KR20190068277A - 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치 - Google Patents

렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치 Download PDF

Info

Publication number
KR20190068277A
KR20190068277A KR1020170168517A KR20170168517A KR20190068277A KR 20190068277 A KR20190068277 A KR 20190068277A KR 1020170168517 A KR1020170168517 A KR 1020170168517A KR 20170168517 A KR20170168517 A KR 20170168517A KR 20190068277 A KR20190068277 A KR 20190068277A
Authority
KR
South Korea
Prior art keywords
curvature
lens
liquid lens
liquid
electrode
Prior art date
Application number
KR1020170168517A
Other languages
English (en)
Other versions
KR102560237B1 (ko
Inventor
송승흔
양성오
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020170168517A priority Critical patent/KR102560237B1/ko
Priority to JP2020531002A priority patent/JP7342000B2/ja
Priority to EP18885817.9A priority patent/EP3721281A4/en
Priority to US16/770,849 priority patent/US11378795B2/en
Priority to PCT/KR2018/008210 priority patent/WO2019112132A1/en
Priority to CN201880088893.6A priority patent/CN111788510B/zh
Publication of KR20190068277A publication Critical patent/KR20190068277A/ko
Application granted granted Critical
Publication of KR102560237B1 publication Critical patent/KR102560237B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • H04N5/2254

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Liquid Crystal (AREA)
  • Lenses (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

본 발명은 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치에 관한 것이다. 본 발명의 일 실시예에 따른 렌즈 곡률 가변 장치는, 인가되는 전기 신호에 기초하여 곡률이 가변하는 리퀴드 렌즈의 곡률을 가변하기 위한 렌즈 곡률 가변 장치로서, 리퀴드 렌즈에 전기 신호를 인가하는 렌즈 구동부와, 전기 신호에 기초하여 형성된 리퀴드 렌즈의 곡률을 감지하기 위한 센서부와, 감지된 곡률에 기초하여, 리퀴드 렌즈의 목표 곡률을 형성하도록 렌즈 구동부를 제어하는 제어부를 포함하고, 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화를 감지한다. 이에 의해, 신속하고 정확하게 렌즈의 곡률을 감지할 수 있게 된다.

