KR20190049682A - 상 변화 재료를 포함하는 전지 캐리어 - Google Patents

상 변화 재료를 포함하는 전지 캐리어 Download PDF

Info

Publication number
KR20190049682A
KR20190049682A KR1020197001665A KR20197001665A KR20190049682A KR 20190049682 A KR20190049682 A KR 20190049682A KR 1020197001665 A KR1020197001665 A KR 1020197001665A KR 20197001665 A KR20197001665 A KR 20197001665A KR 20190049682 A KR20190049682 A KR 20190049682A
Authority
KR
South Korea
Prior art keywords
battery
phase change
change material
compartment
backing
Prior art date
Application number
KR1020197001665A
Other languages
English (en)
Inventor
데이비드 락호스트
Original Assignee
코버스 에너지 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코버스 에너지 인코포레이티드 filed Critical 코버스 에너지 인코포레이티드
Publication of KR20190049682A publication Critical patent/KR20190049682A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • H01M2/1077
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

전지 캐리어는 상 변화 재료를 수용하는 상 변화 재료 격실을 포한한다. 상 변화 재료는 배터리 전지의 통상적인 작동 온도와 배터리 전지의 자기(self) 가열점 사이의 상 변화 온도를 가지며, 상 변화 재료는 상 변화 온도로 가열되면 고체 상태에서 액체 상태로 또는 액체 상태에서 기체 상태로 변하게 된다.

