X 또는 PF Y를 의미한다.
또한, 본 발명에 있어, positive SR이 발생했다는 의미는 단말이 전송할 UL 데이터가 발생했음을 의미하거나 또는 UL 스케줄링을 요청하기로 판단한 경우를 의미할 수 있다.
1> Case 1: A/N PUCCH와 SR PUCCH가 중첩된 경우
1-1> A/N PUCCH는 PF2/3/4이고, SR PUCCH는 PF0/1인 경우
- HARQ-ACK bit(s)과 explicit SR bit(s)를 포함하는 UCI를 A/N PUCCH로 전송
- 이때, 상기 explicit SR bit(s)는 A/N PUCCH 전송 (시작) 시점 T를 기준으로 아래의 정보를 포함할 수 있다.
- T-T0 시점 및 그 이전에 positive SR이 발생한 경우, 상기 explicit SR bit(s)는 positive SR 정보를 지시
- T-T0 시점 이후 (T 시점 전까지) positive SR이 발생한 경우, 상기 explicit SR bit(s)는 negative SR 정보를 지시
- T 시점 전까지 positive SR이 발생하지 않은 경우, 상기 explicit SR bit(s)는 negative SR 정보를 지시
1-2> A/N PUCCH는 PF0이고, SR PUCCH는 PF0인 경우
- A/N PUCCH 전송 (시작) 시점 T 기준
- T-T0 시점 및 그 이전에 positive SR이 발생한 경우, 단말은 HARQ-ACK 정보를 (A/N PUCCH로부터 얻어진) PF0 자원으로 전송. 여기서, 상기 PF0 자원은 A/N PUCCH 자원 (예: PF0 자원)에 PRB (physical resource block) index offset 그리고/또는 CS (cyclic shift) index offset 그리고/또는 OCC (orthogonal cover code) index offset을 적용하여 얻어진 PF0 자원일 수 있다.
- T-T0 시점 이후에 positive SR이 발생한 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
- T 시점 전까지 positive SR이 발생하지 않은 경우, 단말은 HARQ-ACK (only) 정보를 A/N PUCCH로 전송
1-3> A/N PUCCH는 PF0이고, SR PUCCH는 PF1인 경우
1-3-1> Opt. 1: A/N PUCCH 전송 (시작) 시점 T 기준
- T-T0 시점 및 그 이전에 positive SR이 발생한 경우, 단말은 HARQ-ACK 정보를 (A/N PUCCH로부터 얻어진) PF0 자원으로 전송. 여기서, 상기 PF0 자원은 A/N PUCCH 자원 (예: PF0 자원)에 PRB (physical resource block) index offset 그리고/또는 CS (cyclic shift) index offset 그리고/또는 OCC (orthogonal cover code) index offset을 적용하여 얻어진 PF0 자원일 수 있다.
- T-T0 시점 이후에 positive SR이 발생한 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
- T 시점 전까지 positive SR이 발생하지 않은 경우, 단말은 HARQ-ACK (only) 정보를 A/N PUCCH로 전송
1-3-2> Opt. 2: SR PUCCH 전송 (시작) 시점 T 기준
- T-T0 시점 및 그 이전에 HARQ-ACK 전송이 지시된 경우
- HARQ-ACK + negative SR (또는 HARQ-ACK only)인 경우, 단말은 HARQ-ACK 정보를 A/N PUCCH로 전송
- HARQ-ACK + positive SR인 경우, 단말은 HARQ-ACK 정보를 SR PUCCH로 전송. 여기서, HARQ-ACK 정보는 SR PUCCH 내 (전체 또는 일부) UCI 시퀀스(들)에 특정 QPSK 변조 심볼을 곱하여 전송될 수 있다.
- T-T0 시점 이후에 HARQ-ACK 전송이 지시된 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
1-4> A/N PUCCH는 PF1이고, SR PUCCH는 PF0인 경우, A/N PUCCH 전송 (시작) 시점 T 기준으로,
1-4-1> T-T0 시점 및 그 이전에 positive SR이 발생한 경우,
- Opt. 1: SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
- Opt. 2: HARQ-ACK 정보를 PF1 자원으로 전송. 여기서, 상기 PF1 자원은 A/N PUCCH 자원 (예: PF1 자원)에 PRB (physical resource block) index offset 그리고/또는 CS (cyclic shift) index offset 그리고/또는 OCC (orthogonal cover code) index offset을 적용하여 얻어진 PF1 자원일 수 있다.
- Opt. 3: HARQ-ACK 정보를 A/N PUCCH로 전송하되, SR 정보는 A/N PUCCH 내 특정 UCI 시퀀스 또는 DM-RS 시퀀스를 변경하는 방식 또는 DM-RS에 DPSK 변조 심볼을 곱하여 전송하는 방식으로 표현됨. 여기서, 단말이 UCI 시퀀스 또는 DM-RS 시퀀스를 변경하는 방식은 Base sequence를 바꾸거나 또는 CS (cyclic shift)를 변경하는 방식일 수 있다.
1-4-2> T-T0 시점 이후에 positive SR이 발생한 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
1-4-3> T 시점 전까지 positive SR이 발생하지 않은 경우, 단말은 HARQ-ACK (only) 정보를 A/N PUCCH로 전송
1-5> A/N PUCCH는 PF1이고, SR PUCCH는 PF1인 경우,
1-5-1> A/N PUCCH 전송 (시작) 시점 T 기준으로,
1-5-1-1> T-T0 시점 및 그 이전에 positive SR이 발생한 경우,
- Opt. 1: SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
- Opt. 2: HARQ-ACK 정보를 PF1 자원으로 전송. 여기서, 상기 PF1 자원은 A/N PUCCH 자원 (예: PF1 자원)에 PRB (physical resource block) index offset 그리고/또는 CS (cyclic shift) index offset 그리고/또는 OCC (orthogonal cover code) index offset을 적용하여 얻어진 PF1 자원일 수 있다.
- Opt. 3: HARQ-ACK 정보를 A/N PUCCH로 전송하되, SR 정보는 A/N PUCCH 내 특정 UCI 시퀀스 또는 DM-RS 시퀀스를 변경하는 방식 또는 DM-RS에 DPSK 변조 심볼을 곱하여 전송하는 방식으로 표현됨. 여기서, 단말이 UCI 시퀀스 또는 DM-RS 시퀀스를 변경하는 방식은 Base sequence를 바꾸거나 또는 CS (cyclic shift)를 변경하는 방식일 수 있다.
- Opt. 4: HARQ-ACK 정보를 SR PUCCH로 전송. 이때, HARQ-ACK 정보가 전송되는 SR PUCCH 내 UCI 시퀀스에 특정 QPSK 변조 심볼을 곱하여 전송될 수 있다. 또한, 상기 Opt. 4의 동작은 SR PUCCH가 A/N PUCCH보다 전송 시점이 늦거나 같은 경우 (또는 SR PUCCH 전송 구간이 A/N PUCCH 전송 구간 내에 포함되는 경우)에만 적용되고, 그렇지 않은 경우 단말은 SR 전송 생략 및 HARQ-ACK (only) 정보를 A/N PUCCH로 전송할 수 있다.
1-5-1-2> T-T0 시점 이후에 positive SR이 발생한 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
1-5-1-3> T 시점 전까지 positive SR이 발생하지 않은 경우, 단말은 HARQ-ACK (only) 정보를 A/N PUCCH로 전송
1-5-2> Opt. 2: SR PUCCH 전송 (시작) 시점 T 기준으로,
1-5-2-1> T-T0 시점 및 그 이전에 HARQ-ACK 전송이 지시된 경우,
1-5-2-1-1> HARQ-ACK + negative SR (또는 HARQ-ACK only)인 경우, 단말은 HARQ-ACK 정보를 A/N PUCCH로 전송
1-5-2-1-2> HARQ-ACK + positive SR인 경우, 단말은 HARQ-ACK 정보를 SR PUCCH로 전송. 여기서, HARQ-ACK 정보를 전송하는 SR PUCCH 내 (전체 또는 일부) UCI 시퀀스에 특정 QPSK 변조 심볼을 곱하여 전송될 수 있다.
추가적으로, SR PUCCH의 (전송) 종료 시점이 A/N PUCCH의 (전송) 종료 시점보다 일정 시간 Td만큼 늦는 경우, 단말은 SR 전송을 생략하고 HARQ-ACK (only)를 A/N PUCCH로 전송할 수 있다. 이때, 상기 일정 시간 Td는 사전에 약속된 값 또는 기지국에 의해 설정된 값일 수 있다.
1-5-2-2> T-T0 시점 이후에 HARQ-ACK 전송이 지시된 경우, 단말은 SR 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
2> Case 2: A/N PUCCH과 CSI PUCCH가 중첩된 경우
2-1> A/N PUCCH는 PF0/1이고, CSI PUCCH는 PF2/3/4인 경우
- 단말은 CSI 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
2-2> A/N PUCCH는 PF2/3/4이고, CSI PUCCH는 PF2/3/4인 경우
- 단말은 HARQ-ACK bit(s)과 CSI bit(s)를 포함하는 UCI를 A/N PUCCH로 전송. 여기서, A/N PUCCH에 대한 전송 (시작) 시점을 T1, CSI PUCCH에 대한 전송 (시작) 시점을 T2라고 할 때, 상기 CSI에 대한 (시간 축) CSI reference resource는 T1-T0 시점 및 그 이전에 존재하면서 T2-TCQI 시점 및 그 이전에 존재하는 가장 빠른 (valid) DL slot일 수 있다. 또한, (valid) DL slot이라고 함은 (단말에게) DL slot으로 설정된 slot 그리고/또는 측정 갭 (예: measurement gap)에 포함되지 않는 slot 그리고/또는 CSI reporting이 수행되는 DL BWP (bandwidth part)와 동일 DL BWP에 포함되는 slot을 의미할 수 있다. 또한, TCQI는 기지국과 단말 간 사전에 약속된 값 또는 기지국이 단말에게 설정한 값일 수 있다.