Description

렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치{Lens curvature variation apparatus, camera, and image display apparatus including the same}
본 발명은 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치에 관한 것이며, 더욱 상세하게는 신속하고 정확하게 렌즈의 곡률을 감지할 수 있는 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치에 관한 것이다.
렌즈는 광 경로를 변환하는 장치이다. 렌즈는 다양한 전자기기에 사용되며, 특히, 카메라에 사용된다.
카메라 내의 렌즈를 통과한 광은, 이미지 센서를 통해, 전기 신호로 변환되며, 변환된 전기 신호에 기초하여 이미지가 획득될 수 있다.
한편, 촬영 이미지의 초점을 조절하기 위해, 렌즈의 위치를 가변하는 것이 필요하다. 그러나, 카메라가 소형의 전자기기에 사용되는 경우, 렌즈의 위치를 가변하기 위해, 상당한 공간이 확보되어야 하는 불편함이 있다.
이에 따라, 촬영 이미지의 초점을 조절하기 위해, 렌즈의 위치를 가변이 아닌, 다른 방안이 연구되고 있다.
본 발명의 목적은, 신속하고 정확하게 렌즈의 곡률을 감지할 수 있는 렌즈 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치를 제공함에 있다.
본 발명의 다름 목적은, 신속하고 정확하게 렌즈의 곡률을 가변할 수 있는 렌즈 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치를 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 렌즈 곡률 가변 장치는, 인가되는 전기 신호에 기초하여 곡률이 가변하는 리퀴드 렌즈의 곡률을 가변하기 위한 렌즈 곡률 가변 장치로서, 리퀴드 렌즈에 전기 신호를 인가하는 렌즈 구동부와, 전기 신호에 기초하여 형성된 리퀴드 렌즈의 곡률을 감지하기 위한 센서부와, 감지된 곡률에 기초하여, 리퀴드 렌즈의 목표 곡률을 형성하도록 렌즈 구동부를 제어하는 제어부를 포함하고, 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화를 감지한다.
한편, 상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 카메라는, 인가되는 전기 신호에 기초하여 곡률이 가변하는 리퀴드 렌즈와, 리퀴드 렌즈에 전기 신호를 인가하는 렌즈 구동부와, 전기 신호에 기초하여 형성된 리퀴드 렌즈의 곡률을 감지하기 위한 센서부와, 감지된 곡률에 기초하여, 리퀴드 렌즈의 목표 곡률을 형성하도록 렌즈 구동부를 제어하는 제어부를 포함하고, 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화를 감지하는 곡률 가변 장치, 및 렌즈 곡률 가변 장치 내의 리퀴드 렌즈로부터의 광을 전기 신호로 변환하는 이미지 센서를 포함한다.
한편, 상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 영상표시장치는, 디스플레이와, 디스플레이의 전면에 배치되는 광학부를 구비하고, 광학부는, 리퀴드 렌즈에 전기 신호를 인가하는 렌즈 구동부와, 전기 신호에 기초하여 형성된 리퀴드 렌즈의 곡률을 감지하기 위한 센서부와, 감지된 곡률에 기초하여, 리퀴드 렌즈의 목표 곡률을 형성하도록 렌즈 구동부를 제어하는 제어부를 포함하고, 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화를 감지하는 곡률 가변 장치를 구비한다.
본 발명의 일 실시예에 따른 렌즈 곡률 가변 장치는, 인가되는 전기 신호에 기초하여 곡률이 가변하는 리퀴드 렌즈의 곡률을 가변하기 위한 렌즈 곡률 가변 장치로서, 리퀴드 렌즈에 전기 신호를 인가하는 렌즈 구동부와, 전기 신호에 기초하여 형성된 리퀴드 렌즈의 곡률을 감지하기 위한 센서부와, 감지된 곡률에 기초하여, 리퀴드 렌즈의 목표 곡률을 형성하도록 렌즈 구동부를 제어하는 제어부를 포함하고, 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화를 감지함으로써, 신속하고 정확하게 렌즈의 곡률을 감지할 수 있게 된다.
특히, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지함으로써, 렌즈의 곡률을 정확하게 검출할 수 있게 된다.
한편, 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지할 수 있으며, 이를 피드백하여, 렌즈의 곡률이 가변되도록 리퀴드 렌즈에 전기 신호를 인가함으로써, 신속하고 정확하게 렌즈의 곡률을 가변할 수 있게 된다.
한편, 렌즈 구동부에서 출력되는 복수의 전기 신호를 리퀴드 렌즈로 공급하는 복수의 도전성 라인과, 복수의 도전성 라인 중 어느 하나와, 센서부 사이에 배치되는 스위칭 소자를 포함하고, 센서부가, 스위칭 소자의 온 기간 동안, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화를 감지함으로써, 간편하게, 렌즈의 곡률을 감지할 수 있게 된다.
한편, 연산된 곡률과 목표 곡률에 기초하여, 곡률 에러를 연산하는 이퀄라이저와, 연산된 곡률 에러에 기초하여, 펄스폭 가변 신호를 생성하여 출력하는 펄스폭 가변 제어부를 포함함으로써, 신속하고 정확하게 렌즈의 곡률을 감지할 수 있게 된다.
한편, 본 발명의 일 실시예에 따른 카메라는, 인가되는 전기 신호에 기초하여 곡률이 가변하는 리퀴드 렌즈와, 리퀴드 렌즈에 전기 신호를 인가하는 렌즈 구동부와, 전기 신호에 기초하여 형성된 리퀴드 렌즈의 곡률을 감지하기 위한 센서부와, 감지된 곡률에 기초하여, 리퀴드 렌즈의 목표 곡률을 형성하도록 렌즈 구동부를 제어하는 제어부를 포함하고, 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화를 감지하는 곡률 가변 장치, 및 렌즈 곡률 가변 장치 내의 리퀴드 렌즈로부터의 광을 전기 신호로 변환하는 이미지 센서를 포함함으로써, 신속하고 정확하게 렌즈의 곡률을 감지할 수 있게 된다.
한편, 카메라 내의 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지할 수 있으며, 이를 피드백하여, 렌즈의 곡률이 가변되도록 리퀴드 렌즈에 전기 신호를 인가함으로써, 신속하고 정확하게 렌즈의 곡률을 가변할 수 있게 된다.
또한, 카메라는, 가변된 렌즈의 곡률에 의해, 신속하고 정확하게, 초점이 맞춰진 이미지를 획득할 수 있게 된다.
한편, 렌즈 곡률 가변 장치 내의 제어부는, 이미지 처리부로부터의 초점 정보와, 자이로 센서로부터의 흔들림 정보를 수신하고, 초점 정보와 흔들림 정보에 기초하여, 목표 곡률을 결정할 수 있으며, 이에 따라, 흔들림에 대응하여, 초점이 맞춰진 이미지를 획득할 수 있게 된다.
한편, 상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 영상표시장치는, 디스플레이와, 디스플레이의 전면에 배치되는 광학부를 구비하고, 광학부는, 인가되는 전기 신호에 기초하여 곡률이 가변하는 리퀴드 렌즈와, 리퀴드 렌즈에 전기 신호를 인가하는 렌즈 구동부와, 전기 신호에 기초하여 형성된 리퀴드 렌즈의 곡률을 감지하기 위한 센서부와, 감지된 곡률에 기초하여, 리퀴드 렌즈의 목표 곡률을 형성하도록 렌즈 구동부를 제어하는 제어부를 포함하고, 센서부는, 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 면적의 변화를 감지함으로써, 신속하고 정확하게 렌즈의 곡률을 감지할 수 있게 된다.
이와 같이, 가변된 렌즈의 곡률에 의해, 영상표시장치에서 출력되는 광의 진행 방향을 변경할 수 있어, 영상 시청시의 시인성이 향상될 수 있게 된다.
도 1a은 본 발명의 일 실시예에 따른 영상표시장치의 일예인 이동 단말기를 전면에서 바라본 사시도이다.
도 1b는 도 1a에 도시한 이동 단말기의 후면 사시도이다.
도 2는 도 1의 이동 단말기의 블럭도이다.
도 3a는 도 2의 카메라의 내부 단면도이다.
도 3b는 도 2의 카메라의 내부 블록도이다.
도 4는 렌즈 구동 방식을 설명하는 도면이다.
도 5a 내지 도 5b는 리퀴드 렌즈의 구동 방식을 설명하는 도면이다.
도 6a 내지 도 6c 리퀴드 렌즈의 구조를 도시하는 도면이다.
도 7a 내지 도 7e는 리퀴드 렌즈의 렌즈 곡률 가변을 설명하는 도면이다.
도 8은 본 발명과 관련된 카메라의 내부 블록도의 일예이다.
도 9는 본 발명의 실시예에 따른 카메라의 내부 블록도의 일예이다.
도 10a 내지 도 14b는 도 9의 설명에 참조되는 도면이다.
도 15a는 본 발명의 다른 실시예에 따른 카메라의 내부 블록도의 일예이다.
도 15b는 본 발명의 또 다른 실시예에 따른 카메라의 내부 블록도의 일예이다.
도 16a는 본 발명의 일 실시예에 따른 영상표시장치의 외관을 나타내는 도면이다.
도 16b는 도 16a의 영상표시장치의 광학부와 디스플레이를 분리하여 표시한 도면이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
도 1a은 본 발명의 일 실시예에 따른 영상표시장치의 일예인 이동 단말기를 전면에서 바라본 사시도이고, 도 1b는 도 1a에 도시한 이동 단말기의 후면 사시도이다.
도 1a을 참조하면, 이동 단말기(100)의 외관을 이루는 케이스는, 프론트 케이스(100-1)와 리어 케이스(100-2)에 의해 형성된다. 프론트 케이스(100-1)와 리어 케이스(100-2)에 의해 형성된 공간에는 각종 전자부품들이 내장될 수 있다.
구체적으로 프론트 케이스(100-1)에는 디스플레이(151), 제1 음향출력모듈(153a), 제1 카메라(195a), 및 제1 내지 제3 사용자 입력부(130a, 130b, 130c)가 배치될 수 있다. 그리고, 리어 케이스(100-2)의 측면에는 제4 사용자 입력부(130d), 제5 사용자 입력부(130e), 및 제1 내지 제3 마이크(123a, 123b, 123c)가 배치될 수 있다.
디스플레이(151)는 터치패드가 레이어 구조로 중첩됨으로써, 디스플레이(151)가 터치스크린으로 동작할 수 있다.
제1 음향출력 모듈(153a)은 리시버 또는 스피커의 형태로 구현될 수 있다. 제1 카메라(195a)는 사용자 등에 대한 이미지 또는 동영상을 촬영하기에 적절한 형태로 구현될 수 있다. 그리고, 마이크(123)는 사용자의 음성, 기타 소리 등을 입력받기 적절한 형태로 구현될 수 있다.
제1 내지 제5 사용자 입력부(130a, 130b, 130c, 130d, 130e)와 후술하는 제6 및 제7 사용자 입력부(130f, 130g)는 사용자 입력부(130)라 통칭할 수 있다.
제1 내지 제2 마이크(123a, 123b)는, 리어 케이스(100-2)의 상측, 즉, 이동 단말기(100)의 상측에, 오디오 신호 수집을 위해 배치되며, 제3 마이크(123c)는, 리어 케이스(100-2)의 하측, 즉, 이동 단말기(100)의 하측에, 오디오 신호 수집을 위해 배치될 수 있다.
도 1b를 참조하면, 리어 케이스(100-2)의 후면에는 제2 카메라(195b), 및 제4 마이크(123d)가 추가로 장착될 수 있으며, 리어 케이스(100-2)의 측면에는 제6 및 제7 사용자 입력부(130f, 130g)와, 인터페이스부(170)가 배치될 수 있다.
제2 카메라(195b)는 제1 카메라(195a)와 실질적으로 반대되는 촬영 방향을 가지며, 제1 카메라(195a)와 서로 다른 화소를 가질 수 있다. 제2 카메라(195b)에 인접하게는 플래쉬(미도시)와 거울(미도시)이 추가로 배치될 수도 있다. 또한, 제2 카메라(195b) 인접하게 다른 카메라를 더 설치하여 3차원 입체 영상의 촬영을 위해 사용할 수도 있다.
리어 케이스(100-2)에는 제2 음향출력 모듈(미도시)가 추가로 배치될 수도 있다. 제2 음향출력 모듈은 제1 음향출력 모듈(153a)와 함께 스테레오 기능을 구현할 수 있으며, 스피커폰 모드로 통화를 위해 사용될 수도 있다.
리어 케이스(100-2) 측에는 이동 단말기(100)에 전원을 공급하기 위한 전원공급부(190)가 장착될 수 있다. 전원공급부(190)는, 예를 들어 충전 가능한 배터리로서, 충전 등을 위하여 리어 케이스(100-2)에 착탈 가능하게 결합될 수 있다.
제4 마이크(123d)는, 리어 케이스(100-2)의 전면, 즉, 이동 단말기(100)의 뒷면에, 오디오 신호 수집을 위해 배치될 수 있다.
도 2는 도 1의 이동 단말기의 블럭도이다.
도 2를 참조하면, 이동 단말기(100)는 무선 통신부(110), A/V(Audio/Video) 입력부(120), 사용자 입력부(130), 센싱부(140), 출력부(150), 메모리(160), 인터페이스부(170), 프로세서(180), 및 전원 공급부(190)를 포함할 수 있다. 이와 같은 구성요소들은 실제 응용에서 구현될 때 필요에 따라 2 이상의 구성요소가 하나의 구성요소로 합쳐지거나, 혹은 하나의 구성요소가 2 이상의 구성요소로 세분되어 구성될 수 있다.
무선 통신부(110)는 방송수신 모듈(111), 이동통신 모듈(113), 무선 인터넷 모듈(115), 근거리 통신 모듈(117), 및 GPS 모듈(119) 등을 포함할 수 있다.
방송수신 모듈(111)은 방송 채널을 통하여 외부의 방송관리 서버로부터 방송 신호 및 방송관련 정보 중 적어도 하나를 수신할 수 있다. 방송수신 모듈(111)을 통해 수신된 방송 신호 및/또는 방송 관련 정보는 메모리(160)에 저장될 수 있다.
이동통신 모듈(113)은, 이동 통신망 상에서 기지국, 외부의 단말, 서버 중 적어도 하나와 무선 신호를 송수신할 수 있다. 여기서, 무선 신호는, 음성 호 신호, 화상 통화 호 신호, 또는 문자/멀티미디어 메시지 송수신에 따른 다양한 형태의 데이터를 포함할 수 있다.
무선 인터넷 모듈(115)은 무선 인터넷 접속을 위한 모듈을 말하는 것으로, 무선 인터넷 모듈(115)은 이동 단말기(100)에 내장되거나 외장될 수 있다.
근거리 통신 모듈(117)은 근거리 통신을 위한 모듈을 말한다. 근거리 통신 기술로 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband), 지그비(ZigBee), NFC(Near Field Communication) 등이 이용될 수 있다.
GPS(Global Position System) 모듈(119)은 복수 개의 GPS 인공위성으로부터 위치 정보를 수신한다.
A/V(Audio/Video) 입력부(120)는 오디오 신호 또는 비디오 신호 입력을 위한 것으로, 이에는 카메라(195)와 마이크(123) 등이 포함될 수 있다.