Description

상 변화 재료를 포함하는 전지 캐리어
본 개시는 상 변화 재료를 포함하는 전지 캐리어에 관한 것이다.
화석 연료는 산업용 및 소비자용 모두에서 에너지원으로서 계속 대체될 것이다. 화석 연료를 대체하는 한 방법은, 내연 기관을 전기 모터로 교체하는 것이다. 내연 기관을 전기 모터로 교체하는 경우, 일반적으로, 배터리 모듈을 위한 연료 탱크를 교환하게 되며, 그 배터리 모듈은 전기 모터의 작동에 필요한 전기를 제공한다.
배터리 모듈은 일반적으로 직렬과 병렬 중의 하나 또는 둘 모두로 전기적으로 연결되는 다수의 배터리 전지를 포함한다. 배터리 전지의 한 예시적인 종류는 "파우치(pouch) 전지"인데, 이 전지에서 종래의 배터리 전지의 강성적인 외부는 가요적인 파우치로 교체되어 있다. 가요적인 전기 전도성 탭(tab)이 파우치의 가장자리로부터 연장되어 있고 전지의 전극에 용접되어 있으며, 그 전지의 전극은 파우치 내부에 포함되며, 이들 탭에 의해 전지는 부하에 전기적으로 연결될 수 있다. 파우치 전지는 종종 리튬 폴리머 배터리 화학 조성을 갖는다.
종래의 배터리 전지의 강성적인 외부를 가요적인 파우치로 바꾸면, 배터리 모듈의 중량이 감소되지만, 전지의 고유한 구조적 온전성이 저하된다. 이러한 온전성의 저하를 보상하기 위해, 배터리 모듈에 있는 각 파우치 전지는 일반적으로 배터리 전지 캐리어 내부에 배치되고, 배터리 전지 캐리어는 물리적으로 서로 연결되어, 실용상 충분한 구조적 온전성을 갖는 적층 어셈블리를 형성하게 된다. 이 적층 어셈블리는 주변 환경으로부터 적층 어셈블리를 보호하는 인클로저(enclosure) 내부에 수용된다.
제 1 양태에 따르면, 전지 캐리어가 제공된다. 이 전지 캐리어는, 배터리 전지를 수용하기 위한 전지 격실; 상기 전지 격실에 열적으로 연결되는 상(phase) 변화 재료 격실; 및 상기 상 변화 재료 격실에 위치되는 상 변화 재료를 포함한다. 상 변화 재료는 배터리 전지의 통상적인 작동 온도와 배터리 전지의 자기(self) 가열점 사이의 상 변화 온도를 갖는다. 상 변화 재료는 상 변화 온도로 가열되면 고체 상태에서 액체 상태로 또는 액체 상태에서 기체 상태로 변하게 된다.
배터리 전지는 통상적인 작동 온도 범위 내에서 작동 가능하고, 상기 상 변화 온도는 배터리 전지의 상기 통상적인 작동 온도 범위의 상한과 상기 자기 가열점 사이에 있을 수 있다.
상 변화 온도는 상기 상 변화 재료의 용융 온도일 수 있다.
전지 격실은 뒷받침부를 포함할 수 있고, 배터리 전지가 전지 격실에 있을 때 그 배터리 전지는 상기 뒷받침부에 접해 배치되고, 뒷받침부는 상기 상 변화 재료 격실의 벽을 포함한다.
상 변화 재료는 뒷받침부와 직접 접촉할 수 있다.
캐리어는 상기 뒷받침부로부터 연장되어 있는 융기 가장자리를 포함할 수 있고, 이 융기 가장자리는 뒷받침부의 일측면에 있는 전지 격실의 주변부 및 뒷받침부의 반대측면에 있는 상 변화 재료 격실의 적어도 일부분을 포함한다.
상 변화 재료 격실 캡이 상기 뒷받침부의 반대편에서 상기 융기 가장자리에 연결될 수 있다.
상 변화 재료 격실은 유체 밀봉될 수 있다.
상 변화 재료는 100 kJ/kg 내지 500 kJ/kg의 용융 잠열(latent heat)을 가질수 있다.
상 변화 재료의 용융 온도는 80℃ 내지 120℃일 수 있다.
다른 양태에 따르면, 전지 캐리어 어셈블리의 적층체를 포함하는 배터리 모듈이 제공된다. 각 전지 캐리어 어셈블리는 전지 캐리어 및 배티리 전지를 포함한다. 전지 캐리어는 배터리 전지를 수용하기 위한 전지 격실; 상기 전지 격실에 열적으로 연결되는 상 변화 재료 격실; 및 상 변화 재료 격실에 위치되는 상 변화 재료를 포함한다. 상 변화 재료는 배터리 전지의 통상적인 작동 온도와 배터리 전지의 자기 가열점 사이의 상 변화 온도를 갖는다. 상 변화 재료는 상기 상 변화 온도로 가열되면 고체 상태에서 액체 상태로 또는 액체 상태에서 기체 상태로 변하게 된다. 서로 직접 접촉하는 임의의 두 이웃 전지 캐리어 어셈블리에 대해, 이웃 전지 캐리어 어셈블리 중 하나의 상 변화 재료는 이웃 전지 캐리어 어셈블리의 배터리 전지들 사이에 위치된다.
이웃 전지 캐리어 어셈블리 중 하나의 상 변화 재료 격실은 다른 이웃 전지 캐리어 어셈블리와 직접 접촉할 수 있다.
배터리 모듈은 적층체에 열적으로 연결되는 열싱크를 더 포함할 수 있고, 상기 전지 캐리어 어셈블리 각각은 상기 배터리 전지로부터 열을 상기 열싱크에 전달하도록 위치된 열 전도성 판을 더 포함할 수 있다.
열 전도성 판은 상기 배터리 전지 상에 적층될 수 있고, 또한 상기 전지 격실로부터 상기 열싱크와 접촉하는 전지 캐리어의 가장자리까지 연장되어 있을 수 있다.
이웃 전지 캐리어 어셈블리 중 하나의 상기 상 변화 재료 격실은 다른 이웃 전지 캐리어 어셈블리의 열 전도성 판과 직접 접촉할 수 있다.
배터리 전지는 통상적인 작동 온도 범위 내에서 작동 가능하고, 상기 상 변화 온도는 배터리 전지의 상기 통상적인 작동 온도 범위의 상한과 상기 자기 가열점 사이에 있을 수 있다.
상 변화 온도는 상기 상 변화 재료의 용융 온도일 수 있다.
전지 캐리어 어셈블리 각각의 전지 격실은 뒷받침부를 포함할 수 있고, 배터리 전지가 상기 전지 격실에 있을 때 그 배터리 전지는 상기 뒷받침부에 접해 배치되고, 뒷받침부는 상기 상 변화 재료 격실의 벽을 포함할 수 있다.
상 변화 재료는 상기 뒷받침부와 직접 접촉할 수 있다.
전지 캐리어 어셈블리 각각의 전지 캐리어는 상기 뒷받침부로부터 연장되어 있는 융기 가장자리를 포함할 수 있고, 이 융기 가장자리는 뒷받침부의 일측면에 있는 전지 격실의 주변부 및 뒷받침부의 반대측면에 있는 상 변화 재료 격실의 적어도 일부분을 포함할 수 있다.
전지 캐리어 어셈블리 각각의 전지 캐리어는, 상기 뒷받침부의 반대편에서 상기 융기 가장자리에 연결되는 상 변화 재료 격실 캡을 더 포함할 수 있다.
상 변화 재료 격실은 유체 밀봉될 수 있다.
상 변화 재료는 100 kJ/kg 내지 500 kJ/kg의 용융 잠열을 가질 수 있다.
상 변화 재료의 용융 온도는 80℃ 내지 120℃일 수 있다.
이 요약은 반드시 모든 양태의 전체 범위를 설명하는 것은 아니다. 특정 실시 형태에 대한 이하의 설명을 검토하면 다른 양태, 특징 및 이점이 당업자에에 명백할 것이다.
하나 이상의 예시적인 실시 형태를 도시하는 첨부 도면에서,
도 1a 및 1b는 상 변화 재료를 포함하는 전지 캐리어의 일 예시적인 실시 형태의 정면 사시도와 배면 사시도를 각각 나타낸다.
도 2는 일 예시적인 실시 형태에 따라 상 변화 재료가 있는 경우와 없는 경우의 가열을 나타내는 그래프이다.
도 3a는 전지 캐리어 어셈블리의 적층체를 포함하는 배터리 모듈의 예시적인 실시 형태의 단면도로, 각 전지 캐리어 어셈블리는 상 변화 재료를 포함한다.
도 3b는 도 3a의 한 전지 캐리어 어셈블리의 분해도이다.