- A/N PUCCH가 SPS (semi-persistent scheduling) PDSCH에 대한 HARQ-ACK 정보를 싣는 경우, 단말은 다음과 같이 UCI 다중화를 수행할 수 있다.
- CSI PUCCH 전송 시점 T 기준으로,
- T-T0 시점 및 그 이전에 HARQ-ACK 전송이 지시된 경우, 단말은 HARQ-ACK bit(s)과 CSI bit(s)를 포함하는 UCI를 CSI PUCCH로 전송. 이때, 복수의 CSI PUCCH 자원(들)이 존재하는 경우, 상기 HARQ-ACK bit(s)과 CSI bit(s)를 전송할 (단일) CSI PUCCH 자원이 선택될 수 있다.
- T-T0 시점 이후에 HARQ-ACK 전송이 지시된 경우, 단말은 CSI 전송 생략 및 HARQ-ACK (only)를 A/N PUCCH로 전송
3> Case 3: A/N PUCCH, CSI PUCCH, 그리고 SR PUCCH가 중첩된 경우
3-1> A/N PUCCH는 PF0/1인 경우, 단말은 CSI 전송 생략 및 HARQ-ACK과 SR에 대해 설정/지시된 (PUCCH format 관점에서의) PUCCH 자원 조합에 따라 앞서 상술한 Case 1 내 동작을 따름
3-2> A/N PUCCH는 PF2/3/4이고, CSI PUCCH는 PF2/3/4인 경우,
3-2-1> 단말은 HARQ-ACK bit(s), CSI bit(s), 그리고 explicit SR bit(s)를 포함하는 UCI를 A/N PUCCH로 전송할 수 있다.
- 이때, A/N PUCCH에 대한 전송 (시작) 시점을 T1, CSI PUCCH에 대한 전송 (시작) 시점을 T2라고 할 때, 상기 CSI에 대한 (시간 축) CSI reference resource는 T1-T0 시점 및 그 이전에 존재하면서 T2-TCQI 시점 및 그 이전에 존재하는 가장 빠른 (valid) DL slot일 수 있다. 여기서, (valid) DL slot이라고 함은 (단말에게) DL slot으로 설정된 slot 그리고/또는 측정 갭 (예: measurement gap)에 포함되지 않는 slot 그리고/또는 CSI reporting이 수행되는 DL BWP (bandwidth part)와 동일 DL BWP에 포함되는 slot을 의미할 수 있다. 또한, TCQI는 기지국과 단말 간 사전에 약속된 값 또는 기지국이 단말에게 설정한 값일 수 있다.
- 또한, 상기 explicit SR bit(s)는 A/N PUCCH 전송 (시작) 시점 T1를 기준으로 아래의 정보를 포함할 수 있다.
- T-T0 시점 및 그 이전에 positive SR이 발생한 경우, 상기 explicit SR bit(s)는 positive SR 정보를 지시
- T-T0 시점 이후 (T 시점 전까지) positive SR이 발생한 경우, 상기 explicit SR bit(s)는 negative SR 정보를 지시
- T 시점 전까지 positive SR이 발생하지 않은 경우, 상기 explicit SR bit(s)는 negative SR 정보를 지시
3-2-2> A/N PUCCH가 SPS PDSCH에 대한 HARQ-ACK 정보를 포함하는 경우, 단말은 다음과 같이 UCI 다중화를 수행할 수 있다.
CSI PUCCH 전송 시점 T 를 기준으로,
- T-T0 시점 및 그 이전에 HARQ-ACK 전송이 지시된 경우, 단말은 HARQ-ACK bit(s)과 CSI bit(s)를 그리고 explicit SR bit(s)를 포함하는 UCI를 CSI PUCCH로 전송. 이때, 복수의 CSI PUCCH 자원(들)이 존재하는 경우, 상기 HARQ-ACK bit(s)과 CSI bit(s)를 전송할 (단일) CSI PUCCH 자원이 선택될 수 있다.
- T-T0 시점 이후에 HARQ-ACK 전송이 지시된 경우, 단말은 CSI 전송 생략 후 HARQ-ACK과 SR간의 UCI 다중화 규칙을 따름 (또는 앞서 상술한 Case 1의 동작을 따름)
상기 구성들에 있어, T 그리고/또는 T0에 대한 시간 축 단위는 slot 그리고/또는 OFDM symbol일 수 있으며, 특히 T0는 HARQ-ACK 전송을 위한 (최소) UL timing 또는 UE processing time에 대응되는 시간 또는 단말이 PUCCH 자원을 변경하여 전송할 때 필요한 (최소) UL timing 또는 UE processing time에 대응되는 시간일 수 있다. 상기 T0 값은 (UE capability 등에 따라) 사전에 약속된 방식으로 결정되거나 또는 기지국에 의해 설정된 값일 수 있다.
또한, 앞서 상술한 설명에서 별도로 명시되지 않은 경우의 A/N PUCCH는 DL assignment (또는 DL scheduling DCI) 기반으로 스케줄링 받은 PDSCH에 대한 HARQ-ACK 정보를 전송하는 PUCCH 자원일 수 있다.
또한, 상기 Case 1에서 단말은 (단말의 구현에 따라) 임의로 HARQ-ACK only만 A/N PUCCH로 전송하거나 또는 HACK-ACK과 SR을 UCI 다중화하여 약속된 PUCCH 자원으로 전송할 수 있다.
상기 제18 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.19. 제19 SR 전송 방법
기지국이 단말에게 ((단말 특정한) 상위 계층 신호 (예: RRC signaling)를 통해) SR (scheduling request) 전송을 위한 PUCCH 자원 (이하 SR PUCCH)에 대한 (OFDM 심볼 단위의) PUCCH 전송 주기 그리고/또는 슬롯 (slot) 내 (SR) PUCCH 전송 시작 (OFDM) 심볼 (index) 그리고/또는 (OFDM 심볼 단위의) PUCCH 전송 길이 등을 설정할 수 있을 때, 단말은 상기 (SR 전송을 위한) (OFDM 심볼 단위의) PUCCH 전송 주기 내 (상대적인) PUCCH 전송 시작 (OFDM) 심볼 (index)을 아래와 같이 도출 및 적용할 수 있다.
Figure pat00032
여기서, N0, Nperiod, Noffset, Nduration은 각각 (SR 전송을 위해 설정된) (OFDM 심볼 단위의) PUCCH 전송 주기 내 (상대적인) PUCCH 전송 시작 (OFDM) 심볼 (index), (OFDM 심볼 단위의) PUCCH 전송 주기, 슬롯 (slot) 내 (SR) PUCCH 전송 시작 (OFDM) 심볼 (index), 그리고 (OFDM 심볼 단위의) PUCCH 전송 길이를 의미한다.
또한, 슬롯 (slot)은 복수의 (연속된) OFDM 심볼들로 구성된 기본 스케줄링 단위를 의미하며, 일 예로 하나의 슬롯은 14개 OFDM 심볼들로 구성될 수 있다.
본 발명에 있어, 단말은 기지국이 SR 전송을 PUCCH 자원에 대해 PUCCH 전송 길이보다 짧은 PUCCH 전송 주기를 설정하지 않는다고 기대할 수 있다 (즉, Nperiod ≥ Nduration).
본 발명에 있어, (SR 전송을 위해 설정된) 슬롯 (slot) 내 (SR) PUCCH 전송 시작 (OFDM) 심볼 (index)는 기지국이 단말에게 설정한 PUCCH 자원의 전송 시작 (OFDM) 심볼 (index) 그리고/또는 별도의 시간 축 오프셋 (예: SR offset) 값에 의해 결정될 수 있다.
또한, 본 발명에 있어, SR PUCCH에 대한 (OFDM 심볼 단위의) PUCCH 전송 주기 내 (상대적인) PUCCH 전송 시작 (OFDM) 심볼 (index)은 PUCCH 전송 주기 내에서 정의되는 Local indexing에서의 (OFDM) 심볼 (index)를 의미할 수 있다.
보다 구체적으로, 본 발명의 실시 예에 따른 NR 시스템에서 14개의 (연속한) OFDM 심볼이 하나의 슬롯 (slot)을 구성하고, 상기 슬롯 내 OFDM 심볼 Index는 0, 1, 2, …, 13으로 설정될 수 있다. 이때, 기지국은 단말에 대해 SR 전송을 위한 PUCCH 전송 주기를 7개 OFDM 심볼 (Nperiod=7)로, PUCCH 전송 길이를 2개 OFDM 심볼 (Nduration=2)로, 그리고 슬롯 (slot) 내 PUCCH 전송 시작 심볼 (index) (Noffset=6)을 6으로 설정할 수 있다.
만약 단말이 상기 PUCCH 전송 주기 내 (SR 전송을 위한) PUCCH 시작 심볼 (index) (N0)를 단순히 전송 주기에 대한 Modulo 연산으로 결정될 경우 (예: N0 = 6 mod 7 = 6), 2개 심볼 길이를 갖는 SR PUCCH의 첫 번째 심볼은 k번째 슬롯 내 OFDM 심볼 (index) 13으로, 두 번째 심볼은 (k+1)번째 슬롯 내 OFDM 심볼 (index) 0으로 전송될 수 있다. 상기와 같이 단말이 SR을 2개 슬롯에 걸쳐 전송하는 동작은 기지국이 적어도 2개 슬롯에 대한 UL 전송을 보장해야 하는 바, 기지국의 스케줄링 유연성을 제한하여 바람직하지 않은 동작일 수 있다.
따라서, 본 발명에서는 PUCCH 전송 주기 내 (SR 전송을 위한) PUCCH 시작 심볼 (index) (N0)을 구할 때, PUCCH 전송 주기에서 PUCCH 전송 길이를 뺀 값에 대해 Modulo 연산을 적용하며 (예: N0 = 6 mod (7-2) = 5), SR 전송이 단일 슬롯 내에 한정되도록 하는 방안을 제안한다.
상기 제19 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.20. 제20 SR 전송 방법
단말이 전송할 HARQ-ACK 전송 PUCCH 자원 (이하 A/N PUCCH)과 SR 전송 PUCCH 자원 (이하 SR PUCCH)이 시간 축에서 전체 또는 일부 중첩되었을 때, 단말은 HARQ-ACK과 SR 간의 우선 순위를 토대로 아래와 같이 UCI 전송을 수행할 수 있다.
(1) SR이 HARQ-ACK 보다 우선 순위가 높은 경우
(1-1) Positive SR이 TMUX - T1 이전 시점 (또는 해당 시점)에 발생한 경우, 단말은 A/N과 SR을 UCI 다중화하여 단일 PUCCH 자원으로 전송
(1-2) Positive SR이 TMUX - T1 이후 시점에 발생한 경우
- 단말은 A/N 전송을 생략 (또는 중단)하고, SR을 SR PUCCH로 전송
- 또는, X bits (예: X=2) 이하의 A/N인 경우, 단말은 해당 A/N과 SR을 UCI 다중화하여 단일 PUCCH 자원으로 전송
- 또는, X bits (예: X=2) 초과의 A/N인 경우, 단말은 특정 단일 (예: PCell (Primary Cell)) PDSCH에 대한 A/N만을 SR과 UCI 다중화하여 단일 PUCCH 자원으로 전송
(2) HARQ-ACK이 SR 보다 우선 순위가 높은 경우
(2-1) Positive SR이 TMUX - T1 이전 시점 (또는 해당 시점)에 발생한 경우, 단말은 A/N과 SR을 UCI 다중화하여 단일 PUCCH 자원으로 전송
(2-2) Positive SR이 TMUX - T1 이후 시점에 발생한 경우, 단말은 SR 전송을 생략 (또는 중단)하고, A/N만 A/N PUCCH로 전송
본 발명에 있어, TMUX는 A/N과 SR에 대한 UCI multiplexing 결과를 전송하는 PUCCH 자원의 전송 시점을 의미하며, T1은 아래 중 하나일 수 있다. 또는 상기 TMUX - T1는 단말이 HARQ-ACK에 대한 Encoding을 시작하는 시점을 의미할 수 있다.
1) Opt. 1: 단말에게 (상위 계층 신호 등으로) 설정된 (최소) PDSCH-to-HARQ-ACK timing
2) Opt. 2: 단말이 마지막으로 수신한 (HARQ-ACK 전송 대상) PDSCH에 대해 설정/지시된 PDSCH-to-HARQ-ACK timing
3) Opt. 3: 단말 역량(또는 구현)에 따른 (최소) PDSCH-to-HARQ-ACK timing (또는 UE processing time)
상기 구성에 있어, PUCCH Format에 따라 단말은 아래와 같이 (HARQ-ACK과 SR 간) UCI 다중화를 수행할 수 있다.
<1> A/N PUCCH가 PF 2/3/4이고, SR PUCCH가 PF 0/1인 경우, 단말은 SR bit(s)를 UCI에 Appending한 후 A/N PUCCH로 A/N과 SR 전송
<2> A/N PUCCH가 PF 0/1이고, SR PUCCH가 PF 0/1인 경우 (둘 다 PF 1인 경우 제외), 단말은 CS가 X (예: X=1) 만큼 증가된 A/N PUCCH로 A/N 전송 (Positive SR은 CS 증가로 표현)
<3> A/N PUCCH가 PF 1이고, SR PUCCH가 PF 1인 경우, 단말은 SR PUCCH로 A/N의 변조 심볼을 전송 (Positive SR은 SR PUCCH 선택/전송으로 표현). 이때, 상기 동작은 SR PUCCH의 시작 심볼이 A/N PUCCH의 시작 심볼과 같거나 늦는 경우에만 적용될 수 있다.
또한, 상기 구성에 있어, 단말은 SR과 HARQ-ACK 간의 우선 순위를 다음과 같이 판단할 수 있다.
1> 기지국이 상위 계층 신호로 우선 순위 관계를 설정
2> SR 주기의 절대값 기준으로 판단. 일 예로, SR 주기가 일정 값 이하이면 SR이 HARQ-ACK보다 높은 우선 순위를 가지고, 그 외의 경우, HARQ-ACK이 SR보다 높은 우선 순위를 가질 수 있다.
3> 단말에게 설정된 PDSCH-to-HARQ-ACK timing과 SR 주기 간 대소 관계로 판단. 일 예로, PDSCH-to-HARQ-ACK timing이 SR 주기보다 큰 경우, SR이 HARQ-ACK보다 높은 우선 순위를 가지고, 그 외의 경우, HARQ-ACK이 SR보다 높은 우선 순위를 가질 수 있다. 이때, 상기 PDSCH-to-HARQ-ACK timing은 아래 중 하나일 수 있다.
- Opt. 1: 단말에게 설정된 (최소) PDSCH-to-HARQ-ACK timing
- Opt. 2: 단말이 마지막으로 수신한 (HARQ-ACK 전송 대상) PDSCH에 대한 PDSCH-to-HARQ-ACK timing
- Opt. 3: 단말 역량(또는 구현)에 따른 (최소) PDSCH-to-HARQ-ACK timing
본 발명에 있어, SR PUCCH, A/N PUCCH는 각각 SR (only), HARQ-ACK (only) 전송을 위해 설정 그리고/또는 지시된 PUCCH 자원을 의미할 수 있다.
또한, 본 발명에 있어, PF 0, PF 1, PF 2, PF 3, PF 4는 각각 PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, PUCCH format 4를 의미하며, PF X/Y는 PF X 또는 PF Y를 의미할 수 있다.
또한, 본 발명에 있어, PDSCH-to-HARQ-ACK timing는 PDSCH 종료 시점부터 HARQ-ACK 전송 시점까지의 시간을 의미할 수 있다.
또한, 본 발명에 있어, Positive SR이 발생했다는 의미는 단말이 전송할 UL 데이터가 발생함을 의미하거나 또는 UL 스케줄링을 요청하기로 판단한 경우를 의미할 수 있다.
보다 구체적으로, HARQ-ACK과 SR 간의 UCI 다중화에 있어서, 단말이 HARQ-ACK에 대한 인코딩을 시작한 이후 또는 HARQ-ACK에 대한 PUCCH 전송을 시작한 이후에 positive SR이 발생할 수 있다. 이때, 단말이 상기 SR을 어떻게 처리할 것인지에 대한 고려가 필요할 수 있다.
만약 HARQ-ACK이 SR 보다 우선 순위를 갖는 경우, 단말은 Positive SR이 HARQ-ACK encoding 이전에 발생하면 SR과 HARQ-ACK을 다중화 (multiplexing)하여 단일 PUCCH 자원으로 전송하고, 그렇지 않으면 SR 전송을 다음 번 주기로 지연시키고 HARQ-ACK 전송만 수행할 수 있다.
그러나 본 발명의 실시 예에 따른 NR 시스템에서는 URLLC 등의 서비스를 지원할 목적으로 낮은 지연 (Low latency)을 요구하는 SR 전송이 존재할 수 있으며, 상기 SR 전송은 HARQ-ACK에 비해 높은 우선 순위를 가질 수 있다.
상기와 같이 SR이 HARQ-ACK 보다 우선 순위를 갖는 경우, 단말은 Positive SR이 HARQ-ACK encoding 이전에 발생하면 SR과 HARQ-ACK을 다중화 (multiplexing)하여 단일 PUCCH 자원으로 전송하고, 그렇지 않으면 HARQ-ACK 전송을 생략 또는 중단하고 SR 전송만 수행할 수 있다.
이때, 상기 단말의 HARQ-ACK encoding 시작 시점은 단말 구현에 전적으로 의존하거나 또는 상기 UCI multiplexing 결과를 전송할 PUCCH 자원 전송 시작 시점 대비 (최소) PDSCH-to-HARQ-ACK timing 이전 시점으로 약속될 수 있다. 이때, HARQ-ACK과 SR 간의 우선 순위는 기지국이 조절할 수 있도록 하는 것이 바람직할 수 있다. 일 예로, 기지국이 HARQ-ACK과 SR 간의 우선 순위를 조절하는 방법으로 아래와 같은 Option들을 고려될 수 있다.
[1] Opt. 1: 상대적인 우선 순위가 상위 계층 신호 (예: RRC signaling) 로 설정됨
[2] Opt. 2: 상대적인 우선 순위가 SR 주기의 절대 값에 따라 설정됨
[3] Opt. 3: 상대적인 우선 순위가 PDSCH-to-HARQ-ACK timing과 SR 주기 간 관계로 판단
일 예로, Opt. 2의 경우, 단말은 SR 주기가 특정 값 이하이면 SR이 HARQ-ACK 보다 우선 순위가 높다고 간주할 수 있고, 반대로 SR 주기가 특정 값보다 크면 HARQ-ACK이 SR 보다 우선 순위가 높다고 판단할 수 있다.
다른 예로, Opt. 3의 경우, 단말은 SR 주기가 자신에게 설정된 최소 PDSCH-to-HARQ-ACK timing보다 작으면 SR이 HARQ-ACK 보다 우선 순위가 높다고 간주할 수 있고, 그렇지 않으면 HARQ-ACK이 SR 보다 우선 순위가 높다고 판단할 수 있다.
도 12는 본 발명에 따라 SR이 HARQ-ACK 보다 높은 우선 순위를 갖는 경우의 단말의 SR 전송 방법을 간단히 나타낸 도면이다.
도 12는 앞서 상술한 Opt. 3과 같이 HARQ-ACK과 SR 간 우선 순위를 결정할 때, SR 주기가 (min) PDSCH-to-HARQ-ACK timing 보다 짧아 SR이 더 높은 우선 순위를 갖는 경우를 나타낸다.
따라서, Positive SR이 발생하면, 단말은 HARQ-ACK 전송을 생략하고 SR만 전송할 수 있다. 다만, 단말이 HARQ-ACK 전송 중에 Positive SR이 발생한 경우, 상기 단말은 HARQ-ACK 전송을 중단하고 SR 전송을 수행할 수 있다.
도 13 및 도 14는 본 발명에 따라 HARQ-ACK이 SR 보다 높은 우선 순위를 갖는 경우의 단말의 SR 전송 방법을 간단히 나타낸 도면이다.
도 13 및 도 14는 Opt. 3과 같이 HARQ-ACK과 SR 간 우선 순위를 결정할 때, SR 주기가 (min) PDSCH-to-HARQ-ACK timing 보다 길어서 HARQ-ACK이 더 높은 우선 순위를 갖는 경우를 나타낸다. 상기 경우, 단말은 HARQ-ACK encoding을 시작하기 이전에 Positive SR이 발생하면 HARQ-ACK과 SR을 UCI 다중화하여 단일 PUCCH 자원으로 전송하고, 그렇지 않으면 SR 전송을 다음 주기로 지연시키고 HARQ-ACK만 전송할 수 있다.
상기 구성들에 있어, SR 주기의 기준점을 (min) PDSCH-to-HARQ-ACK timing으로 설정하는 이유는 해당 값이 단말의 HARQ-ACK multiplexing을 위해 참조할 번들링 윈도우의 종료 시점에 대응하기 때문이다. 즉, 기지국은 단말이 적어도 상기 번들링 윈도우 내 PDSCH들을 다 검출해 본 다음에 HARQ-ACK에 대한 인코딩을 시작할 것으로 기대할 수 있다.
추가적으로, HARQ-ACK과 SR을 UCI multiplexing하여 전송하는 단일 PUCCH 자원은 HARQ-ACK과 SR 각각에 대한 PUCCH 자원의 PUCCH Format에 따라 다음과 같이 정의될 수 있다.
1] A/N PUCCH가 PF 2/3/4이고, SR PUCCH가 PF 0/1인 경우, 단말은 SR bit(s)를 UCI에 Appending한 후 A/N PUCCH로 A/N과 SR 전송
2] A/N PUCCH가 PF 0/1이고, SR PUCCH가 PF 0/1인 경우 (둘 다 PF 1인 경우 제외), 단말은 CS가 X (예: X=1) 만큼 증가된 A/N PUCCH로 A/N 전송 (Positive SR은 CS 증가로 표현)
3] A/N PUCCH가 PF 1이고, SR PUCCH가 PF 1인 경우, 단말은 SR PUCCH로 A/N의 변조 심볼을 전송 (Positive SR은 SR PUCCH 선택/전송으로 표현). 여기서, 상기 SR PUCCH의 Starting symbol이 A/N PUCCH의 Starting symbol 보다 빠른 경우, 단말은 SR 전송을 생략하고, A/N만 A/N PUCCH로 전송할 수 있다.
이때, 상기 AN PUCCH 및 SR PUCCH 가 모두 PF 1인 경우, HARQ-ACK 정보가 SR PUCCH로 전송될 때 HARQ-ACK encoding을 위한 UE processing time이 줄어들지 않도록 하기 위한 방안으로써 단말은 SR PUCCH가 AN PUCCH와 동일한 또는 같은 Starting symbol을 갖는 경우에만 상기 동작을 수행할 수 있다. 그렇지 않은 경우, 우선 순위에 따라 단말은 SR 또는 HARQ-ACK 전송을 생략할 수 있다.
추가적으로, 단말이 전송할 HARQ-ACK (이하 A/N) 전송 PUCCH 자원 (이하 A/N PUCCH)과 SR 전송 PUCCH 자원 (이하 SR PUCCH)이 시간 축에서 전체 또는 일부 중첩되는 경우, A/N PUCCH가 PF 2/3/4이고, SR PUCCH가 PF 0/1일 수 있다. 이때, 단말은 SR 정보를 Explicit bit(s)으로 표현한 후 상기 SR bit(s)를 인코딩 및 변조한 코딩된 변조 심볼 (Coded modulated symbol)들을 A/N PUCCH 내 펑쳐링된 RE들을 통해 전송할 수 있다. (즉, SR을 A/N PUCCH 내 특정 일부 RE들로 Piggyback하여 전송)
여기서, SR bit(s)에 대한 변조 차수 (Modulation order)는 A/N과 동일할 수 있다.
또한, 상기 SR에 대한 (레이어 별) 코딩된 변조 심볼 (Coded modulated symbol (per layer)) 개수는 SR에 대한 UCI 페이로드 크기와 SR에 대한 설계 변수인 Beta-offset에 따라 변경될 수 있다.
또한, 상기 A/N PUCCH에 대한 펑쳐링 기반으로 RE 매핑되는 SR 전송 RE들은 A/N과 SR이 중첩된 OFDM 심볼들 상의 A/N PUCCH 내 (UCI) RE들의 부분 집합(예: subset)이 되도록 제한될 수 있다.
보다 구체적으로, SR에 대한 상기 (레이어 별) 코딩된 변조 심볼 개수는 A/N에 대한 코딩 레이트 (또는 A/N에 대한 UCI payload size, A/N에 대한 CRC (Cyclic Redundancy Check) bits 크기, 그리고 A/N에 대한 A/N PUCCH 내 전송 RE 수) 또는 A/N PUCCH에 대한 최대 코딩 레이트, (SR에 대한) 설계 변수 beta-offset, (SR에 대한) 변조 차수 그리고 (SR에 대한) UCI 페이로드 크기에 기반하여 계산될 수 있다.
일 예로, A/N에 대한 Coding rate (또는 A/N PUCCH에 대한 최대 Coding rate)이
Figure pat00033
Figure pat00034
, SR에 대해 설정된 설계 변수 beta-offset은
Figure pat00035
, SR에 대한 Modulation order는
Figure pat00036
, SR에 대한 UCI payload size가
Figure pat00037
, SR에 대한 CRC bits 크기가
Figure pat00038
일 때, SR에 대한 Coded modulated symbol (per layer) 수
Figure pat00039
은 하기와 같이 계산될 수 있다.
Figure pat00040
여기서, UBSR 는 SR에 대한 Coded modulation symbol (per layer) 수의 상한 값을 의미한다. 일 예로, 상기 UBSR은 A/N과 SR이 중첩된 OFDM 심볼들 상의 A/N PUCCH 내 (UCI) RE 수일 수 있다.
추가적으로, 단말이 전송할 HARQ-ACK 전송 PUCCH 자원 (이하 A/N PUCCH)과 SR 전송 PUCCH 자원 (이하 SR PUCCH)이 시간 축에서 전체 또는 일부 중첩되었을 때, 단말은 HARQ-ACK (이하 A/N)과 SR 간의 우선 순위를 토대로 아래와 같이 UCI 전송을 수행할 수 있다.
(A) A/N PUCCH가 PF 2/3/4이고, SR PUCCH가 FP 0/1인 경우
(A-1) A/N이 SR보다 우선 순위가 높은 경우 (또는 A/N PUCCH와 SR PUCCH의 Starting symbol이 동일한 경우)
- 단말은 SR bit(s)를 A/N에 덧붙여 구성한 UCI payload를 A/N PUCCH로 전송
- 단말은 A/N PUCCH로 전송할 UCI 인코딩 시작 이전까지 UL 데이터의 도착 (UL data arrival)이 없다고 판단한 경우, 이를 negative SR로 간주
(A-2) SR이 A/N보다 우선 순위가 높은 경우
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송
- Opt. 3: A/N을 A/N PUCCH로 전송하되, (일부 또는 전체) SR을 Explicit bit(s)로 표현하여 SR에 대한 코딩된 변조 심볼들을 A/N PUCCH 내 펑쳐링된 일부 RE들을 통해 전송
(B) A/N PUCCH가 PF 0/1이고, SR PUCCH가 PF 0/1인 경우 (A/N PUCCH가 PF 1이고 SR PUCCH가 PF 1인 경우 제외)
(B-1) A/N이 SR보다 우선 순위가 높은 경우 (또는 A/N PUCCH와 SR PUCCH의 Starting symbol이 동일한 경우)
- Positive SR이면 단말은 A/N을 A/N PUCCH의 CS를 증가시킨 자원으로 전송, Negative SR이면 상기 단말은 A/N을 A/N PUCCH 자원으로 전송. 여기서, 상기 CS 증가는 전체 (OFDM) 심볼들 또는 SR과 중첩된 (OFDM) 심볼들 상의 A/N PUCCH 자원에 대해 적용될 수 있다.
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현)
(B-2) SR이 A/N보다 우선 순위가 높은 경우
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송
- Opt. 3: 단말은 A/N을 A/N PUCCH로 전송하되, 중첩된 (OFDM) 심볼들 상의 CS (또는 시퀀스)를 변경하여 (일부 또는 전체) SR 전송
(C) A/N PUCCH가 F1이고 SR PUCCH가 F1인 경우
(C-1) A/N이 SR보다 우선 순위가 높은 경우 (또는 A/N PUCCH와 SR PUCCH의 Starting symbol이 동일한 경우)
- Positive SR이면 단말은 A/N을 SR PUCCH 자원으로 전송, Negative SR이면 단말은 A/N을 A/N PUCCH 자원으로 전송
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현)
(C-2) SR이 A/N보다 우선 순위가 높은 경우
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송
- Opt. 3: 단말은 A/N을 A/N PUCCH로 전송하되, 중첩된 (OFDM) 심볼들 상의 CS (또는 시퀀스)를 변경하여 (일부 또는 전체) SR 전송
상기 구성들에 있어, A/N과 SR 간의 우선 순위는 아래 중 하나 이상의 우선 순위 규칙의 조합에 의해 결정되거나 또는 기지국이 상위 계층 신호 그리고/또는 DCI를 통해 설정할 수 있다.
A) Opt. 1: PUCCH duration이 더 짧은 PUCCH가 더 높은 우선 순위를 가짐
B) Opt. 2: 주기 또는 UL timing (예: PDSCH-to-HARQ-ACK timing)이 더 작은 PUCCH가 우선 순위를 가짐
C) Opt. 3: Starting symbol이 더 빠른 PUCCH가 더 높은 우선 순위를 가짐.
추가적으로, 이하 설명에서는 A/N과 SR 간 상대적인 우선 순위는 PUCCH 길이 (duration), SR 주기 및 A/N에 대한 (최소) UL timing (예: PDSCH-to-HARQ-ACK timing)에 의해 결정된다고 가정한다. 구체적으로, UCI 1이 Long PUCCH인 경우, UCI 2가 Short PUCCH이면서 주기 (또는 (최소) UL timing)가 더 짧은 경우에만 UCI 2가 UCI 1 대비 우선 순위를 가진다고 가정한다. 그 밖의 경우, UCI 1과 UCI 2 중 A/N에 대응되는 UCI가 더 우선 순위를 가진다고 가정한다.
<A> A/N PUCCH가 PF 3/4이고, SR PUCCH가 PF 1인 경우
- 단말은 SR bit(s)를 A/N에 덧붙여 구성한 UCI payload를 A/N PUCCH로 전송
- 단말이 A/N PUCCH로 전송할 UCI encoding 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 negative SR로 간주
<B> A/N PUCCH가 PF 3/4이고, SR PUCCH가 PF 0인 경우
<B-1> SR periodicity < (최소) PDSCH-to-HARQ-ACK timing인 경우
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송
- Opt. 3: 단말은 A/N을 A/N PUCCH로 전송하되, (일부 또는 전체) SR을 Explicit bit(s)로 표현하여 SR에 대한 Coded modulation symbol들을 A/N PUCCH 내 펑쳐링된 일부 RE들로 전송
<B-2> SR periodicity ≥ (최소) PDSCH-to-HARQ-ACK timing인 경우
- 단말은 SR bit(s)를 A/N에 덧붙여 구성한 UCI payload를 A/N PUCCH로 전송
- 단말이 A/N PUCCH로 전송할 UCI encoding 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 negative SR로 간주
<C> A/N PUCCH가 PF 1이고, SR PUCCH가 PF 1인 경우
- Positive SR이면 단말은 A/N을 SR PUCCH 자원으로 전송, Negative SR이면 단말은 A/N을 A/N PUCCH 자원으로 전송
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현)
<D> A/N PUCCH가 PF 1이고, SR PUCCH가 PF 0인 경우
<D-1> SR periodicity < (최소) PDSCH-to-HARQ-ACK timing인 경우
- Opt. 1: 단말은 A/N 전송을 생략하고, SR PUCCH만 전송
- Opt. 2: 단말은 중첩된 (OFDM) 심볼들 상의 A/N PUCCH RE들을 펑쳐링하고, 해당 (OFDM) 심볼들에서 (일부 또는 전체) SR PUCCH 전송
- Opt. 3: 단말은 A/N을 A/N PUCCH로 전송하되, 중첩된 (OFDM) 심볼들 상의 CS (또는 시퀀스)를 변경하여 (일부 또는 전체) SR 전송
<D-2> SR periodicity ≥ (최소) PDSCH-to-HARQ-ACK timing인 경우
- Positive SR이면 단말은 A/N을 A/N PUCCH의 CS를 증가시킨 자원으로 전송, Negative SR이면 상기 단말은 A/N을 A/N PUCCH 자원으로 전송. 여기서 상기 CS 증가는 전체 (OFDM) 심볼들 또는 SR과 중첩된 (OFDM) 심볼들 상의 A/N PUCCH 자원에 대해 적용될 수 있다.
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현)
<E> A/N PUCCH가 PF 2이고, SR PUCCH가 PF 0/1인 경우
- 단말은 SR bit(s)를 A/N에 덧붙여 구성한 UCI payload를 A/N PUCCH로 전송
- 단말이 A/N PUCCH로 전송할 UCI encoding 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 negative SR로 간주
<F> A/N PUCCH가 PF 0이고, SR PUCCH가 PF 0/1인 경우
- Positive SR이면 단말은 A/N을 A/N PUCCH의 CS를 증가시킨 자원으로 전송, Negative SR이면 상기 단말은 A/N을 A/N PUCCH 자원으로 전송. 여기서, 상기 CS 증가는 전체 (OFDM) 심볼들 또는 SR과 중첩된 (OFDM) 심볼들 상의 A/N PUCCH 자원에 대해 적용될 수 있다.
- 단말이 A/N PUCCH에 대한 Modulation (또는 Subcarrier mapping) 시작 이전까지 UL 데이터 도착이 없다고 판단한 경우, 단말은 이를 Negative SR로 간주 (또는 Negative SR 판단은 단말 구현)
상기 구성에 있어, (최소) PDSCH-to-HARQ-ACK timing은 해당 A/N PUCCH에 설정된 또는 약속된 PDSCH-to-HARQ-ACK timing 중 최소 값을 의미할 수 있다.
상기 제20 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.21. 제21 SR 전송 방법
단말이 전송할 HARQ-ACK 전송 PUCCH 자원 (이하 A/N PUCCH)와 CSI 전송 PUCCH 자원 (이하 CSI PUCCH)가 시간 축에서 전체 또는 일부 중첩되었을 때, 상기 단말은 HARQ-ACK과 CSI를 UCI multiplexing하여 단일 PUCCH로 전송하고 CSI 참조 자원 (reference resource)을 아래와 같이 결정할 수 있다.
(1) 상기 단일 PUCCH가 A/N PUCCH인 경우
상기 CSI에 대한 (시간 축) CSI reference resource는 TA/N-T1 이전 시점 (또는 해당 시점)에 존재하면서, TCSI-TCQI 이전 시점 (또는 해당 시점) 존재하는 가장 빠른 (valid) DL slot일 수 있다.
(2) 상기 단일 PUCCH가 CSI PUCCH인 경우
상기 CSI에 대한 (시간 축) CSI reference resource는 TCSI-T1 이전 시점 (또는 해당 시점)에 존재하면서, TCSI-TCQI 이전 시점 (또는 해당 시점)에 존재하는 가장 빠른 (valid) DL slot일 수 있다.
여기서, TA/N은 A/N PUCCH 전송 시점을 의미하며, T1은 아래 중 하나일 수 있다.
- Opt. 1: 단말에게 설정된 (최소) PDSCH-to-HARQ-ACK timing
- Opt. 2: 단말이 마지막으로 수신한 (HARQ-ACK 전송 대상) PDSCH에 대한 PDSCH-to-HARQ-ACK timing
- Opt. 3: 단말 역량(또는 구현)에 따른 (최소) PDSCH-to-HARQ-ACK timing
여기서, TCSI는 CSI PUCCH 전송 시점을 의미하며, TCQI는 기지국과 단말 간 사전에 약속된 값 또는 기지국이 단말에게 설정한 값일 수 있다.
또한, 상기 CSI reference resource는 CSI 계산의 참조가 되는 시간 자원을 의미하며, (valid) DL slot이라고 함은 (단말에게) DL slot으로 설정된 slot 그리고/또는 측정 갭 (e.g., measurement gap)에 포함되지 않는 slot 그리고/또는 CSI reporting이 수행되는 DL BWP (bandwidth part)와 동일 DL BWP에 포함되는 slot을 의미할 수 있다.
또한, 상기 PDSCH-to-HARQ-ACK timing는 PDSCH 종료 시점부터 HARQ-ACK 전송 시점까지의 시간을 의미할 수 있다.
보다 구체적으로, HARQ-ACK에 대응되는 PDSCH가 DL assignment 기반의 PDSCH인 경우, HARQ-ACK/SR과 CSI는 AN PUCCH로 전송될 수 있다. 따라서 단말이 HARQ-ACK/SR과 CSI에 대해 전송할 PUCCH 자원들이 시간 축에서 중첩되는 경우, 단말은 항상 HARQ-ACK/SR과 CSI를 UCI multiplexing하여 단일 PUCCH 자원으로 전송하되, HARQ-ACK을 위한 UE processing time을 보장하도록 상기 CSI 계산을 위한 CSI reference resource만 변경할 수 있다.
일 예로, CSI only 전송을 가정할 때의 CSI reference resource가 HARQ-ACK encoding 시작 시점보다 늦은 경우를 가정한다. 이때, 단말이 CSI 계산 이후 HARQ-ACK과 CSI를 조인트 인코딩 하고자 하는 경우, 상기 단말이 HARQ-ACK 인코딩만 수행할 때의 시점보다 늦게 Encoding을 수행하게 되어서 PUCCH 전송 시점까지의 UE processing time이 보장되지 않을 수 있다.
따라서 본 발명에서는 (HARQ-ACK/SR 전송을 위한) PUCCH와 CSI PUCCH가 시간 축에서 중첩된 경우, 단말이 HARQ-ACK/SR과 CSI를 항상 UCI 다중화하여 단일 PUCCH로 전송하되, CSI reference resource가 상기 multiplexed UCI를 전송할 PUCCH 자원 대비 (min) PDSCH-to-HARQ-ACK timing 이전에 존재하도록 변경하는 방안을 제안한다.
보다 구체적으로, 본 발명의 실시 예에 따른 NR 시스템에서 CSI reference resource는 하기 표와 같이 정의될 수 있다.
Figure pat00041
여기서, nCQI_ref는 (min) PDSCH-to-HARQ-ACK timing 보다 크도록 설정될 수 있다. 이를 통해, CSI 계산(calculation)이 HARQ-ACK을 위한 UE processing time에 영향을 주지 않도록 할 수 있다. 단, 이 경우 n은 CSI가 전송되는 Slot을 의미할 수 있다.
상기 제21 SR 전송 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
도 15는 본 발명에 따라 단말이 스케줄링 요청을 전송하는 방법을 나타낸 흐름도이다.
먼저, 단말은 기지국으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보를 수신한다 (S1510). 이때, 상기 제1 설정 정보는 상위 계층 시그널링을 통해 수신될 수 있다.
이어, 단말은 상기 기지국으로부터 UCI 를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신한다 (S1520). 이때, 상기 제2 설정 정보는 하향링크 제어 정보 (downlink control information; DCI)를 통해 수신될 수 있다.
N 개 (N은 1보다 큰 자연수)의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 단말은 N 개의 SR 설정(또는 SR process)에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 전송한다 (S1530).
여기서, 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는, 상기 N 개의 SR 설정 중 하나의 SR 설정에 대한 정보 및 상기 하나의 SR 설정에 대응하는 포지티브 (positive) SR 정보를 나타낼 수 있다.
또는, 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보는, 상기 N 개의 SR 설정들 각각에 대응하는 SR 정보들이 포지티브 (positive) SR 인지 또는 네거티브 (negative) SR 인지 여부를 지시하는 복수 개의 비트들로 구성될 수 있다.
일 예로, 상기 복수 개의 비트들 각각은, 대응하는 SR 정보가 포지티브 SR인 경우 1의 값을 가지고, 대응하는 SR 정보가 네거티브 SR인 경우 0의 값을 가지도록 설정될 수 있다.
또한, 상기 복수 개의 비트들은, 상기 N 개의 SR 설정들의 식별 정보에 기반한 순서로 구성될 수 있다. 일 예로, 상기 복수 개의 비트들은 대응하는 SR 정보의 SR 프로세스 (또는 SR 설정) 인덱스 번호 순서로 구성될 수 있다.
본 발명에 있어, 상기 제1 상향링크 자원 및 상기 제2 상향링크 자원은 시간 영역에서 전체 또는 일부 중첩될 수 있다.
또한, 본 발명에 있어, 상기 제2 상향링크 자원은 상기 확인 응답 정보를 전송하는 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH) 자원에 대응할 수 있다.
상기 구성에 있어, UCI는 CSI 또는 HARQ-ACK 정보 중 하나 이상을 포함할 수 있다.
이때, 단말은 다양한 방법을 통해 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 확인 응답 정보와 함께 상기 제2 상향링크 자원에서 전송할 수 있다. 일 예로, 상기 단말은 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보와 상기 UCI 를 결합한 UCI 페이로드를 생성하고, 상기 UCI 페이로드에 대한 코딩된 비트 포맷을 생성하여 상기 제2 상향링크 자원에서 전송할 수 있다. 이를 통해, 상기 단말은 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI 와 함께 상기 제2 상향링크 자원에서 전송할 수 있다.
이에, 대응하여, 기지국은 상기 단말로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보를 전송하고, 확인 응답 정보를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송한다.
이때, N 개의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 기지국은 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI와 함께 상기 제2 상향링크 자원에서 수신한다.
추가적으로, 본 발명에 따른 단말은 하기와 같이 SR을 전송할 수 있다.
먼저, SR 정보를 전송하는 제1 물리 상향링크 제어 채널 (physical uplink control channel; PUCCH) 포맷 및 HARQ-ACK (Hybrid Automatic Repeat request Acknowledge) 정보를 전송하는 제2 PUCCH 포맷을 결정한다. 이때, SR 정보 및 HARQ-ACK 정보를 전송하는 제1/제2 PUCCH 포맷은 기지국의 설정 정보 및/또는 전송하는 UCI 페이로드 등에 따라 결정될 수 있다.
상기 제1 PUCCH 포맷이 하나 또는 두 개의 심볼로 구성되며 최대 2 비트 크기의 상향링크 제어 정보 (uplink control information; UCI)를 지원하는 PUCCH 포맷에 대응하고, 상기 제2 PUCCH 포맷이 네 개 이상의 심볼로 구성되며 최대 2 비트 크기의 UCI를 지원하는 PUCCH 포맷에 대응하며, 상기 SR 정보가 포지티브(positive) SR인 경우, 상기 단말은 상기 상기 HARQ-ACK 정보만을 상기 제2 PUCCH 포맷을 이용하여 전송할 수 있다.
이를 통해, 상기 단말은 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송을 수행할 수 있다.
보다 구체적으로, 상기와 같은 단말의 단말은 상기 SR 정보와 상기 HARQ-ACK 정보의 동시 전송은 상기 SR 정보를 전송하는 제1 상향링크 자원과 상기 HARQ-ACK 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우에 한해 수행될 수 있다.
따라서, 앞서 상술한 바와 같이, SR 정보를 전송하는 제1 상향링크 자원과 HARQ-ACK 정보를 전송하는 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 단말과의 약속을 통해, 기지국은 상기 단말로부터 HARQ-ACK 정보를 전송하기 위한 PUCCH 포맷으로 상기 HARQ-ACK 정보만 수신되면 단말이 의도한 SR 정보는 포지티브 SR임을 암시적으로 인지할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 장치 구성
도 16은 제안하는 실시 예가 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다. 도 16에 도시된 단말 및 기지국은 앞서 설명한 단말과 기지국 간 스케줄링 요청 (SR) 송수신 방법의 실시 예들을 구현하기 위해 동작한다.
단말(UE: User Equipment, 1)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다. 또한, 기지국(eNB 또는 gNB, 100)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(Transmitter: 10, 110) 및 수신기(Receiver: 20, 120)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(30, 130) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시 예들을 수행하기 위한 프로세서(Processor: 40, 140)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(50, 150)를 각각 포함할 수 있다.
이와 같이 구성된 단말(1)은 수신기(20)를 통해 상기 기지국(100)으로부터 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 UCI를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 수신한다. 이어, N (N은 1보다 큰 자연수)개의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 단말(1)은 송신기(10)를 통해 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI 와 함께 상기 제2 상향링크 자원에서 전송한다.
이에 대응하여, 기지국(100)은 송신기(110)를 통해 상기 단말(1)로 SR 전송을 위한 하나 이상의 제1 상향링크 자원에 대한 제1 설정 정보와 UCI를 전송하는 제2 상향링크 자원에 대한 제2 설정 정보를 전송한다. 이어, N (N은 1보다 큰 자연수)개의 SR 전송을 위한 N 개의 제1 상향링크 자원과 상기 제2 상향링크 자원이 시간 영역에서 중첩되는 경우, 상기 기지국(100)은 수신기(120)를 통해 상기 N 개의 SR 설정에 대한 SR 정보를 지시하는 비트 정보를 상기 UCI 와 함께 상기 제2 상향링크 자원에서 수신한다.
단말 및 기지국에 포함된 송신기 및 수신기는 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 16의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 유닛을 더 포함할 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시 예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시 예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(50, 150)에 저장되어 프로세서(40, 140)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
1: 단말
10: 송신기 20: 수신기
30: 안테나 40: 프로세서
50: 메모리
100: 기지국
110: 송신기 120: 수신기
130: 안테나 140: 프로세서
150: 메모리

Claims (17)

  1. 무선 통신 시스템에서 단말이 기지국으로 스케줄링 요청 (SR)을 전송하는 방법에 있어서,
    상기 기지국으로부터, (i) 복수의 SR들을 위한 제1 물리 상향링크 제어 채널 (PUCCH) 자원들과 관련된 제1 정보, 및 (ii) HARQ-ACK (hybrid automatic repeat request acknowledgment) 정보를 위한 제2 PUCCH 자원과 관련된 제2 정보를 수신하되,
    적어도 하나의 상기 제1 PUCCH 자원은 상기 제2 PUCCH 자원과 시간 영역에서 중첩되고; 및
    (i) 상기 HARQ-ACK 정보 및 (ii) 상기 복수의 SR들과 관련된 비트 정보를 포함하는 신호를 전송하되,
    상기 복수의 SR들 중 적어도 하나가 포지티브 (positive) SR 이고 상기 HARQ-ACK 정보가 2 비트보다 큼에 기초하여: 상기 복수의 SR들과 관련된 상기 비트 정보는 상기 복수의 SR들 중 하나의 SR을 식별하도록 설정되는 것을 포함하는, 단말의 스케줄링 요청 전송 방법.
  2. 제 1항에 있어서,
    상기 제1 정보는 상위 계층 시그널링을 통해 수신되는, 단말의 스케줄링 요청 전송 방법.
  3. 제 1항에 있어서,
    상기 제2 정보는 하향링크 제어 정보 (DCI)를 통해 수신되는, 단말의 스케줄링 요청 전송 방법.
  4. 제 1항에 있어서,
    상기 복수의 SR들과 관련된 상기 비트 정보는 상기 복수의 SR들 중 상기 하나의 SR을 포지티브 SR로 식별하도록 설정되는, 단말의 스케줄링 요청 전송 방법.
  5. 제 1항에 있어서,
    상기 복수의 SR들과 관련된 상기 비트 정보는 복수의 비트들을 포함하고,
    상기 복수의 비트들 각각은, 상기 복수의 SR들 중 대응하는 SR이 포지티브 SR 또는 네거티브 (negative) SR 인지를 지시하는, 단말의 스케줄링 요청 전송 방법.
  6. 제 5항에 있어서,
    상기 복수의 SR들 중 대응하는 SR이 포지티브 SR임에 기초하여, 상기 복수의 비트들 중 대응하는 비트는 1의 값을 가지고,
    상기 복수의 SR들 중 대응하는 SR이 네거티브 SR임에 기초하여, 상기 복수의 비트들 중 대응하는 비트는 0의 값을 가지는, 단말의 스케줄링 요청 전송 방법.
  7. 제 5항에 있어서,
    상기 복수의 비트들은 상기 복수의 SR들 각각을 위한 식별 정보 순서에 따라 설정되는, 단말의 스케줄링 요청 전송 방법.
  8. 제 1항에 있어서,
    상기 적어도 하나의 상기 제1 PUCCH 자원은 상기 제2 PUCCH 자원과 상기 시간 영역에서 전체적으로 또는 부분적으로 중첩되는, 단말의 스케줄링 요청 전송 방법.
  9. 제 1항에 있어서,
    상기 제2 PUCCH 자원은 상기 HARQ-ACK 정보를 포함하는 상향링크 제어 정보 (UCI)를 나르는, 단말의 스케줄링 요청 전송 방법.
  10. 제 9항에 있어서,
    상기 복수의 SR들과 관련된 상기 비트 정보는, 상기 비트 정보와 상기 UCI를 결합하여 생성되는 코딩된 비트 포맷 (coded bit format)을 이용하여 상기 제2 PUCCH 자원 상에서 전송되는, 단말의 스케줄링 요청 전송 방법.
  11. 제 1항에 있어서,
    상기 신호의 전송은 제3 PUCCH 자원을 통해 수행되는, 단말의 스케줄링 요청 전송 방법.
  12. 제 11항에 있어서,
    상기 제3 PUCCH 자원은 상기 HARQ-ACK 정보를 전송하기 위한 상기 제2 PUCCH 자원과 동일한, 단말의 스케줄링 요청 전송 방법.
  13. 제 12항에 있어서,
    상기 제3 PUCCH 자원은, (i) 상기 HARQ-ACK 정보 및 (ii) 상기 복수의 SR들과 관련된 상기 비트 정보의 총 크기에 기초하여 결정되는, 단말의 스케줄링 요청 전송 방법.
  14. 제 1항에 있어서,
    상기 복수의 SR들과 관련된 상기 비트 정보는,
    상기 복수의 SR들에 대응하여 정렬된 (ordered) 복수의 인덱스들 중, 상기 하나의 SR을 위한 인덱스에 의해 상기 하나의 SR을 식별하도록 설정되는, 단말의 스케줄링 요청 전송 방법.
  15. 무선 통신 시스템에서 기지국이 단말로부터 기지국으로 스케줄링 요청 (SR)을 수신하는 방법에 있어서,
    상기 단말로, (i) 복수의 SR들을 위한 제1 물리 상향링크 제어 채널 (PUCCH) 자원들과 관련된 제1 정보, 및 (ii) HARQ-ACK (hybrid automatic repeat request acknowledgment) 정보를 위한 제2 PUCCH 자원과 관련된 제2 정보를 전송하되,
    적어도 하나의 상기 제1 PUCCH 자원은 상기 제2 PUCCH 자원과 시간 영역에서 중첩되고; 및
    (i) 상기 HARQ-ACK 정보 및 (ii) 상기 복수의 SR들과 관련된 비트 정보를 포함하는 신호를 수신하되,
    상기 복수의 SR들 중 적어도 하나가 포지티브 (positive) SR 이고 상기 HARQ-ACK 정보가 2 비트보다 큼에 기초하여: 상기 복수의 SR들과 관련된 상기 비트 정보는 상기 복수의 SR들 중 하나의 SR을 식별하도록 설정되는 것을 포함하는, 기지국의 스케줄링 요청 수신 방법.
  16. 무선 통신 시스템에서 기지국으로 스케줄링 요청 (SR)을 전송하는 단말에 있어서,
    수신기;
    송신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 특정 동작은:
    상기 기지국으로부터, (i) 복수의 SR들을 위한 제1 물리 상향링크 제어 채널 (PUCCH) 자원들과 관련된 제1 정보, 및 (ii) HARQ-ACK (hybrid automatic repeat request acknowledgment) 정보를 위한 제2 PUCCH 자원과 관련된 제2 정보를 수신하되,
    적어도 하나의 상기 제1 PUCCH 자원은 상기 제2 PUCCH 자원과 시간 영역에서 중첩되고; 및
    (i) 상기 HARQ-ACK 정보 및 (ii) 상기 복수의 SR들과 관련된 비트 정보를 포함하는 신호를 전송하되,
    상기 복수의 SR들 중 적어도 하나가 포지티브 (positive) SR 이고 상기 HARQ-ACK 정보가 2 비트보다 큼에 기초하여: 상기 복수의 SR들과 관련된 상기 비트 정보는 상기 복수의 SR들 중 하나의 SR을 식별하도록 설정되는 것을 포함하는, 단말.
  17. 무선 통신 시스템에서 단말로부터 스케줄링 요청 (SR)을 수신하는 기지국에 있어서,
    수신기;
    송신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 특정 동작은:
    상기 단말로, (i) 복수의 SR들을 위한 제1 물리 상향링크 제어 채널 (PUCCH) 자원들과 관련된 제1 정보, 및 (ii) HARQ-ACK (hybrid automatic repeat request acknowledgment) 정보를 위한 제2 PUCCH 자원과 관련된 제2 정보를 전송하되,
    적어도 하나의 상기 제1 PUCCH 자원은 상기 제2 PUCCH 자원과 시간 영역에서 중첩되고; 및
    (i) 상기 HARQ-ACK 정보 및 (ii) 상기 복수의 SR들과 관련된 비트 정보를 포함하는 신호를 수신하되,
    상기 복수의 SR들 중 적어도 하나가 포지티브 (positive) SR 이고 상기 HARQ-ACK 정보가 2 비트보다 큼에 기초하여: 상기 복수의 SR들과 관련된 상기 비트 정보는 상기 복수의 SR들 중 하나의 SR을 식별하도록 설정되는 것을 포함하는, 기지국.
KR1020190071328A 2017-05-03 2019-06-17 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치 KR102077043B1 (ko)

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
US201762501060P 2017-05-03 2017-05-03
US62/501,060 2017-05-03
US201762543946P 2017-08-10 2017-08-10
US62/543,946 2017-08-10
US201762547891P 2017-08-21 2017-08-21
US62/547,891 2017-08-21
US201762549367P 2017-08-23 2017-08-23
US62/549,367 2017-08-23
US201762555689P 2017-09-08 2017-09-08
US62/555,689 2017-09-08
US201762566341P 2017-09-30 2017-09-30
US62/566,341 2017-09-30
US201762586917P 2017-11-16 2017-11-16
US62/586,917 2017-11-16
US201762587519P 2017-11-17 2017-11-17
US62/587,519 2017-11-17
US201762590633P 2017-11-26 2017-11-26
US62/590,633 2017-11-26
US201862616461P 2018-01-12 2018-01-12
US62/616,461 2018-01-12
US201862620394P 2018-01-22 2018-01-22
US62/620,394 2018-01-22
US201862620982P 2018-01-23 2018-01-23
US62/620,982 2018-01-23
US201862630308P 2018-02-14 2018-02-14
US62/630,308 2018-02-14
US201862635476P 2018-02-26 2018-02-26
US62/635,476 2018-02-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180051192A Division KR102004271B1 (ko) 2017-05-03 2018-05-03 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치

Publications (2)

Publication Number Publication Date
KR20190072507A true KR20190072507A (ko) 2019-06-25
KR102077043B1 KR102077043B1 (ko) 2020-02-13

Family

ID=64397923

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020180051192A KR102004271B1 (ko) 2017-05-03 2018-05-03 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치
KR1020190071328A KR102077043B1 (ko) 2017-05-03 2019-06-17 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020180051192A KR102004271B1 (ko) 2017-05-03 2018-05-03 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치

Country Status (5)

Country Link
US (2) US10568124B2 (ko)
EP (2) EP4203590A1 (ko)
JP (1) JP6845330B2 (ko)
KR (2) KR102004271B1 (ko)
CN (2) CN110431905B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350810A (zh) * 2019-08-08 2021-02-09 大唐移动通信设备有限公司 Uci的传输方法、装置、终端及基站

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198295A1 (ja) * 2017-04-27 2018-11-01 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109150371B (zh) * 2017-06-14 2021-08-27 华为技术有限公司 控制信息传输方法、终端及网络侧设备、通信系统
CN116669202A (zh) * 2017-06-15 2023-08-29 松下电器(美国)知识产权公司 终端、基站、通信方法及集成电路
CN109150468B (zh) * 2017-06-16 2020-10-23 华为技术有限公司 一种传输信息的方法和装置
SG11201912249VA (en) * 2017-07-05 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Wireless communication method and device
US11251923B2 (en) * 2017-07-31 2022-02-15 Qualcomm Incorporated Uplink ACK/NACK and SR in short durations
EP3666016B1 (en) * 2017-08-07 2021-06-23 Telefonaktiebolaget LM Ericsson (publ) Dual strategy for short physical uplink control channel (spucch) utilization
CN109757131B (zh) * 2017-09-08 2021-07-16 华为技术有限公司 信号传输方法、相关装置及系统
WO2019134126A1 (en) * 2018-01-05 2019-07-11 Lenovo (Beijing) Limited Method and apparatus for harq-ack and sr transmission
CN108259154B (zh) * 2018-01-12 2022-05-24 中兴通讯股份有限公司 信息传输、接收方法及装置、存储介质、电子装置
CN114885419A (zh) * 2018-01-12 2022-08-09 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备
CN111602444B (zh) * 2018-01-12 2024-02-02 瑞典爱立信有限公司 调度请求资源配置
US20190223206A1 (en) * 2018-01-15 2019-07-18 Qualcomm Incorporated Group common control channel in ultra-reliable/low-latency communications
CN110351007B (zh) * 2018-04-04 2021-09-07 华为技术有限公司 一种上行控制信息发送和接收方法及装置
US11330569B2 (en) * 2018-04-06 2022-05-10 Apple Inc. Multiplexing of multiple uplink control information types on an uplink physical control channel in new radio
US10819410B2 (en) * 2018-04-06 2020-10-27 Qualcomm Incorporated Selecting physical uplink control channel (PUCCH) resources for channel state information
CN110830173B (zh) * 2018-08-08 2020-09-15 展讯通信(上海)有限公司 Pucch与pdsch之间的时间差的指示方法、基站及可读介质
US11917697B2 (en) * 2018-08-21 2024-02-27 Qualcomm Incorporated Interlace PRACH design in NR-U
US11265854B2 (en) * 2018-08-21 2022-03-01 Qualcomm Incorporated Collision handling for physical uplink channel repetition
WO2020056584A1 (zh) * 2018-09-18 2020-03-26 北京小米移动软件有限公司 确定需要传输的pucch的方法和装置
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
WO2020106129A1 (ko) * 2018-11-23 2020-05-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치
US11758540B2 (en) * 2019-03-21 2023-09-12 Acer Incorporated Multiplexing method of uplink control information (UCI) for ultra-reliable and low latency communications (URLLC)
US11477000B2 (en) 2019-04-05 2022-10-18 Qualcomm Incorporated Handling collisions between multiple acknowledgement transmissions and an uplink data transmission
WO2020220254A1 (en) * 2019-04-30 2020-11-05 Lenovo (Beijing) Limited Apparatus and method of pucch transmission and reception
EP3734885A1 (en) * 2019-05-02 2020-11-04 Panasonic Intellectual Property Corporation of America User equipment and network node involved in communication
CN114097290A (zh) 2019-06-26 2022-02-25 汉尼拔Ip有限责任公司 用户装置及由用户装置执行的无线通信方法
KR20220038022A (ko) * 2019-07-19 2022-03-25 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 스케줄링 청구 전송 방법, 터미널 디바이스 및 네트워크 디바이스
WO2021019650A1 (ja) * 2019-07-29 2021-02-04 株式会社Nttドコモ 端末及び無線通信方法
CN113518458A (zh) * 2020-04-09 2021-10-19 北京三星通信技术研究有限公司 上行数据和控制信息的传输方法及其设备
US20230209555A1 (en) * 2020-07-30 2023-06-29 Intel Corporation Transmission scheme for physical uplink control channel
CN114070529A (zh) * 2020-08-07 2022-02-18 中国移动通信有限公司研究院 上行控制信息的传输方法、终端、网络设备及存储介质
EP4218178A1 (en) * 2020-09-24 2023-08-02 Sharp Kabushiki Kaisha Multiplexing of harq-ack with different priorities on pucch for up to two bits harq-ack codebooks
WO2022065334A1 (en) * 2020-09-24 2022-03-31 Sharp Kabushiki Kaisha Joint coding and multiplexing of harq-ack with different priorities on pucch format 2, pucch format 3 or pucch format 4
WO2022086433A1 (en) * 2020-10-23 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for handling high-priority scheduling requests and low-priority uplink control information
US11489568B2 (en) * 2020-10-26 2022-11-01 Wisig Networks Private Limited Method of signal processing by a massive MIMO base station receiver
CN116724570A (zh) * 2021-01-14 2023-09-08 中兴通讯股份有限公司 用于上行链路控制信息传输的方法、装置和系统
CN114765867A (zh) * 2021-01-14 2022-07-19 北京三星通信技术研究有限公司 一种信号的传输方法和设备
US11917627B2 (en) * 2021-04-06 2024-02-27 Qualcomm Incorporated Multiplexing a scheduling request and a hybrid automatic repeat request acknowledgement having different priorities and different physical uplink control channel formats
WO2023181556A1 (ja) * 2022-03-24 2023-09-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局及び通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090028443A (ko) 2007-09-13 2009-03-18 엘지전자 주식회사 무선 통신 시스템에서의 무선자원 할당 방법
KR20170037994A (ko) * 2014-09-25 2017-04-05 인텔 아이피 코포레이션 강화된 커버리지 모드 ue들을 위한 업링크 전송 충돌을 핸들링하는 시스템 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948082B2 (en) * 2009-04-07 2015-02-03 Optis Cellular Technology, Llc Method and apparatus or allocating resources to user equipments in a telecommunications system
US8467799B2 (en) * 2009-08-20 2013-06-18 Samsung Electronics Co., Ltd. Method and system for assigning physical uplink control channel (PUCCH) resources
KR101782645B1 (ko) * 2010-01-17 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR101165643B1 (ko) * 2010-12-20 2012-07-17 엘지전자 주식회사 Ack/nack 전송방법 및 사용자기기와, ack/nack 수신방법 및 기지국
WO2012122170A1 (en) * 2011-03-07 2012-09-13 Interdigital Patent Holdings, Inc. Method and apparatus for sending uplink control information for multi-radio access technology operation
US9241287B2 (en) * 2011-09-13 2016-01-19 Qualcomm Incorporated Narrow bandwidth operation in LTE
US9912430B2 (en) * 2012-07-06 2018-03-06 Samsung Electronics Co. Ltd. Method and apparatus for channel state information feedback reporting
KR20150016473A (ko) * 2013-08-02 2015-02-12 한국전자통신연구원 상향 링크 스케줄링 방법 및 상향링크 전송 방법
US10123349B2 (en) * 2015-07-09 2018-11-06 Qualcomm Incorporated Low latency physical uplink control channel with scheduling request and channel state information
US10674478B2 (en) 2015-08-07 2020-06-02 Sharp Kabushiki Kaisha Terminal device, communication method, and integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090028443A (ko) 2007-09-13 2009-03-18 엘지전자 주식회사 무선 통신 시스템에서의 무선자원 할당 방법
KR20170037994A (ko) * 2014-09-25 2017-04-05 인텔 아이피 코포레이션 강화된 커버리지 모드 ue들을 위한 업링크 전송 충돌을 핸들링하는 시스템 및 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP R1-1704764 *
3GPP R2-1702565 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350810A (zh) * 2019-08-08 2021-02-09 大唐移动通信设备有限公司 Uci的传输方法、装置、终端及基站
CN112350810B (zh) * 2019-08-08 2022-09-09 大唐移动通信设备有限公司 Uci的传输方法、装置、终端及基站

Also Published As

Publication number Publication date
US20200146037A1 (en) 2020-05-07
EP3471489A1 (en) 2019-04-17
EP4203590A1 (en) 2023-06-28
KR102004271B1 (ko) 2019-07-26
CN110431905A (zh) 2019-11-08
US11032838B2 (en) 2021-06-08
EP3471489A4 (en) 2020-01-29
JP2020504955A (ja) 2020-02-13
CN116318567A (zh) 2023-06-23
KR20180122564A (ko) 2018-11-13
KR102077043B1 (ko) 2020-02-13
CN110431905B (zh) 2023-03-10
US10568124B2 (en) 2020-02-18
JP6845330B2 (ja) 2021-03-17
EP3471489B1 (en) 2023-03-29
US20190246416A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
KR102004271B1 (ko) 무선 통신 시스템에서 단말과 기지국 간 스케줄링 요청을 송수신하는 방법 및 이를 지원하는 장치
KR101951680B1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크제어 채널 송수신 방법 및 이를 지원하는 장치
KR101975341B1 (ko) 무선 통신 시스템에서 단말과 기지국 간 확인 응답 정보를 송수신하는 방법 및 이를 지원하는 장치
KR102462083B1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 이를 지원하는 장치
KR102019133B1 (ko) 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치
KR101980715B1 (ko) 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치
US11153857B2 (en) Method for physical uplink control channel transmission/reception between terminal and base station in wireless communication system, and apparatus supporting same
US20210211343A1 (en) Numerology-dependent physical uplink control changnel. structure wireless communication
KR20180089905A (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
KR20190021469A (ko) 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 이를 지원하는 장치
KR20200008567A (ko) 무선 통신 시스템에서 단말과 기지국 간 확인 응답 정보를 송수신하는 방법 및 이를 지원하는 장치
KR20190010708A (ko) 무선 통신 시스템에서 단말의 확인 응답 정보 전송 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right