카메라(195)는 화상 통화모드 또는 촬영 모드에서 이미지 센서에 의해 얻어지는 정지영상 또는 동영상 등의 화상 프레임을 처리할 수 있다. 그리고, 처리된 화상 프레임은 디스플레이(151)에 표시될 수 있다.
카메라(195)에서 처리된 화상 프레임은 메모리(160)에 저장되거나 무선 통신부(110)를 통하여 외부로 전송될 수 있다. 카메라(195)는 단말기의 구성 태양에 따라 2개 이상이 구비될 수도 있다.
마이크(123)는, 디스플레이 오프 모드, 예를 들어, 통화모드, 녹음모드, 또는 음성인식 모드 등에서 마이크로폰(Microphone)에 의해 외부의 오디오 신호를 입력받아 전기적인 음성 데이터로 처리할 수 있다.
한편, 마이크(123)는, 서로 다른 위치에, 복수개로서 배치될 수 있다. 각 마이크에서 수신되는 오디오 신호는 프로세서(180) 등에서 오디오 신호 처리될 수 있다.
사용자 입력부(130)는 사용자가 단말기의 동작 제어를 위하여 입력하는 키 입력 데이터를 발생시킨다. 사용자 입력부(130)는 사용자의 누름 또는 터치 조작에 의해 명령 또는 정보를 입력받을 수 있는 키 패드(key pad), 돔 스위치(dome switch), 터치 패드(정압/정전) 등으로 구성될 수 있다. 특히, 터치 패드가 후술하는 디스플레이(151)와 상호 레이어 구조를 이룰 경우, 이를 터치스크린(touch screen)이라 부를 수 있다.
센싱부(140)는 이동 단말기(100)의 개폐 상태, 이동 단말기(100)의 위치, 사용자 접촉 유무 등과 같이 이동 단말기(100)의 현 상태를 감지하여 이동 단말기(100)의 동작을 제어하기 위한 센싱 신호를 발생시킬 수 있다.
센싱부(140)는 근접센서(141), 압력센서(143), 및 모션 센서(145), 터치 센서(146) 등을 포함할 수 있다.
근접센서(141)는 이동 단말기(100)로 접근하는 물체나, 이동 단말기(100)의 근방에 존재하는 물체의 유무 등을 기계적 접촉이 없이 검출할 수 있다. 특히, 근접센서(141)는, 교류자계의 변화나 정자계의 변화를 이용하거나, 혹은 정전용량의 변화율 등을 이용하여 근접물체를 검출할 수 있다.
압력센서(143)는 이동 단말기(100)에 압력이 가해지는지 여부와, 그 압력의 크기 등을 검출할 수 있다.
모션 센서(145)는 가속도 센서, 자이로 센서 등을 이용하여 이동 단말기(100)의 위치나 움직임 등을 감지할 수 있다.
터치 센서(146)는, 사용자의 손가락에 의한 터치 입력 또는 특정 펜에 의한 터치 입력을 감지할 수 있다. 예를 들어, 디스플레이(151) 상에 터치 스크린 패널이 배치되는 경우, 터치 스크린 패널은, 터치 입력의 위치 정보, 세기 정보 등을 감지하기 위한 터치 센서(146)를 구비할 수 있다. 터치 센서(146)에서 감지된 센싱 신호는, 제어부(180)로 전달될 수 있다.
출력부(150)는 오디오 신호 또는 비디오 신호 또는 알람(alarm) 신호의 출력을 위한 것이다. 출력부(150)에는 디스플레이(151), 음향출력 모듈(153), 알람부(155), 및 햅틱 모듈(157) 등이 포함될 수 있다.
디스플레이(151)는 이동 단말기(100)에서 처리되는 정보를 표시 출력한다. 예를 들어 이동 단말기(100)가 통화 모드인 경우 통화와 관련된 UI(User Interface) 또는 GUI(Graphic User Interface)를 표시한다. 그리고 이동 단말기(100)가 화상 통화 모드 또는 촬영 모드인 경우, 촬영되거나 수신된 영상을 각각 혹은 동시에 표시할 수 있으며, UI, GUI를 표시한다.
한편, 전술한 바와 같이, 디스플레이(151)와 터치패드가 상호 레이어 구조를 이루어 터치스크린으로 구성되는 경우, 디스플레이(151)는 출력 장치 이외에 사용자의 터치에 의한 정보의 입력이 가능한 입력 장치로도 사용될 수 있다.
음향출력 모듈(153)은 호 신호 수신, 통화 모드 또는 녹음 모드, 음성인식 모드, 방송수신 모드 등에서 무선 통신부(110)로부터 수신되거나 메모리(160)에 저장된 오디오 데이터를 출력할 수 있다. 또한, 음향출력 모듈(153)은 이동 단말기(100)에서 수행되는 기능, 예를 들어, 호 신호 수신음, 메시지 수신음 등과 관련된 오디오 신호를 출력한다. 이러한 음향출력 모듈(153)에는 스피커(speaker), 버저(Buzzer) 등이 포함될 수 있다.
알람부(155)는 이동 단말기(100)의 이벤트 발생을 알리기 위한 신호를 출력한다. 알람부(155)는 오디오 신호나 비디오 신호 이외에 다른 형태로 이벤트 발생을 알리기 위한 신호를 출력한다. 예를 들면, 진동 형태로 신호를 출력할 수 있다.
햅틱 모듈(haptic module)(157)은 사용자가 느낄 수 있는 다양한 촉각 효과를 발생시킨다. 햅틱 모듈(157)이 발생시키는 촉각 효과의 대표적인 예로는 진동 효과가 있다. 햅틱 모듈(157)이 촉각 효과로 진동을 발생시키는 경우, 햅택 모듈(157)이 발생하는 진동의 세기와 패턴 등은 변환가능하며, 서로 다른 진동을 합성하여 출력하거나 순차적으로 출력할 수도 있다.
메모리(160)는 프로세서(180)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입력되거나 출력되는 데이터들(예를 들어, 폰북, 메시지, 정지영상, 동영상 등)의 임시 저장을 위한 기능을 수행할 수도 있다.
인터페이스부(170)는 이동 단말기(100)에 연결되는 모든 외부기기와의 인터페이스 역할을 수행한다. 인터페이스부(170)는 외부 기기로부터 데이터를 전송받거나 전원을 공급받아 이동 단말기(100) 내부의 각 구성 요소에 전달할 수 있고, 이동 단말기(100) 내부의 데이터가 외부 기기로 전송되도록 할 수 있다.
프로세서(180)는 통상적으로 상기 각부의 동작을 제어하여 이동 단말기(100)의 전반적인 동작을 제어한다. 예를 들어 음성 통화, 데이터 통신, 화상 통화 등을 위한 관련된 제어 및 처리를 수행할 수 있다. 또한, 프로세서(180)는 멀티 미디어 재생을 위한 멀티미디어 재생 모듈(181)을 구비할 수도 있다. 멀티미디어 재생 모듈(181)은 프로세서(180) 내에 하드웨어로 구성될 수도 있고, 프로세서(180)와 별도로 소프트웨어로 구성될 수도 있다. 한편, 프로세서(180)는, 애플리케이션 구동을 위한 애플리케이션 프로세서(미도시)를 구비할 수 있다. 또는 애플리케이션 프로세서(미도시)는 프로세서(180)와 별도로 마련되는 것도 가능하다.
그리고, 전원 공급부(190)는 프로세서(180)의 제어에 의해 외부의 전원, 내부의 전원을 인가받아 각 구성요소들의 동작에 필요한 전원을 공급할 수 있다.
도 3a는 도 2의 카메라의 내부 단면도이다.
먼저, 도 3a는, 카메라(195) 내의, 제1 카메라(195a)와 제2 카메라(195b)에 대한 단면도의 일예이다.
제1 카메라(195a)는, 제1 조리개(194a), 제1 렌즈(193a), 제1 이미지 센서(820a)를 구비할 수 있으며, 제2 카메라(195b)는, 제2 조리개(194b), 제2 렌즈(193b), 제2 이미지 센서(820b)를 구비할 수 있다.
제1 조리개(194a)는, 제1 렌즈(193a)로 입사되는 광을 개폐하며, 제2 조리개(194b)는, 제2 렌즈(193b)로 입사되는 광을 개폐할 수 있다.
제1 이미지 센서(820a)는, RGB 색상을 센싱하기 위해, RGb 필터(910a)와, 광 신호를 전기 신호로 변환하는 센서 어레이(911a)를 구비할 수 있다.
제2 이미지 센서(825a)는, RGB 색상을 센싱하기 위해, RGb 필터(915a)와, 광 신호를 전기 신호로 변환하는 센서 어레이(911b)를 구비할 수 있다.
이에 따라, 제1 이미지 센서(820a)와 제2 이미지 센서(815a)는, 각각 RGB 이미지를 센싱하여, 출력할 수 있다.
도 3b는 도 2의 카메라의 내부 블록도이다.
도면을 참조하면, 카메라(195)는, 제1 카메라(195a), 제2 카메라(195b), 및 이미지 프로세서(830)를 구비할 수 있다.
제1 카메라(195a)는, 제1 렌즈(193a)와, 제1 이미지 센서(820a)를 구비하며, 제2 카메라(195b)는, 제2 렌즈(193b)와, 제2 이미지 센서(820b)를 구비할 수 있다.
이미지 프로세서(830)는, 제1 및 제2 이미지 센서(820a,820b)로부터의, 전기 신호에 기초하여, RGB 이미지를 생성할 수 있다.
한편, 제1 및 제2 이미지 센서(820a,820b)는, 전기 신호에 기초하여, 노출 시간이 조절될 수 있다.
도 4는 렌즈 구동 방식을 설명하는 도면이다.
먼저, 도 4의 (a)는, 포커스 지점(401)으로부터의 광이, 렌즈(403), 빔 스플리터(405), 마이크로 렌즈(407), 및 이미지 센서(409)로 전달되어, 이미지 센서(409)에, Fa 크기의 상(PH)이 맺히는 것을 도시한다.
특히, 도 4의 (a)는, 포커스 지점(401)에 대응하여, 초점이 정확하게 맞춰진 것을 예시한다.
다음, 도 4의 (b)는, 도 4의 (a)에 비해, 렌즈(403)의 위치가, 포커스 지점(401) 방향으로 이동하여, 이미지 센서(409)에, Fa 보다 작은 크기인, Fb 크기의 상(PH)이 맺히는 것을 도시한다.
특히, 도 4의 (b)는, 포커스 지점(401)에 대응하여, 초점이 너무 앞에 맞춰진 것을 예시한다.
다음, 도 4의 (c)는, 도 4의 (a)에 비해, 렌즈(403)의 위치가, 포커스 지점(401) 반대 방향으로 이동하여, 이미지 센서(409)에, Fa 보다 큰 크기인, Fc 크기의 상(PH)이 맺히는 것을 도시한다.
특히, 도 4의 (c)는, 포커스 지점(401)에 대응하여, 초점이 너무 뒤에 맞춰진 것을 예시한다.
즉, 도 4는, 촬영 이미지의 초점을 조절하기 위해, 렌즈의 위치를 가변하는 것을 예시한다.
도 4와 같이, 렌즈(403)의 위치를 가변하는 방식으로, 음성 코일 모터(Voice Coil Motor; VCM) 방식이 사용되고 있다.
그러나, 이러한 음성 코일 모터(VCM) 방식은, 도 1의 이동 단말기와 같이, 소형의 전자기기에 사용되는 경우, 렌즈의 이동을 위한, 상당한 공간이 확보되어야 하는 불편함이 있다.
한편, 이동 단말기(100)에 사용되는 카메라(195)의 경우, 오토 포커싱 외에, 흔들림 방지(Optical Image Stabilization;OIS) 기능이 필요하다.
이에, 음성 코일 모터(VCM) 방식을 사용하는 경우, 도 4와 같이, 좌우 방향 등의 일차원 방향의 이동만 가능하므로, 흔들림 방지에 적합하지 않다는 문제가 있다.
본 발명에서는, 이러한 점을 해결하기 위해, 음성 코일 모터(VCM) 방식이 아닌, 리퀴드 렌즈 구동 방식을 사용하는 것으로 한다.
리퀴드 렌즈 구동 방식은, 리퀴드 렌즈에 전기 신호를 인가하여 리퀴드의 곡률을 가변하는 것으로, 자동 포커싱을 위해 렌즈의 이동이 필요 없으며, 흔들림 방지 기능 구현시, 2차원 방향 또는 3차원 방향의 흔들림 방지가 가능하다는 장점이 있다.
도 5a 내지 도 5b는 리퀴드 렌즈의 구동 방식을 설명하는 도면이다.
먼저, 도 5a의 (a)는, 리퀴드 렌즈(500)에 제1 전압(V1)이 인가되어, 리퀴드 렌즈가 오목 렌즈와 같이 동작하는 것을 예시한다.
다음, 도 5a의 (b)는, 리퀴드 렌즈(500)에 제1 전압(V1) 보다 큰 제2 전압(V2)이 인가되어, 리퀴드 렌즈가 광의 진행 방향을 변경하지 않는 것을 예시한다.
다음, 도 5a의 (c)는, 리퀴드 렌즈(500)에 제2 전압(V2) 보다 큰 제3 전압(V3)이 인가되어, 리퀴드 렌즈가 볼록 렌즈와 같이 동작하는 것을 예시한다.
한편, 도 5a에서는, 인가되는 전압의 레벨에 따라, 리퀴드 렌즈의 곡률 또는 디옵터가 변하는 것을 예시하나, 이에 한정되지 않으며, 인가되는 펄스의 펄스폭에 따라, 리퀴드 렌즈의 곡률 또는 디옵터가 변하는 것도 가능하다.
다음, 도 5b의 (a)는, 리퀴드 렌즈(500) 내의 리퀴드이 동일한 곡률을 가짐에 따라, 볼록 렌즈와 같이 동작하는 것을 예시한다.
즉, 도 5b의 (a)에 따르면, 입사광(Lpaa)이 집중되어, 해당하는 출력광(Lpab)이 출력되게 된다.
다음, 도 5b의 (b)는, 리퀴드 렌즈(500) 내의 리퀴드이 비대칭 곡면을 가짐에 따라, 광의 진행 방향이 상측으로 변경되는 것을 예시한다.
즉, 도 5b의 (b)에 따르면, 입사광(Lpaa)이 상측으로 집중되어, 해당하는 출력광(Lpac)이 출력되게 된다.
도 6a 내지 도 6c 리퀴드 렌즈의 구조를 도시하는 도면이다. 특히, 도 6a는 리퀴드 렌즈의 상면도를 도시하며, 도 6b는 리퀴드 렌즈의 하면도를 도시하며, 도 6c는 도 6a 및 도 6c의 I-I'의 단면도를 도시한다.
특히, 도 6a는, 도 5a 내지 도 5b의 리퀴드 렌즈(500)의 우측면에 대응하는 도면이고, 도 6b는 도 5a 내지 도 5b의 리퀴드 렌즈(500)의 좌측면에 대응하는 도면일 수 있다.
도면을 참조하면, 리퀴드 렌즈(500)는, 도 6a와 같이, 상부에, 공통 전극(COM)(520)이 배치될 수 있다. 이때, 공통 전극(COM)(520)은, 튜브 형태로 배치될 수 있으며, 공통 전극(COM)(520)의 하부 영역에, 특히, 중공에 대응하는 영역에, 리퀴드(530)가 배치될 수 있다.
한편, 도면에서는 도시하지 않았지만, 공통 전극(COM)(520)의 절연을 위해, 공통 전극(COM)(520)과 리퀴드 사이에, 절연체(미도시)가 배치되는 것도 가능하다.
그리고, 도 6b와 같이, 공통 전극(COM)(520)의 하부, 특히, 리퀴드(530)의 하부에, 복수의 전극(LA~LD)(540a~540d)이 배치될 수 있다. 복수의 전극(LA~LD)(540a~540d)은, 특히, 리퀴드(530)를 둘러싸는 형태로 배치될 수 았다.
그리고, 복수의 전극(LA~LD)(540a~540d)과 리퀴드(530) 사이에, 절연을 위한 복수의 절연체(550a~550d)가 각각 배치될 수 있다.
즉, 리퀴드 렌즈(500)는, 공통 전극(COM)(520)과, 공통 전극(COM)(520)과 이격되어 배치되는 복수의 전극(LA~LD)(540a~540d)과, 상기 공통 전극(COM)(520)과 복수의 전극(LA~LD)(540a~540d) 사이에 배치되는, 리퀴드(530) 및 전기 전도성 수용액(도 6c의 595)을 구비할 수 있다.
도 6c를 참조하면, 리퀴드 렌즈(500)는, 제1 기판(510) 상의 복수의 전극(LA~LD)(540a~540d)과, 복수의 전극(LA~LD)(540a~540d)의 절연을 위한 복수의 절연체(550a~550d), 복수의 전극(LA~LD)(540a~540d) 상의 리퀴드(530)와, 리퀴드(530) 상의 전기 전도성 수용액(electroconductive aqueous solution)(595)과, 리퀴드(530)와 이격되어 배치되는 공통 전극(COM)(520), 공통 전극(COM)(520) 상의 제2 기판(515)을 구비할 수 있다.