도 4a 내지 4c는 열 방출이 일어나는 배터리 전지의 온도(도 4a), 열 방출이 일어나는 배터리 전지를 포함하는 전지 캐리어의 일부분을 포함하는 상 변화 재료의 온도(도 4b), 및 열 방출이 일어나는 배터리 전지에 이웃하는 배터리 전지의 온도(도 4c)를 나타내는 그래프이다.
도 5a는 전지 캐리어 어셈블리의 적층체의 예시적인 실시 형태의 사시도로, 각 전지 캐리어 어셈블리는 상 변화 재료를 포함한다.
도 5b는 도 5a의 한 전지 캐리어 어셈블리의 분해도이다.
어떤 극한적인 경우에, "자기(self) 가열"로 알려져 있는 조건이 리튬 이온 배터리 내에서 일어날 수 있으며, 그에 의해 배터리 전지는 "열 방출"이라고 하는 상태로 될 수 있다. "자기 가열"은 자기 강화 발열 반응을 말하는 것인데, 이러한 반응에 의해 배터리 전지는, 배터리 전지가 외부 가열원만으로 가열되는 경우에 얻어지는 온도를 초과하는 온도까지 가열되고, 자기 가열이 시작되는 온도룰 "자기 가열점"이라고 한다. "열 방출"은, 배터리 전지의 온도가 발열 반응의 결과로 증가하는 포지티브 피드백 과정을 말한다. 발열 반응은, 예컨대, 과도한 전류를 배터리 전지로부터 배출시키거나 또는 배터리 전지를 과도하게 고온인 환경에서 작동시키면 일어날 수 있다. 결국에는, 제어되지 않은 열 방출로 인해, 배터리 전지가 연소되거나 폭발되거나 또는 이러한 일 모두가 일어나는 정도로 배터리 전지의 온도와 압력 중의 하나 또는 둘 모두가 증가하게 된다.
베터리 전지 적층체 내의 한 전지에 열 방출이 일어나면, 전지가 방출하는 열로 인해 이웃 전지에서도 열 방출이 일어날 수 있고, 그리하여, 잠재걱으로 파국적인 연쇄 반응이 시작될 수 있다. 여기서 설명하는 실시 형태는, 전지에 열 방출이 일어나면 그 전지에서 방출되는 열을 흡수하여 이웃 전지에서의 열 방출을 억제하기 위해 상 변화 재료("PCM")를 사용한다.
도 1a 및 1b는 전지 캐리어(100)의 일 실시 형태의 정면 사시도와 배면 사시도를 각각 나타낸다. 전지 캐리어(100)는 뒷받침부(102)를 포함하고, 파우치(pouch) 전지(118)(도 3a, 3b 및 5b에 나타나 있음)가 그 뒷받침부에 고정된다. 뒷받침부(102)는 구조적 온전성을 위해 비교적 강성적이거나, 또는 대안적으로 비교적 가요적일 수 있다. 파우치 전지(118)의 고정은 예컨대, 전지(118)를 뒷받침부(102)에 고정하는 접착제의 사용, 클램핑 기구(나타나 있지 않음)에 의해 전지(118)를 뒷받침부(102)에 클램핑하기, 및 전지 캐리어(100)가 적층 어셈블리(300)(도 3에 나타나 있음)를 포함하는 경우에 이웃 전지 캐리어(100)로 전지(118)를 뒷받침부(102)에 압축시키기 중의 하나 이상으로 행해질 수 있다. 뒷받침부(102)의 정상 가장자리를 따라 연장되어 있는 정상 벽(104a), 뒷받침부(102)의 바닥 가장자리를 따라 연장되어 있는 바닥 벽(104b), 뒷받침부(102)의 좌측 부분을 따라 연장되어 있는 좌측 벽(104c), 및 뒷받침부(102)의 우측 부분을 따라 연장되어 있는 우측 벽(104d)이 뒷받침부(102)의 전방측면으로부터 수직하게 연장되어 있고, 이들 4개의 벽(104a - 104d)은 파우치 전지(118)를 수용하기 위한 전지 격실(124)을 함께 한정한다.
최좌측 벽(122a)이 뒷받침부(102)의 좌측 가장자리를 따라 연장되어 있고, 최좌측 벽(122a), 좌측 벽(104c), 정상 벽(104a) 및 바닥 벽(104b)은, 파우치 전지(118)의 일부분을 포함하는 포일 탭(foil tab)을 수용하도록 위치된 제 1 탭 격실(120a)을 함께 한정하고, 그 포일 탭은 전지(118)의 전극 중의 하나에 전기적으로 연결된다. 그렇지 않으면 제 1 탭 격실(120a)에 수용되는 포일 탭의 일부분을 지지하기 위한 제 1 탭 플랫폼(126a)이 최좌측 벽(122a)으로부터 좌측으로 연장되어 있다. 유사하게, 최우측 벽(122b)이 뒷받침부(102)의 우측 가장자리를 따라 연장되어 있고, 최우측 벽(122b), 우측 벽(104d), 정상 벽(104a) 및 바닥 벽(104b)은, 전지(118)의 다른 전극에 전기적으로 연결되는 파우치 전지(118)의 다른 포일 탭을 수용하도록 위치된 제 2 탭 격실(120b)을 함께 한정한다. 그렇지 않으면 제 2 탭 격실(120b)에 수용되는 포일 탭의 일부분을 지지하기 위한 제 2 탭 플랫폼(126b)이 최우측 벽(122b)으로부터 우측으로 연장되어 있다.
전지 캐리어(100)의 각 코너는, 전지 캐리어(100)를 이 전지 캐리어(100)의 앞 또는 뒤에 위치하는 이웃 전지 캐리어(100)에 연결하기 위한 케리어 연결 기구를 포함한다. 캐리어(100)의 좌측 코너에 연결되는 두 캐리어 연결 기구("좌측 코너 캐리어 연결 기구")는 동일하다. 이들 캐리어 연결 기구 각각은 앞쪽으로 연장되어 있는 탭(108), 및 이웃 전지 캐리어(100)의 탬(108)에 탈착 가능하게 연결되기 위해 측벽에 노치가 있는 인접 슬롯(110)을 포함한다. 탭(108)과 슬롯(110)의 좌측에는 전방 연장 돌출부(112)가 있고, 이 돌출부 뒤에는, 이웃 전지 캐리어(100)의 돌출부(112)를 수옹하고 그 돌출부와 억지 끼워맞춤을 형성하기 위한 오목부(114)가 있다. 캐리어(100)의 우측 코너에 연결되는 두 캐리어 연결 기구("우측 코너 캐리어 연결 기구")는 동일하고 좌측 코너 캐리어 연결 기구와는 거울상 관계에 있고, 다만, 우측 코너 캐리어 연결 기구의 돌출부(112)와 오목부(114)는 좌측 코너 캐리어 연결 기구의 것들 보다 작다.
나타나 있는 실시 형태에서, 캐리어 연결 기구는 서로 이웃하는 캐리어(100) 사이의 해제 가능한 연결을 제공하고, 캐리어(100)의 코너에 위치된다. 다른 실시 형태(나타나 있지 않음) 그리고 더 일반적으로, 캐리어 연결 기구는, 전지 캐리어(100)의 일측에서 제 1 이웃 전지 캐리어(100)에 연결되도록 위치하는 수형 부분 및 전지 캐리어(100)의 반대 측에서 제 2 이웃 전지 캐리어(100)에 연결되도록 위치하는 암형 부분을 포함하는 해제 가능한 커플링일 수 있다. 다른 실시 형태(나타나 있지 않음)에서, 캐리어(100)들은 캐리어(100)는 예컨대 접착제와 같은 해제 가능하지 않은 기술을 사용하여 해제 가능하지 않게 함께 연결될 수 있다.
바닥 벽(104b)의 외면에는 스프링(116)이 연장되어 있다. 나타나 있는 실시 형태에서, 스프링(116)은, 일 단부에서 바닥 벽(104b)의 외면에 고정되는 만곡된 외팔보형 부분을 포함한다. 실질적으로 평평한 액츄에이터 부분이 가요적인 받침부에서 외팔보형 부분의 다른 단부에 고정되고, 아래에서 더 상세히 설명하는 바와 같이, 적층 어셈블리 인클로저와 접촉함으로써 압축되도록 설계되어 있다.