공통 전극(520)은 중공을 가지고 튜브 형태로 형성될 수 있다. 그리고, 중공 영역에, 리퀴드(530), 및 전기 전도성 수용액(595)이 배치될 수 있다. 리퀴드(530)는, 도 6a 내지 도 6b와 같이, 원형으로 배치될 수 있다. 이때의 리퀴드(530)는, 오일 등의 비전도성 액체일 수 있다.
한편, 중공 영역의 하부에서 상부로 갈수록, 그 크기가 커질 수 있으며, 이에 따라, 복수의 전극(LA~LD)(540a~540d)은, 하부에서 상부로 갈수록, 그 크기가 작아질 수 있다.
도 6c에서는, 복수의 전극(LA~LD)(540a~540d) 중 제1 전극(LA)(540a)과, 제2 전극(LB)(540b)이 경사지게 형성되며, 하부에서 상부로 갈수록, 그 크기가 작아지는 것을 예시한다.
한편, 도 6a 내지 도 6c와 달리, 복수의 전극(LA~LD)(540a~540d)이, 공통 전극(520)의 위치인 상부에 형성되고, 공통 전극(520)이 하부에 형성되는 것도 가능하다.
한편, 도 6a 내지 도 6c, 복수의 전극으로 4개의 전극을 예시하나, 이에 한정되지 않으며, 2개 이상의 다양한 개수의 전극이 형성되는 것이 가능하다.
한편, 도 6c에서, 공통 전극(520)에 펄스 형태의 전기 신호가 인가된 이후, 소정 시간 후에, 제1 전극(LA)(540a)과, 제2 전극(LB)(540b)에 펄스 형태의 전기 신호가 인가되는 경우, 공통 전극(520)과, 제1 전극(LA)(540a), 제2 전극(LB)(540b) 사이의 전위차가 발생하며, 이에 따라, 전기 전도성을 가지는 전기 전도성 수용액(595)의 형상이 변하고, 전기 전도성 수용액(595)의 형상 변화에 대응하여, 리퀴드(530)의 내부의 리퀴드(530)의 형상이 변하게 된다.
한편, 본 발명에서는, 복수의 전극(LA~LD)(540a~540d)과, 공통 전극(520)에 각각 인가되는 전기 신호에 따라, 형성되는 리퀴드(530)의 곡률을 간편하고, 신속하게 감지하는 방안을 제시한다.
이를 위해, 본 발명에서의 센서부(962)는, 리퀴드 렌즈(500) 내의 제1 전극(540a) 상의 제1 절연체(550a)와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화를 감지한다.
도 6c에서는, 경계 영역(Ac0)의 면적으로 AM0를 예시한다. 특히, 제1 전극(540a) 상의 제1 절연체(550a)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Ac0)의 면적이, AM0인 것을 예시한다.
도 6c에서는, 리퀴드(530)가 오목하거나 볼록하지 않고, 제1 기판(510) 등과 평행한 것을 예시한다. 이때의 곡률은, 예를 들어, 0 으로 정의할 수 있다.
한편, 도 6c와 같이, 제1 전극(540a) 상의 제1 절연체(550a)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Ac0)에 대해, 다음의 수학식 1에 의해, 커패시턴스(C)가 형성될 수 있다.
Figure pat00001
이때의 ε는 유전체(550a)의 유전율, A는 경계 영역(Ac0)의 면적, d는, 제1 유전체(550a)의 두께를 나타낼 수 있다.
여기서, ε, d는, 고정값이라 가정하면, 커패시턴스(C)에 큰 영향을 미치는 것은, 경계 영역(Ac0)의 면적일 수 있다.
즉, 경계 영역(Ac0)의 면적이 클수록, 경계 영역(Ac0)에 형성되는 커패시턴스(C)가 커질수 있다.
한편, 리퀴드(530)의 곡률이 가변될수록, 경계 영역(Ac0)의 면적이 가변되므로, 본 발명에서는, 센서부(962)를 이용하여, 경계 영역(Ac0)의 면적을 감지하거나, 또는 경계 영역(Ac0)에 형성되는 커패시턴스(C)를 감지하는 것으로 한다.
한편, 도 6c의 커패시턴스는, CAc0 라 정의할 수 있다.
도 7a 내지 도 7e는, 리퀴드 렌즈(500)의 다양한 곡률을 예시하는 도면이다.
먼저, 도 7a는 복수의 전극(LA~LD)(540a~540d)과, 공통 전극(520)에 각각 전기 신호의 인가에 따라, 리퀴드(530)에 제1 곡률(Ria)이 형성되는 것을 예시한다.
도 7a에서는, 리퀴드(530)에 제1 곡률(Ria)이 형성됨에 따라, 경계 영역(Aaa)의 면적으로 AMa(>AM0)를 예시한다. 특히, 제1 전극(540a) 상의 제1 절연체(550a)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Aaa)의 면적이, AMa인 것을 예시한다.
수학식 1에 따르면, 도 6c에 비해, 도 7a에서의 경계 영역(Aaa)의 면적이 더 커지므로, 경계 영역(Aaa)의 커패시턴스가 더 커지게 된다. 한편, 도 7a의 커패시턴스는, CAaa 라 정의할 수 있으며, 도 6c의 커패시턴스인 CAc0 보다 큰 값을 가지게 된다.
이때의 제1 곡률(Ria)은 정극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제1 곡률(Ria)이 +2 레벨을 가지는 것으로 정의할 수 있다.
다음, 도 7b는 복수의 전극(LA~LD)(540a~540d)과, 공통 전극(520)에 각각 전기 신호의 인가에 따라, 리퀴드(530)에 제2 곡률(Rib)이 형성되는 것을 예시한다.
도 7b에서는, 리퀴드(530)에 제2 곡률(Rib)이 형성됨에 따라, 경계 영역(Aba)의 면적으로 AMb(>AMa)를 예시한다. 특히, 제1 전극(540a) 상의 제1 절연체(550a)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Aba)의 면적이, AMb인 것을 예시한다.
수학식 1에 따르면, 도 7a에 비해, 도 7b에서의 경계 영역(Aba)의 면적이 더 커지므로, 경계 영역(Aba)의 커패시턴스가 더 커지게 된다. 한편, 도 7b의 커패시턴스는, CAba 라 정의할 수 있으며, 도 7a의 커패시턴스인 CAaa 보다 큰 값을 가지게 된다.
이때의 제2 곡률(Rib), 제1 곡률(Ria) 보다 크기가 작은 정극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제2 곡률(Rib)이 +4 레벨을 가지는 것으로 정의할 수 있다.
한편, 도 7a, 도 7b에 따르면, 리퀴드 렌즈(500)는 볼록 렌즈로서 동작하며, 이에 따라, 입사광(LP1)이 집중된 출력광(LP1a)이 출력된다.
다음, 도 7c는 복수의 전극(LA~LD)(540a~540d)과, 공통 전극(520)에 각각 전기 신호의 인가에 따라, 리퀴드(530)에 제3 곡률(Ric)이 형성되는 것을 예시한다.
특히, 도 7c에서는, 좌측 경계 영역(Aca)의 면적으로 AMa를 예시하며, 우측 경계 영역(Acb)의 면적으로 AMb(>AMa)를 예시한다.
특히, 제1 전극(540a) 상의 제1 절연체(550a)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Aca)의 면적이, AMa이고, 제2 전극(540b) 상의 제2 절연체(550b)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Acb)의 면적이, AMb인 것을 예시한다.
이에 따라, 좌측 경계 영역(Aca)의 커패시턴스는, CAaa 일 수 있으며, 우측 경계 영역(Acb)의 커패시턴스는, CAba 일 수 있다.
이때의 제3 곡률(Ric)은 정극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제3 곡률(Ric)이 +3 레벨을 가지는 것으로 정의할 수 있다.
한편, 도 7c에 따르면, 리퀴드 렌즈(500)는 볼록 렌즈로서 동작하며, 이에 따라, 입사광(LP1)이 일측으로 더 집중된 출력광(LP1b)이 출력된다.
다음, 도 7d는 복수의 전극(LA~LD)(540a~540d)과, 공통 전극(520)에 각각 전기 신호의 인가에 따라, 리퀴드(530)에 제4 곡률(Rid)이 형성되는 것을 예시한다.
도 7d에서는, 리퀴드(530)에 제4 곡률(Rid)이 형성됨에 따라, 경계 영역(Ada)의 면적으로 AMd(<AM0)를 예시한다. 특히, 제1 전극(540a) 상의 제1 절연체(550a)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Ada)의 면적이, AMd인 것을 예시한다.
수학식 1에 따르면, 도 6c에 비해, 도 7d에서의 경계 영역(Ada)의 면적이 더 작아지므로, 경계 영역(Ada)의 커패시턴스가 더 작아지게 된다. 한편, 도 7d의 커패시턴스는, CAda 라 정의할 수 있으며, 도 6c의 커패시턴스인 CAc0 보다 작은 값을 가지게 된다.
이때의 제4 곡률(Rid)은 부극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제4 곡률(Rid)이 -2 레벨을 가지는 것으로 정의할 수 있다.
다음, 도 7e는 복수의 전극(LA~LD)(540a~540d)과, 공통 전극(520)에 각각 전기 신호의 인가에 따라, 리퀴드(530)에 제5 곡률(Rie)이 형성되는 것을 예시한다.
도 7e에서는, 리퀴드(530)에 제5 곡률(Rie)이 형성됨에 따라, 경계 영역(Aea)의 면적으로 AMe(<AMd)를 예시한다. 특히, 제1 전극(540a) 상의 제1 절연체(550a)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Aea)의 면적이, AMe인 것을 예시한다.
수학식 1에 따르면, 도 7d에 비해, 도 7e에서의 경계 영역(Aea)의 면적이 더 작아지므로, 경계 영역(Aea)의 커패시턴스가 더 작아지게 된다. 한편, 도 7e의 커패시턴스는, CAea 라 정의할 수 있으며, 도 7d의 커패시턴스인 CAda 보다 작은 값을 가지게 된다.
이때의 제5 곡률(Rie)은 부극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제5 곡률(Rie)이 -4 레벨을 가지는 것으로 정의할 수 있다.
한편, 도 7d, 도 7e에 따르면, 리퀴드 렌즈(500)는 오목 렌즈로서 동작하며, 이에 따라, 입사광(LP1)이 발산된 출력광(LP1c)이 출력된다.
도 8은 본 발명과 관련된 카메라의 내부 블록도의 일예이다.
도면을 참조하면, 도 8의 카메라(195x)는, 렌즈 곡률 가변 장치(800), 이미지 센서(820), 이미지 처리부(860), 자이로 센서(830), 리퀴드 렌즈(500)를 구비할 수 있다.
렌즈 곡률 가변 장치(800)는, 렌즈 구동부(860), 펄스폭 가변 제어부(840), 전원 공급부(890)를 구비한다.
도 8의 렌즈 곡률 가변 장치(800)의 동작을 설명하면, 펄스폭 가변 제어부(840)가 목표 곡률에 대응하여, 펄스폭 가변 신호(V)를 출력하고, 렌즈 구동부(860)가 펄스폭 가변 신호(V)와 전원 공급부(890)의 전압(Vx)을 이용하여, 리퀴드 렌즈(500)의 복수의 전극, 및 공통 전극에 해당 전압을 출력할 수 있다.
즉, 도 8의 렌즈 곡률 가변 장치(800)는, 리퀴드 렌즈의 곡률 가변을 위해, 오픈 루프 시스템(Open Loop System)으로 동작한다.
이러한 방식에 의하면, 목표 곡률에 대응하여, 리퀴드 렌즈(500)의 복수의 전극, 및 공통 전극에 해당 전압을 출력하는 것 외에, 실제 리퀴드 렌즈(500)의 곡률을 감지할 수 없다는 단점이 있다.
또한, 도 8의 렌즈 곡률 가변 장치(800)에 의하면, 흔들림 방지를 위해, 리퀴드 렌즈(500)의 곡률 가변이 필요한 경우, 곡률 감지가 되지 않으므로, 정확한 곡률 가변이 어려울 수 있는 단점이 있다.
이에 본 발명에서는, 도 8과 같이, 렌즈 곡률 가변 장치(800)를 오픈 루프 시스템(Open Loop System)으로 구현하지 않고, 클로즈드 루프 시스템(closed Loop System)으로 구현하는 것으로 한다.
즉, 리퀴드 렌즈(500)의 곡률 파악을 위해, 리퀴드 렌즈(500) 내의 리퀴드 내부의 전극 상의 절연체와, 전기 전도성 수용액(595)과 접촉하는 경계 영역(Ac0)에 형성되는 커패시턴스를 감지하고, 감지되는 커패시턴스를 피드백하여, 목표 곡률과 현재 곡률의 차이를 연산하고, 그 차이에 대응하여 제어를 수행하는 것으로 한다.
이에 의하면, 신속하고 정확하게 리퀴드 렌즈(500)의 곡률 파악이 가능하며, 또한, 목표 곡률에 대응하도록, 리퀴드 렌즈(500)의 곡률을 신속하고 정확하게 제어할 수 있게 된다. 이에 대해서는 도 9 이하를 참조하여 보다 상세히 기술한다.
도 9는 본 발명의 실시예에 따른 카메라의 내부 블록도의 일예이다.
도면을 참조하면, 본 발명의 실시예에 따른 카메라(195m)는, 리퀴드 렌즈(500)의 곡률을 가변하는 렌즈 곡률 가변 장치(900)와, 리퀴드 렌즈(500)로부터의 광을 전기 신호로 변환하는 이미지 센서(820)와, 이미지 센서(820)로부터의 전기 신호에 기초하여 이미지 처리를 수행하는 이미지 처리부(930)를 포함할 수 있다.
특히, 도 9의 카메라(195m)는, 자이로 센서(915)를 더 포함할 수 있다.
이미지 처리부(930)는, 이미지에 대한 초점 정보(AF)를 출력할 수 있으며, 자이로 센서(915)는 흔들림 정보(OIS)를 출력할 수 있다.
이에 따라, 렌즈 곡률 가변 장치(900) 내의 제어부(970)는, 초점 정보(AF)와 흔들림 정보(OIS)에 기초하여, 목표 곡률을 결정할 수 있다.
한편, 본 발명의 실시예에 따른 렌즈 곡률 가변 장치(900)는, 리퀴드 렌즈(500)에 전기 신호를 인가하는 렌즈 구동부(960)와, 전기 신호에 기초하여 형성된 리퀴드 렌즈(500)의 곡률을 감지하기 위한 센서부(962)와, 감지된 곡률에 기초하여, 리퀴드 렌즈(500)의 목표 곡률을 형성하도록 렌즈 구동부(960)를 제어하는 제어부(970)를 포함하고, 센서부(962)는, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화를 감지할 수 있다. 이에 따라, 신속하고 정확하게 렌즈의 곡률을 감지할 수 있게 된다.
한편, 본 발명의 실시예에 따른 렌즈 곡률 가변 장치(900)는, 인가되는 전기 신호에 기초하여 곡률이 가변하는 리퀴드 렌즈(500)를 더 구비할 수 있다.
한편, 본 발명의 실시예에 따른 렌즈 곡률 가변 장치(900)는, 전원을 공급하는 전원 공급부(990)와, 센서부(962)에서 감지된 커패시턴스와 관련된 신호를 디지털 신호로 변환하는 AD 컨버터(967)를 더 구비할 수 있다.
한편, 렌즈 곡률 가변 장치(900)는, 렌즈 구동부(960)에서, 리퀴드 렌즈(500) 내의 각 전극(공통전극, 복수의 전극)에 전기 신호를 공급하기 위한 복수의 도전성 라인(CA1,CA2)과, 복수의 도전성 라인 중 어느 하나(CA2)와, 센서부(962) 사이에 배치되는 스위칭 소자(SWL)를 더 포함할 수 있다.