스프링(116)의 특정한 실시 형태를 설명했지만, 다른 실시 형태(나타나 있지 않음)에서 스프링(116)은 다르게 설계될 수 있다. 예컨대, 스프링(116)은 바닥 벽(104b)을 따라 연속적이 아닌 간헐적으로 연장되어 있을 수 있는데, 즉 스프링(116)은 일련의 개별적인 스프링 부분을 포함할 수 있고, 각 스프링 부분은 독립적으로 압축될 수 있다. 다른 실시 형태(나타나 있지 않음)에서 스프링(116)은, 코일 스프링과 같은 다른 종류의 스프링을 포함할 수 있다. 다른 실시 형태(나타나 있지 않음)에서 스프링(116)은 복수 종류의 스프링의 조합을 포함할 수 있는데, 예컨대, 스프링(116)은 서로 다른 개별적인 스프링 부분을 포함할 수 있고, 그들 스프링 부분의 일부는 코일 스프링이고 그들 스프링 부분의 일부는 외팔보형 스프링이다. 다른 실시 형태(나타나 있지 않음)에서 스프링(116)은 전지 격실(124)을 한정하는 바닥 벽(104b)의 일부분을 따라 위치되지 않을 수도 있는데, 예컨대, 스프링(116)은 바닥 좌측 및 바닥 우측 코너 캐리어 연결 기구 중의 하나 또는 둘 모두에 직접 고정될 수 있고, 또는 현재 실시 형태에서는 나타나 있지 않은 전지 캐리어(100)의 다른 부분에 고정될 수 있다. 추가로, 나타나 있는 실시 형태에서 스프링(116)은 바닥 벽(104b) 아래에서 연장되어 있음으로해서 전지 격실(124)의 주변부를 넘어 연장되어 있지만, 다른 실시 형태(나타나 있지 않음)에서, 스프링(116)은 전지 격실(124)의 주변부를 넘어 연장되어 있지 않을 수 있다. 예컨대, 스프링(116)은 전지 격실(124) 내부에서 연장되어 있을 수 있고(예컨대, 벽(104a - 104d) 중의 어떤 벽에도 연결될 수 있고 전지 격실(124)의 내부 쪽으로 연장되어 있을 수 있음), 적층 어셈블리 인클로저는 그럼에도 전체 배터리 모듈이 조립될 때 스프링(116)을 압축하도록 성형될 수 있다.
도 3b 및 5b는 전지 캐리어 어셈블리(150)의 2개의 예시적인 실시 형태의 분해도를 나타내며, 각 전지 캐리어 어셈블리는 전지 캐리어(100)를 포함환다. 각 전지 캐리어 어셈블리(150)는 또한, 뒷받침부(102)의 일측면(이하, 이 측면을 뒷받침부(102)의 "전방측면"이라고 함)에 접하여 전지 격실(124) 내부에 배치되는 배터리 전지(118); 전지(118) 위에 배치되고 스프링(116) 아래에서 전지 격실(124)로부터 연장되어 있는 열전도성 판(156); 및 상 변화 재료(PCM)(302)를 포함하는 상 변화 재료 격실(PCM 격실)을 포함한다.
PCM(302)은 배터리 전지(118)의 통상적인 작동 온도에서 고체이고, 전지(118)가 니켈-마그네슘-코발트 전지인 예시적인 실시 형태에서 전지(118)의 통상적인 작동 온도는 0℃ 내지 60℃ 이고, 다른 실시 형태에서, 전지(118)의 통상적인 작동 온도는 예컨대 전지의 화학 조성에 따라 변할 수 있다. 예컨대, 리튬 티타네이트 전지는 -50℃ 내지 70℃의 범위를 갖도록 구성될 수 있다. PCM(302)의 일 예는 Pluss® Polymers Pvt. Ltd.의 savE® HS 89 재료인데, 이 재료는 88℃의 용융점을 갖는다. PCM(302)의 용융 온도는 배터리의 통상적인 작동 온도와 배터리 전지(118)의 자기 가열점 사이에 있도록 선택되고, 통상적인 작동 온도가 어떤 온도 범위에 있는 실시 형태에서는, 배터리 전지(118)의 통상적인 작동 온도 범위의 상한과 배터리 전지(118)의 자기 가열점 사이에 있도록 선택된다. 예컨대, 다른 실시 형태에서, PCM(302)의 용융 온도는 80℃ 내지 120℃의 범위에서 선택되고, 예컨대, 80℃, 85 ℃, 90℃, 95℃, 100℃, 105℃, 110℃, 115℃, 및 120℃ 중의 어떤 온도라도 될 수 있다.
도 2는 PCM(302)이 외부 열원(나타나 있지 않음)에 노출될 때 PCM의 온도가 시간에 따라 어떻게 변하는지의 예를 나타내는 그래프(200)로, 이는 상 변화를 겪지 않는 재료(비 PCM)가 동일한 열원에 노출될 때 그 재료의 온도가 동일한 기간에 걸쳐 어떻게 변하는지의 예와 대조적이다. 그래프(200)는 2개의 곡선, 즉 비 PCM 재료의 온도가 열원에 노출될 때 시간에 따라 선형적으로 증가하는 비 PCM 곡선(202a); 및 PCM 곡선(202b)을 나타내고, 이 PCM 곡선은, PCM(302)의 온도가 그의 용융 온도(도 2에서 "용융점"으로 표시되어 있음)에 도달하면 열원의 열이 PCM(302)의 온도를 증가시키는 것과는 달리 PCM(302)의 상을 변화시키기 위해 어떻게 사용되는지를 나타낸다. PCM(302)의 온도가 일정하게 유지되는 기간은, PCM(302)의 질량에 그의 용융 잠열(latent heat)을 곱하여 PCM(302)이 열원의 열을 흡수하는 속도로 나눈 것과 같다. 어떤 예시적인 실시 형태에서, PCM(302)의 용융 잠열은 100 kJ/kg 내지 500 kJ/kg이고, 예컨대, 100 kJ/kg, 110 kJ/kg, 120 kJ/kg, 130 kJ/kg, 140 kJ/kg, 150 kJ/kg, 160 kJ/kg, 170 kJ/kg, 180 kJ/kg, 190 kJ/kg, 200 kJ/kg, 210 kJ/kg, 220 kJ/kg, 230 kJ/kg, 240 kJ/kg, 250 kJ/kg, 260 kJ/kg, 270 kJ/kg, 280 kJ/kg, 290 kJ/kg, 300 kJ/kg, 310 kJ/kg, 320 kJ/kg, 330 kJ/kg, 340 kJ/kg, 350 kJ/kg, 360 kJ/kg, 370 kJ/kg, 380 kJ/kg, 390 kJ/kg, 400 kJ/kg, 410 kJ/kg, 420 kJ/kg, 430 kJ/kg, 440 kJ/kg, 450 kJ/kg, 460 kJ/kg, 470 kJ/kg, 480 kJ/kg, 490 kJ/kg, 및 500 kJ/kg 중의 어떤 것이라도 될 수 있다. 예컨대, 위에서 언급한 savE® HS 89 재료는 180 kJ/kg의 용융 잠열을 갖는다.
PCM 격실은 전방측면의 반대편에 있는 뒷받침부(102)의 측면(이하, 뒷받침부(102)의 이 측면을 뒷받침부(102)의 "후방측면"이라고 함)에 있다. PCM 격실은 뒷받침부(102)의 후방측면, 뒷받침부(102)의 후방측면의 주변부를 따라 연장되어 있는 립(306), 및 립(306)에 고정되는 PCM 격실 캡(132)으로 형성된다. 나타나 있는 실시 형태에서, 뒷받침부(102)로부터 연장되어 있고 뒷받침부(102)의 전방측면에서 정상 벽(104a)과 바닥벽(104b)을 포함하는 융기 가장자리가 뒷받침부(102)의 후방측면에서 립(306)의 두 대향 가장자리를 포함한다. 뒷받침부(102)의 전방측면에 있는 좌측 벽(104c) 및 우측 벽(104d)은 뒷받침부(102)의 후방측면에 있는 립(306)의 다른 두 가장자리와 정렬된다. PCM(302)은 뒷받침부(102)의 후방측면과 PCM 격실 캡(132) 사이에 위치된다. 어떤 실시 형태에서, PCM(302)은 배터리 전지(118)의 통상적인 작동 온도에서 고체인데, 예컨대, PCM(302)은 그의 고체 형태에서 입상이거나 또는 도 3b 및 5b에 도시되어 있는 바와 같이 고체 재료 판일 수 있다. 어떤 실시 형태에서, PCM(302)은 전지 캐리어(100)의 제조 중에 용융되어 PCM 격실 안으로 부어지고, 그 후에, PCM(302)은 배터리 전지(118)의 온도를 조절하기 위해 사용되기 전에 냉각되고 고화된다. 