도면에서는, 리퀴드 렌즈(500) 내의 복수의 전극 중 어느 하나에 전기 신호를 인가하기 위한 도전성 라인(CA2)과, 센서부(962) 사이에, 스위칭 소자(SWL)가 배치되는 것을 예시한다. 이때, 도전성 라인(CA2)과, 스위칭 소자(SWL)의 일단 또는 리퀴드 렌즈(500)와의 접점을 node A라 명명할 수 있다.
한편, 본 발명에서는, 리퀴드 렌즈(500)의 곡률 감지를 위해, 복수의 도전성 라인(CA1,CA2)을 통해, 리퀴드 렌즈(500) 내의 각 전극(공통전극, 복수의 전극)에 전기 신호를 인가한다. 이에 따라, 도 7a 내지 도 7e 등과 같이, 리퀴드(530)에 곡률이 형성될 수 있다.
예를 들어, 제1 기간 동안, 스위칭 소자(SWL)가 턴 온될 수 있다.
이때, 스위칭 소자(SWL)가 턴 온되어 센서부(962)와 도통된 상태에서, 리퀴드 렌즈(500) 내의 전극에 전기 신호가 인가되는 경우, 리퀴드 렌즈(500) 내에 곡률이 형성되며, 곡률 형성에 대응하는 전기 신호가, 스위칭 소자(SWL)를 거쳐, 센서부(962)로 공급될 수 있다.
이에 따라, 센서부(962)는, 스위칭 소자(SWL)의 온 기간 동안, 리퀴드 렌즈(500)로부터의 전기 신호에 기초하여, 리퀴드 렌즈(500)의 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화를 감지하거나, 경계 영역(Ac0)의 커패시턴스를 감지할 수 있다.
다음, 제2 기간 동안, 스위칭 소자(SWL)가 턴 오프되고, 리퀴드 렌즈(500) 내의 전극에 전기 신호가 계속 인가될 수 있다. 이에 따라, 리퀴드(530)에 곡률이 형성될 수 있다.
다음, 제3 기간 동안, 스위칭 소자(SWL)가 턴 오프되고, 리퀴드 렌즈(500) 내의 전극에 전기 신호가 인가되지 않거나, 로우 레벨의 전기 신호가 인가될 수 있다.
다음, 제4 기간 동안, 스위칭 소자(SWL)가 턴 온될 수 있다.
이때, 스위칭 소자(SWL)가 턴 온되어 센서부(962)와 도통된 상태에서, 리퀴드 렌즈(500) 내의 전극에 전기 신호가 인가되는 경우, 리퀴드 렌즈(500) 내에 곡률이 형성되며, 곡률 형성에 대응하는 전기 신호가, 스위칭 소자(SWL)를 거쳐, 센서부(962)로 공급될 수 있다.
한편, 제1 기간 동안 감지된 커패시턴스에 기초하여 연산된 곡률이 목표 곡률 보다 작은 경우, 제어부(970)는, 목표 곡률에 도달하도록 하기 위해, 구동부(960)에 공급되는 펄스폭 가변 제어 신호의 펄스폭이 증가되도록 제어할 수 있다.
이에 따라, 공통 전극(530)과 복수의 전극에, 각각 인가되는 펄스의 시간 차가 커질 수 있으며, 이에 따라, 리퀴드(530)에 형성된 곡률이 커질 수 있다.
제4 기간 동안, 스위칭 소자(SWL)가 턴 온되어 센서부(962)와 도통된 상태에서, 리퀴드 렌즈(500) 내의 전극에 전기 신호가 인가되는 경우, 리퀴드 렌즈(500) 내에 곡률이 형성되며, 곡률 형성에 대응하는 전기 신호가, 스위칭 소자(SWL)를 거쳐, 센서부(962)로 공급될 수 있다.
이에 따라, 센서부(962)는, 스위칭 소자(SWL)의 온 기간 동안, 리퀴드 렌즈(500)로부터의 전기 신호에 기초하여, 리퀴드 렌즈(500)의 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화를 감지하거나, 경계 영역(Ac0)의 커패시턴스를 감지할 수 있다.
이에 따라, 제어부(970)는, 감지되는 커패시턴스에 기초하여, 곡률을 연산할 수 있으며, 목표 곡률에 도달하였는지 여부를 판단할 수 있다. 한편, 목표 곡률에 도달한 경우, 제어부(970)는, 해당하는 전기 신호를 각 전극에 공급하도록 제어할 수 있다.
이에 의하면, 전기 신호 공급에 따라, 리퀴드(530)의 곡률을 형성하고, 바로 리퀴드의 곡률을 감지할 수 있게 된다. 따라서, 신속하고 정확하게 리퀴드 렌즈(500)의 곡률을 파악할 수 있게 된다.
한편, 도면에서의, 렌즈 구동부(960)와 센서부(962)는 하나의 모듈(965)로 형성될 수 있다.
한편, 도면에서의, 렌즈 구동부(960)와 센서부(962), 제어부(970), 전원 공급부(990), AD 컨버터(967), 스위칭 소자(SWL)는, 시스템 온 칩(system on chip, SOC)으로서, 하나의 칩(chip)으로 구현될 수 있다.
한편, 리퀴드 렌즈(500)는, 도 6a 내지 도 6c에서 설명한 바와 같이, 공통 전극(COM)(520)와, 공통 전극(COM)(520) 상의 리퀴드(530)와, 리퀴드(530) 상의 전기 전도성 수용액(595)와, 리퀴드(530)와 이격되어 배치되는 복수의 전극(LA~LD)(540a~540d)을 구비할 수 있다.
한편, 센서부(962)는, 도 7a 내지 도 7e에서 기술한 바와 같이, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의, 면적, 또는 면적의 변화, 또는 이에 대응하는 커패시턴스를 감지할 수 있다.
한편, 센서부(962)에서 감지된 커패시턴스와 관련된 아날로그 신호는, AD 컨버터(967)를 통해 디지털 신호로 변환되어, 제어부(970)에 입력될 수 있다.
한편, 도 7a 내지 도 7e에서 기술한 바와 같이, 리퀴드 렌즈(500)의 곡률이 커질수록, 경계 영역(Ac0)의, 면적이 커지며, 결국, 경계 영역(Ac0)의 커패시턴스가 커지게 된다.
본 발명에서는, 이러한 특성을 이용하여, 센서부(962)에서 감지된 커패시턴스를 이용하여, 곡률을 연산하는 것으로 한다.
한편, 제어부(970)는, 리퀴드 렌즈(500)의 곡률이 커지도록 하기 위해, 리퀴드 렌즈(500)에 인가되는 전압의 레벨이 증가하거나, 펄스폭이 증가하도록 제어할 수 있다.
한편, 도 7c와 같이, 복수의 전극(LA~LD)(540a~540d) 중 제1 전극(540a)과 제3 전극(540c)에 다른 레벨의 전압 또는 다른 펄스폭의 전압이 인가되는 경우, 리퀴드(530)의 제1 단부(Aca)의 제1 커패시턴스와, 리퀴드(530)의 제2 단부(Acb)의 제2 커패시턴스가 달라지게 된다.
이에, 센서부(962)는, 리퀴드(530)의 제1 단부(Aca)와, 제2 단부(Acb)의 각각의 커패시턴스를 감지할 수 있다.
이와 같이, 한편, 리퀴드 렌즈(500) 내의 리퀴드(530)의 단부 주변의 커패시턴스를 감지함으로써, 렌즈의 곡률을 정확하게 검출할 수 있게 된다.
즉, 한편, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 복수의 경계 영역의 커패시턴스를 감지함으로써, 리퀴드 렌즈의 곡률을 정확하게 검출할 수 있게 된다.
한편, 공통 전극(COM)(520)에 일정 전압이 인가되며, 복수의 전극(LA~LD)(540a~540d)에, 펄스가 인가되는 경우, 센서부(962)는, 복수의 전극(LA~LD)(540a~540d) 상의 절연체와 전기 전도성 수용액(595) 사이의 복수의 경계 영역에 대한 커패시턴스를 감지할 수 있다.
한편, 복수의 전극(LA~LD)(540a~540d)에 일정 전압이 인가되며, 공통 전극(COM)(520)에, 펄스가 인가되는 경우, 센서부(962)는, 공통 전극(COM)(520) 상의 절연체와 전기 전도성 수용액(595) 사이의 경계 영역에 대한 커패시턴스를 감지할 수 있다.
한편, 제어부(970)는, 센서부(962)에서 감지된 커패시턴스에 기초하여, 리퀴드 렌즈(500)의 곡률을 연산할 수 있다.
이때, 제어부(970)는, 센서부(962)에서 감지된 커패시턴스가 커질수록, 리퀴드 렌즈(500)의 곡률이 커지는 것으로 연산할 수 있다.
그리고, 제어부(970)는, 리퀴드 렌즈(500)가 목표 곡률을 가지도록 제어할 수 있다.
한편, 제어부(970)는, 센서부(962)에서 감지된 커패시턴스에 기초하여, 리퀴드 렌즈(500)의 곡률을 연산하고, 연산된 곡률과 목표 곡률에 기초하여, 펄스폭 가변 신호(V)를 렌즈 구동부(960)로 출력할 수 있다.
이에, 렌즈 구동부(960)는, 펄스폭 가변 신호(V)와 전원 공급부(990)의 전압(Lv1,Lv2)을 이용하여, 복수의 전극(LA~LD)(540a~540d)의 복수의 전극, 및 공통 전극(520)에 해당 전기 신호를 출력할 수 있다.
이와 같이, 리퀴드 렌즈(500)의 커패시턴스를 감지하고 이를 피드백하여, 렌즈의 곡률이 가변되도록 리퀴드 렌즈(500)에 전기 신호를 인가함으로써, 신속하고 정확하게 렌즈의 곡률을 가변할 수 있게 된다.
한편, 제어부(970)는, 연산된 곡률과 목표 곡률에 기초하여, 곡률 에러를 연산하는 이퀄라이저(972)와, 연산된 곡률 에러(Φ)에 기초하여, 펄스폭 가변 신호(V)를 생성하여 출력하는 펄스폭 가변 제어부(940)를 포함할 수 있다.
이에 따라, 제어부(970)는, 연산된 곡률이 목표 곡률 보다 커지는 경우, 연산된 곡률 에러(Φ)에 기초하여, 펄스폭 가변 신호(V)의 듀티가 증가하도록 제어할 수 있다. 이에 따라, 신속하고 정확하게 리퀴드 렌즈(500)의 곡률을 가변할 수 있게 된다.
한편, 제어부(970)는, 이미지 처리부(930)로부터의 초점 정보(AF)와, 자이로 센서(915)로부터의 흔들림 정보(OIS)를 수신하고, 초점 정보(AF)와 흔들림 정보(OIS)에 기초하여, 목표 곡률을 결정할 수 있다.
이때, 결정된 목표 곡률의 업데이트 주기는, 감지된 리퀴드 렌즈(500)의 커패시턴스에 기초하여, 연산된 곡률의 업데이트 주기 보다, 긴 것이 바람직하다.
결국, 연산된 곡률의 업데이트 주기가, 목표 곡률의 업데이트 주기 보다, 작으므로, 신속하게, 리퀴드 렌즈(500)의 곡률을 가변하여, 원하는 곡률로 변경할 수 있게 된다.
도 10a 내지 도 14b는 도 9의 설명에 참조되는 도면이다.
먼저, 도 10a은, 도 8의 렌즈 곡률 가변 장치(800)와 도 9의 렌즈 곡률 가변 장치(900)에서의 리퀴드 렌즈(500)의 곡률 변화 곡선을 도시하는 도면이다.
도면을 참조하면, GRo는 도 8의 렌즈 곡률 가변 장치(800)에서의 리퀴드 렌즈(500)의 곡률 변화 곡선을 나타내며, GRc는 도 10a의 렌즈 곡률 가변 장치(900)에서의 리퀴드 렌즈(500)의 곡률 변화 곡선을 나타낸다.
특히, T1 시점에 목표 곡률로의 변화를 위한 전압이, 각각 리퀴드 렌즈(500)에 인가되고, T2 시점에 전압 인가가 중지되는 것을 예시한다.
두 곡선을 비교하면, 오픈 루프 시스템의 도 8의 렌즈 곡률 가변 장치(800)의 경우, 목표 디옵터(target diopter)로 느리게 세틀링(settling)되며, 정확하지 않으나, 클로즈드 루프 시스템의 도 9의 렌즈 곡률 가변 장치(900)의 경우, 신속하고 정확하게 세틸링되는 것을 알 수 있다.
오픈 루프 시스템의 도 8의 렌즈 곡률 가변 장치(800) 대비하여, 클로즈드 루프 시스템의 도 9의 렌즈 곡률 가변 장치(900)의 경우, 세틀링 타이밍이 대략 70% 정도 빠를 수 있다.
결국, 클로즈드 루프 시스템의 도 9의 렌즈 곡률 가변 장치(900)를 사용하면, 신속하고 정확하게 곡률 형성 및 디옵터(diopter) 형성을 수행할 수 있게 된다.
한편, 디옵터는, 도 7a 내지 도 7e에서 기술한, 리퀴드(530)의 곡률에 대응하는 것일 수 있다. 이에 따라, 리퀴드(530)의 곡률이 커질수록, 디옵터가 커지며, 곡률이 작을수록, 디옵터가 작은 것으로 정의할 수 있다.
예를 들어, 도 7a 내지 도 7b와 같이, 곡률이 +2, + 4 레벨을 가지는 경우, 디옵터도, 볼록 렌즈에 대응하는 +2, +4 레벨을 가지는 것으로 정의할 수 있으며, 도 6c와 같이, 곡률이 0 레벨인 경우, 디옵터가, 평면 렌즈에 대응하는 0 레벨을 가지는 것으로 정의할 수 있으며, 도 7d 내지 도 7e와 같이, 곡률이 -2, -4 레벨을 가지는 경우, 디옵터도 오목 렌즈에 대응하는 -2, -4 레벨을 가지는 것으로 정의할 수 있다.
도 10b는 도 9의 렌즈 곡률 가변 장치(900) 중 공통 전극(COM), 제1 전극(LA), 스위칭 소자(SWL)에 대한 타이밍 도를 예시한다.
도면을 참조하면, T1과 T3 시점 사이의 기간(Dt1) 동안, 스위칭 소자(SWL)가 온 된다.
한편, 센서부(962)를 통해, 경계 영역(Ac0)의 커패시턴스를 감지하기 위해, T1과 T3 시점 사이의 기간(Dt1) 중에, 리퀴드 렌즈(500)에 곡률이 형성되도록 하는 것이 바람직하다.
한편, 센서부(962)에서의 센싱의 정확성, 안정성을 위해, 본 발명에서는, T1과 T3 시점 사이의 기간(Dt1) 중 리퀴드 렌즈(500) 내의 공통 전극과, 복수의 전극 중 어느 하나에, 펄스가 인가되는 것으로 한다.
특히, 도 10b와 같이, 공통 전극(530)에, T2 시점에, Dt2의 펄스폭을 가지는펄스가 인가될 수 있다. 이에 따라, T2 시점 이후에, 리퀴드 렌즈(500)에 곡률이 형성될 수 있다.
이에 따라, 센서부(962)는, T1과 T3 시점 사이의 기간(Dt1) 중, T2 시점 부터 T3 시점 사이의 기간 동안, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화에 대응하여, 전기 전도성 수용액(595)과 전극이 형성하는 커패시턴스를 감지할 수 있다.
한편, 센서부(962)는, T2 시점 부터 T3 시점 사이의 기간 동안, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화에 대응하는 전기 전도성 수용액(595)과 전극 간의 전위차 또는 전류를 감지할 수도 있다.
다음, T4 시점에 제1 전극(LA)에 Dt3의 펄스폭을 가지는 펄스가 인가될 수 있다.
즉, T2 시점에 공통 전극(COM)에 하이 레벨의 전압이 인가되고, T4 시점에 제1 전극(LA)에 하이 레벨의 전압이 인가될 수 있다.
공통 전극(COM)에 인가되는 펄스와, 제1 전극(LA)에 인가되는 펄스의 시간 차(DFF1)에 의해, 리퀴드 렌즈(500) 내의 리퀴드(530)에 형성되는 곡률이 가변될 수 있다.
예를 들어, 펄스의 시간 차(DFF1)가 커질수록, 전극, 전기 전도성 수용액(595)과 접촉하는 경계 영역(Ac0)의 면적의 크기가 증가할 수 있으며, 이에 따라, 커패시턴스가 커지며, 결국, 곡률이 커질 수 있다.
도 11a와 도 11b는 센서부의 다양한 방식을 도시하는 도면이다.
먼저, 도 11a는, 별도의 추가 펄스 신호 인가 없이, 커패시턴스를 감지할 수 있는 센서부(962a)를 도시한다.
도 11a의 렌즈 곡률 가변 장치(900a) 내의 센서부(962a)는, Continuous Sensing 방식으로 동작할 수 있다.
이를 위해, 도 11a의 센서부(962a)는, 복수의 전극(LA~LD)(540a~540d) 중 적어도 하나의 전극으로부터의 전기 신호를 필터링하는 필터(1112)와, 필터(1112)로부터의 전기 신호의 피크를 검출하는 피크 검출기(peak detector)(1114)와, 피크 검출기(1114)로부터의 전기 신호를 증폭하는 증폭기(Programmable gain amplifier; PGA)(1116)를 구비할 수 있다.
구체적으로, 도 11a의 센서부(962a)는, 복수의 전극(LA~LD)(540a~540d) 중 적어도 하나의 전극에 접속된 스위칭 소자(SWL)의 턴 온 구간 동안, 리퀴드 렌즈(500)의 커패시턴스를 감지할 수 있다.
다음, 도 11b는, 공통 전극(COM)(520)에 별도의 추가 펄스 신호를 인가하고, 추가 펄스 신호 인가 중에, 커패시턴스를 감지할 수 있는 센서부(962b)를 도시한다.
도 11b의 렌즈 곡률 가변 장치(900b) 내의 센서부(962b)는, Discrete Sensing 방식으로 동작할 수 있다.
이를 위해, 도 11b의 센서부(962b)는, 복수의 전극(LA~LD)(540a~540d) 중 적어도 하나의 전극으로부터의 커패시턴스를 전압으로 변환하는 변환부(1122)와, 전압을 증폭하는 증폭기(1124)를 구비할 수 있다.
구체적으로, 복수의 전극(LA~LD)(540a~540d) 중 적어도 하나의 전극에 접속된 스위칭 소자(SWL)의 턴 온 구간 동안, 공통 전극(COM)(520)에 추가 펄스 신호가 인가되며, 도 11b의 센서부(962b)는, 스위칭 소자(SWL)의 턴 온 구간 동안, 추가 펄스 신호에 기초하여 형성된 리퀴드 렌즈(500)의 커패시턴스를 감지할 수 있다.
한편, 도 11a 및 도 11b에 모두 적용 가능한, 렌즈 구동부는 도 12와 같이 예시될 수 있다.
도 12는 도 11a 또는 도 11b의 렌즈 구동부의 내부 회로도의 일예이다.
도면을 참조하면, 도 12의 렌즈 구동부(960a)는, 렌즈를 구동하는 제1 구동부(961)와, 센서를 구동하는 제2 구동부(1310)를 구비할 수 있다.
한편, 렌즈 구동부(960a)는, 제2 구동부(1310)로 펄스폭 가변 신호를 출력하는 펄스폭 제어부(1320)를 더 구비할 수 있다.
한편, 펄스폭 제어부(1320)는, 도 9의 펄스폭 제어부(940) 내에 구비되는 것도 가능하다.
제1 구동부(961)는, 서로 직렬 접속되는 제1 상암, 하암 스위칭 소자(Sa,S'a), 서로 직렬 접속되는 제2 상암, 하암 스위칭 소자(Sb,S'b)를 구비할 수 있다.
이때, 제1 상암, 하암 스위칭 소자(Sa,S'a)와, 제2 상암, 하암 스위칭 소자(Sb,S'b)는 서로 병렬 접속된다.
제1 상암 스위칭 소자(Sa)와, 제2 상암 스위칭 소자(Sb)에는, 전원 공급부(990)로부터의 LV2 레벨의 전원이 공급될 수 있다.
제2 구동부(1310)는, 서로 직렬 접속되는 제3 상암, 하암 스위칭 소자(Sc,S'c)를 구비할 수 있다.
제3 상암 스위칭 소자(Sc)에는 레벨이 낮은 추가 펄스의 생성을 위해, 전원 공급부(990)로부터의 LV2 레벨 보다 낮은 LV1 레벨의 전원이 공급될 수 있다.
제1 상암 스위칭 소자(Sa)와 제1 하암 스위칭 소자(S'a)의 사이의 노드 또는 제3 상암 스위칭 소자(Sc)와 제3 하암 스위칭 소자(S'c)의 사이의 노드를 통해, 공통 전극(520)에 전압이 인가되고, 제2 상암 스위칭 소자(Sb)와 제2 하암 스위칭 소자(S'b)의 사이의 노드를 통해, 제1 전극(LA)(540a)에 전압이 인가될 수 있다.
도 13a는 도 12의 렌즈 구동부(960a)의 동작 설명을 위한 파형도의 일예이며, 도 13b는 도 11a의 센서부(962a)의 동작 설명을 위해 참조되는 도면이다.
도면을 참조하면, T1과 T3 시점 사이의 기간(Dt1) 동안, 스위칭 소자(SWL)에 하이 레벨이 인가되어, 스위칭 소자(SWL)가 온 된다.
한편, T1과 T3 시점 사이의 기간(Dt1) 동안, Sb 스위칭 소자와, S'b 스위칭 소자에 각각 로우 레벨의 제어 신호(LAP, LAM)가 인가되어, Sb 스위칭 소자와, S'b 스위칭 소자가 플로팅된다.
Sb 스위칭 소자와, S'b 스위칭 소자는, 상보적으로 턴 온되나, 스위칭 소자(SWL)가 온되는 기간 동안, 모두 플로팅된다.
한편, T2 시점에, Sa 스위칭 소자에 인가되는 제어 신호(CMHP)는 하이 레벨, S'a 스위칭 소자에 인가되는 제어 신호(CMHM)는 로우 레벨로 변한다.
한편, Sa 스위칭 소자와, S'a 스위칭 소자는 항상 상보적으로 턴 온된다.
한편, T2 시점에, Sa 스위칭 소자에 인가되는 제어 신호(CMHP)는 하이 레벨로 변하며, T4 시점에 Sb, 스위칭 소자에 인가되는 제어 신호(LAp)가 하이 레벨로 변한다.
T1과 T3 시점 사이의 기간(Dt1) 중 T2 시점에, Dt2의 펄스폭을 가지는 펄스가 인가될 수 있다. 이에 따라, T2 시점 이후에, 리퀴드 렌즈(500)에 곡률이 형성될 수 있다.
이에 따라, 센서부(962)는, T1과 T3 시점 사이의 기간(Dt1) 중, T2 시점 부터 T3 시점 사이의 기간 동안, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지할 수 있다.
구체적으로, T2 시점 부터 T3 시점 사이의 기간 동안, 필터(1112)에 Lv3 레벨의 신호가 인가되며, 피크 디텍터(114)가 이를 검출하고, PGA(1116)가 증폭할 수 있다. 이에 따라, T2 시점 부터 T3 시점 사이의 기간 동안, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지할 수 있다.
한편, 즉, T2 시점에 공통 전극(COM)에 하이 레벨의 전압이 인가되고, T4 시점에 제1 전극(LA)에 하이 레벨의 전압이 인가될 수 있다.
공통 전극(COM)에 인가되는 펄스와, 제1 전극(LA)에 인가되는 펄스의 시간 차(DFF1)에 의해, 리퀴드 렌즈(500) 내의 리퀴드(530)에 형성되는 곡률이 가변될 수 있다.
예를 들어, 펄스의 시간 차(DFF1)가 커질수록, 전극, 전기 전도성 수용액(595)과 접촉하는 경계 영역(Ac0)의 면적의 크기가 증가할 수 있으며, 이에 따라, 커패시턴스가 커지며, 결국, 곡률이 커질 수 있다.
한편, 도 13a의 경우, 도 12의 제2 구동부(1310)는 동작하지 않는다.
다음, T5 시점에, 공통 전극(520)이 접지되고, T6 시점에, 제1 전극(LA)(540a)이 접지된다. 이후, T7 및 T8 시점은, T1 및 T2 시점 등을 반복한다.
도 13c는 도 12의 렌즈 구동부(960a)의 동작 설명을 위한 파형도의 다른 예이며, 도 13d는 도 11a의 센서부(962a)의 동작 설명을 위해 참조되는 도면이다.
도 13c는 도 13a의 파형도의 유사하나, 도 12의 제2 구동부(1310) 내의 스위칭 소자(Sc,S'c)의 동작을 위한 제어 신호(CMLP,CMLM)가 도시되는 것에 그 차이가 있다.
센서부(SWL)는, T1과 T2 기간 동안 턴 온되며, T2 이후부터 턴 오프된다.
한편, T2 시점에, Sa 스위칭 소자에 인가되는 제어 신호(CMHP)는 하이 레벨로 변하며, T3 시점에 Sb, 스위칭 소자에 인가되는 제어 신호(LAp)가 하이 레벨로 변한다.
T1과 T2의 기간 중에, Sc 스위칭 소자가 턴 온될 수 있다. 이에 따라, 도 13d와 같이, 전원 공급부(990b)로부터 공급되는 Lv1 레벨을 가지는 추가 펄스(SMP)가, 공통 전극(COM)에 인가될 수 있다.
이에 따라, 센서부(962)는, T1과 T2 시점 사이의 기간(Dt1) 동안, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지할 수 있다.
구체적으로, T1 시점 부터 T2 시점 사이의 기간 동안, 필터(1112)에 Lv3 레벨 보다 낮은 LV5 레벨의 신호가 인가되며, 피크 디텍터(114)가 이를 검출하고, PGA(1116)가 증폭할 수 있다. 이에 따라, T1 시점 부터 T2 시점 사이의 기간 동안, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지할 수 있다.
다음, T3 시점에 공통 전극(CQM)에 Dt2의 펄스폭을 가지며, Lv1 레벨 보다 큰 Lv2 레벨을 가지는 펄스(SLP)가 인가될 수 있다.
다음, T4 시점에 제1 전극(LA)에 Dt3의 펄스폭을 가지는 펄스가 인가될 수 있다.
공통 전극(CQM)에 인가되는 펄스와, 제1 전극(LA)에 인가되는 펄스의 시간 차(DFF1)에 의해, 리퀴드 렌즈(500) 내의 리퀴드(530)에 형성되는 곡률이 가변될 수 있다.
예를 들어, 펄스의 시간 차(DFF1)가 작을수록, 전극, 전기 전도성 수용액(595)과 접촉하는 경계 영역(Ac0)의 면적의 크기가 증가할 수 있으며, 이에 따라, 커패시턴스가 커지며, 결국, 곡률이 작아질 수 있다.
도 13e는 도 12의 렌즈 구동부(960a)의 동작 설명을 위한 파형도의 또 다른 예이며, 도 13f는 도 11b의 센서부(962b)의 동작 설명을 위해 참조되는 도면이다.
도 13e는 도 13c의 파형도의 유사하나, 도 13c와 달리, T1 내지 T2 기간 동안, 도 12의 제2 구동부(1310) 내의 스위칭 소자(Sc,S'c)의 동작을 위한 제어 신호(CMLP,CMLM)가, 하나의 펄스가 아닌, 복수의 펄스를 가지는 것에 그 차이가 있다.
이에 따라, 도 13f와 같이, T1 내지 T2 기간 동안, 공통 전극(COM)에, 복수의 펄스(SMPa)가, 인가된다.
이에 따라, 센서부(962)는, T1과 T2 시점 사이의 기간(Dt1) 동안, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지할 수 있다.
구체적으로, T1 시점 부터 T2 시점 사이의 기간 동안, C2V 컨버터(1122)에 Lv3 복수의 펄스 신호가 인가되며, SC 증폭기(1124)가 복수의 펄스 신호를 증폭할 수 있다. 이에 따라, T1 시점 부터 T2 시점 사이의 기간 동안, 리퀴드 렌즈(500) 내의 전극 상의 절연체와, 전기 전도성 수용액(595) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화에 대응하는 커패시턴스를 감지할 수 있다. 특히, 센서부(962)의 출력으로, 커패시턴스에 대응하는 전압 신호가 출력될 수 있다.
도 15a는 본 발명의 다른 실시예에 따른 카메라의 내부 블록도의 일예이다.
도면을 참조하여 설명하면, 도 15a의 카메라(195n) 및 렌즈 곡률 가변 장치(900b)는, 도 9의 카메라(195m) 및 렌즈 곡률 가변 장치(900)와 유사하나, 센서부(962)가, 복수의 전극(LA~LD)(540a~540d)에 대응하는, 복수의 리퀴드(530)의 단부의, 커패시턴스를 감지하는 것에 그 차이가 있다.
이를 위해, 공통 전극(COM)(520)에 로우 레벨의 전압이 인가되며, 복수의 전극(LA~LD)(540a~540d)에, 펄스 신호가 인가될 수 있다.
한편, 센서부(9620)의 동작을 위해, 복수의 전극(LA~LD)(540a~540d)과 리퀴드 렌즈(500) 사이에 접속되는, 도전성 라인들(CA~CD)과, 센서부(962) 사이에, 복수의 스위칭 소자(SWLa~SWLd)가 구비되는 것이 바람직하다.
센서부(962)는, 복수의 스위칭 소자(SWLa~SWLd)가 턴 온되는 구간 동안, 복수의 전극(LA~LD)(540a~540d)에, 인가되는 펄스 신호에 기초하여, 복수의 전극(LA~LD)(540a~540d) 상의 절연체와 전기 전도성 수용액 사이의 경계 영역에 대한 커패시턴스를 감지하고, 이를 제어부(970)로 전달할 수 있다.
이에 따라, 리퀴드 렌즈(500)의 복수의 경계 영역에 대한 커패시턴스를 감지할 수 있게 된다.
나아가 도 15a의 카메라(195n)에서, 손떨림 보정에 대응하여, 복수의 전극(LA~LD)(540a~540d)에 인가되는 전압을 가변하여, 비대칭 곡률 형성 등이 가능하므로, 손떨림 보정을 정확하게 신속하고 수행할 수 있게 된다.
도 15b는 본 발명의 또 다른 실시예에 따른 카메라의 내부 블록도의 일예이다.
도면을 참조하여 설명하면, 도 15b의 카메라(195o) 및 렌즈 곡률 가변 장치(900c)는, 도 9의 카메라(195m) 및 렌즈 곡률 가변 장치(900)와 유사하나, 센서부(962)가, 복수의 전극(LA~LD)(540a~540d)에 대응하는, 리퀴드의 단부의, 커패시턴스를 감지하는 것에 그 차이가 있다.
이를 위해, 복수의 전극(LA~LD)(540a~540d)에 로우 레벨의 전압이 인가되며, 공통 전극(COM)(520)에 펄스 신호가 인가될 수 있다.
한편, 센서부(9620)의 동작을 위해, 복수의 전극(LA~LD)(540a~540d)과 리퀴드 렌즈(500) 사이에 접속되는 도전성 라인들(CA~CD)이 아닌, 공통 전극(COM)과 리퀴드 렌즈(500) 사이에 접속되는, 도전성 라인(CM)과 센서부(962) 사이에, 스위칭 소자(SWL)가 구비되는 것이 바람직하다.
센서부(962)는, 스위칭 소자(SWL)가 턴 온되는 구간 동안, 공통 전극(COM)에, 인가되는 펄스 신호에 기초하여, 전극 상의 절연체와 전기 전도성 수용액 사이의 경계 영역에 대한 커패시턴스를 감지하고, 이를 제어부(970)로 전달할 수 있다.
이에 따라, 리퀴드 렌즈(500)의 경계 영역에 대한 커패시턴스를 감지할 수 있게 된다.
나아가 도 15b의 카메라(195o)에서, 손떨림 보정에 대응하여, 비대칭 곡률 형성 등이 가능하므로, 손떨림 보정을 정확하게 신속하고 수행할 수 있게 된다.
한편, 도 9 내지 도 15b에서 설명한 렌즈 곡률 가변 장치(900)는, 도 2의 이동 단말기(100), 차량, TV, 드론, 로봇, 로봇 청소기 등 다양한 전자 기기에 채용 가능하다.
도 16a는 본 발명의 일 실시예에 따른 영상표시장치의 외관을 나타내는 도면이고, 도 16b는 도 16a의 영상표시장치의 광학부와 디스플레이를 분리하여 표시한 도면이다.
도면을 참조하면, 영상표시장치(1400)는, 디스플레이(1480)를 포함할 수 있다.
디스플레이(1480)는, 입력되는 영상을 표시할 수 있으며,
광학부(1495)는, 디스플레이(1480)에 일정 간격으로 이격되어 사용자 방향으로 배치될 수 있다. 도 16b에서는, 디스플레이(1480)와 광학부(1495) 간격을 분리하는 것을 예시한다.
광학부(1495)는, 인가되는 전원에 따라 광의 진행 방향을 가변할 수 있도록 구성될 수 있다.
예를 들어, 광학부(1495)는, 도 9 내지 도 15b에서 설명한 리퀴드 렌즈를 구비하는 렌즈 곡률 가변 장치(900)를 구비할 수 있다.
이에 따라, 가변된 렌즈의 곡률에 의해, 영상표시장치(1400)에서 출력되는 광의 진행 방향을 변경할 수 있어, 영상 시청시의 시인성이 향상될 수 있게 된다.
한편, 본 발명의 렌즈 곡률 가변 장치의 동작방법은, 렌즈 곡률 가변 장치에 구비된 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (23)