나타나 있는 실시 형태에서 PCM(302)은 평평하고 실질적으로 전지(118)의 전체 영역과 겹치지만, 다른 실시 형태(나타나 있지 않음)에서, PCM(302)은 평평하지 않고/않거나 전지(118)와 실질적으로 다른 치수를 가질 수 있다. 추가적으로, 나타나 있는 실시 형태에서, PCM(302)과 전지(118) 각각이 뒷받침부(102)와 직접 접촉함에 따라 전지 격실(124)과 PCM 격실 사이의 열적 연결은 전도적인데, 하지만, 다른 실시 형태(나타나 있지 않음)에서, 열은 전지 캐리어(100)의 구조에 따라 대류, 전도 및 복사 중의 어느 하나 이상을 사용하여 전달될 수 있다. 예컨대, 나타나 있지 않은 일 실시 형태에서, 뒷받침부(102)의 전방측면은 전지(118)와 뒷받침부(102) 사이에 공기 틈을 형성하는 리브와 스탠드-오프 중의 하나 또는 둘 모두를 포함하고, 나타나 있지 않은 이 실시 형태에서, 복사와 대류 중의 하나 또는 둘 모두는 전지(108)를 PCM 격실에 열적으로 연결하는데에 중요한 역할을 한다.
나타나 있는 실시 형태에서 PCM 격실은 유체 밀봉되고, 다른 실시 형태(나타나 있지 않음)에서, PCM 격실은 유체 밀봉되지 않고, 대산에, 사용되는 PCM(302)의 양과 사용 중의 캐리어(100)의 배향 중의 하나 또는 둘 모두는, PCM(302)이 PCM 격실 밖으로 유출됨이 없이 용융될 수 있게 해준다. 예컨대, PCM 격실의 정상부는 개방되어 있을 수 있고, 격실에 배치되는 PCM(302)의 양은, PCM(302)이 용융될 때 열 방출 중에 격실의 정상부로부터 유출되는 용융된 PCM이 불충분하게 있도록 선택될 수 있다.
이제 도 5a를 참조하면, 전지 캐리어(100)의 캐리어 연결 기구를 사용하여 직렬로 기계적으로 함께 연결되는 도 5b의 전지 캐리어 어셈블리(150) 중의 24개를 포함하는 적층 어셈블리(300)가 나타나 있다. 버스 바아(302)는 전지(118)를 적절한 전기적 구성으로 전기적으로 서로 연결하는데, 예컨대, 나타나 있는 실시 형태에서, 전지(118)는 12s2p 배치로 전기적으로 연결된다. 전지 캐리어 어셈블리(150)에 대해 전술한 바와 같이, 열전도성 판(156)의 일부분은 전지 캐리어 어셈블리(150) 아래에서 연장되어 있다. 다른 실시 형태(나타나 있지 않음)에서, 캐리어(100)는, 예컨대 나사 맞춤못을 캐리어(100)에 통과시키고 너트를 사용해 적층체(300)의 단부를 함께 클램핑하여 함께 클램핑될 수 있다.
이제 도 3a를 참조하면, 도 3b의 전지 캐리어 어셈블리(150) 중의 16개 및 열싱크(304)를 포함하는 적층 어셈블리(300)를 포함하는 배터리 모듈(308)의 단면도가 나타나 있다. 전지 캐리어 어셈블리(150)는 직렬로 기계적으로 함께 연결되고 열싱크(304)는, 전지 캐리어(100)의 바닥 가장자리에 걸쳐 연장되어 있는 열전도성 판(156)과 접촉한다. 전지 캐리어 어셈블리(150)의 PCM 격실에 수용되는 PCM(302)의 판은 배터리 전지(118)를 서로 분리시킨다. 전지 캐리어 어셈블리(150)는, 서로 직접 접촉하는 임의의 두 이웃 전지 캐리어 어셈블리(150)에 대해 이웃 전지 캐리어 어셈블리(150) 중 하나의 PCM 격실 캡(132)이 다른 이웃 전지 캐리어 어셈블리(150)의 열전도성 판(156)과 직접 접촉하도록 적층되고, 이리하여, 전지 캐리어 어셈블리(150)에서 열싱크(304)로 가는 열전도가 용이하게 된다. 전지(118) 중의 어느 하나에서 열 방출이 일어나는 경우, 도 4a 내지 4c는, PCM(302)이 전체 적층 어셈블리(300)를 통한 열 방출의 확산을 억제하기 위해 어떻게 작동하는지를 나타낸다, 다른 실시 형태(나타나 있지 않음)에서, 이웃 전지 캐리어 어셈블리(150) 중 하나의 PCM 격실 캡(132)이 다른 이웃 전지 캐리어 어셈블리(150)의 열전도성 판(156)과 직접 접촉하지 않도록 캐리어(100)의 벽(104a - 104d)의 높이가 증가되어 있다. 이 예시적인 실시 형태에서, 복사와 대류 중의 하나 또는 둘 모두는 서로 이웃하는 전지 캐리어 어셈블리(150)를 서로에 열적으로 연결하는데에 중요한 역할을 한다.
도 4a는 열 방출이 일어나는 배터리 모듈(308) 내의 한 전지(118)("열 방출 전지")의 온도를 시간의 함수로 나타낸 그래프이고, 도 4b는 온도가 도 4a에 그래프로 나타나 있는 전지(118)에 대한 전지 캐리어(100) 내의 PCM(302)의 온도를 시간의 함수로 나타낸 그래프이고, 도 4c는 온도가 도 4b에 나타나 있는 PCM(302)을 포함하는 PCM 격실에 이웃하여 직접 접촉하는 전지 캐리어 어셈블리(150) 내의 전지(118)("이웃 전지")의 온도를 시간의 함수로 나타낸 그래프이다. 도 4a 및 4b에 나타나 있는 PCM(302)의 용융 온도는 90℃이다.
시간(T0)에서, 내부 단락과 같은 내부 결함이 열 방출 전지(118)에서 일어난다. 시간(T1)에서, 이 결함으로 인해 열 방출 전지(118)에서 열 방출이 일어나게 되고, 따라서, 도 4a에 나타나 있는 바와 같이, 열 방출 전지(118)의 온도가 10초 미만 내에 400℃ 이상으로 빠르게 증가한다. 열 방출 전지(118)에서 열 방출이 일어나면서 고온 가스가 배터리 모듈(308) 안으로 방출된다.
시간(T1)에서 시작하여, 열 방출 전지(118)는, 전지 캐리어(100), 열전도성 판(156), PCM(302)과 같은 주변 환경에 상당한 열 에너지를 전달한다. 시간(T1 )과 시간(T2) 사이에서, PCM(302)은 이 열 중의 일부를 흡수하지만, 고체로 유지된다. 이 시간 동안에 PCM(302)은 또한 열을 이웃 전지(118)에 전달하고, 따라서, 도 4b 및 4c에 나타나 있는 바와 같이, PCM(302) 및 이웃 전지(118)의 온도가 증가하게 된다.
시간(T2)에서, PCM(302)은 그의 용융 온도에 도달하고 용융되기 시작한다. PCM(302)은, 용융될 때, 노출되는 열을 흡수하고 일정한 온도로 유지된다. 열 방출 전지(118)로부터 이웃 전지(118)에 전달되는 열은 주로 PCM(118)을 통과하고 또한 PCM(302)의 온도는 그의 용융 온도에서 최고이기 때문에, 이웃 전지(118)의 온도 역시 대략 PCM(302)의 용융 온도에서 최고가 된다. PCM(302)의 용융 온도는 자기 가열점 보다 작도록 선택되기 때문에, 열 방출 전지(118)에 의해 이웃 전지(118)에서도 열 방출이 일어나는 일은 없다.
시간(T3)에서, 냉각되는 열 방출 전지(118)는 PCM(302)의 용융 온도로 냉각된다. 따라서 PCM(302)의 추가 용융이 중단된다.
시간(T3)과 시간(T4) 사이에서, 열 방출 전지(118) 및 PCM(302)은 계속 냉각된다. PCM(302)은 결국 그의 냉동점 아래로 냉각되고 고체 상태로 복귀하게 되며, 일정한 온도를 유지하면서 열 에너지를 배출하게 된다.
시간(T4) 후에, PCM은 완전히 재고화되고, 열의 계속된 소산으로 인해 전지(118)와 PCM(302) 둘 모두의 온도가 저하 된다.
따라서 PCM(302)은 열 버퍼로서 작용하여, 충분히 긴 시간 동안 적층 어셈블리(300)를 통한 열 에너지의 확산을 억제하게 되며, 그래서, 충분한 열 에너지가 인접 전지(118)에 흡수되어 파국적인 연쇄 반응이 일어나기 전에 열 방출 전지(118)의 수명이 끝나게 된다. 열 방출 전지(118)가 방출하는 열은 여러 방식 중의 하나 이상으로(예컨대 열 방출 전지(118)가 방출하는 고온 가스를 통해) 소산되며, 그 고온 가스는 모듈(308) 내의 다른 전지 캐리어 어셈블리(150)에 의해 모듈(308) 밖으로 안내되고, 그 열은 결국 멀리 복사되거나 열싱크(304)에 전도된다. 열은 주로 적층 어셈블리(300)를 따르는 전도를 통해 또는 간접적으로 열싱크(304)를 통해 다른 전지 캐리어 어셈블리(150)에 전달된다. 따라서 적층 어셈블리(300)에 있는 다른 전지 캐리어(100)의 PCM(302)은 어셈블리(300)의 온도를 조절하는 것을 도와 주는 작용도 한다.
PCM(302)의 두께는 예컨대 배터리 전지(118)의 치수 및 사용되는 PCM(302)의 특성에 따라 변하게 된다. 예컨대, 전지(118)가 64 Ah 리튬 이온 NMC 전지인 실시 형태에서, PCM(302)은 전형적으로 1 mm 내지 3 mm의 두께를 갖는다. 아래의 식(1) 내지 (14)는, 전지(118)가 255 mm 폭, 255 mm 높이 및 8 mm 두께의 치수를 가지며 또한 PCM(302)은 Pluss® Polymers Pvt. Ltd.의 savE® HS 89 재료인 경우에 PCM(302)의 두께를 결정하는 방법의 예를 나타낸다.
실험이 수행되고, 이때 모듈은 PCM(302) 없이 만들어지고 또한 과열 또는 과충전에 의해 열 방출 전지(118)에 강제적으로 열 방출이 일어난다. 이웃 전지(118)의 부피 및 열용량이 먼저 결정된다. 이웃 전지(118)는 직사각형 알루미늄 블럭으로 모델링된다. 따라서, 그의 부피는 식(1)으로 결정된다:
V ≡ 255 mm·255 mm·8 mm (1)
이웃 전지(118)의 비 열용량은 식(2)으로 주어진다:
SAl ≡ 900 J kg-1 K-1 (2)
이웃 전지(118)의 밀도는 식(3)으로 주어진다:
ρAl≡ 2.7 × 103 kg m-3 (3)
이웃 전지의 열 용량은 식(4)으로 주어진다:
C프록시≡ ρAl·V·SAl = 1,264,086 J K-1 (4)
이웃 전지(118)는 측정 결과 120℃의 온도에 도달하고, 열 방출 전지(118)에 열 방출이 일어난 결과 이웃 전지(118)에 흡수되는 과잉 열 에너지는 식(5) 내지 (8)을 사용하여 결정된다. 이웃 전지(118)의 최고 온도(단위: K)는 식(5)으로 주어진다:
T최고 ≡ (273 + 120) K (5)
용융점이 88℃ 인 것으로 가정하면, PCM(302)의 용융점(단위: K)은 식(6)으로 주어진다:
Tpc ≡ (273 + 88) K (6)
최고 온도와 PCM 용융 온도 사이의 차(단위: K)는 식(7)으로 주어진다:
△T ≡ (T최고 - Tpc) (7)
이웃 전지의 온도를 이 온도차 만큼 올리는데에 필요한 열 에너지는 식(8)으로 주어진다:
Q ≡ C프록시·△T = 40.450752 kJ (8)
PCM(302)은 식(9)으로 주어지는 용융 잠열을 갖는 것으로 가정한다:
Spcm ≡ 180 kg/kJ (9)
이웃 전지(118)가 그 에너지를 흡수하는 대신에 이 에너지를 흡수하기 위해 필요한 PCM(302)의 질량은 식(10)으로 주어진다:
mpcm ≡ Q/Spcm = 0.2247264 kg (10)
식(11) 및 (12)에 의해 PCM(302)의 밀도 및 PCM(302)의 필요한 부피가 얻어진다:
ρpcm≡ 1630 kg/m3 (11)
Vpcm ≡ mpcm pcm (12)
따라서 식(13)에 의해 각 전지 캐리어(100)에 대한 PCM(302)의 두께가 얻어진다:
tpcm ≡ Vpcm /(255 mm·255 mm) = 2.1202454 mm (13)
식(14)은 24개의 전지 캐리어 어셈블리(150)를 포함하는 적층 어셈블리(300)에 사용되는 PCM(302)의 총 질량을 나타낸다:
Mpcm ≡ mpcm ·24 = 5.3934336 (14)
나타나 있는 실시 형태에서, PCM(302)은 배터리 전지(118)의 통상적인 작동 온도에서 고체이고 전지(118)에 열 방출이 일어나면 용융되지만, 다른 실시 형태(나타나 있지 않음)에서, PCM(302)은 배터리 전지(118)의 통상적인 작동 온도에서 액체이고 전지(118)에 열 방출이 일어나면 증발된다. 예컨대, PCM(302)은 물일 수 있다. PCM(302)이 액체인 실시 형태에서, PCM(302)의 증발 온도는 배터리 전지(118)의 통상적인 작동 온도와 전지(118)의 자기 가열 온도 사이에 있도록 선택된다. 나타나 있는 실시 형태에서 처럼, 전지(118)가 통상적인 작동 온도 범위 내에서 작동하면, 어떤 실시 형태에서 PCM(302)의 증발 온도는 상기 범위의 상한과 자기 가열점 사이에 있다. 일반적으로, PCM(302)의 용융 온도와 증발 온도 각각은 PCM(302)의 상 변화 온도를 나타내는데, 이 상 변화 온도에서, 상 변화 재료는, PCM(302)이 전지(118)의 통상적인 작동 중에 고체인지 또는 액체인지에 따라, 고체 상태에서 액체 상태로 또는 액체 상태에서 기체 상태로 변하게 된다.
PCM(302)이 전지(118)의 통상적인 작동 중에 액체로 있는 실시 형태에서, PCM 격실은 가스 배출부(나타나 있지 않음)를 더 포함하는데, 전지(118)에 열 방출이 일어나는 경우, PCM(302)이 증발되면 그 가스 배출부를 통해 격실에서 나갈 수 있다. 어떤 실시 형태에서, 가스 배출부는 액체 및 가스에 대해 투과성이고, 다른 어떤 실시 형태에서 가스 배출부는 가스에 대해 투과성이지만 액체에 대해서는 불과성이다.
본 개시에서 "정상", "바닥", "위쪽으로", "아래쪽으로", "수직 방향으로" 및 "횡방향으로"와 같은 방향 용어는 단지 상대적인 기준을 제공하기 위해 사용되며, 물품이 사용 중에 어떻게 위치되어야 하는지 또는 어셈블리에서 또는 주변 환경에 대해 어떻게 장착되어야 하는지에 대한 제한을 암시하는 것은 아니다.
추가로, 본 개시에서 사용되는 "연결하는" 이라는 용어 및 "연결된", "연결하는"과 같은 그의 변형어는, 다른 언급이 없으면, 간접적인 연결과 직접적인 연결을 포함하는 것이다. 예컨대, 제 1 물품이 제 2 물품에 연결되는 경우, 그 연결은 직접적인 연결 또는 다른 물품을 통한 간접적인 연결일 수 있다.
또한, 본 개시에서 사용되는 단수형은, 명확한 다른 언급이 없으면, 복수형도 포함하는 것이다.
본 명세서에서 논의된 양태 또는 실시 형태의 어떤 부분도 실행될 수 있고 또는 본 명세서에서 논의된 다른 양태 또는 실시 형태의 어떤 부분과도 조합될 수 있다.
특정 실시 형태를 앞에서 설명했지만, 다른 실시 형태도 가능하고 여기에 포함된다. 전술한 실시 형태에 대한 수정 및 조절(나타나 있지 않음)이 가능함은 당업자에게 명백할 것이다.

Claims (24)

  1. 전지 캐리어로서,
    (a) 배터리 전지를 수용하기 위한 전지 격실;
    (b) 상기 전지 격실에 열적으로 연결되는 상(phase) 변화 재료 격실; 및
    (c) 상기 상 변화 재료 격실에 위치되는 상 변화 재료를 포함하고,
    상기 상 변화 재료는 배터리 전지의 통상적인 작동 온도와 배터리 전지의 자기(self) 가열점 사이의 상 변화 온도를 가지며, 상 변화 재료는 상기 상 변화 온도로 가열되면 고체 상태에서 액체 상태로 또는 액체 상태에서 기체 상태로 변하는, 전지 캐리어.
  2. 제 1 항에 있어서,
    상기 배터리 전지는 통상적인 작동 온도 범위 내에서 작동 가능하고, 상기 상 변화 온도는 배터리 전지의 상기 통상적인 작동 온도 범위의 상한과 상기 자기 가열점 사이에 있는, 전지 캐리어.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 상 변화 온도는 상기 상 변화 재료의 용융 온도인, 전지 캐리어.
  4. 제 3 항에 있어서,
    상기 전지 격실은 뒷받침부를 포함하고, 배터리 전지가 전지 격실에 있을 때 그 배터리 전지는 상기 뒷받침부에 접해 배치되고, 뒷받침부는 상기 상 변화 재료 격실의 벽을 포함하는, 전지 캐리어.
  5. 제 4 항에 있어서,
    상기 상 변화 재료는 상기 뒷받침부와 직접 접촉하는, 전지 캐리어.
  6. 제 4 항 또는 제 5 항에 있어서,
    상기 캐리어는 상기 뒷받침부로부터 연장되어 있는 융기 가장자리를 포함하고, 이 융기 가장자리는 뒷받침부의 일측면에 있는 전지 격실의 주변부 및 뒷받침부의 반대측면에 있는 상기 상 변화 재료 격실의 적어도 일부분을 포함하는, 전지 캐리어.
  7. 제 6 항에 있어서,
    상기 뒷받침부의 반대편에서 상기 융기 가장자리에 연결되는 상 변화 재료 격실 캡을 더 포함하는, 전지 캐리어.
  8. 제 3 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 상 변화 재료 격실은 유체 밀봉되는, 전지 캐리어.
  9. 제 3 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 상 변화 재료는 100 kJ/kg 내지 500 kJ/kg의 용융 잠열(latent heat)을 가지고 있는, 전지 캐리어.
  10. 제 3 항 내지 제 9 항 중 어느 한 항에 있어서,
    상기 상 변화 재료의 용융 온도는 80℃ 내지 120℃인, 전지 캐리어.
  11. 전지 캐리어 어셈블리의 적층체를 포함하는 배터리 모듈로서, 각 전지 캐리어 어셈블리는,
    (a) 전지 캐리어 - 이 전지 캐리어는,
    (ⅰ) 배터리 전지를 수용하기 위한 전지 격실;
    (ⅱ) 상기 전지 격실에 열적으로 연결되는 상(phase) 변화 재료 격실; 및
    (ⅲ) 상기 상 변화 재료 격실에 위치되는 상 변화 재료를 포함하고,
    상기 상 변화 재료는 배터리 전지의 통상적인 작동 온도와 배터리 전지의 자기(self) 가열점 사이의 상 변화 온도를 가지며, 상 변화 재료는 상기 상 변화 온도로 가열되면 고체 상태에서 액체 상태로 또는 액체 상태에서 기체 상태로 변하게 됨 -; 및
    (b) 상기 전지 격실 내부에 위치되는 배터리 전지를 포함하고,
    서로 직접 접촉하는 임의의 두 이웃 전지 캐리어 어셈블리에 대해, 이웃 전지 캐리어 어셈블리 중 하나의 상 변화 재료는 이웃 전지 캐리어 어셈블리의 배터리 전지들 사이에 위치되는, 배터리 모듈.
  12. 제 11 항에 있어서,
    상기 이웃 전지 캐리어 어셈블리 중 하나의 상 변화 재료 격실은 다른 이웃 전지 캐리어 어셈블리와 직접 접촉하는, 배터리 모듈.
  13. 제 11 항 또는 제 12 항에 있어서,
    상기 적층체에 열적으로 연결되는 열싱크를 더 포함하고, 상기 전지 캐리어 어셈블리 각각은 상기 배터리 전지로부터 열을 상기 열싱크에 전달하도록 위치된 열 전도성 판을 더 포함하는, 배터리 모듈.
  14. 제 13 항에 있어서,
    상기 열 전도성 판은 상기 배터리 전지 상에 적층되고, 또한 상기 전지 격실로부터 상기 열싱크와 접촉하는 전지 캐리어의 가장자리까지 연장되어 있는, 배터리 모듈.
  15. 제 13 항 또는 제 14 항에 있어서,
    상기 이웃 전지 캐리어 어셈블리 중 하나의 상기 상 변화 재료 격실은 다른 이웃 전지 캐리어 어셈블리의 열 전도성 판과 직접 접촉하는, 배터리 모듈.
  16. 제 11 항 내지 제 15 항 중 어느 한 항에 있어서,
    상기 배터리 전지는 통상적인 작동 온도 범위 내에서 작동 가능하고, 상기 상 변화 온도는 배터리 전지의 상기 통상적인 작동 온도 범위의 상한과 상기 자기 가열점 사이에 있는, 배터리 모듈.
  17. 제 11 항 내지 제 16 항 중 어느 한 항에 있어서,
    상기 상 변화 온도는 상기 상 변화 재료의 용융 온도인, 배터리 모듈.
  18. 제 17 항에 있어서,
    상기 전지 캐리어 어셈블리 각각의 전지 격실은 뒷받침부를 포함하고, 배터리 전지가 상기 전지 격실에 있을 때 그 배터리 전지는 상기 뒷받침부에 접해 배치되고, 뒷받침부는 상기 상 변화 재료 격실의 벽을 포함하는, 배터리 모듈.
  19. 제 18 항에 있어서,
    상기 상 변화 재료는 상기 뒷받침부와 직접 접촉하는, 배터리 모듈.
  20. 제 18 항 또는 제 19 항에 있어서,
    상기 전지 캐리어 어셈블리 각각의 전지 캐리어는 상기 뒷받침부로부터 연장되어 있는 융기 가장자리를 포함하고, 이 융기 가장자리는 뒷받침부의 일측면에 있는 전지 격실의 주변부 및 뒷받침부의 반대측면에 있는 상 변화 재료 격실의 적어도 일부분을 포함하는, 배터리 모듈.
  21. 제 20 항에 있어서,
    상기 전지 캐리어 어셈블리 각각의 전지 캐리어는, 상기 뒷받침부의 반대편에서 상기 융기 가장자리에 연결되는 상 변화 재료 격실 캡을 더 포함하는, 배터리 모듈.
  22. 제 17 항 내지 제 21 항 중 어느 한 항에 있어서,
    상기 상 변화 재료 격실은 유체 밀봉되는, 배터리 모듈.
  23. 제 17 항 내지 제 22 항 중 어느 한 항에 있어서,
    상기 상 변화 재료는 100 kJ/kg 내지 500 kJ/kg의 용융 잠열을 가지고 있는, 배터리 모듈.
  24. 제 17 항 내지 제 23 항 중 어느 한 항에 있어서,
    상기 상 변화 재료의 용융 온도는 80℃ 내지 120℃인, 배터리 모듈.
KR1020197001665A 2016-06-20 2017-06-20 상 변화 재료를 포함하는 전지 캐리어 KR20190049682A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662352211P 2016-06-20 2016-06-20
US62/352,211 2016-06-20
PCT/CA2017/050754 WO2017219135A1 (en) 2016-06-20 2017-06-20 Cell carrier comprising phase change material