  1. 인가되는 전기 신호에 기초하여 곡률이 가변하는 리퀴드 렌즈의 곡률을 가변하기 위한 렌즈 곡률 가변 장치에 있어서,
    상기 리퀴드 렌즈에 상기 전기 신호를 인가하는 렌즈 구동부;
    상기 전기 신호에 기초하여 형성된 리퀴드 렌즈의 곡률을 감지하기 위한 센서부;
    상기 감지된 곡률에 기초하여, 상기 리퀴드 렌즈의 목표 곡률을 형성하도록 상기 렌즈 구동부를 제어하는 제어부;를 포함하고,
    상기 센서부는,
    상기 리퀴드 렌즈 내의 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의, 면적의 크기 또는 상기 면적의 변화를 감지하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  2. 제1항에 있어서,
    상기 센서부는,
    상기 리퀴드 렌즈 내의 전극 상의 절연체와 전기 전도성 수용액 사이의 경계 영역의 상기 면적의 크기 또는 상기 면적의 변화에 대응하여, 상기 전기 전도성 수용액과 상기 전극이 형성하는 커패시턴스를 감지하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  3. 제2항에 있어서,
    상기 센서부는,
    상기 감지된 커패시턴스를 전압 신호로 변환하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  4. 제2항에 있어서,
    상기 센서부에서 감지된 커패시턴스와 관련한 신호를 디지털 신호로 변환하는 컨버터;를 더 포함하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  5. 제1항에 있어서,
    상기 센서부는,
    상기 리퀴드 렌즈 내의 전극 상의 절연체와 전기 전도성 수용액 사이의 경계 영역의 상기 면적의 크기 또는 상기 면적의 변화에 대응하는 상기 전기 전도성 수용액과 상기 전극 간의 전위차 또는 전류를 감지하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  6. 제1항에 있어서,
    상기 렌즈 구동부에서 출력되는 복수의 전기 신호를 상기 리퀴드 렌즈로 공급하는 복수의 도전성 라인; 및
    상기 복수의 도전성 라인 중 어느 하나와, 상기 센서부 사이에 배치되는 스위칭 소자;를 더 포함하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  7. 제6항에 있어서,
    상기 센서부는, 상기 스위칭 소자의 온 기간 동안, 상기 리퀴드 렌즈 내의 전극 상의 절연체와 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 상기 면적의 변화를 감지하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  8. 제6항에 있어서,
    상기 센서부는,
    상기 복수의 도전성 라인 중 적어도 하나에 펄스 신호가 인가되며, 상기 스위칭 소자가 온 되는 동안, 상기 리퀴드 렌즈 내의 전극 상의 절연체와 전기 전도성 수용액 사이의 경계 영역의 면적의 크기 또는 상기 면적의 변화를 감지하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  9. 제1항에 있어서,
    상기 리퀴드 렌즈는,
    공통 전극;
    상기 공통 전극과 이격되어 배치되는 복수의 전극;
    상기 공통 전극과 복수의 전극 사이에 배치되는, 리퀴드 및 상기 전기 전도성 수용액;을 구비하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  10. 제9항에 있어서,
    상기 리퀴드 렌즈는,
    상기 복수의 전극의 절연을 위한 복수의 절연체;를 더 구비하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  11. 제2항에 있어서,
    상기 커패시턴스가 커질수록, 상기 리퀴드 렌즈의 곡률이 커지는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  12. 제9항에 있어서,
    상기 복수의 전극 중 제1 전극과 제2 전극에 다른 전압이 인가되는 경우, 상기 센서부에서 감지되는 상기 리퀴드의 제1 단부의 제1 커패시턴스와, 상기 리퀴드의 제2 단부의 제2 커패시턴스는 서로 다른 것을 특징으로 하는 렌즈 곡률 가변 장치.
  13. 제9항에 있어서,
    상기 공통 전극에 인가되는 제1 펄스와 상기 복수의 전극 중 어느 하나에 인가되는 제2 펄스의 시간 차가 클수록, 상기 리퀴드 렌즈의 곡률이 커지는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  14. 제9항에 있어서,
    상기 제어부는,
    상기 공통 전극, 및 복수의 전극 중 적어도 하나에 펄스가 인가되는 동안, 상기 센서부에서 감지되는 커패시턴스에 기초하여, 상기 리퀴드 렌즈의 곡률을 연산하고, 상기 연산된 곡률과 상기 목표 곡률에 기초하여, 펄스폭 가변 신호를 상기 렌즈 구동부로 출력하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  15. 제14항에 있어서,
    상기 제어부는,
    상기 연산된 곡률이 상기 목표 곡률 보다 작아지는 경우, 상기 펄스폭 가변 신호의 듀티가 증가하도록 제어하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  16. 제14항에 있어서,
    상기 제어부는,
    상기 연산된 곡률과 목표 곡률에 기초하여, 곡률 에러를 연산하는 이퀄라이저;
    상기 연산된 곡률 에러에 기초하여, 상기 펄스폭 가변 신호를 생성하여 출력하는 펄스폭 가변 제어부;를 포함하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  17. 제9항에 있어서,
    상기 센서부는,
    상기 복수의 전극 중 적어도 하나의 전극으로부터의 전기 신호를 필터링하는 필터;
    상기 필터로부터의 전기 신호의 피크를 검출하는 피크 검출기;
    상기 피크 검출기로부터의 전기 신호를 증폭하는 증폭기;를 구비하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  18. 제9항에 있어서,
    상기 복수의 전극 중 적어도 하나의 전극에 접속된 스위칭 소자의 턴 온 구간 동안, 상기 공통 전극에 펄스 신호가 인가되며,
    상기 센서부는,
    상기 스위칭 소자의 턴 온 구간 중 상기 펄스 신호 인가 구간 동안, 상기 리퀴드 렌즈 내의 상기 공통 전극 상의 절연체와, 전기 전도성 수용액 사이의 경계 영역의 커패시턴스를 감지하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  19. 제9항에 있어서,
    상기 센서부는,
    상기 복수의 전극 중 적어도 하나의 전극으로부터의 커패시턴스를 전압으로 변환하는 변환부;
    상기 전압을 증폭하는 증폭기;를 구비하는 것을 특징으로 하는 렌즈 곡률 가변 장치.
  20. 제1항 내지 제19항 중 어느 한 항의 렌즈 곡률 가변 장치;
    상기 렌즈 곡률 가변 장치 내의 리퀴드 렌즈로부터의 광을 전기 신호로 변환하는 이미지 센서;를 포함하는 것을 특징으로 하는 카메라.
  21. 제20항에 있어서,
    상기 이미지 센서로부터의 전기 신호에 기초하여 이미지 처리를 수행하는 이미지 처리부;를 더 포함하는 것을 특징으로 하는 카메라.
  22. 제21항에 있어서,
    자이로 센서;를 더 포함하며,
    상기 렌즈 곡률 가변 장치 내의 제어부는,
    상기 이미지 처리부로부터의 초점 정보와, 상기 자이로 센서로부터의 흔들림 정보를 수신하고, 상기 초점 정보와 상기 흔들림 정보에 기초하여, 목표 곡률을 결정하는 것을 특징으로 하는 카메라.
  23. 디스플레이;
    상기 디스플레이의 전면에 배치되는 광학부;를 구비하고,
    상기 광학부는,
    제1항 내지 제19항 중 어느 한 항의 렌즈 곡률 가변 장치를 구비하는 것을 특징으로 하는 영상표시장치.
KR1020170168517A 2017-12-08 2017-12-08 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치 KR102560237B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020170168517A KR102560237B1 (ko) 2017-12-08 2017-12-08 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치
JP2020531002A JP7342000B2 (ja) 2017-12-08 2018-07-20 レンズ曲率可変装置
EP18885817.9A EP3721281A4 (en) 2017-12-08 2018-07-20 LENS CURVATURE VARIATION APPARATUS
US16/770,849 US11378795B2 (en) 2017-12-08 2018-07-20 Lens curvature variation apparatus
PCT/KR2018/008210 WO2019112132A1 (en) 2017-12-08 2018-07-20 Lens curvature variation apparatus
CN201880088893.6A CN111788510B (zh) 2017-12-08 2018-07-20 透镜曲率改变装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170168517A KR102560237B1 (ko) 2017-12-08 2017-12-08 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치