Publications (1)

Publication Number Publication Date
KR20190049682A true KR20190049682A (ko) 2019-05-09

Family

ID=60783746

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197001665A KR20190049682A (ko) 2016-06-20 2017-06-20 상 변화 재료를 포함하는 전지 캐리어

Country Status (8)

Country Link
US (1) US20190386359A1 (ko)
EP (1) EP3472891A4 (ko)
JP (1) JP2019520678A (ko)
KR (1) KR20190049682A (ko)
CN (1) CN109478703A (ko)
CA (1) CA3028812A1 (ko)
SG (1) SG11201811278VA (ko)
WO (1) WO2017219135A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023004006A1 (en) * 2021-07-23 2023-01-26 Sion Power Corporation Battery module with multiplexing and associated systems and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768194A (zh) * 2018-12-27 2019-05-17 中国石油大学(华东) 一种基于相变材料-翅片复合结构的锂离子电池模组热管理系统
CN110224090A (zh) * 2019-04-24 2019-09-10 合肥国轩高科动力能源有限公司 一种导热式方形电池组
KR20220160717A (ko) * 2021-05-28 2022-12-06 에스케이온 주식회사 배터리 모듈
KR102438115B1 (ko) * 2022-03-31 2022-08-30 (주)하나기술 이차전지 셀 이송 캐리어

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518142C2 (sv) * 2000-02-15 2002-09-03 Ericsson Telefon Ab L M Förfarande och anordning för reglering av batteritemperatur
US20090169983A1 (en) * 2007-12-27 2009-07-02 Ajith Kuttannair Kumar Battery with a phase-changing material
JP5448116B2 (ja) * 2009-04-01 2014-03-19 エルジー・ケム・リミテッド 向上させた安全性を有するバッテリーモジュール
DE102009053506A1 (de) * 2009-11-16 2011-05-19 Li-Tec Battery Gmbh Batteriegehäuse zur Aufnahme von elektrochemischen Energiespeichereinrichtungen
CN102362388B (zh) * 2009-11-25 2013-09-25 松下电器产业株式会社 电池模块
BR112012016536A2 (pt) * 2010-01-08 2019-09-24 Dow Global Technologies Llc dispositivo, sistema e método para regular a temperatura de uma célula eletroquimica
WO2011146919A2 (en) * 2010-05-21 2011-11-24 Graftech International Holdings Inc. Thermal solution for prismatic lithium ion battery pack
US8936864B2 (en) * 2010-07-07 2015-01-20 GM Global Technology Operations LLC Batteries with phase change materials
US8927131B2 (en) * 2011-04-07 2015-01-06 GM Global Technology Operations LLC Battery thermal interfaces with microencapsulated phase change materials for enhanced heat exchange properties
US9774063B2 (en) * 2011-08-15 2017-09-26 Advanced Energy Technologies Llc Battery pack assembly having thermal transfer sheets
US10096806B2 (en) * 2013-07-30 2018-10-09 Johnson Controls Technology Company System and method for clamping interconnection of battery cells
PL3105813T3 (pl) * 2014-02-14 2020-03-31 Intramicron, Inc. Układy zarządzania ciepłem do ogniw magazynujących energię o dużych natężeniach prądu ładowania/rozładowywania oraz sposoby ich wytwarzania i użytkowania

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023004006A1 (en) * 2021-07-23 2023-01-26 Sion Power Corporation Battery module with multiplexing and associated systems and methods

Also Published As

Publication number Publication date
JP2019520678A (ja) 2019-07-18
SG11201811278VA (en) 2019-01-30
CA3028812A1 (en) 2017-12-28
CN109478703A (zh) 2019-03-15
EP3472891A1 (en) 2019-04-24
WO2017219135A1 (en) 2017-12-28
EP3472891A4 (en) 2019-11-20
US20190386359A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
KR20190049682A (ko) 상 변화 재료를 포함하는 전지 캐리어
KR101106103B1 (ko) 안전성이 향상된 전지모듈
US10804578B2 (en) Battery module, battery pack and vehicle having same
JP7091971B2 (ja) 電池ユニット
CN102055003A (zh) 具有导热胶的电池组
WO2013157560A1 (ja) 二次電池、二次電池を組み込んだ二次電池モジュール、及び二次電池モジュールを組み込んだ組電池システム
EP3379639B1 (en) Battery module, battery pack comprising same, and vehicle
KR101658517B1 (ko) 냉각 부재를 활용한 전지모듈
CN109565003B (zh) 电池单元载体和用于包括多个电池单元载体的堆叠组件的外壳
JP2012174572A (ja) 組電池
JP2015103324A (ja) 組電池の冷却構造
JP6186209B2 (ja) 組電池の冷却兼加熱構造
KR20240000413A (ko) 고전압 배터리모듈
CN112350011A (zh) 电池模块
JP7262880B2 (ja) 電池モジュールおよびこれを含む電池パック
US20230124214A1 (en) Battery module and battery pack including the same
EP3836293A1 (en) Battery module and battery pack including same
JP2021526725A (ja) バッテリーモジュール、それを含むバッテリーパック及び自動車
CN220821685U (zh) 一种电池及供电或用电设备
KR20200073721A (ko) 전지 팩
CN217788541U (zh) 电池包及具有其的车辆
CN113614985B (zh) 电池模块和包括该电池模块的电池组
WO2020075507A1 (ja) 電池パック
KR20230111916A (ko) 전지 모듈 및 이를 포함하는 전지 팩
KR20230076450A (ko) 전지 모듈 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application