Publications (2)

Publication Number Publication Date
KR20190068277A true KR20190068277A (ko) 2019-06-18
KR102560237B1 KR102560237B1 (ko) 2023-07-28

Family

ID=66750189

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170168517A KR102560237B1 (ko) 2017-12-08 2017-12-08 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치

Country Status (6)

Country Link
US (1) US11378795B2 (ko)
EP (1) EP3721281A4 (ko)
JP (1) JP7342000B2 (ko)
KR (1) KR102560237B1 (ko)
CN (1) CN111788510B (ko)
WO (1) WO2019112132A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006679A1 (ko) * 2019-07-11 2021-01-14 엘지이노텍 주식회사 렌즈 곡률 가변 장치
WO2021006675A1 (ko) * 2019-07-09 2021-01-14 엘지이노텍 주식회사 렌즈 곡률 가변 장치
US12007551B2 (en) 2019-07-11 2024-06-11 Lg Innotek Co., Ltd. Lens curvature variation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850583A (zh) * 2019-11-29 2020-02-28 厦门大学 可反馈控制型液体变焦透镜及其焦距测量与反馈系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295987A1 (en) * 2007-12-13 2010-11-25 Varioptic, S.A. Image stabilization circuitry for liquid lens
US20110204902A1 (en) * 2008-11-03 2011-08-25 Koninklijke Philips Electronics N.V. Device for measuring a fluid meniscus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378386A (ja) * 1986-09-19 1988-04-08 Pioneer Electronic Corp 微調サ−ボ装置におけるオフセツト補償回路
US5687080A (en) * 1995-06-20 1997-11-11 Ziba Design, Inc. Multiple axis data input apparatus and method
WO2005093489A2 (en) * 2004-03-24 2005-10-06 Koninklijke Philips Electronics N.V. Birefringent optical system
GB0407236D0 (en) 2004-03-30 2004-05-05 Koninkl Philips Electronics Nv Controllable optical lens
GB0407240D0 (en) 2004-03-30 2004-05-05 Koninkl Philips Electronics Nv Controllable optical lens
FR2877734B1 (fr) * 2004-11-08 2007-06-01 Eastman Kodak Co Lentille a focale et a symetrie variable
GB0425611D0 (en) * 2004-11-20 2004-12-22 Koninkl Philips Electronics Nv Controllable optical component
JP2006227036A (ja) 2005-02-15 2006-08-31 Citizen Watch Co Ltd 液晶光学レンズ装置及びその駆動方法
JP2008170860A (ja) * 2007-01-15 2008-07-24 Sony Corp 撮像素子およびその撮像素子を含む撮像装置
CN201196697Y (zh) 2008-05-16 2009-02-18 东南大学 液体透镜焦距可单独调整的柔性面板
KR101180880B1 (ko) 2011-04-28 2012-09-07 경북대학교 산학협력단 초점가변형 액체 렌즈
KR101866873B1 (ko) * 2011-08-09 2018-06-14 삼성전자주식회사 곡률 조절 소자 및 방법
EP2789972B1 (de) 2013-04-12 2017-08-16 Hexagon Technology Center GmbH Vermessungsgerät mit verformbarem optischem Element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295987A1 (en) * 2007-12-13 2010-11-25 Varioptic, S.A. Image stabilization circuitry for liquid lens
US20110204902A1 (en) * 2008-11-03 2011-08-25 Koninklijke Philips Electronics N.V. Device for measuring a fluid meniscus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006675A1 (ko) * 2019-07-09 2021-01-14 엘지이노텍 주식회사 렌즈 곡률 가변 장치
WO2021006679A1 (ko) * 2019-07-11 2021-01-14 엘지이노텍 주식회사 렌즈 곡률 가변 장치
US12007551B2 (en) 2019-07-11 2024-06-11 Lg Innotek Co., Ltd. Lens curvature variation apparatus

Also Published As

Publication number Publication date
CN111788510B (zh) 2023-07-28
US20200386983A1 (en) 2020-12-10
CN111788510A (zh) 2020-10-16
JP7342000B2 (ja) 2023-09-11
EP3721281A1 (en) 2020-10-14
WO2019112132A1 (en) 2019-06-13
KR102560237B1 (ko) 2023-07-28
US11378795B2 (en) 2022-07-05
EP3721281A4 (en) 2021-09-01
JP2021505954A (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
US11754850B2 (en) Prism apparatus, and camera apparatus including the same
KR102553487B1 (ko) 카메라, 및 이를 구비하는 단말기
US8289406B2 (en) Image stabilization device using image analysis to control movement of an image recording sensor
US10884237B2 (en) Camera with an image sensor generating an image signal based on input light reflected by a prism apparatus and passing through lens apparatus, and terminal including the same
US20140362253A1 (en) Beamforming method and apparatus for sound signal
US20220004018A1 (en) Prism apparatus and camera apparatus including the same
JP2019529994A (ja) デュアルカメラモジュール、光学装置、カメラモジュール及びカメラモジュールの動作方法
KR20190089491A (ko) 감지된 온도 정보를 이용하여 렌즈 곡률을 가변하는 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치
KR102560237B1 (ko) 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치
EP3499286A1 (en) Prism apparatus, and camera apparatus including the same
US20210311372A1 (en) Prism module, camera including same, and image display device
US20210208487A1 (en) Camera and terminal comprising same
KR20190133586A (ko) 카메라, 및 이를 구비하는 단말기
US20190056574A1 (en) Camera, and image display apparatus including the same
US11528405B2 (en) Optical device and mobile terminal
KR20190133591A (ko) 조리개 장치, 카메라, 및 이를 구비하는 단말기
KR102546784B1 (ko) 렌즈 곡률 가변 장치, 이를 구비하는 카메라, 및 영상표시장치
US11852893B2 (en) Prism apparatus, and camera apparatus including the same
KR102135091B1 (ko) 카메라, 및 이를 구비하는 영상표시장치
CN110919699B (zh) 视听感知系统和设备以及机器人系统
KR20180029662A (ko) 듀얼 카메라 모듈 및 광학 장치
KR20220046820A (ko) 카메라 모듈 및 이를 포함하는 전자 장치
KR20230132336A (ko) 이미지 안정화를 수행하는 전자 장치 및 그 동작 방법
KR20240014407A (ko) 카메라를 포함하는 전자 장치 및 방법
CN117941366A (zh) 相机模块和包括其的电子装置

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant