KR20190044347A - Multimeric Protein Display System using Cell Membrane Fluidity - Google Patents

Multimeric Protein Display System using Cell Membrane Fluidity Download PDF

Info

Publication number
KR20190044347A
KR20190044347A KR1020170136668A KR20170136668A KR20190044347A KR 20190044347 A KR20190044347 A KR 20190044347A KR 1020170136668 A KR1020170136668 A KR 1020170136668A KR 20170136668 A KR20170136668 A KR 20170136668A KR 20190044347 A KR20190044347 A KR 20190044347A
Authority
KR
South Korea
Prior art keywords
ser
val
pro
leu
lys
Prior art date
Application number
KR1020170136668A
Other languages
Korean (ko)
Other versions
KR102048037B1 (en
Inventor
정상택
조미경
윤현웅
Original Assignee
국민대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교산학협력단 filed Critical 국민대학교산학협력단
Priority to KR1020170136668A priority Critical patent/KR102048037B1/en
Priority to PCT/KR2018/012212 priority patent/WO2019078591A1/en
Publication of KR20190044347A publication Critical patent/KR20190044347A/en
Application granted granted Critical
Publication of KR102048037B1 publication Critical patent/KR102048037B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • G01N33/6857Antibody fragments
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70535Fc-receptors, e.g. CD16, CD32, CD64 (CD2314/705F)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a display system of multimer target protein using fluidity of cell membranes. The display system of the present invention has much higher convenience (such as simple medium production, reduction of incubation time for screening, use of a single promoter, etc.) compared with a conventional full-length lgG display system or Fc display system using PelB. In addition, the display system of the present invention has the %CV value is smaller than the conventional full-length lgG display technique, and the fluorescence signal value between a negative clone and a positive clone is large, thereby being more efficient for screening using a target protein display.

Description

세포막 유동성을 이용한 다중체 단백질 디스플레이 시스템{Multimeric Protein Display System using Cell Membrane Fluidity}TECHNICAL FIELD [0001] The present invention relates to a multimeric protein display system using cell membrane fluidity,

본 발명은 세포막의 유동성을 이용한 다중체인 목적단백질의 디스플레이 시스템에 관한 것이다.The present invention relates to a display system for multi-chain objective proteins using flow properties of cell membranes.

단백질 디스플레이 시스템은 genotype과 phenotype을 물리적으로 연결시켜 놓은 것으로 박테리아 디스플레이 시스템, 박테리오파지 디스플레이 시스템, 효모 디스플레이 시스템 등이 개발되어 의약용/산업용 단백질의 기능향상을 위한 고속탐색에 널리 이용되고 있다.(Directed Evolution Library Creation: Methods and Protocols 2003 Arnold, Frances H., Georgiou, George, Directed Enzyme Evolution: Screening and Selection Methods 2003 Arnold, Frances H., Georgiou, George)Protein display systems have physically linked genotypes and phenotypes. Bacterial display systems, bacteriophage display systems, and yeast display systems have been developed and are now widely used for high-speed search for improving the functionality of pharmaceutical / industrial proteins (Directed Evolution Library Creation: Methods and Protocols 2003 Arnold, Frances H., Georgiou, George, Directed Enzyme Evolution: Screening and Selection Methods 2003 Arnold, Frances H., Georgiou, George)

치료용 항체는 기존의 저분자 약물에 비해 타깃에 매우 높은 특이성을 보이며, 생체 독성이 낮고 부작용이 적을 뿐만 아니라, 약 3주의 우수한 혈중 반감기를 가지기 때문에 가장 효과적인 암 치료방법 중의 하나로 여겨지고 있다.Therapeutic antibodies are considered to be one of the most effective cancer treatment methods because they exhibit very high specificity to the target, low bio-toxicity and low side effects, as well as excellent blood half-lives of about 3 weeks, compared with conventional low-molecular drugs.

치료용 항체는 타깃 항원을 인지하는 부분인 Fab(Fragment antigen binding) 부분과 면역세포를 모집하여 타깃을 제거하는 Fc(fragment crystallizable) 부분으로 구성되어 있다. Fc에 대한 효과기 기능(effector function)은 FcγRs(FcγRI, FcγRII, FcγRIII)와의 결합에 의해 매개되기 때문에 많은 글로벌 제약기업에서 항체 의약품의 효능을 증가시키기 위해 FcγRs와의 결합력이 증대된 Fc 변이체를 탐색하는 연구를 진행하고 있다.Therapeutic antibodies are composed of Fab (Fragment antigen binding), which recognizes the target antigen, and Fc (fragment crystallizable), which collects immune cells and removes the target. Since the effector function on Fc is mediated by the binding of FcγRs (FcγRI, FcγRII, FcγRIII), many global pharmaceutical companies are exploring Fc variants with increased binding capacity to FcγRs to increase the efficacy of antibody drugs .

치료용 항체 의약품 개발 기업으로는 로슈, 암젠, 존슨앤존슨, 애보트, 비엠에스 등의 제약 기업이 주를 이루고 있으며, 특히 로슈는 항암 치료 목적의 허셉틴(Herceptin), 아바스틴(Avastin), 리툭산(Rituxan) 등이 대표적 상품으로 이 세 가지 치료용 항체로 2012년 세계시장에서 약 195억 달러의 매출을 달성하는 등 큰 이윤을 창출하고 있을 뿐 아니라, 세계의 항체 의약품 시장을 이끌고 있다. 레미케이드(Remicade)를 개발한 존슨앤존슨 역시 매출의 증가로 세계 항체 시장에서 빠르게 성장해나가고 있으며, 애보트와 비엠에스 등의 제약 기업 역시 개발 막바지 단계의 치료용 항체를 다수 보유하고 있는 것으로 알려져 있다. 이에 따른 결과로 저분자 의약품이 주도권을 가지고 있던 세계 제약 시장에서 질병 타깃에 특이적이고 부작용이 낮은 치료용 항체를 포함한 바이오 의약품이 빠르게 그 자리를 대체해 나가고 있다.Roche is a leading company in the development of therapeutic antibody medicines including Roche, Amgen, Johnson & Johnson, Abbott and BMS. Especially Roche has developed Herceptin, Avastin, Rituxan ) Is a representative product. With these three therapeutic antibodies, it generates a huge profit of around US $ 19.5 billion in the global market in 2012, and is leading the global antibody drug market. Johnson & Johnson, who developed Remicade, is also growing rapidly in the global antibody market due to increased sales, and pharmaceutical companies such as Abbott and BMS are also known to have a number of therapeutic antibodies at the developmental stage. As a result, biopharmaceuticals, including therapeutic antibodies specific to disease targets and low side effects, are rapidly replacing the global pharmaceutical market, where low-molecular drugs have taken the initiative.

따라서, Fc 변이체를 효율적으로 탐색하는 시스템이 차세대 치료용 항체 개발에 매우 중요하다.Therefore, a system for efficiently searching for Fc variants is very important for the development of next-generation therapeutic antibodies.

박테리아를 이용한 기존의 항체 Fc 변이체 탐색 시스템으로는 full-length IgG를 디스플레이하는 방식과 PelB를 이용한 Fc 디스플레이 방식이 있으며, 모두 박테리아의 내막에 디스플레이한 후 스페로플라스팅(spheroplasting)을 통해 외막을 벗겨내어 분석하는 시스템이다.Conventional antibody Fc variant detection systems using bacteria include full-length IgG display and Fc display using PelB. All of them are displayed on the inner membrane of the bacteria and then spheroplasted to peel off the outer membrane Analysis system.

Full-length IgG 디스플레이 시스템은 박테리아에 중쇄(heavy chain) 및 경쇄(light chain)를 코딩하는 플라스미드를 동시에 형질전환하여 원형질막 주위 세포 간극 영역(periplasmic region)에 발현된 중쇄 및 경쇄가 조립(assemble)되는 방식이다(Jung et al., 2013 ACS Chem Biol). 이 방식은 중쇄 및 경쇄를 각각 코딩하는 2가지의 플라스미드가 필요하기 때문에 배양 및 과발현 과정에서 모두 2가지의 프로모터(Lac promoter, PBAD promoter)를 동시에 고려해야 하며, 배양조건 및 시간(20 시간) 또한 매우 길어 스크리닝을 진행할수록 성장속도가 빠른 negative clone의 비율이 크게 증가한다는 단점이 있다. 뿐만 아니라, 디스플레이 레벨이 일정하지 못하여 실제로 유세포 분석기로 분석을 해 보았을 때 편차 (CV: coefficient of variation으로 표시)가 높게 나타나는 것을 알 수 있다.The full-length IgG display system is a system in which bacteria are co-transformed with plasmids coding for heavy and light chains, and heavy and light chains expressed in the periplasmic region around the plasma membrane are assembled (Jung et al., 2013 ACS Chem Biol). Since this method requires two plasmids encoding the heavy chain and the light chain respectively, two promoters (Lac promoter and PBAD promoter) must be considered at the same time during the culture and overexpression, and the culture conditions and time (20 hours) The longer the screening process, the greater the rate of negative clone that grows fast. In addition, since the display level is not constant, the deviation (CV: coefficient of variation) is high when the flow cytometer is actually analyzed.

또 하나의 시스템인 PelB 리더 펩타이드를 이용한 Fc display의 경우, sec pathway에 의해 원형질막 주위 세포간극영역으로 분비된 Fc 단백질이 트레할로오스(trehalose)의 점성으로 인하여 트랩(trap)이 증가되는 시스템이다(Jung et al., 2010 Proc Natl Acad Sci USA). 이 방식은 일반적인 배지를 사용하지 못하고 0.5 M의 트레할로오스가 고농도로 첨가된 배지를 별도로 제조해야 하는 번거로움이 있으며, 스페로플라스팅(spheroplasting) 과정에서 세척단계에 의해 씻겨나가는 Fc 단편의 양이 일정치 않아 트랩되어 있는 Fc 단백질의 디스플레이 level 조절이 매우 어려운 단점이 있다. 이는 일련의 스크리닝 과정에서 필수적인 통일성 및 재현성 면에서 적합하지 않음을 나타낸다.Another system, Fc display using PelB leader peptide, is a system in which trap is increased due to viscosity of trehalose due to Fc protein secreted to the cytoplasmic space region by sec pathway (Jung et al., 2010 Proc Natl Acad Sci USA). This method is inconvenient to separately prepare a medium to which 0.5 M of trehalose is added at a high concentration without using a general medium, and the amount of the Fc fragment to be washed by the washing step in the spheroplasting process It is very difficult to control the display level of the trapped Fc protein. Indicating that they are not suitable in terms of uniformity and reproducibility essential for a series of screening processes.

따라서, 상기의 디스플레이 시스템들과 달리, 배양시간 및 조건이 간단하고, display되는 정도가 균일하여 CV 값이 상대적으로 작게 나타나는 등 효율적인 디스플레이 시스템 개발에 대한 요구가 절실한 상황이다.Therefore, unlike the display systems described above, there is an urgent need for development of an efficient display system, since the culture time and conditions are simple, the degree of display is uniform, and the CV value is relatively small.

상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as adhering to the prior art already known to those skilled in the art.

본 발명자들은 기존의 디스플레이 시스템인 전장(Full-length) IgG 디스플레이 시스템이나 PelB를 이용한 Fc 디스플레이 시스템 보다 편의성 및 효율성이 증가된 디스플레이 시스템을 개발하고자 노력하였다. 그 결과, 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 제조하여 이를 디스플레이 하는 경우 세포막의 유동성에 의해 자가-조립되어 다중체를 형성하여 매우 간단하고 편리하게 디스플레이 시스템을 제조할 수 있으며, 목적단백질이 디스플레이되는 정도도 균일하다는 것을 확인함으로써 본 발명을 완성하였다.The present inventors have sought to develop a display system with increased convenience and efficiency over a full-length IgG display system, which is a conventional display system, or an Fc display system using PelB. As a result, when a monomer of a target protein to which an anchor polypeptide is fused is produced and displayed, the display system can be manufactured simply and conveniently by forming a multiplexed body by self-assembly due to the fluidity of the cell membrane. And that the degree of display is uniform.

따라서, 본 발명의 목적은 세포막의 유동성을 이용한 다중체인 목적단백질 디스플레이 시스템의 제조 방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method for producing a multi-chain objective protein display system using the fluidity of a cell membrane.

본 발명의 다른 목적은 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 포함하는 목적단백질 디스플레이 시스템을 제공하는데 있다.It is another object of the present invention to provide a target protein display system comprising a monomer of a target protein to which an anchor polypeptide is fused.

본 발명의 또 다른 목적은 앵커 폴리펩타이드가 융합된 목적단백질의 단량체, 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 코딩하는 핵산분자 또는 상기 핵산분자를 포함하는 벡터를 포함하는 목적단백질 디스플레이용 조성물을 제공하는데 있다.Still another object of the present invention is to provide a composition for a target protein display comprising a monomer of a target protein to which an anchor polypeptide is fused, a nucleic acid molecule that encodes a monomer of a target protein to which the anchor polypeptide is fused or a vector comprising the nucleic acid molecule .

본 발명의 또 다른 목적은 세포막의 유동성을 이용한 FcγR에 대한 친화도가 향상된 Fc 변이체의 선별방법을 제공하는데 있다.It is another object of the present invention to provide a method for screening Fc variants having improved affinity for Fc [gamma] R by using the flowability of cell membranes.

본 발명의 또 다른 목적은 세포막의 유동성을 이용한 항원에 대한 결합력을 갖는 scFV의 선별방법을 제공하는데 있다.It is another object of the present invention to provide a screening method of scFV having binding ability to an antigen using the flowability of a cell membrane.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 다중체(multimer)인 목적단백질 디스플레이 시스템의 제조 방법을 제공한다:According to one aspect of the present invention, the present invention provides a method of producing a multimeric target protein display system comprising the steps of:

(a)(i) 디스플레이하고자 하는 목적단백질의 단량체(monomer) 및 앵커(anchor) 폴리펩타이드를 코딩하는 뉴클레오타이드 서열 및 (ii) 상기 코딩 뉴클레오타이드 서열에 작동적(operatively)으로 결합된 프로모터를 포함하는 벡터를 구축(construction)하는 단계; (a) a vector comprising (i) a nucleotide sequence encoding a monomer and anchor polypeptide of the target protein to be displayed and (ii) a vector comprising a promoter operatively linked to the coding nucleotide sequence Constructing a second image;

(b) 상기 벡터로 미생물을 형질전환(transformation)시키는 단계; (b) transforming the microorganism with the vector;

(c) 상기 형질전환된 미생물을 배양하여 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 발현시키는 단계로서, 상기 앵커 폴리펩타이드는 미생물의 내막에 앵커링(anchoring)되고 목적단백질의 단량체는 상기 미생물의 원형질막 주위 세포간극영역 (periplasmic region)에 전시되는 단계; 및 (c) culturing the transformed microorganism to express a monomer of the target protein fused with the anchor polypeptide, wherein the anchor polypeptide is anchored to the inner membrane of the microorganism, and the monomer of the target protein is the protoplasm of the microorganism Displayed in a periplasmic region; And

(d) 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체는 세포막의 유동성(membrane fluidity)에 의해 자가-조립(self-assemble)되어 다중체(multimer)를 형성하는 단계.(d) the monomer of the objective protein to which the anchor polypeptide is fused is self-assemble by membrane fluidity to form a multimer.

본 발명자들은 기존의 디스플레이 시스템인 전장(Full-length) IgG 디스플레이 시스템이나 PelB를 이용한 Fc 디스플레이 시스템 보다 편의성 및 효율성이 증가된 디스플레이 시스템을 개발하고자 노력하였다. 그 결과, 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 제조하여 이를 디스플레이 하는 경우 세포막의 유동성에 의해 자가-조립되어 다중체를 형성하여 매우 간단하고 편리하게 디스플레이 시스템을 제조할 수 있으며, 목적단백질이 디스플레이되는 정도도 균일하다는 것을 확인하였다.The present inventors have sought to develop a display system with increased convenience and efficiency over a full-length IgG display system, which is a conventional display system, or an Fc display system using PelB. As a result, when a monomer of a target protein to which an anchor polypeptide is fused is produced and displayed, the display system can be manufactured simply and conveniently by forming a multiplexed body by self-assembly due to the fluidity of the cell membrane. And the degree of display is uniform.

본 발명의 제조방법을 각 단계에 따라 설명하면 다음과 같다.The manufacturing method of the present invention will be described below in each step.

(a) 벡터의 구축:(a) Construction of vector:

먼저, 디스플레이하고자 하는 목적단백질의 단량체(monomer) 및 앵커(anchor) 폴리펩타이드를 코딩하는 뉴클레오타이드 서열 및 (ii) 상기 코딩 뉴클레오타이드 서열에 작동적(operatively)으로 결합된 프로모터를 포함하는 벡터를 구축(construction)한다.First, a nucleotide sequence encoding a monomer and anchor polypeptide of the target protein to be displayed and (ii) a vector comprising a promoter operatively linked to the coding nucleotide sequence is constructed )do.

본 명세서에서 용어 “목적단백질”은 상기 디스플레이 시스템에 전시(display)하기 위한 대상으로서 어떠한 단백질 또는 펩타이드도 포함하는 의미로 사용된다. 예를 들어 호르몬, 호르몬 유사체, 효소, 효소저해제, 신호전달단백질 또는 그 일부분, 항체 또는 그 일부분, 항체 항원 결합영역(VH 또는/및 VL), 단쇄항체(scFV, single-chain variable fragment), Fc 부위, Fab(Fragment antigen binding), 결합단백질 또는 그 결합도메인, 펩타이드, 항원, 부착단백질, 구조단백질, 조절단백질, 독소단백질, 사이토카인, 전사조절 인자, 혈액 응고 인자, 식물 생체방어 유도 단백질, M-CSF(Macrophagecolony stimulating factor), 헤모글로빈, G-단백질, CD28, 인터류킨, 인터페론-γ, TGF-β(Transforming growth factor-β) 또는 상기 단백질들의 단편을 포함하나 이에 한정되는 것은 아니다.The term " target protein " is used herein to mean any protein or peptide as an object to be displayed on the display system. (VH or / and VL), a single-chain variable fragment (scFV), an Fc (humanized antibody) or a fragment thereof, an antibody or a portion thereof, Binding protein or a binding domain thereof, a peptide, an antigen, an adhesion protein, a structural protein, a regulatory protein, a toxin protein, a cytokine, a transcription regulator, a blood coagulation factor, a plant bio- But are not limited to, CSF (Macrophagecolony stimulating factor), hemoglobin, G-protein, CD28, interleukin, interferon-γ, TGF-β (Transforming growth factor-β)

본 발명의 바람직한 구현예에 따르면, 본 발명의 목적단백질은 항체, 항체 항원 결합영역(VH 또는/및 VL), scFv, Fab, Fc 단백질, G-단백질, 헤모글로빈, M-CSF, CD28, 인터류킨, 인터페론-γ, TGF-β 또는 이의 단편인 것이다.According to a preferred embodiment of the present invention, a target protein of the present invention is an antibody, an antibody antigen binding region (VH or / and VL), an scFv, a Fab, an Fc protein, a G- protein, a hemoglobin, Interferon-gamma, TGF-beta, or a fragment thereof.

항체는 특정 항원에 특이적으로 결합을 나타내는 단백질로, 천연 항체는 IgA, IgD, IgE, IgG 및 IgM의 5개의 주요 클래스가 있으며, 통상 2개의 동일한 경쇄(L) 및 2개의 동일한 중쇄(H)로 구성된, 약 150,000 달톤의 헤테로다이머 당단백질이다. Antibodies are proteins that specifically bind to specific antigens. There are five major classes of natural antibodies: IgA, IgD, IgE, IgG and IgM, usually two identical light chains (L) and two identical heavy chains (H) , Which is a heterodimeric glycoprotein of about 150,000 daltons.

본 명세서에서 용어 항체는 폴리클로날 항체, 모노클로날 항체, 인간항체 및 인간화 항체와 이들의 단편을 의미한다. As used herein, the term antibody refers to polyclonal antibodies, monoclonal antibodies, human antibodies, and humanized antibodies and fragments thereof.

항체의 파파인 분해는 2개의 Fab 단편과 1개의 Fc 단편을 형성하며, 인간 IgG 분자에서, Fc 영역은 Cys 226의 N-말단을 파파인 분해함으로써 생성된다(Deisenhofer, Biochemistry 20: 2361-2370, 1981).Papain degradation of the antibody forms two Fab fragments and one Fc fragment, and in the human IgG molecule, the Fc region is generated by papain digestion of the N-terminus of Cys 226 (Deisenhofer, Biochemistry 20: 2361-2370, 1981) .

항체 Fc 도메인은 IgA, IgM, IgE, IgD, 또는 IgG 항체의 Fc 도메인, 혹은 이들의 변형일 수 있다.The antibody Fc domain may be the Fc domain of an IgA, IgM, IgE, IgD, or IgG antibody, or a variant thereof.

본 발명의 바람직한 구현예에 따르면, 본 발명의 목적단백질은 이량체(dimder)를 포함하는 다중체(multimer) 형태인 것이다.According to a preferred embodiment of the present invention, the target protein of the present invention is in a multimer form including a dimer.

본 발명의 목적단백질은 단량체(monomer) 형태로 원형질막 주위 공간(periplasmic region)에서 발현되어 세포막의 유동성에 의해 부유하다가 다른 단량체와 자가-조립(self-assemble)되어 다중체(multimer)를 형성한다.The target protein of the present invention is expressed in a periplasmic region in the form of a monomer, floated by the fluidity of the cell membrane, and self-assemble with other monomers to form a multimer.

본 발명의 바람직한 구현예에 따르면, 본 발명의 목적단백질의 단량체는 항체의 중쇄 가변부위(VH), 경쇄 가변부위(VL) 및 이의 단편으로 구성된 군으로부터 선택되는 1 또는 2 이상의 단량체인 것이다.According to a preferred embodiment of the present invention, the monomer of the target protein of the present invention is one or more monomers selected from the group consisting of heavy chain variable region (VH), light chain variable region (VL) and fragments thereof.

본 발명의 바람직한 구현예에 따르면, 본 발명의 목적단백질의 단량체는 Fc 단백질 단량체 또는 이의 단편인 것인 것이다.According to a preferred embodiment of the present invention, the monomer of the target protein of the present invention is an Fc protein monomer or a fragment thereof.

본 명세서에서 용어 “앵커 폴리펩타이드”는 상기 목적단백질의 단량체의 N-말단 또는 C-말단에 결합되어 미생물의 세포막에서 발현되어 앵커링(anchoring)되고 목적단백질의 단량체(monomer)가 원형질막 주위 공간에서 발현되어 세포막의 유동성에 의해 목적단백질의 단량체가 부유하도록 하는 펩타이드를 의미하며, gIII 단백질, NlpA 리더 펩타이드(NlpA leader peptide), MalF(Jung et al., 2007 Biotechnol Bioeng), Pf3 코트(coat) 단백질(Klenner C et al., 2008 FEBS Lett), M13 프로코트(procoat) 단백질(C Zwizinski and W Wickner, 1982 EMBO J), ProW Nt/TM1/3K(Linda Froderberg et al., 2003 Molecular Microbiology), KdpD 단백질(Sandra J.Facey, Andreas Kuhn 2004 Biochim Biophys Acta)를 포함하나 이에 제한되는 것은 아니다.As used herein, the term " anchor polypeptide " refers to an anchor polypeptide that binds to the N-terminal or C-terminal of a monomer of the target protein and is expressed and anchored in the cell membrane of the microorganism and the monomer of the target protein is expressed in the periplasmic space (NlpA leader peptide), MalF (Jung et al., 2007 Biotechnol Bioeng), and Pf3 coat protein (hereinafter referred to as " (Kleiner et al., 2008 FEBS Lett), M13 procoat protein (Czwizinski and W Wickner, 1982 EMBO J), ProW Nt / TM1 / 3K (Linda Froderberg et al., 2003 Molecular Microbiology), KdpD protein (Sandra J. Facey, Andreas Kuhn 2004 Biochim Biophys Acta).

상기 앵커 폴리펩타이드는 상기 목적단백질의 단량체와 링커로 연결될 수 있다.The anchor polypeptide may be linked to the monomer of the target protein by a linker.

상기 디스플레이하고자 하는 목적단백질의 단량체(monomer) 및 앵커(anchor) 폴리펩타이드를 코딩하는 뉴클레오타이드 서열은 상기 코딩 뉴클레오타이드 서열에 작동적(operatively)으로 결합된 프로모터와 함께 벡터로 구축(construction)된다.A nucleotide sequence encoding a monomer and an anchor polypeptide of the target protein to be displayed is constructed as a vector together with a promoter operatively linked to the coding nucleotide sequence.

본 명세서에서 용어 “작동적으로 결합된”은 핵산 발현 조절 서열인 프로모터와 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 프로모터는 상기 다른 핵산 서열의 전사를 조절하게 된다.As used herein, the term " operably linked " means a functional linkage between a promoter that is a nucleic acid expression control sequence and another nucleic acid sequence, whereby the promoter regulates transcription of the other nucleic acid sequence.

본 명세서에서 뉴클레오타이드 또는 핵산분자는 단리된 것이거나 재조합된 것일 수 있으며, 단일쇄 및 이중쇄 형태의 DNA 및 RNA뿐만 아니라 대응하는 상보성 서열이 포함된다. 단리된 핵산은 천연 생성 원천에서 단리된 핵산의 경우, 핵산이 단리된 개체의 게놈에 존재하는 주변 유전 서열로부터 분리된 핵산이다. 주형으로부터 효소적으로 또는 화학적으로 합성된 핵산, 예컨대 PCR 산물, cDNA 분자, 또는 올리고뉴클레오타이드의 경우, 이러한 절차로부터 생성된 핵산이 단리된 핵산분자로 이해될 수 있다. 단리된 핵산분자는 별도 단편의 형태 또는 더 큰 핵산 구축물의 성분으로서의 핵산 분자를 나타낸다. 핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 작동가능하게 연결된다. 예를 들면, 전서열 또는 분비 리더(leader)의 DNA는 폴리펩타이드가 분비되기 전의 형태인 전단백질(preprotein)로서 발현되는 경우 폴리펩타이드의 DNA에 작동가능하게 연결되고, 프로모터 또는 인핸서는 폴리펩타이드 서열의 전사에 영향을 주는 경우 코딩 서열에 작동가능하게 연결되며, 또는 리보솜 결합 부위는 번역을 촉진하도록 배치될 때 코딩 서열에 작동가능하게 연결된다. 일반적으로 작동가능하게 연결된은 연결될 DNA 서열들이 인접하여 위치함을 의미하며, 분비 리더의 경우 인접하여 동일한 리딩 프레임 내에 존재하는 것을 의미한다. 그러나 인핸서는 인접하여 위치할 필요는 없다. 연결은 편리한 제한 효소 부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오타이드 어댑터 또는 링커를 통상적인 방법에 따라 사용한다. As used herein, the nucleotide or nucleic acid molecule may be isolated or recombinant, and includes DNA and RNA in single and double stranded form as well as corresponding complementary sequences. The isolated nucleic acid is a nucleic acid isolated from a peripheral genetic sequence present in the genome of the isolated nucleic acid, in the case of a nucleic acid isolated from a naturally occurring source. In the case of a nucleic acid that is enzymatically or chemically synthesized from a template, such as a PCR product, a cDNA molecule, or an oligonucleotide, the nucleic acid generated from such a procedure can be understood as an isolated nucleic acid molecule. The isolated nucleic acid molecule represents a nucleic acid molecule as a separate fragment or as a component of a larger nucleic acid construct. A nucleic acid is operably linked when it is placed in a functional relationship with another nucleic acid sequence. For example, the DNA of a full-length or secretory leader is operably linked to the DNA of the polypeptide when expressed as a preprotein in the form before secretion of the polypeptide, and the promoter or enhancer comprises a polypeptide sequence Or the ribosome binding site is operably linked to a coding sequence when it is placed to facilitate translation. Generally, operably linked means that the DNA sequences to be linked are located adjacent to each other, and in the case of the secretory leader, it means that the DNA sequences are adjacent to each other in the same reading frame. However, the enhancer need not be located contiguously. Linking is accomplished by ligation at convenient restriction sites. If such sites are not present, synthetic oligonucleotide adapters or linkers are used according to conventional methods.

본 명세서에서 용어 벡터는 핵산 서열을 복제할 수 있는 세포로의 도입을 위해서 핵산 서열을 삽입할 수 있는 전달체를 의미한다. 핵산 서열은 외생(exogenous) 또는 이종(heterologous)일 수 있다. 벡터로서는 플라스미드, 코스미드 및 바이러스(예를 들면 박테리오파지)를 들 수 있으나, 이에 제한되지 않는다. 당업자는 표준적인 재조합 기술에 의해 벡터를 구축할 수 있다(Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; 및 Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994 등).As used herein, the term vector refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence. The nucleic acid sequence may be exogenous or heterologous. Vectors include, but are not limited to, plasmids, cosmids, and viruses (e.g., bacteriophage). Those skilled in the art can establish a vector by standard recombinant techniques (Maniatis, et al, Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1988; and Ausubel et al, In:.. Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994).

본 명세서에서 용어 발현 벡터는 전사되는 유전자 산물 중 적어도 일부분을 코딩하는 핵산 서열을 포함한 벡터를 의미한다. 일부의 경우에는 그 후 RNA 분자가 단백질, 폴리펩타이드, 또는 펩타이드로 번역된다. 발현 벡터에는 다양한 조절서열을 포함할 수 있다. 전사 및 번역을 조절하는 조절서열과 함께 벡터 및 발현 벡터에는 또 다른 기능도 제공하는 핵산 서열도 포함될 수 있다.As used herein, the term expression vector refers to a vector comprising a nucleic acid sequence encoding at least a portion of the gene product to be transcribed. In some cases, the RNA molecules are then translated into proteins, polypeptides, or peptides. The expression vector may contain various regulatory sequences. Vectors and expression vectors may also include nucleic acid sequences that provide another function, as well as regulatory sequences that regulate transcription and translation.

(b) 미생물의 형질전환(transformation):(b) Transformation of microorganisms:

다음으로, 상기 구축된 벡터를 이용하여 미생물을 형질전환한다.Next, microorganisms are transformed using the constructed vector.

미생물은 상기 벡터에 의해 형질감염(transfected) 또는 형질전환(transformed) 될 수 있으며, 이는 외생의 핵산분자가 숙주세포 내에 전달되거나 도입되는 과정을 의미한다. The microorganism can be transfected or transformed by the vector, which means that the exogenous nucleic acid molecule is transferred or introduced into the host cell.

본 발명의 바람직한 구현예에 따르면, 본 발명의 미생물은 세균(bacteria)세포이다. 상기 세포는 내막과 외막 사이에 원형질막 주위 공간(periplasmic region)을 가지는 점에서 본 발명의 실시에 적합하다. 본 발명의 바람직한 세균세포의 예로는 E. coli, Pseudomonas aeruginosa, Vibrio cholera, Salmonella typhimurium, Shigella flexneri, Haemophilus influenza, Bordotella pertussi, Erwinia amylovora, Rhizobium sp .등이 포함되나, 이에 제한되는 것은 아니다.According to a preferred embodiment of the present invention, the microorganism of the present invention is a bacterial cell. The cells are suitable for the practice of the present invention in that they have a periplasmic region between the inner membrane and the outer membrane. Examples of preferred bacterial cells of the present invention include E. coli , Pseudomonas aeruginosa , Vibrio cholera , Salmonella typhimurium , Shigella flexneri , Haemophilus influenza , Bordotella pertussi , Erwinia amylovora , Rhizobium sp . But are not limited thereto.

(c) 앵커 (c) Anchor 폴리펩타이드가The polypeptide 융합된  Fused 목적단백질의Of the target protein 단량체 발현: Monomer expression:

다음은 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 발현시키는 단계로서, 상기 앵커 폴리펩타이드는 미생물의 내막에 앵커링(anchoring)되고 목적단백질의 단량체는 상기 미생물의 원형질막 주위 공간(periplasmic region)에 전시된다.Next, the step of expressing the monomer of the target protein fused with the anchor polypeptide is anchored to the inner membrane of the microorganism, and the monomer of the target protein is displayed in the periplasmic region of the microorganism .

(d) 자가-조립(self-assemble)에 의한 (d) self-assemble 다중체Multiplex (( multimermultimer ) 형성:) formation:

마지막으로, 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체는 세포막의 유동성(membrane fluidity)에 의해 세포막을 부유하다가 단량체들이 쌍(pair)를 이루면서 자가-조립(self-assemble)되어 다중체(multimer)를 형성한다.Finally, the monomer of the target protein to which the anchor polypeptide is fused floats the cell membrane due to the membrane fluidity of the cell membrane, and the monomers self-assemble as a pair to form a multimer, .

본 명세서에서 용어 “다중체”는 이량체(dimer)를 포함하며, 상기 이량체는 동일한 단량체가 결합된 호모다이머(homodimer)이거나 서로 다른 단량체가 결합된 헤테로다이머(heterodimer)일 수 있다.As used herein, the term " multimer " includes a dimer, wherein the dimer may be a homodimer with the same monomers attached, or a heterodimer with different monomers combined.

본 발명의 일 실시예에 따르면, 본 발명의 디스플레이 시스템은 Fc 단량체를 발현하여 자가-조립되어 호모다이머(실시예 1 내지 3)를 형성하거나, 항체의 중쇄 및 경쇄를 각각 발현하여 자가-조립되어 헤테로다이머(실시예 4 내지 5)를 형성할 수 있음이 확인되었다.According to one embodiment of the present invention, the display system of the present invention is self-assembled by expressing and self-assembling Fc monomers to form homodimers (Examples 1 to 3), or by expressing the heavy and light chains of the antibody, respectively It was confirmed that heterodimers (Examples 4 to 5) can be formed.

본 발명의 다른 양태에 따르면, 본 발명은 상기 방법으로 제조된 목적단백질 디스플레이 시스템을 제공한다.According to another aspect of the present invention, there is provided a target protein display system produced by the above method.

이하에서는 본 명세서에서 내용의 과도한 중복을 막기 위해, 상기 기술한 내용과 중첩되는 부분에 대한 기재는 생략한다.Hereinafter, in order to avoid excessive duplication of contents in the present specification, description of portions overlapping with the above description will be omitted.

본 발명에 따라 제조된 목적단백질 디스플레이 시스템은 기존의 전장(full-legnth) IgG 디스플레이 시스템이나 PelB를 이용한 Fc 디스플레이 시스템에 비해 월등히 높아진 편의성(간단한 배지의 제조, 스크리닝을 위한 배양시간 감소, 단일 프로모터의 사용)을 가지며, 기존의 전장 IgG 디스플레이 기법보다 %CV 값이 작고 negative clone과 positive clone 간 형광 신호 값(Mean fluorescence intensity, MFI)의 차이가 커 목적단백질 디스플레이를 이용한 스크리닝에 더욱 효율적이다. The objective protein display system manufactured according to the present invention is superior to conventional full-legged IgG display systems or PelB-based Fc display systems in convenience (simplicity of medium production, reduction of incubation time for screening, (%) CV value is smaller than that of the conventional full-field IgG display technique and the fluorescence intensity value (Mean fluorescence intensity, MFI) between the negative clone and the positive clone is larger than that of the conventional full IgG display technique.

본 발명의 또 다른 양태에 따르면, 본 발명은 앵커 폴리펩타이드가 융합된 목적단백질의 단량체, 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 코딩하는 핵산분자 또는 상기 핵산분자를 포함하는 벡터를 포함하는 목적단백질 디스플레이용 조성물을 제공한다.According to still another aspect of the present invention, there is provided a method for producing an anchor polypeptide, comprising the steps of: (a) preparing an anchor polypeptide comprising a monomer of a target protein to which an anchor polypeptide is fused, a nucleic acid molecule encoding a monomer of a target protein to which the anchor polypeptide is fused, Thereby providing a composition for a target protein display.

본 발명의 바람직한 구현예에 따르면, 본 발명의 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체는 서열목록 제35서열 내지 제39서열로 구성된 군으로부터 선택되는 서열을 포함한다.According to a preferred embodiment of the present invention, the monomer of the objective protein to which the anchor polypeptide of the present invention is fused comprises a sequence selected from the group consisting of SEQ ID NO: 35 to SEQ ID NO: 39.

본 발명의 바람직한 구현예에 따르면, 본 발명의 상기 핵산분자는 서열목록 제30서열 내지 제34서열로 구성된 군으로부터 선택되는 서열을 포함한다.According to a preferred embodiment of the present invention, the nucleic acid molecule of the present invention comprises a sequence selected from the group consisting of SEQ ID NOS: 30 to 34.

본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 FcγR에 대한 친화도가 향상된 Fc 변이체의 선별방법을 제공한다:According to another aspect of the present invention, the present invention provides a method of screening Fc variants with improved affinity for Fc [gamma] R comprising the steps of:

(a) (i) 디스플레이하고자 하는 Fc 변이체의 단량체(monomer) 및 앵커(anchor) 폴리펩타이드를 코딩하는 뉴클레오타이드 서열 및 (ii) 상기 코딩 뉴클레오타이드 서열에 작동적(operatively)으로 결합된 프로모터를 포함하는 벡터를 구축(construction)하는 단계; (a) a vector comprising (i) a nucleotide sequence encoding a monomer and anchor polypeptide of the Fc variant to be displayed and (ii) a vector comprising a promoter operably linked to the coding nucleotide sequence Constructing a second image;

(b) 상기 벡터로 미생물을 형질전환(transformation)시키는 단계; (b) transforming the microorganism with the vector;

(c) 상기 형질전환된 미생물을 배양하여 앵커 폴리펩타이드가 융합된 Fc 변이체의 단량체를 발현시키는 단계로서, 상기 앵커 폴리펩타이드는 미생물의 내막에 앵커링(anchoring)되고 Fc 변이체의 단량체는 상기 미생물의 원형질막 주위 세포간극영역 (periplasmic region)에 전시되는 단계; (c) culturing the transformed microorganism to express a monomer of an Fc variant fused with the anchor polypeptide, wherein the anchor polypeptide is anchored to the inner membrane of the microorganism, and the monomer of the Fc variant is a protoplast of the microorganism Displayed in a periplasmic region;

(d) 상기 앵커 폴리펩타이드가 융합된 Fc 변이체의 단량체는 세포막의 유동성(membrane fluidity)에 의해 자가-조립(self-assemble)되어 이량체(dimer)를 형성하는 단계; 및(d) the monomer of the Fc variant to which the anchor polypeptide is fused is self-assembled by membrane fluidity to form a dimer; And

(e) 상기 Fc 변이체의 이량체가 디스플레이된 미생물에 FcγR를 처리한 후, FcγR에 대한 결합력을 야생형(wild type) Fc의 경우와 비교하는 단계.(e) treating the microorganism displaying the dimer of the Fc variant with Fc [gamma] R, and comparing the binding force against Fc [gamma] R with the case of wild type Fc.

본 발명의 바람직한 구현예에 따르면, 상기 Fc 변이체는 카밧 넘버링 시스템(Kabat numbering system)에 따른 하기의 아미노산 치환으로 구성된 군으로부터 선택되는 1 또는 2 이상의 아미노산 치환을 포함한다: L235V, G236A, S239D, F243L, V264E, S267E, R292P, Q295R, S298G, T299A, Y300L, K326I, A327Y, L328F, L328G, L328W, A330L, P331A, I332E, I332Y, T350A, D357G, E382V, N390D, T394A, P396L, F405S, M428I 및 M428L.According to a preferred embodiment of the invention, said Fc variant comprises one or more amino acid substitutions selected from the group consisting of the following amino acid substitutions according to the Kabat numbering system: L235V, G236A, S239D, F243L , V264E, S267E, R292P, Q295R, S298G, T299A, Y300L, K326I, A327Y, L328F, L328G, L328W, A330L, P331A, I332E, I332Y, T350A, D357G, E382V, N390D, T394A, P396L, F405S, M428I and M428L .

본 명세서에서 항체 Fc 도메인의 아미노산 잔기 번호는 당업계에서 통상적으로 사용되는 카밧 넘버링 시스템(Kabat numbering system)에 따른다(Kabat et al., in of Proteins of Immunological Interest5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호).The amino acid residue number of the antibody Fc domain herein refers to the Kabat numbering system conventionally used in the art (Kabat et al., In Proteins of Immunological Interest 5th Ed., US Department of Health and Human Services , NIH Publication No. 91-3242, 1991).

본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 항원에 대한 결합력을 갖는 항원 결합 영역(VH 및/또는 VL)의 선별방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for screening an antigen binding region (VH and / or VL) having a binding force to an antigen comprising the steps of:

(a) (i) 디스플레이하고자 하는 항체의 중쇄 또는 경쇄 가변부위와 앵커(anchor) 폴리펩타이드를 코딩하는 뉴클레오타이드 서열 및 (ii) 상기 코딩 뉴클레오타이드 서열에 작동적(operatively)으로 결합된 프로모터를 포함하는 벡터를 구축(construction)하는 단계; (a) a vector comprising (i) a nucleotide sequence encoding an heavy chain or light chain variable region of an antibody to be displayed and an anchor polypeptide, and (ii) a vector comprising a promoter operatively linked to the coding nucleotide sequence Constructing a second image;

(b) 상기 벡터로 미생물을 형질전환(transformation)시키는 단계; (b) transforming the microorganism with the vector;

(c) 상기 형질전환된 미생물을 배양하여 앵커 폴리펩타이드가 융합된 항체의 중쇄 또는 경쇄 가변부위를 발현시키는 단계로서, 상기 앵커 폴리펩타이드는 미생물의 내막에 앵커링(anchoring)되고 항체의 중쇄 또는 경쇄 가변부위는 상기 미생물의 원형질막 주위 공간(periplasmic region)에 전시되는 단계; (c) culturing the transformed microorganism to express a heavy or light chain variable region of the antibody fused with the anchor polypeptide, wherein the anchor polypeptide is anchored to the inner membrane of the microorganism and the heavy or light chain variable Wherein the site is displayed in a periplasmic region of the microorganism;

(d) 상기 앵커 폴리펩타이드가 융합된 항체의 중쇄 또는 경쇄 가변부위는 세포막의 유동성(membrane fluidity)에 의해 항체의 경쇄 또는 중쇄 가변부위와 자가-조립(self-assemble)되어 다중체(multimer)를 형성하는 단계; 및(d) The heavy or light chain variable region of the antibody fused with the anchor polypeptide is self-assemble with the light or heavy chain variable region of the antibody by membrane fluidity of the antibody to form a multimer ; And

(e) 상기 다중체가 디스플레이된 미생물에 항원을 처리하는 단계.(e) treating the antigen with the microorganism for which the complex is displayed.

상기 항체의 중쇄 가변부위를 코딩하는 뉴클레오타이드 서열 및 경쇄 가변부위를 코딩하는 뉴클레오타이드 서열은 동일한 벡터에 구축되거나, 서로 다른 벡터에 구축될 수 있으며, 바람직하게는 동일한 벡터에 구축되어 단일 프로모터에 의해 발현될 수 있다.The nucleotide sequence encoding the heavy chain variable region of the antibody and the nucleotide sequence encoding the light chain variable region can be constructed in the same vector or constructed in different vectors, preferably constructed in the same vector and expressed by a single promoter .

본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:

(ⅰ) 본 발명은 세포막의 유동성을 이용한 다중체인 목적단백질의 디스플레이 시스템을 제공한다.(I) The present invention provides a multi-chain target protein display system using the fluidity of cell membranes.

(ⅱ) 본 발명의 디스플레이 시스템은 기존의 전장 IgG 디스플레이 시스템이나 PelB를 이용한 Fc 디스플레이 시스템에 비해 월등히 높아진 편의성(간단한 배지의 제조, 스크리닝을 위한 배양시간 감소, 단일 프로모터의 사용 등)을 가지며, 기존의 전장 IgG 디스플레이 기법보다 %CV 값이 작고 음성 클론과 양성 클론 간 형광 신호 값의 차이가 커 목적단백질 디스플레이를 이용한 스크리닝에 더욱 효율적이다. (Ii) The display system of the present invention has much higher convenience (manufacture of a simple medium, reduction of incubation time for screening, use of a single promoter, etc.) as compared with the conventional full-field IgG display system or Fc display system using PelB, , The% CV value is smaller than that of the full-length IgG display technique, and the difference between the vocal clone and the positive clone fluorescence signal value is larger, which is more effective for screening using the target protein display.

도 1은 gIII 단백질과 세포막의 유동성에 의해 self-assemble되어 dimer를 이룬 Fc를 나타낸다.
도 2는 NlpA leader peptide와 세포막의 유동성에 의해 self-assemble되어 dimer를 이룬 Fc를 나타낸다.
도 3은 gIII 도메인 및 NlpA leader peptide와 세포막의 유동성을 이용한 dimeric Fc 디스플레이와 기존의 Full-length IgG 디스플레이 기법의 FcγRIIIa 결합 여부 및 신호 차이 비교를 나타낸다.
도 4는 A세포 내막에서 bevacizumab VH/VL의 assemble에 의한 항원 결합을 통해 확인한 결과를 나타낸다.
도 5는 구축한 라이브러리의 모식도와 gIII를 이용한 항체 Fc 도메인 디스플레이 모식도를 나타낸다.
도 6은 5라운드 스크리닝 후 매 라운드의 라이브러리와 wild type 허셉틴 Fc의 FcγRIIIa에 대한 친화도를 비교한 것(6A)과 이의 형광 세기를 막대 그래프로 비교한 것이다(6B).
도 7은 FcγRIIIa에 대해 높은 친화도를 갖는 변이체들을 나타낸다(A: No. 25(HW 25), B: No. 86(HW 86))
도 8은 No. 25(HW 25) 및 No. 86(HW 86)의 아미노산 서열을 야생형 허셉틴의 Fc 서열과 비교(A) 및 HW 25와 HW 86의 염기 서열(B)을 나타낸다.
도 9는 HW 25의 357번 글라이신을 아스파르트산으로, 405번째 세린을 페닐알라닌으로 되돌린 후 FcγRIIIa에 대한 친화도를 분석한 결과를 나타낸다(No.25-G357D는 HW 25의 돌연변이 중 357번 아미노산만 wild type으로 되돌린 것, No.25-S405F는 HW 25의 돌연변이 중 405번 아미노산만 wild type으로 되돌린 것, No.25-G357D/S405F는 HW 25의 돌연변이 중 357번 및 405번 아미노산만 wild type으로 되돌린 것).
도 10은 HW 86에서 발견된 T394A 변이 도입 실험 결과를 나타낸다.
도 11은 HW 86의 ADCC 효능 테스트 결과를 나타낸다.
도 12는 pMopac12-NlpA-Fc-FLAG의 개열지도를 나타낸다.
도 13은 pAK200-Fc-gIII의 개열지도를 나타낸다.
Figure 1 shows the Fc that is self-assemble by the flowability of gIII protein and cell membrane to form a dimer.
Figure 2 shows Fc with NlpA leader peptides and dimers fused by self-assemble by the flowability of cell membranes.
FIG. 3 shows the comparison of FcγRIIIa binding and signal difference between the dimeric Fc display using the gIII domain and the NlpA leader peptide and cell membrane fluidity and the conventional full-length IgG display technique.
FIG. 4 shows the results of assemble with bevacizumab VH / VL by antigen binding in A cell lining.
5 shows a schematic diagram of the library constructed and an antibody Fc domain display schematic diagram using gIII.
FIG. 6 is a bar graph comparing the fluorescence intensities of the wild-type Herceptin Fc with the FcγRIIIa affinity (6A) of each round of library after 5 rounds of screening (6B).
Figure 7 shows variants with high affinity for Fc [gamma] RIIIa (A: No. 25 (HW 25), B: No. 86 (HW 86)
Fig. 25 (HW 25) and No. 86 (HW 86) with the Fc sequence of wild-type Herceptin (A) and the nucleotide sequence of HW 25 and HW 86 (B).
9 shows the result of analysis of the affinity for Fc [gamma] RIIIa after the 355th glycine of HW 25 was converted to aspartic acid and the 405th serine to phenylalanine (No.25-G357D shows only 357 amino acids No.25-S405F is the only wild-type amino acid in the mutation of HW 25, and No. 25-G357D / S405F is the mutant of HW 25. Only 357 and 405 amino acids are wild type).
Fig. 10 shows experimental results of T394A mutagenesis found in HW86.
Figure 11 shows the results of the ADCC efficacy test of HW86.
12 shows a cleavage map of pMopac12-NlpA-Fc-FLAG.
Fig. 13 shows a cleavage map of pAK200-Fc-gIII.

이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

실시예Example 1:  One: gIIIgIII 도메인과 세포막 유동성을 이용한  Domain and cell membrane fluidity dimericdimeric FcFc 디스플레이를 위한 벡터 구축(야생형 WT  Vector construction for display (wild type WT FcFc , MG48), MG48)

gIII 단백질이 융합된 monomer 형태의 Fc 단백질을 세포막의 유동성에 의해 dimer로 self-assemble 되도록 하기 위하여 플라스미드를 제작하였다(도 1). Vent polymerase (New England Biolab)와 프라이머 MJ#183, MJ#184를 이용해 각각 증폭한 야생형 WT Fc와 MG48 유전자를 SfiI(New England Biolab)으로 제한효소 처리하여 insert를 만들고 SfiI 제한효소 처리 된 pAK200 vector와 ligation 하였다. 그 후 대장균 Jude1((F' [Tn10(Tetr )proAB+ lacI qΔ(lacZ)M15]mcrA Δ(mrr-hsdRMS-mcrBC) 80dlacZΔM15 ΔlacX74 deoR recA1 araD139 Δ(araleu)7697galUgalKrpsLendA1nupG) (Kawarasaki et al, 2003)에 transformation 하여 single clone을 확보한 후 염기서열 분석을 통해 WT Fc와 MG48이 pAK200에 성공적으로 삽입된 것을 확인하였다.Plasmids were prepared to self-assemble the monomeric form of the Fc protein with the gIII protein into dimers by the flowability of the cell membrane (Fig. 1). Vent polymerase (New England Biolab) and primer MJ # 183, each amplifying the wild-type WT Fc and MG48 gene using a MJ # 184 Sfi I (New England Biolab) in a restriction enzyme-treated to create an insert Sfi I restriction enzyme treatment pAK200 vector. Then Escherichia coli Jude1 ((F '[Tn 10 (Tet r) proAB + lacI q Δ (lacZ) M15] mcrA Δ (mrr - hsdRMS - mcrBC) 80d lac ZΔM15 Δ lacX74 deoR recA1 araD139 ( araleu ) 7697 galUgalKrpsLendA1nupG ) (Kawarasaki et al, 2003) to obtain a single clone, and the sequence analysis confirmed that WT Fc and MG48 were successfully inserted into pAK200.

실험에 사용한 프라이머The primers used in the experiments 프라이머 #primer # 뉴클레오타이드 서열 (5→3)The nucleotide sequence (5 → 3) MJ#1(서열목록 제1서열) MJ # 1 (SEQ ID No. 1) CCAGGCTTTACACTTTATGCCCAGGCTTTACACTTTATGC MJ#183(서열목록 제2서열) MJ # 183 (SEQ ID No. 2) CGAACTGGCCCAGCCGGCCATGGCGGACAAAACTCACACATGCGAACTGGCCCAGCCGGCCATGGCGGACAAAACTCACACATG MJ#184(서열목록 제3서열) MJ # 184 (SEQ ID NO: 3) AGTTCGGGCCCCCGAGGCCCCTTTACCCGGGGACAGGGAGAGTTCGGGCCCCCGAGGCCCCTTTACCCGGGGACAGGGAG MJ#228(서열목록 제4서열) MJ # 228 (Sequence Listing 4) CGCAGCGAGGCCCAGCCGGCCATGGCGGACATCCAGATGACTCAATCACCCAGTTCACCGCAGCGAGGCCCAGCCGGCCATGGCGGACATCCAGATGACTCAATCACCCAGTTCAC MJ#229(서열목록 제5서열) MJ # 229 (Sequence Listing 5) CTTAACGCGGCCCCCGAGGCCCCGGTCCGCTTAATCTCCACTTTGGTTCCCTTAACGCGGCCCCCGAGGCCCCGGTCCGCTTAATCTCCACTTTGGTTCC MJ#232(서열목록 제6서열) MJ # 232 (SEQ ID NO: 6) CGCAGCGAGGCCCAGCCGGCCATGGCGGAAGTCCAGCTGGTGGAGTCCGCGCAGCGAGGCCCAGCCGGCCATGGCGGAAGTCCAGCTGGTGGAGTCCG MJ#233(서열목록 제7서열) MJ # 233 (SEQ ID NO: 7) CTTAACGCGGCCCCCGAGGCCCCACTGCTTACTGTAACAAGAGTGCCCTGCTTAACGCGGCCCCCGAGGCCCCACTGCTTACTGTAACAAGAGTGCCCTG MJ#236(서열목록 제8서열) MJ # 236 (SEQ ID NO: 8) CCCTAAAATCTAGACTATTAGGCGCGCCCTTTGTCATCCCCTAAAATCTAGACTATTAGGCGCGCCCTTTGTCATC

실시예Example 2:  2: NlpANlpA leader peptide와 세포막 유동성을 이용한  leader peptide and cell membrane fluidity dimericdimeric FcFc 디스플레이를 위한 벡터 구축(야생형 WT  Vector construction for display (wild type WT FcFc , MG48), MG48)

NlpA leader peptide가 융합된 monomer 형태의 Fc 단백질을 세포막의 유동성에 의해 dimer로 self-assemble 되도록 하기 위하여 플라스미드를 제작하였다(도 2). Vent polymerase(New England Biolab)와 프라이머 MJ#183, MJ#184를 이용해 각각 증폭한 야생형 WT Fc와 MG48 유전자를 SfiI(New England Biolab)으로 제한효소 처리하여 insert를 만들고 SfiI 제한효소 처리 된 pMopac12-NlpA-FLAG vector와 ligation 하였다. 그 후 대장균 Jude1에 transformation 하여 single clone을 확보한 후 염기서열 분석을 통해 WT Fc와 MG48이 해당 벡터에 성공적으로 삽입된 것을 확인하였다.A plasmid was prepared to allow the NlpA leader peptide to self-assemble into the dimer by the flowability of the membrane-type Fc protein fused to the monomer (FIG. 2). Vent polymerase (New England Biolab) and primer MJ # 183, each amplifying the wild-type WT Fc and MG48 gene using a MJ # 184 Sfi I (New England Biolab) in a restriction enzyme-treated to create an insert Sfi I restriction enzyme treatment pMopac12 And then ligation was performed with -NlpA-FLAG vector. After that, a single clone was obtained by transformation into Escherichia coli Jude1, and it was confirmed by sequencing that WT Fc and MG48 were successfully inserted into the corresponding vector.

실시예Example 3: 세포막 유동성을 이용한 항체 단편 디스플레이를 위한 벡터 구축 3: Vector construction for antibody fragment display using cell membrane fluidity

Bevacizumab의 VH와 VL부분을 각각 프라이머 MJ#232와 MJ#233, MJ#228과 MJ#229을 사용하여 vent polymerase (New England Biolab)로 증폭하였다. 증폭한 유전자는 SfiI(New England Biolab)으로 제한효소 처리한 후 동일한 제한효소로 준비한 pMopac12-NlpA-FLAG vector와 pMopac12-NlpA-His-cMyc vector에 각각 ligation을 진행하였다. 이 플라스미드를 Jude1에 transformation하여 single colony의 염기서열 확인을 통해 pMopac12-NlpA-VH(bevacizumab)-FLAG과 pMopac12-NlpA-VL(bevacizumab)-His-cMyc이 완성된 것을 확인하였다. 그런 다음, VH와 VL을 하나의 vector에서 발현하기 위해 bicistronic 형태로 제작하였다. 앞서 제작한 pMopac12-NlpA-VH(bevacizumab)-FLAG을 template로 하여 프라이머 MJ#1, MJ#236으로 증폭하였다. 이 DNA 절편을 XbaI(New England Biolab)으로 제한효소처리 한 뒤, 동일하게 제한효소 처리 된 pMopac12-NlpA-VL(bevacizumab)-His-cMyc vector에 ligation하였다. 염기서열 분석 결과 pMopac12-NlpA-VH(bevacizumab)-FLAG-NlpA-VL(bevacizumab)-His-cMyc의 bicistronic 플라스미드가 만들어진 것을 확인하였다.The VH and VL portions of Bevacizumab were amplified with a vent polymerase (New England Biolab) using primers MJ # 232 and MJ # 233, MJ # 228 and MJ # 229, respectively. A gene amplification was conducted for each of the ligation pMopac12-NlpA-FLAG vector and pMopac12-NlpA-His-cMyc vector prepared with the same restriction enzymes and then treated with restriction enzyme Sfi I (New England Biolab). This plasmid was transformed into Jude1 and the pMOPac12-NlpA-VH (bevacizumab) -FLAG and pMopac12-NlpA-VL (bevacizumab) -His-cMyc were confirmed by confirming the base sequence of single colony. Then, VH and VL were produced in bicistronic form to express in one vector. The previously prepared pMopac12-NlpA-VH (bevacizumab) -FLAG was used as a template and amplified with primers MJ # 1 and MJ # 236. This DNA fragment was restriction enzyme treated with XbaI (New England Biolab) and then ligated into the same restriction enzyme-treated pMopac12-NlpA-VL (bevacizumab) -His-cMyc vector. Sequence analysis revealed that a bicistronic plasmid of pMopac12-NlpA-VH (bevacizumab) -FLAG-NlpA-VL (bevacizumab) -His-cMyc was produced.

실시예Example 4.  4. Full-length Full-length IgGIgG 디스플레이를 위한 대장균 배양 Culture of Escherichia coli for display

pMopac12-PelB-VH-CH1-CH2-CH3(WT)-FLAG, pMopac12-PelB-VH-CH1-CH2-CH3(MG48)-FLAG는 Jude1 cell에 pBAD30-Km-PelB-VL-Ck-NlpA-VL-Ck-His-cMyc 플라스미드와 함께 형질전환 (transformation)하여 heavy chain과 light chain이 각각 세포간극 영역에 발현될 수 있도록 준비하였다. TB에 glucose가 2% 함유된 배지 5 ml에서 각각 37℃, 16시간 배양한 후 TB 5.5 ml을 100 ml 플라스크에 분주하여 1:100 접종하였다. OD600=0.6까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 0.2% arabinose, 1 mM IPTG를 첨가하여 25℃, 250 rpm, 20시간 동안 과발현하였다. 과발현 후 OD600 normalize를 통해 동일한 양 만큼씩 14000 rpm, 1분간 원심분리를 통해 세포를 회수하였다.VL-CK-NlpA-VL (Cys-PelB-VL-CK-NlpA-VL) was introduced into Jude1 cell by pBAD30-Km-PelB-VH-CHl-CH2-CH3 (WT) -FLAG, pMopac12- -Ck-His-cMyc plasmid to prepare heavy chain and light chain to be expressed in the intercellular region, respectively. 5 ml of glucose containing 2% of glucose was cultured at 37 ° C for 16 hours, and 5.5 ml of TB was inoculated into a 100 ml flask at a ratio of 1: 100. After the cooling process, until OD 600 = 25 ℃ and incubated 20 minutes, and 0.6 eseo 250 rpm was overexpressed during the 0.2% arabinose, 1 mM IPTG was added to 25 ℃, 250 rpm, 20 hours. After overexpression, the cells were recovered by centrifugation at 14000 rpm for 1 min by the same amount through OD 600 normalize.

실시예Example 5.  5. 세포막 유동성과 Cell membrane fluidity and NlpANlpA 혹은  or gIII를gIII 이용한  Used dimericdimeric FcFc 디스플레이를 위한 대장균 배양 Culture of Escherichia coli for display

제작한 pAK200-Fc(WT/MG48)-gIII와 pMopac12-NlpA-Fc(WT/MG48)-FLAG 플라스미드는 Jude1 박테리아 세포에 형질전환한 뒤, 2% glucose가 첨가된 TB 배지 5 ml에서 37℃, 16시간 전배양한 후 5 ml의 TB 배지에 1:100 접종하여 OD600=0.6에 도달할때까지 배양하였다. 곧바로 25℃, 250 rpm에서 20분간 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 과발현 하였다. 과발현 후 OD600값을 측정하여 normalize된 양 만큼씩 14000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. The plasmid pAK200-Fc (WT / MG48) -gIII and pMopac12-NlpA-Fc (WT / MG48) -FLAG plasmid were transformed into Jude1 bacterial cells and cultured in 5 ml of TB medium supplemented with 2% After 16 hours of culture, the cells were inoculated in 5 ml of TB medium at a ratio of 1: 100 and cultured until OD 600 = 0.6. Immediately after cooling at 25 ° C and 250 rpm for 20 minutes, 1 mM IPTG was added and overexpressed at 25 ° C and 250 rpm for 5 hours. After overexpression, the OD 600 value was measured and the cells were recovered by centrifugation at 14000 rpm for 1 minute.

실시예Example 6.  6. 세포막 유동성 기반의 항체 단편 디스플레이를 위한 대장균 배양Escherichia coli culture for antibody fragment display based on cell membrane fluidity

제작한 pMopac12-NlpA-VH(bevacizumab)-FLAG-NlpA-VL(bevacizumab)-His-cMyc 플라스미드는 Jude1 박테리아 세포에 transformation한 뒤, TB+2% glucose 배지 5 ml에서 37℃, 16시간 전배양한 후 5 ml의 TB 배지에 1:100 접종하여 OD600=0.6까지 배양하였다. 곧바로 25℃, 250 rpm에서 20분간 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 과발현 하였다. 과발현 후 OD600값을 측정하여 normalize된 양 만큼씩 14000 rpm, 1분간 원심분리를 통해 세포를 회수하였다.The pMOPac12-NlpA-VH (bevacizumab) -FLAG-NlpA-VL (bevacizumab) -His-cMyc plasmid was transformed into Jude1 bacterial cells and cultured in 5 ml of TB + 2% glucose medium at 37 ° C for 16 hours The cells were then inoculated 1: 100 in 5 ml of TB medium and cultured to an OD 600 of 0.6. Immediately after cooling at 25 ° C and 250 rpm for 20 minutes, 1 mM IPTG was added and overexpressed at 25 ° C and 250 rpm for 5 hours. After overexpression, the OD 600 value was measured and the cells were recovered by centrifugation at 14000 rpm for 1 minute.

실시예Example 7.  7. 단백질 protein 변이체Mutant 탐색 및 분석을 위한  For navigation and analysis 세포외막과Extracellular membrane 펩티도글리칸Peptidoglycan 층 제거 Floor Removal

1 ml의 10 mM Tris-HCl(pH 8.0)을 첨가해 세포를 resuspension하고 1분간 원심분리하는 wash과정을 2회 반복하였다. 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10mM EDTA (pH 8.0)]로 resuspension하여 37℃, 30분간 rotation을 통해 세포 외막을 제거하였다. 원심분리하여 상등액을 제거한 후 1 ml의 Solution A[0.5 M sucrose, 20 mM MgCl2,10 mM MOPS pH 6.8]을 첨가해 resuspension과 원심분리를 하였다. 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml 첨가해 resuspension한 뒤 37℃, 15분 간 rotation하여 peptidoglycan layer를 제거하였다. The cells were resuspended in 1 ml of 10 mM Tris-HCl (pH 8.0) and centrifuged for 1 min. The wash procedure was repeated twice. The cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] and the extracellular membrane was removed by rotation at 37 ° C for 30 minutes. After centrifugation, the supernatant was removed and 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added and centrifuged with resuspension. 1 ml of Solution A and 20 μl of 50 mg / ml lysozyme solution was added to 1 ml of the solution. The solution was then resuspensioned and the peptidoglycan layer was removed by rotation at 37 ° C for 15 minutes.

실시예Example 8.  8. 유세포Flow cell 분석기를 이용한 세포막 유동성 기반의  Analyzers based on cell membrane fluidity FcFc 변이체Mutant 디스플레이 시스템 검증 Display system verification

본 발명에서 개발한 세포막 유동성 기반의 dimeric Fc 디스플레이 시스템을 기존의 Full-length IgG 디스플레이 시스템과 비교하기 위해 각각 배양한 뒤 FcγRIIIa와의 결합력을 비교 분석하였다. 원심분리 후 상등액을 제거하고 1 ml의 PBS로 resuspension한 뒤 300 μl를 취해 700 μl의 PBS와 5 nM의 tetrameric FcγRIIIa-Alexa488 probe를 함께 넣고 상온에서 rotation하여 spheroplast에 형광 probe를 labeling하였다. Labeling후 1 ml의 PBS로 1회 wash한 후 Guava(Merck Millipore) 장비를 이용해 분석하였다(도 3). Monomeric Fc 형태에서는 FcγRIIIa 결합이 불가능하다는 과학적 사실을 바탕으로 분석해 본 결과, NlpA 및 gIII에 융합된 monomer의 Fc 단백질이 세포막의 유동성을 통해 dimer 형태의 Fc로 디스플레이되는 것을 확인하였으며, 기존의 full-length IgG 디스플레이 기법보다 %CV 값이 낮고, negative clone과 positive clone 간 형광 신호 값(Mean fluorescence intensity, MFI)의 차이가 큰 것을 확인할 수 있었으며, 따라서 서 Fc 변이체를 포함한 해당 목적 단백질이 균질성이 높게 박테리아에 디스플레이 되고, 효과적인 유세포 분석기를 활용한 단백질과 리간드의 결합력 분석과 단백질 변이체 라이브러리 탐색이 효과적일 수 있음을 확인하였다.In order to compare the dimeric Fc display system based on the cell membrane fluidity developed in the present invention with the conventional full-length IgG display system, the binding capacity with FcγRIIIa was compared and analyzed. After centrifugation, the supernatant was removed and resuspension in 1 ml of PBS. After taking 300 μl, 700 μl of PBS and 5 nM of tetrameric FcγRIIIa-Alexa488 probe were added together and the fluorescent probe was labeled on spheroplast by rotation at room temperature. After labeling, the plate was washed once with 1 ml of PBS and analyzed using Guava (Merck Millipore) equipment (FIG. 3). Based on the scientific fact that FcγRIIIa binding is impossible in the form of monomeric Fc, it has been confirmed that the Fc protein of the monomer fused to NlpA and gIII is displayed as a dimer type Fc through the cell membrane fluidity, It was confirmed that the% CV value was lower than that of the IgG display technique and the difference of the mean fluorescence intensity (MFI) between the negative clone and the positive clone was large. Therefore, the target protein including the Fc mutant had high homogeneity, We have shown that the binding assay of protein and ligand and the search of protein variant library can be effective using an effective flow cytometer.

실시예Example 9:  9: 유세포Flow cell 분석기를 이용한 세포막 유동성 기반의 항체 단편 디스플레이 시스템 검증 Verification of cell membrane fluidity based antibody fragment display system using analyzer

Fc 이외에 multimer를 이루는 단백질들이 막의 유동성을 이용한 본 시스템으로 self-assemble이 가능한 지의 여부를 확인하기 위하여 본 실험을 수행하였다. 이 실험은 단일도메인 항체 (VHH)로 항원결합이 가능한 낙타류와 상어류를 제외하고 질병 치료와 진단에 이용되고 있는 인간을 포함한 포유류 IgG 항체들은 항원 결합을 위해서는 VH와 VL이 assemble 되어야 하고, VH 혹은 VL이 assemble 되지 않으면 항원과의 결합 능력을 가지지 못한다는 과학적 사실에 근거해 진행하였다. 세포외막과 펩티도글리칸 층이 제거된 항체 결합부위들 (VH, VL)을 디스플레이하고 있는 대장균을 원심분리 하여 상등액을 제거하고 1 ml의 PBS로 resuspension한 뒤 300 μl를 취해 700 μl의 PBS와 75 nM의 VEGF-Alexa488 probe를 함께 넣고 상온에서 rotation하여 spheroplast에 labeling하였다. Labeling후 1 ml의 PBS로 1회 wash한 후 Guava(Merck Millipore) 장비를 이용해 분석하였다(도 4). 그 결과, VH 혹은 VL만 디스플레이된 상태의 경우 empty cell인 Jude1과 유사한 형광세기를 나타내는 것으로 보아 항원인 VEGF와 결합하지 않은 것이 확인되었다. 또한 VH와 VL이 함께 발현되는 경우 박테리아 세포 내막의 유동성으로 인하여 VH와 VL이 assemble되어 디스플레이 됨으로써 항원과 성공적으로 결합하는 것이 확인되었다. 이로써 Fc 단백질 이외에도 multimer를 이루는 각종 단백질들이 디스플레이되어 self-assemble이 가능하다는 것을 확인하였다.This experiment was carried out to confirm whether multimers other than Fc can self-assemble with this system using the fluidity of the membrane. In this experiment, mammalian IgG antibodies, including humans, which are used for the treatment and diagnosis of diseases except for camelids and sharks, which are capable of antigen binding with a single domain antibody (VHH), should be assemble with VH and VL for antigen binding. It is based on the scientific fact that if VL is not assimilated, it does not have the ability to bind antigen. Escherichia coli displaying antibody binding sites (VH, VL) with the extracellular membrane and peptidoglycan layer removed was centrifuged, supernatant was removed, and resuspension was performed with 1 ml of PBS. Then, 300 μl of the supernatant was removed and 700 μl of PBS 75 nM of VEGF-Alexa488 probe was added and labeled at spheroplast by rotation at room temperature. After labeling, the cells were washed once with 1 ml of PBS and analyzed using a Guava (Merck Millipore) instrument (Fig. 4). As a result, when VH or VL alone was displayed, fluorescence intensity similar to that of empty cell Jude1 was shown, indicating that it did not bind with VEGF, which is an antigen. In addition, when VH and VL are expressed together, it is confirmed that VH and VL are assimilated due to the fluidity of the bacterial intracellular membrane, thereby successfully binding to the antigen. In addition to Fc protein, various proteins forming multimers were displayed and confirmed to be able to self-assemble.

실시예Example 10:  10: FcγRIIIa에의To Fc [gamma] RIIIa 결합력 향상  Bond strength improvement 변이체Mutant 발굴을 위한 라이브러리 구축 Build libraries for excavation

FcγR에 대한 결합력을 향상시킨 Fc 변이체에 대한 연구는 여러 기관에서 진행되고 있으며, 선행연구에서 다양한 기능향상 Fc 변이체들이 발굴되었다. 발굴된 다양한 Fc 변이체들의 조합을 통해 가장 최적의 조합을 갖는 Fc 변이체를 찾는 것을 목표로 하였으며, 이를 위해 실험 방법이 간단하고 다루기 쉬운 대장균에서 무당화 항체 Fc를 디스플레이하기 위한 라이브러리를 디자인하여 구축하였다. 다양한 종류의 FcγR에 대한 항체 Fc의 결합 부위는 CH1-CH2 접합부 도메인과 근접한 지역에 집중되어있으므로, FcγRIIIa가 아닌 FcγRI, FcγRIIa, FcγRIIb 등 여타 FcγR에 대한 결합력을 향상시킨 변이체도 FcγRIIIa에의 결합력에 영향을 줄 수 있는 가능성이 있다. 따라서 FcγRIIIa에만 국한하지 않고 모든 FcγR들에 대해 친화도를 향상시킨 변이체들을 탐색하였으며, 본 연구실에서 선행 연구를 통해 발굴된 무당화 항체 Fc 변이체 뿐 아니라 Xencore, Macrogenics와 같은 Fc 엔지니어링 전문 기업에서 발굴된 당화 항체 Fc 변이체 또한 후보군으로 채택하였다(표 2). 그 결과 무당화 항체 8종, 당화 항체 4종을 선별, 29개의 변이 위치에 30 종류의 변이를 갖는 변이체들을 동정하였으며, 29개의 변이 위치에 30개의 변이가 각각 존재하거나 존재하지 않는 두 가지의 경우의 수를 갖도록 하는 조합을 구상하였다. 이를 위하여, degenerate codon을 갖는 프라이머(표 3)를 이용해 무작위적 조합을 갖는 Fc 변이체를 coding하는 유전자를 구축하였으며, Fc의 CH1-CH2 접합부가 FcγR의 결합에 중요한 역할을 하므로 이 부분이 디스플레이 이후 노출되도록 하기 위해, N-말단이 아닌 C-말단을 통해 항체 Fc를 디스플레이하는 것이 요구되었다. 그러므로 박테리오 파지 유래의 geneIII 신호단백질을 이용하는 pAK200 플라스미드를 벡터로 이용하여 세포막 유동성을 통한 대장균 세포간극영역에 C-말단 디스플레이가 가능하게 하였으며, 다양한 Fc 변이체들이 도입된 거대 Fc 변이체 라이브러리를 구축하였다(도 5).Studies on Fc variants that enhance binding to Fc [gamma] R are being conducted in various organs, and various functional Fc variants have been discovered in previous studies. The aim of this study was to find the most optimal combination of Fc variants through the combination of various Fc variants. For this purpose, a library was designed and constructed to display the Fc of the non - glycosylated antibody in E. coli, which is simple and easy to manipulate. Since the binding sites of antibody Fc to various FcγRs are concentrated in regions close to the CH1-CH2 junction domain, mutants that have enhanced binding affinity to other FcγRs such as FcγRII, FcγRIIa, and FcγRIIb, but not FcγRIIIa, also have an effect on binding to FcγRIIIa There is a possibility to give. Therefore, we have searched mutants that have improved affinity for all FcγRs, not limited to FcγRIIIa. In addition to the mutated Fc variants discovered by previous studies in this laboratory, Antibody Fc variants were also selected as candidates (Table 2). As a result, 8 kinds of mutated antibodies and 4 kinds of glycated antibodies were screened, and mutants having 30 mutations at 29 mutation sites were identified. In the case of 30 mutants at 29 mutation positions, Of the total number of cells. For this, a gene encoding a Fc variant with a random combination was constructed using a primer having a degenerate codon (Table 3). Since the CH1-CH2 junction of Fc plays an important role in the binding of FcγR, , It was required to display the antibody Fc through the C-terminal rather than the N-terminal. Therefore, the pAK200 plasmid using the gene III signaling protein derived from the bacteriophage was used as a vector to enable C-terminal display of the E. coli cell gap region through cell membrane fluidity, and a large Fc mutant library into which various Fc variants were introduced was constructed 5).

라이브러리 구축을 위해 선별된 변이체의 종류Types of variants selected for library construction 변이체Mutant 돌연변이 위치Mutation location Xencor2aXencor2a G236AG236A Xencor3aXencor3a S239D / A330L / I332ES239D / A330L / I332E Xencor2bXencor2b S267E / L328FS267E / L328F MacrogenicsMacrogenics L235V / F243L / R292P / Y300L / P396LL235V / F243L / R292P / Y300L / P396L Fc 11Fc 11 E382VE382V Fc 5Fc 5 E382V / M428IE382V / M428I Fc 5-2aFc 5-2a S298G / T299A / E382V / M428IS298G / T299A / E382V / M428I Fc 1004Fc 1004 S298G / T299A / E382V / N390D / M428LS298G / T299A / E382V / N390D / M428L Fc 701Fc 701 Q295R / L328W / P331A / I332Y / E382V / M428LQ295R / L328W / P331A / I332Y / E382V / M428L A/IYGA / IYG T299A / K326I / A327Y / L328GT299A / K326I / A327Y / L328G Fc 1004/IYGFc 1004 / IYG S298G / T299A / K326I / A327Y / L328G / E382V / N390D / M428LS298G / T299A / K326I / A327Y / L328G / E382V / N390D / M428L MG 48MG 48 V264E / S298G / T299A / K326I / A327Y / L328G / T350A / E382V / N390D / M428LV264E / S298G / T299A / K326I / A327Y / L328G / T350A / E382V / N390D / M428L

(돌연변이 위치는 Kabat EU 넘버링 시스템(Kabat et al., in of Proteins of Immunological Interest5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호에 따름)(Mutation positions are determined according to the EU index number as in the Kabat EU numbering system (Kabat et al., In Proteins of Immunological Interest 5th ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991)

실험에 사용한 프라이머The primers used in the experiments 프라이머 #primer # 뉴클레오타이드 서열 (5→3)The nucleotide sequence (5 → 3) 1Fw(서열목록 제9서열)1Fw (SEQ ID NO: 9) GACAAAACTCACACATGCC CACCGTGCCCAGCACCTGAAGACAAAACTCACACATGCC CACCGTGCCCAGCACCTGAA 2Rv(서열목록 제10서열)2Rv (SEQ ID NO: 10) GAGGGTGTCCTTGGGTTTTGGG GGAARGAGGAAGACTGACGGTCCCCCTAMGAG TTCAGGTGCTGGGCACGGTGGAGGGTGTCCTTGGGTTTTGGG GGAARGAGGAAGACTGACGGTCCCCCTAMGAG TTCAGGTGCTGGGCACGGTG 2Rv S239D(서열목록 제11서열)2Rv S239D (SEQ ID NO: 11) GAGGGTGTCCTTGGGTTTTGGG GGAARGAGGAAGACATCCGGTCCCCCTAMGAG TTCAGGTGCTGGGCACGGTGGAGGGTGTCCTTGGGTTTTGGG GGAARGAGGAAGACATCCGGTCCCCCTAMGAG TTCAGGTGCTGGGCACGGTG 3Fw(서열목록 제12서열)3Fw (SEQ ID NO: 12) CCCAAAACCCAAGGACACCCTC ATGATCTCCCGGA CCCCTGAGGTCACATGCGTGCCCAAAACCCAAGGACACCCTC ATGATCTCCCGGA CCCCTGAGGTCACATGCGTG 4Rv(서열목록 제13서열)4Rv (SEQ ID NO: 13) CAGTTGAACTTGACCTCAGGGTCTTC GTGGCTCACGTCTWCCAC CACGCATGTGACCTCAGGGGCAGTTGAACTTGACCTCAGGGTCTTC GTGGCTCACGTCTWCCAC CACGCATGTGACCTCAGGGG 4Rv S267E(서열목록 제14서열)4Rv S267E (SEQ ID NO: 14) CAGTTGAACTTGACCTCAGGGTCTTC GTGTTCCACGTCTWCCAC CACGCATGTGACCTCAGGGGCAGTTGAACTTGACCTCAGGGTCTTC GTGTTCCACGTCTWCCAC CACGCATGTGACCTCAGGGG 5Fw(서열목록 제15서열)5Fw (Sequence Listing 15 sequence) GAAGACCCTGAGGTCAAGTTCAACTG GTACGTGGACGGCGTG GAGGTGCATAATGCCAAGACAAAGCCGGAAGACCCTGAGGTCAAGTTCAACTG GTACGTGGACGGCGTG GAGGTGCATAATGCCAAGACAAAGCCG 6Rv(서열목록 제16서열)6Rv (SEQ ID NO: 16 sequence) GGTGAGGACGCTGACCACACG GTACGCGCYGTTGTATYGCTCCTCTSG CGGCTTTGTCTTGGCATTATGCACCTCGGTGAGGACGCTGACCACACG GTACGCGCYGTTGTATYGCTCCTCTSG CGGCTTTGTCTTGGCATTATGCACCTC 6Rv Y300V(서열목록 제17서열)6Rv Y300V (SEQ ID NO: 17 sequence) GGTGAGGACGCTGACCACACG CACCGCGCYGTTGTATYGCTCCTCTSG CGGCTTTGTCTTGGCATTATGCACCTCGGTGAGGACGCTGACCACACG CACCGCGCYGTTGTATYGCTCCTCTSG CGGCTTTGTCTTGGCATTATGCACCTC 7Fw(서열목록 제18서열)7Fw (SEQ ID NO: 18) CGTGTGGTCAGCGTCCTCACC GTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCCGTGTGGTCAGCGTCCTCACC GTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTC 8Rv(서열목록 제19서열)8Rv (SEQ ID NO: 19 sequence) CTGCCCTTTGGCTTTGGAGATGGTTTT CTCGATTGSTRMTGGMVHGKMTWTGTTGGA GACCTTGCACTTGTACTCCTTGCCCTGCCCTTTGGCTTTGGAGATGGTTTT CTCGATTGSTRMTGGMVHGKMTWTGTTGGA GACCTTGCACTTGTACTCCTTGCC 8Rv I332Y(서열목록 제20서열)8Rv I332Y (Sequence Listing 20 sequence) CTGCCCTTTGGCTTTGGAGATGGTTTT CTCATATGSTRMTGGMVHGKMTWTGTTGGA GACCTTGCACTTGTACTCCTTGCCCTGCCCTTTGGCTTTGGAGATGGTTTT CTCATATGSTRMTGGMVHGKMTWTGTTGGA GACCTTGCACTTGTACTCCTTGCC 8Rv I332E(서열목록 제21서열)8Rv I332E (SEQ ID NO: 21 sequence) CTGCCCTTTGGCTTTGGAGATGGTTTT CTCTTCTGSTRMTGGMVHGKMTWTGTTGGA GACCTTGCACTTGTACTCCTTGCCCTGCCCTTTGGCTTTGGAGATGGTTTT CTCTTCTGSTRMTGGMVHGKMTWTGTTGGA GACCTTGCACTTGTACTCCTTGCC 9Fw(서열목록 제22서열)9 Fw (SEQ ID NO: 22) AAAACCATCTCCAAAGCCAAAGGGCAG CCCCGAGAACCACAGGTGTACRCA CTGCCCCCATCCCGGGATGAAAACCATCTCCAAAGCCAAAGGGCAG CCCCGAGAACCACAGGTGTACRCA CTGCCCCCATCCCGGGATG 10Rv(서열목록 제23서열)10Rv (SEQ ID NO: 23) GCTGGGATAGAAGCCTTTGACCAG GCAGGTCAGGCTGACCTGGTTCTTGGTCAGCT CATCCCGGGATGGGGGCAGGt; 11Fw(서열목록 제24서열)11 Fw (SEQ ID NO: 24) CTGGTCAAAGGCTTCTATCCCAGC GACATCGCCGTGGAGTGGGWA AGCAATGGGCAGCCGGAGAACCTGGTCAAAGGCTTCTATCCCAGC GACATCGCCGTGGAGTGGGWA AGCAATGGGCAGCCGGAGAAC 12Rv(서열목록 제25서열)12Rv (SEQ ID NO: 25 sequence) GAGGAAGAAGGAGCCGTCGGAG TCCAGCACGGGAGGTGTGGTCTTGTAGTY GTTCTCCGGCTGCCCATTGCTGAGGAAGAAGGAGCCGTCGGAG TCCAGCACGGGAGGTGTGGTCTTGTAGTY GTTCTCCGGCTGCCCATTGCT 12Rv P396L(서열목록 제26서열)12Rv P396L (Sequence Listing 26 sequence) GAGGAAGAAGGAGCCGTCGGAG TCCAGCACCAGAGGTGTGGTCTTGTAGTY GTTCTCCGGCTGCCCATTGCTGAGGAAGAAGGAGCCGTCGGAG TCCAGCACCAGAGGTGTGGTCTTGTAGTY GTTCTCCGGCTGCCCATTGCT 13Fw(서열목록 제27서열)13Fw (SEQ ID NO: 27) CTCCGACGGCTCCTTCTTCCTC TACAGCAAGCTCACCGTGGACAAGAGCAG GTGGCAGCAGGGGAACGTCTTCCTCCGACGGCTCCTTCTTCCTC TACAGCAAGCTCACCGTGGACAAGAGCAG GTGGCAGCAGGGGAACGTCTTC 14Rv(서열목록 제28서열)14Rv (SEQ ID NO: 28) TTTACCCGGGGACAGGGAGAGG CTCTTCTGCGTGTAGTGGTTGTGCAGAGCCTCATGSAKCACGGAGCATGA GAAGACGTTCCCCTGCTGCCACTTTACCCGGGGACAGGGAGAGG CTCTTCTGCGTGTAGTGGTTGTGCAGAGCCTCATGSAKCACGGAGCATGA GAAGACGTTCCCCTGCTGCCAC Pro-amplificationRv(서열목록 제29서열)Pro-amplification Rv (SEQ ID NO: 29 sequence) CTCTAG GGCCCCCGAGGCCCC GTGGCAGCAGGGGAACGTCTTCCTCTAG GGCCCCCGAGGCCCC GTGGCAGCAGGGGAACGTCTTC

실시예Example 11: 구축된 라이브러리의 스크리닝 11: Screening of built libraries

구축된 라이브러리를 250 ml 플라스트에 담은 TB (Becton, Dickinson and company (New Jersey, USA)) + 2% glucose (Sigma Aldrich (Missouri, USA)) 배지 25 ml에 37℃, 4시간 전배양을 진행한 뒤, terrific broth에 1:100으로 접종하여 OD600이 0.5에 도달할 때까지 37℃에서 본배양을 진행하였다. 본배양이 끝난 후 25℃에서 1 mM IPTG (Biosesang (Sungnam, South Korea))를 이용하여 5시간 인덕션을 진행하고 인덕션이 끝난 후 8/OD600으로 셀 솔루션을 회수하였다. 회수된 세포를 Tris-HCl (pH 8.0) 1 ml로 세척을 진행한 뒤, 14000 rpm에서 1분간 원심분리 뒤, 같은 작업을 1 회 더 실시하였다. 그 후 회수된 세포를 STE(0.5 M Sucrose-10 mM Tris-10 mM EDTA(pH 8.0)) 1 ml로 resuspension하고 37℃에서 30분간 교반하였다. 교반 후 세포를 14,000 rpm에서 1분간 원심분리하고 solution A(0.5 M sucrose, 20 mM MgCl2, 10 mM MOPS pH 6.8)로 풀었다. 그 후 다시 14,000 rpm에서 1분간 원심분리하고 pellet을 1 mg/ml의 lysozyme(Sigma Aldrich (Missouri, USA))을 포함하는 solution A로 풀어 37℃에서 15분간 교반하였다. 교반한 세포를 14000 rpm에서 1분간 원심분리한 뒤, PBS 1 ml로 풀어 준비하였다. 형광 표지된 FcγRIIIa가 들어있는 PBS와 7:15의 비율로 섞어 1 ml를 만든 뒤, 상온에서 1시간동안 교반하였다. 형광 표지가 끝난 스페로플라스트 (spheroplast)들을 14,000 rpm에서 1분간 원심분리 한 뒤, PBS로 세척하고 다시 14,000 rpm에서 1분간 원심분리하는 과정을 2회 걸쳐 wash를 진행하였다. The constructed library was cultured in 25 ml of TB medium (Becton, Dickinson and Company, New Jersey, USA) + 2% glucose (Sigma Aldrich, Missouri, USA) , The cells were inoculated at 1: 100 in terrific broth and cultured at 37 ° C until OD600 reached 0.5. After the incubation, induction was carried out for 5 hours at 25 ° C using 1 mM IPTG (Biosesang (Sungnam, South Korea)), and the cell solution was recovered at 8 / OD600 after induction. The recovered cells were washed with 1 ml of Tris-HCl (pH 8.0), centrifuged at 14000 rpm for 1 minute, and the same operation was performed once more. The recovered cells were then resuspensioned with 1 ml of STE (0.5 M Sucrose-10 mM Tris-10 mM EDTA (pH 8.0)) and stirred at 37 ° C for 30 minutes. After stirring, the cells were centrifuged at 14,000 rpm for 1 minute and solubilized with solution A (0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8). After centrifugation at 14,000 rpm for 1 minute, the pellet was resuspended in solution A containing 1 mg / ml lysozyme (Sigma Aldrich, Missouri, USA) and stirred at 37 ° C for 15 minutes. The agitated cells were centrifuged at 14000 rpm for 1 minute and then dissolved with 1 ml of PBS. The mixture was mixed with PBS containing fluorescently labeled FcγRIIIa at a ratio of 7:15 to make 1 ml, and the mixture was stirred at room temperature for 1 hour. The fluorescently labeled spheroplasts were centrifuged at 14,000 rpm for 1 minute, washed with PBS, and centrifuged again at 14,000 rpm for 1 minute.

FcγRIIIa로 lableling이 끝난 스페로플라스트를 1:15의 비율로 1 X PBS에 희석한 뒤, 유세포 분석기(S3 cell sorter, BioRad)를 통하여 스크리닝을 진행하였다. 형광 표지된 FcγRIIIa에 의해 나타나는 형광 세기가 높은 스페로플라스트는 그만큼 FcγRIIIa에 대한 높은 친화도를 갖는 변이체를 갖고 있다는 것을 의미하므로, 형광 세기가 상위 3 %에 해당하는 스페로플라스트를 스크리닝을 통해 수집하였다. 회수된 스페로플라스트를 다시 유세포 분석기를 통해 스크리닝함으로써, 스크리닝 과정에서 같이 회수되는 negative clone들을 제거하고 FcγRIIIa에 대해 높은 친화도를 갖는 변이체들의 비율을 높이는 재스크리닝 과정을 거쳤다. 얻어진 스페로플라스트를 PCR을 이용해 양성 변이체 DNA를 증폭하여 회수하였고, 다시 디스플레이 벡터에 클로닝하여 라이브러리를 구축하였다. 이러한 스크리닝 후 라이브러리 구축 과정을 총 5회 반복하였으며, 사용되는 형광 표지 FcγRIIIa의 농도를 점차 줄여나감으로써 스크리닝이 진행될수록 FcγRIIIa에 대해 더욱 높은 친화도를 갖는 변이체들로 라이브러리가 증폭되도록 진행하였다.Sprague-lavaged endothelial cells with FcγRIIIa were diluted in 1 × PBS at a ratio of 1:15 and screened using a flow cell analyzer (S3 cell sorter, BioRad). Since the high fluorescence intensity of spiroflavast, which is indicated by fluorescence-labeled FcγRIIIa, means that it has a mutant with high affinity for FcγRIIIa, the top 3% of the fluorescence intensity is collected through screening . Screening of the recovered spooflast was performed by flow cytometry again to remove negative clones that were recovered in the screening process and to increase the proportion of mutants having high affinity for FcγRIIIa. The obtained spiroplast was amplified and recovered by PCR using positive mutant DNA, and cloned into a display vector to construct a library. After this screening, the library construction process was repeated five times in total, and as the screening progressed, the library was amplified with mutants having higher affinity for FcγRIIIa by gradually decreasing the concentration of the fluorescent label FcγRIIIa used.

실시예Example 12: 스크리닝 후 라이브러리 평가 및 개별  12: Library evaluation and individual after screening 변이체Mutant 분석 analysis

5회의 반복 스크리닝 이후, 모든 스크리닝의 단계에서 구축된 라이브러리들과 시작 라이브러리를 250 ml 플라스트에 담은 TB + 2% glucose 배지 25 ml에 37℃, 4시간 전배양을 진행한 뒤, TB 배지에 1:100으로 접종하여 OD600이 0.5에 도달할 때까지 37℃에서 본배양을 진행하였다. 본배양이 끝난 후 25℃에서 1 mM IPTG를 이용하여 5시간 인덕션을 진행하고 인덕션이 끝난 후 8 ml/OD600 분량의 세포들을 회수하였다. 또한 비교군으로 사용된 무당화 wild type Fc 시험관에 5 ml의 TB + 2% glucose 배지에 접종한 뒤, 37℃에 밤새 전배양을 진행하고 TB 배지 5 ml에 위와 같은 본배양, 인덕션 과정을 거치고 세포 회수 과정을 진행하였다. 회수된 모든 라이브러리와 비교군을 상기 기재한 것과 같은 방법으로 스페로플라스트를 제조한 다음, 그 형광 세기를 비교한 결과(Guava, Millipore), FcγR에 대한 친화도가 높은 변이체들만 선별한 결과로 모든 라이브러리가 야생형 무당화 Fc보다 높은 FcγRIIIa 친화도를 나타냈으며, 스크리닝이 진행되면서 라이브러리에 FcγRIIIa에 대해 높은 친화도를 갖는 변이체들의 비율이 증폭되었음을 확인할 수 있었다(도 6).After 5 repetitive screenings, the libraries constructed in all the screening steps and the starting library were cultured in 25 ml of TB + 2% glucose medium in 250 ml plats at 37 ° C for 4 hours, : 100 and the cultivation was continued at 37 ° C until OD600 reached 0.5. After the incubation, induction was carried out for 5 hours at 25 ° C using 1 mM IPTG. After induction, 8 ml / OD600 cells were recovered. In addition, 5 ml of TB + 2% glucose medium was inoculated into the untreated wild-type Fc test tube used as the comparative group, pre-cultured overnight at 37 ° C, and then cultured in 5 ml of TB medium Cell recovery was performed. All collected libraries and comparative groups were subjected to the same method as described above, and their fluorescence intensities were compared (Guava, Millipore). As a result, only mutants having high affinity for FcγR were selected The library exhibited higher FcγRIIIa affinity than the wild type amorphous Fc, and as screening progressed, it was confirmed that the ratio of mutants having high affinity to FcγRIIIa in the library was amplified (FIG. 6).

라이브러리를 이용한 스크리닝이 성공적으로 완료되었음을 확인한 이후, 마지막 라운드 스크리닝 이후 구축한 라이브러리에서 개별 변이체들을 선별하여 각각 변이체들의 FcγRIIIa에 대한 결합력을 측정하고자 하였다. 실험관에 5 ml의 TB + 2% glucose 배지에 개별 변이체 콜로니를 접종한 뒤, 37℃에서 밤새도록 전배양을 하였다. 그리고 5 ml의 TB 배지에 1:100으로 접종하여 OD600이 0.5에 도달할 때까지 37℃에서 본배양을 진행하였고, 1 mM의 IPTG를 이용하여 25℃에서 5시간 동안 인덕션을 진행하였다. 인덕션이 완료된 이후 대장균을 8 ml/OD600의 양만큼 harvest를 진행한 뒤, 상기에 기재한 스페로플라스팅 과정을 거쳐 개별 변이체들의 스페로플라스트를 제작한 뒤, 유세포 분석기를 통해 그 형광의 세기를 측정하였다. 그 결과 100개의 개별 변이체들 중 특별히 FcγRIIIa에 높은 친화도를 보이는 변이체들을 선별하고 동정하였음(표 4, 도 7 및 8) After confirming that the screening using the library was completed successfully, the individual mutants were selected from the libraries constructed after the last round screening to measure the binding capacity of the mutants to FcγRIIIa. The test tube was inoculated with 5 ml of TB + 2% glucose medium and incubated overnight at 37 ° C. The cells were inoculated at a ratio of 1: 100 in 5 ml of TB medium and cultured at 37 ° C until OD600 reached 0.5. Induction was carried out at 25 ° C for 5 hours using 1 mM IPTG. After the induction was completed, E. coli was harvested by an amount of 8 ml / OD600, and the spore-rotast of the individual mutants was prepared through the above-described sparrowlasting process. Then, the intensity of the fluorescence was measured by a flow cytometer Respectively. As a result, mutants showing particularly high affinity to Fc [gamma] RIIIa among 100 individual mutants were selected and identified (Table 4, Figures 7 and 8)

발굴된 변이체들의 이름 및 변이 위치Name and variation location of the excavated variants 변이체Mutant 돌연변이 위치Mutation location HW 25HW 25 V264E/ S298G/ T299A/ Y300L/ K326I/ A327Y/ L328G/ D357G/ E382V/ N390D/ F405S V264E / S298G / T299A / Y300L / K326I / A327Y / L328G / D357G / E382V / N390D / F405S HW 86HW 86 V264E/ S298G/ T299A/ K326I/ A327Y/ L328G/ T350A/ E382V/ N390D/ T394A/ M428L V264E / S298G / T299A / K326I / A327Y / L328G / T350A / E382V / N390D / T394A / M428L

(돌연변이 위치는 Kabat EU 넘버링 시스템(Kabat et al., in of Proteins of Immunological Interest5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호에 따름)(Mutation positions are determined according to the EU index number as in the Kabat EU numbering system (Kabat et al., In Proteins of Immunological Interest 5th ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991)

실시예Example 13: 발굴된  13: Excavated 변이체들을Mutants 이용한 추가적인 실험 Additional experiments using

발굴된 HW 25와 HW 86에는 기존에 라이브러리를 구축하기 위해 구상한 변이 위치가 아닌, 스크리닝 과정 중 DNA를 증폭하기 위해 PCR을 수행하는 과정에서 도입된 의도치 않은 변이가 존재하였다. 이러한 변이들의 존재가 FcγRIIIa에의 친화도에 어떤 영향을 미치는 지를 확인하기 위해 각각의 변이들을 야생형 Fc의 서열로 되돌리기 위해 Quik change kit (Agilent)를 이용한 PCR 과정을 거쳤으며, 클로닝이 완료된 변이체들을 유세포 분석기를 통해 FcγRIIIa에 대한 친화도를 비교하였다. HW 25의 경우 D357G와 F405S를 다시 357D와 405F로 되돌린 결과 두 가지 변이 모두 FcγRIIIa에 대한 친화도 향상에 기여 하는 것으로 확인되었다(도 9).HW 25 and HW 86 discovered unintended mutations introduced during the PCR process to amplify DNA during the screening process, rather than the locations of mutations envisioned for building libraries. To confirm the effect of these mutations on the affinity to FcγRIIIa, PCR was carried out using Quik change kit (Agilent) to return each mutation to the wild-type Fc sequence. The cloned mutants were analyzed by flow cytometry To compare the affinity for Fc [gamma] RIIIa. In the case of HW 25, returning D357G and F405S back to 357D and 405F, both of the mutations were found to contribute to the enhancement of affinity to FcγRIIIa (FIG. 9).

T394A의 경우, 본원 발명자들이 보유한 변이체인 Fc 1004/IYG에 이 T394A 변이를 도입하였다. 클로닝이 완료된 이후 유세포 분석기를 통해 FcγRIIIa에 대한 친화도를 분석한 결과, T394A 변이가 도입됨으로써 FcγRIIIa에 대한 친화도가 증가함을 확인하였다(도 10).In the case of T394A, this T394A mutation was introduced into Fc 1004 / IYG, a mutant possessed by the present inventors. After the cloning was completed, the affinity for Fc [gamma] RIIIa was analyzed through a flow cytometer and it was confirmed that the affinity for Fc [gamma] RIIIa was increased by introducing the T394A mutation (FIG. 10).

실시예Example 14: 동물 세포에서의  14: in animal cells IgGIgG 발현 및 정제 Expression and purification

발굴된 변이체와 대조군을 추가 실험에 사용하기 위해 단백질로써 발현, 정제하는 실험을 계획하였다. 디스플레이는 항체 Fc의 형태로 진행되었으며, 실질적인 효능을 분석을 위해서는 항체의 형태로 발현 정제를 해야 하므로, trastzumab의 VH-CH1을 코딩하는 DNA와 연결하여 항체 중쇄를 코딩하는 DNA를 수득한 뒤, BssHII/ XbaI처리 하였다. 그 후 클로닝을 위해 동물세포 발현용 벡터인 pMAZ 벡터를 제한 효소인 BssHII/XbaI으로 처리한 다음 라이게이션 하여 pMAZ-IgH(trastzumab), pMAZ-IgH(No.25), pMAZ-IgH(No.25-DG), pMAZ-IgH(No.86)의 네 가지 플라스미드를 구축하였다. 이를 trastzumab의 경쇄를 코딩하는 pMAZ 플라스미드를 HEK293F에 형질 전환하여 항체를 발현하였다.Experiments were carried out to express and purify the mutant and the control group as proteins for further experiments. The display proceeds in the form of antibody Fc. To analyze the effect, the expression should be purified in the form of antibody. Therefore, a DNA coding for the antibody heavy chain is obtained by linking with DNA encoding VH-CH1 of trastzumab, HII / Xba I < / RTI > PMAZ-IgH (No. 25), pMAZ-IgH (No), and pMAZ-IgH (trp) were obtained by treating with restriction enzyme Bss HII / Xba I and then ligation, .25-DG), and pMAZ-IgH (No. 86). The pMAZ plasmid encoding the light chain of trastzumab was transformed into HEK293F to express the antibody.

그 후, 세포를 3000 × g로 20분간 원심분리하여 상층액을 수집하였으며, 1 × PBS가 되도록 25 × PBS를 섞어 희석한 뒤, 0.22 uM 필터로 필터하였다. 필터하고 난 상층액에 1 x× PBS로 평형을 잡은 protein A 레진을 넣고 밤새 교반하여 결합 유도를 하였으며, 컬럼에 레진을 충전하고 1 × PBS를 레진 부피의 50 배만큼 흘려 세퍽 하였다. 그 후 100 mM glycine(pH 3.0)으로 바인딩된 항체를 받아내었으며, 즉시 1 M Tris(pH 8.0)을 넣어 중성 pH로 중화시켰다. 정제된 항체를 3 kDa 컬럼 튜브를 통해 7,500 × g에 25분간 원심 분리를 하고 1 × PBS를 채워주었으며, 다시 7,500 X g에 25분간 원심 분리 이후 1 × PBS를 채워주는 일련의 과정을 반복하여 버퍼 중 1 × PBS의 비율이 99% 이상이 되도록 하였다.Then, the cells were centrifuged at 3000 × g for 20 minutes, and the supernatant was collected. The supernatant was collected, diluted with 25 × PBS to 1 × PBS, and filtered with a 0.22 uM filter. The protein solution was equilibrated with 1 × PBS in the supernatant. The column was filled with resin and 1 × PBS was flowed 50 times the resin volume. Then, the antibody bound to 100 mM glycine (pH 3.0) was taken and immediately neutralized with neutral pH by adding 1 M Tris (pH 8.0). The purified antibody was centrifuged through a 3 kDa column tube at 7,500 x g for 25 minutes and then filled with 1 x PBS. After centrifugation at 7,500 x g for 25 minutes, 1 x PBS was repeated to repeat the procedure. The ratio of 1 x PBS was set to 99% or more.

실시예Example 15:  15: 대장균에서의In E. coli IgGIgG 발현 및 정제 Expression and purification

추가 대조군으로 사용하기 위해 대장균에서 full-length trastzumab을 발현, 정제하였다. 먼저 trastzumab의 중쇄와 경쇄를 코딩하면서, PelB 신호단백질을 이용하는 플라스미드를 구축하였다. 이 플라스미드를 DsbC-chaperon을 코딩하는 플라스미드와 같이 MG1655 대장균에 도입하였으며, R/2 배지(KH2PO4 6.75 g/l, (NH4)2HPO4 2.0 g/l, Citric acid monohydrate 0.93 g/l, MgSO4.7H2O 0.7 g/l, TMS 5.0 ml/l, 2 % glucose)에 계대 배양을 한 뒤, fermantor jar에 2 L의 R/2 배지를 만든 뒤 1:100의 비율로 희석하여 본배양을 진행 하였다. 그리고 OD600이 70이 되도록 배양을 진행한 후 , 1 mM IPTG를 이용하여 인덕션을 진행하였다. 8시간의 배양 후 대장균을 회수하였으며, 1.2 L 100 mM Tris, 10 mM EDTA (pH 7.4) 용액에 대장균을 resuspension 시키고, lysozyme을 4 mg/ wet cell g의 분량으로 첨가한 후 30℃에서 16시간 동안 incubation하여 대장균을 파쇄하였다. 파쇄한 대장균은 14,000 × g에서 30분간 원심분리 한뒤 상등액을 회수하고 상기 기재한 방법으로 정제를 진행하였다.Full-length trastzumab was expressed and purified in E. coli for use as an additional control. First, a plasmid was constructed using the PelB signaling protein while encoding the heavy and light chains of trastzumab. This plasmid was introduced into MG1655 Escherichia coli as a plasmid encoding DsbC-chaperon, and was transformed into R / 2 medium (KH 2 PO 4 6.75 g / l, (NH 4 ) 2 HPO 4 2.0 g / l, citric acid monohydrate 0.93 g / l, MgSO 4 .7H 2 O 0.7 g / l, TMS 5.0 ml / l, 2% glucose) in the after subculturing, after creating the R / 2 medium in a 2 L jar fermantor 1: 100 dilution in a ratio of And the cultivation was continued. Then, the culture was performed so that the OD600 was 70, and the induction was performed using 1 mM IPTG. Escherichia coli was resuspended in 1.2 L of 100 mM Tris, 10 mM of EDTA (pH 7.4), lysozyme was added in an amount of 4 mg / wet cell g and incubated at 30 ° C for 16 hours and the E. coli was disrupted by incubation. The disrupted Escherichia coli was centrifuged at 14,000 x g for 30 minutes, and the supernatant was recovered and purified by the method described above.

실시예Example 16:  16: ADCCADCC 분석을 통한 암세포 사멸 효능 검증 Analysis of the cancer cell death effect

ADCC를 측정하기 위한 타겟 세포인 SKBR-3를 McCoy’s medium + 10% FBS + 1 x anti-anti에서 37℃, 5% CO2조건에서 배양하였으며, 후에 어세이 버퍼(RPMI + 10% heat inactivated FBS + 30 ng/ml recombinant human IL-2)에 현탁하고, 96-well plate (V-bottom)에 well 당 1 x 104cells/50 μl/well 로 접종하였다. 동물세포에서 발현한 IgG를 어세이 버퍼에 최고 농도 20 μg/ml 에서 0 μg/ml까지 1/5씩 serial dilution하여 총 8개 농도로 준비하고 SKBR-3 cell이 분주된 각 well 당 10 μl씩 첨가한 후 1시간동안 37℃, 5% CO2조건에서 배양하였다. 이후 PBMC는 37℃ water bath에서 2-3분 동안 재빨리 녹인 후 50 ml tube에 옮기고 10 ml의 응고 방지용 버퍼(1 ml CTL Anti-aggregate Wash TM20xSolution+19mLRPMI)를 처리한 후 1회 인버팅하여 PBMC가 잘 혼합되도록 하고, 300 g에서 10분간 원심 분리하여 조심스럽게 상층액을 제거하고 10 ml의 응고 방지용 버퍼를 넣은 후 세포를 현탁하였다. 그리고 300 × g에서 10분간 원심분리하고 상층액을 조심스럽게 제거한 뒤, 1 ml의 어세이 버퍼를 넣어 현탁 후 세포를 계수하였다. 계수한 PBMC는 2.5 x 106 cells/mL 농도로 어세이 버퍼에 희석하여 준비하고, 타겟 세포와 물질이 분주된 plate의 각 well당 50 μl씩 첨가한 뒤 37℃, 5% CO2 incubator에서 4시간 동안 배양하였다. 4시간 후 300 × g에서 5분간 원심분리를 진행하여 상층액 50 μl를 취하고 SpectraPlate 96-well plate에 옮긴 후, CytoTox 96 Reagent를 각 well 당 50 μl씩 첨가하여 30분간 상온에서 반응시킨 다음, 50 μl 의 반응 종결 용액(CytoTox96 Non-Radioactive Cytotoxicity assay kit에서 제공함)을 첨가하여 반응을 종료시킨 후 VersaMax로 490 nm에서 흡광도를 측정하고 결과값을 수집하였다. 그 결과 HW 86은 야생형 trastzumab에 비해 2배 가량 ADCC 효능이 증대되었음을 관찰하였다(도 11).SKBC-3, a target cell for measuring ADCC, was cultured in McCoy's medium + 10% FBS + 1 x anti-anti at 37 ° C and 5% CO 2 and then assay buffer (RPMI + 10% heat inactivated FBS + 30 ng / ml recombinant human IL-2) and inoculated in a 96-well plate (V-bottom) at 1 × 10 4 cells / 50 μl / well per well. Serial dilutions of IgG expressed in animal cells in 1/5 of the highest concentration of 20 μg / ml to 0 μg / ml in the assay buffer were prepared at a total of 8 concentrations, and 10 μl of each of the SKBR-3 cells After the addition, the cells were cultured at 37 ° C and 5% CO 2 for 1 hour. The PBMC were then rapidly dissolved in a 37 ° C water bath for 2-3 minutes, transferred to a 50 ml tube, treated with 10 ml of anti-aggregation buffer (1 ml of CTL Anti-aggregate Wash 20xSolution + Was mixed well, and the supernatant was carefully removed by centrifugation at 300 g for 10 minutes, 10 ml of an anti-clotting buffer was added, and the cells were suspended. After centrifugation at 300 × g for 10 minutes, the supernatant was carefully removed, and 1 ml of assay buffer was added to suspend the cells. The PBMCs were diluted in assay buffer at a concentration of 2.5 × 10 6 cells / mL, added with 50 μl / well of each well of the target cells and the plate, and incubated at 37 ° C in a 5% CO 2 incubator Lt; / RTI > After 4 hours, centrifugation was carried out at 300 × g for 5 minutes. 50 μl of the supernatant was transferred to SpectraPlate 96-well plate, and 50 μl of CytoTox 96 Reagent was added to each well. μl reaction termination solution (provided by the CytoTox 96 Non-Radioactive Cytotoxicity assay kit) was added to the reaction solution, and the absorbance at 490 nm was measured with VersaMax and the result was collected. As a result, it was observed that HW 86 increased the ADCC effect by a factor of about 2 compared with the wild-type trastzumab (FIG. 11).

<110> Kookmin University Industry Academy Cooperation Foundation <120> Multimeric Protein Display System using Cell Membrane Fluidity <130> HP7488 <160> 46 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MJ#1 <400> 1 ccaggcttta cactttatgc 20 <210> 2 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> MJ#183 <400> 2 cgaactggcc cagccggcca tggcggacaa aactcacaca tg 42 <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> MJ#184 <400> 3 agttcgggcc cccgaggccc ctttacccgg ggacagggag 40 <210> 4 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> MJ#228 <400> 4 cgcagcgagg cccagccggc catggcggac atccagatga ctcaatcacc cagttcac 58 <210> 5 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> MJ#229 <400> 5 cttaacgcgg cccccgaggc cccggtccgc ttaatctcca ctttggttcc 50 <210> 6 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> MJ#232 <400> 6 cgcagcgagg cccagccggc catggcggaa gtccagctgg tggagtccg 49 <210> 7 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> MJ#233 <400> 7 cttaacgcgg cccccgaggc cccactgctt actgtaacaa gagtgccctg 50 <210> 8 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> MJ#236 <400> 8 ccctaaaatc tagactatta ggcgcgccct ttgtcatc 38 <210> 9 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> 1Fw <400> 9 gacaaaactc acacatgccc accgtgccca gcacctgaa 39 <210> 10 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> 2Rv <400> 10 gagggtgtcc ttgggttttg ggggaargag gaagactgac ggtcccccta mgagttcagg 60 tgctgggcac ggtg 74 <210> 11 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> 2Rv S239D <400> 11 gagggtgtcc ttgggttttg ggggaargag gaagacatcc ggtcccccta mgagttcagg 60 tgctgggcac ggtg 74 <210> 12 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> 3Fw <400> 12 cccaaaaccc aaggacaccc tcatgatctc ccggacccct gaggtcacat gcgtg 55 <210> 13 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> 4Rv <400> 13 cagttgaact tgacctcagg gtcttcgtgg ctcacgtctw ccaccacgca tgtgacctca 60 gggg 64 <210> 14 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> 4Rv S267E <400> 14 cagttgaact tgacctcagg gtcttcgtgt tccacgtctw ccaccacgca tgtgacctca 60 gggg 64 <210> 15 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> 5Fw <400> 15 gaagaccctg aggtcaagtt caactggtac gtggacggcg tggaggtgca taatgccaag 60 acaaagccg 69 <210> 16 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> 6Rv <400> 16 ggtgaggacg ctgaccacac ggtacgcgcy gttgtatygc tcctctsgcg gctttgtctt 60 ggcattatgc acctc 75 <210> 17 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> 6Rv Y300V <400> 17 ggtgaggacg ctgaccacac gcaccgcgcy gttgtatygc tcctctsgcg gctttgtctt 60 ggcattatgc acctc 75 <210> 18 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> 7Fw <400> 18 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 60 tgcaaggtc 69 <210> 19 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> 8Rv <400> 19 ctgccctttg gctttggaga tggttttctc gattgstrmt ggmvhgkmtw tgttggagac 60 cttgcacttg tactccttgc c 81 <210> 20 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> 8Rv I332Y <400> 20 ctgccctttg gctttggaga tggttttctc atatgstrmt ggmvhgkmtw tgttggagac 60 cttgcacttg tactccttgc c 81 <210> 21 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> 8Rv I332E <400> 21 ctgccctttg gctttggaga tggttttctc ttctgstrmt ggmvhgkmtw tgttggagac 60 cttgcacttg tactccttgc c 81 <210> 22 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> 9Fw <400> 22 aaaaccatct ccaaagccaa agggcagccc cgagaaccac aggtgtacrc actgccccca 60 tcccgggatg 70 <210> 23 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> 10Rv <400> 23 gctgggatag aagcctttga ccaggcaggt caggctgacc tggttcttgg tcagctcatc 60 ccgggatggg ggcag 75 <210> 24 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> 11Fw <400> 24 ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggwaagcaa tgggcagccg 60 gagaac 66 <210> 25 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> 12Rv <400> 25 gaggaagaag gagccgtcgg agtccagcac gggaggtgtg gtcttgtagt ygttctccgg 60 ctgcccattg ct 72 <210> 26 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> 12Rv P396L <400> 26 gaggaagaag gagccgtcgg agtccagcac cagaggtgtg gtcttgtagt ygttctccgg 60 ctgcccattg ct 72 <210> 27 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> 13Fw <400> 27 ctccgacggc tccttcttcc tctacagcaa gctcaccgtg gacaagagca ggtggcagca 60 ggggaacgtc ttc 73 <210> 28 <211> 94 <212> DNA <213> Artificial Sequence <220> <223> 14Rv <400> 28 tttacccggg gacagggaga ggctcttctg cgtgtagtgg ttgtgcagag cctcatgsak 60 cacggagcat gagaagacgt tcccctgctg ccac 94 <210> 29 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Pro-amplificationRv <400> 29 ctctagggcc cccgaggccc cgtggcagca ggggaacgtc ttc 43 <210> 30 <211> 1167 <212> DNA <213> Artificial Sequence <220> <223> WT Fc-gIII <400> 30 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 240 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 360 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccgt gctggactcc 540 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa aggggcctcg ggggccgaag gcggcggttc tggttccggt 720 gattttgatt atgaaaagat ggcaaacgct aataaggggg ctatgaccga aaatgccgat 780 gaaaacgcgc tacagtctga cgctaaaggc aaacttgatt ctgtcgctac tgattacggt 840 gctgctatcg atggtttcat tggtgacgtt tccggccttg ctaatggtaa tggtgctact 900 ggtgattttg ctggctctaa ttcccaaatg gctcaagtcg gtgacggtga taattcacct 960 ttaatgaata atttccgtca atatttacct tccctccctc aatcggttga atgtcgccct 1020 tttgtcttta gcgctggtaa accatatgaa ttttctattg attgtgacaa aataaactta 1080 ttccgtggtg tctttgcgtt tcttttatat gttgccacct ttatgtatgt attttctacg 1140 tttgctaaca tactgcgtaa taaggag 1167 <210> 31 <211> 1167 <212> DNA <213> Artificial Sequence <220> <223> MG48-gIII <400> 31 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 240 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 360 gggcagcccc gagaaccaca ggtgtacgcc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccgt gctggactcc 540 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa aggggcctcg ggggccgaag gcggcggttc tggttccggt 720 gattttgatt atgaaaagat ggcaaacgct aataaggggg ctatgaccga aaatgccgat 780 gaaaacgcgc tacagtctga cgctaaaggc aaacttgatt ctgtcgctac tgattacggt 840 gctgctatcg atggtttcat tggtgacgtt tccggccttg ctaatggtaa tggtgctact 900 ggtgattttg ctggctctaa ttcccaaatg gctcaagtcg gtgacggtga taattcacct 960 ttaatgaata atttccgtca atatttacct tccctccctc aatcggttga atgtcgccct 1020 tttgtcttta gcgctggtaa accatatgaa ttttctattg attgtgacaa aataaactta 1080 ttccgtggtg tctttgcgtt tcttttatat gttgccacct ttatgtatgt attttctacg 1140 tttgctaaca tactgcgtaa taaggag 1167 <210> 32 <211> 789 <212> DNA <213> Artificial Sequence <220> <223> NlpA-WT Fc <400> 32 atgaaactga caacacatca tctacggaca ggggccgcat tattgctggc cggaattctg 60 ctggcaggtt gcgaccagag tagcagcgag gcccagccgg ccatggcgga caaaactcac 120 acatgcccac cgtgcccagc acctgaactc ctggggggac cgtcagtctt cctcttcccc 180 ccaaaaccca aggacaccct catgatctcc cggacccctg aggtcacatg cgtggtggtg 240 gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt acgtggacgg cgtggaggtg 300 cataatgcca agacaaagcc gcgggaggag cagtacaaca gcacgtaccg tgtggtcagc 360 gtcctcaccg tcctgcacca ggactggctg aatggcaagg agtacaagtg caaggtctcc 420 aacaaagccc tcccagcccc catcgagaaa accatctcca aagccaaagg gcagccccga 480 gaaccacagg tgtacaccct gcccccatcc cgggatgagc tgaccaagaa ccaggtcagc 540 ctgacctgcc tggtcaaagg cttctatccc agcgacatcg ccgtggagtg ggagagcaat 600 gggcagccgg agaacaacta caagaccaca cctcccgtgc tggactccga cggctccttc 660 ttcctctaca gcaagctcac cgtggacaag agcaggtggc agcaggggaa cgtcttctca 720 tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtcc 780 ccgggtaaa 789 <210> 33 <211> 789 <212> DNA <213> Artificial Sequence <220> <223> NlpA-MG48 <400> 33 atgaaactga caacacatca tctacggaca ggggccgcat tattgctggc cggaattctg 60 ctggcaggtt gcgaccagag tagcagcgag gcccagccgg ccatggcgga caaaactcac 120 acatgcccac cgtgcccagc acctgaactc ctggggggac cgtcagtctt cctcttcccc 180 ccaaaaccca aggacaccct catgatctcc cggacccctg aggtcacatg cgtggtggag 240 gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt acgtggacgg cgtggaggtg 300 cataatgcca agacaaagcc gcgggaggag cagtacaaca gcacgtaccg tgtggtcagc 360 gtcctcaccg tcctgcacca ggactggctg aatggcaagg agtacaagtg caaggtctcc 420 aacaaagccc tcccagcccc catcgagaaa accatctcca aagccaaagg gcagccccga 480 gaaccacagg tgtacgccct gcccccatcc cgggatgagc tgaccaagaa ccaggtcagc 540 ctgacctgcc tggtcaaagg cttctatccc agcgacatcg ccgtggagtg ggagagcaat 600 gggcagccgg agaacaacta caagaccaca cctcccgtgc tggactccga cggctccttc 660 ttcctctaca gcaagctcac cgtggacaag agcaggtggc agcaggggaa cgtcttctca 720 tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtcc 780 ccgggtaaa 789 <210> 34 <211> 1101 <212> DNA <213> Artificial Sequence <220> <223> NlpA-VH(bevacizumab)-FLAG-NlpA-VL(bevacizumab)-His-cMyc <400> 34 atgaaactga caacacatca tctacggaca ggggccgcat tattgctggc cggaattctg 60 ctggcaggtt gcgaccagag tagcagcgag gcccagccgg ccatggcgga agtccagctg 120 gtggagtccg gtggcggcct cgtgcagcct ggggggtcat tgcgcctatc atgcgcagcc 180 tccggatata cttttacaaa ctacggaatg aactgggtgc ggcaagcccc cggaaaaggc 240 ctggagtggg tgggttggat caatacctat accggtgaac caacatatgc tgctgacttc 300 aagaggagat ttaccttctc cctggacact agtaagtcta cagcttatct gcagatgaat 360 agcctgcgag ccgaggatac cgcagtttat tactgtgcta aatatcctca ctattatgga 420 tcttctcact ggtattttga tgtgtggggc cagggcactc ttgttacagt aagcagtggg 480 gcctcggggg ccgaattcgc ggccgctgca ccagattata aagatgacga tgacaaaggg 540 cgcgcctaat agtctagaga aggagatata catatgaaac tgacaacaca tcatctacgg 600 acaggggccg cattattgct ggccggaatt ctgctggcag gttgcgacca gagtagcagc 660 gaggcccagc cggccatggc ggacatccag atgactcaat cacccagttc actgtctgcg 720 tctgttgggg atcgggtgac cattacgtgc tccgcctctc aagacattag taactatctc 780 aactggtatc aacagaaacc aggcaaagcc cctaaggtgt tgatatactt cacctccagc 840 ctgcacagcg gtgttccgtc acgcttttct ggcagtggct ccgggacgga cttcacactc 900 acaatctcga gcctgcaacc cgaggacttc gcaacctact attgccagca gtactccacc 960 gtcccctgga cctttggcca gggaaccaaa gtggagatta agcggaccgg ggcctcgggg 1020 gccgaattcg cggccgcagt cgaccatcat catcaccatc acggggccgc agaacaaaaa 1080 ctcatctcag aagaggatct g 1101 <210> 35 <211> 389 <212> PRT <213> Artificial Sequence <220> <223> WT Fc-gIII <400> 35 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys Gly Ala Ser Gly Ala Glu Gly Gly Gly Ser Gly Ser Gly 225 230 235 240 Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr 245 250 255 Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu 260 265 270 Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly 275 280 285 Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala 290 295 300 Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro 305 310 315 320 Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val 325 330 335 Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser 340 345 350 Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu 355 360 365 Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile 370 375 380 Leu Arg Asn Lys Glu 385 <210> 36 <211> 389 <212> PRT <213> Artificial Sequence <220> <223> MG48-gIII <400> 36 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys Gly Ala Ser Gly Ala Glu Gly Gly Gly Ser Gly Ser Gly 225 230 235 240 Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr 245 250 255 Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu 260 265 270 Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly 275 280 285 Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala 290 295 300 Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro 305 310 315 320 Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val 325 330 335 Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser 340 345 350 Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu 355 360 365 Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile 370 375 380 Leu Arg Asn Lys Glu 385 <210> 37 <211> 263 <212> PRT <213> Artificial Sequence <220> <223> NlpA-WT Fc <400> 37 Met Lys Leu Thr Thr His His Leu Arg Thr Gly Ala Ala Leu Leu Leu 1 5 10 15 Ala Gly Ile Leu Leu Ala Gly Cys Asp Gln Ser Ser Ser Glu Ala Gln 20 25 30 Pro Ala Met Ala Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro 35 40 45 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 50 55 60 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 65 70 75 80 Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp 85 90 95 Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 100 105 110 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 115 120 125 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 130 135 140 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 145 150 155 160 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys 165 170 175 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 180 185 190 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 195 200 205 Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 210 215 220 Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 225 230 235 240 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 245 250 255 Leu Ser Leu Ser Pro Gly Lys 260 <210> 38 <211> 263 <212> PRT <213> Artificial Sequence <220> <223> NlpA-MG48 <400> 38 Met Lys Leu Thr Thr His His Leu Arg Thr Gly Ala Ala Leu Leu Leu 1 5 10 15 Ala Gly Ile Leu Leu Ala Gly Cys Asp Gln Ser Ser Ser Glu Ala Gln 20 25 30 Pro Ala Met Ala Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro 35 40 45 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 50 55 60 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu 65 70 75 80 Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp 85 90 95 Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 100 105 110 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 115 120 125 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 130 135 140 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 145 150 155 160 Glu Pro Gln Val Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys 165 170 175 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 180 185 190 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 195 200 205 Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 210 215 220 Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 225 230 235 240 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 245 250 255 Leu Ser Leu Ser Pro Gly Lys 260 <210> 39 <211> 367 <212> PRT <213> Artificial Sequence <220> <223> NlpA-VH(bevacizumab)-NlpA-VL(bevacizumab) <400> 39 Met Lys Leu Thr Thr His His Leu Arg Thr Gly Ala Ala Leu Leu Leu 1 5 10 15 Ala Gly Ile Leu Leu Ala Gly Cys Asp Gln Ser Ser Ser Glu Ala Gln 20 25 30 Pro Ala Met Ala Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val 35 40 45 Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Tyr Thr 50 55 60 Phe Thr Asn Tyr Gly Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly 65 70 75 80 Leu Glu Trp Val Gly Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr 85 90 95 Ala Ala Asp Phe Lys Arg Arg Phe Thr Phe Ser Leu Asp Thr Ser Lys 100 105 110 Ser Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala 115 120 125 Val Tyr Tyr Cys Ala Lys Tyr Pro His Tyr Tyr Gly Ser Ser His Trp 130 135 140 Tyr Phe Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly 145 150 155 160 Ala Ser Gly Ala Glu Phe Ala Ala Ala Ala Pro Asp Tyr Lys Asp Asp 165 170 175 Asp Asp Lys Gly Arg Ala *** *** Ser Arg Glu Gly Asp Ile His Met 180 185 190 Lys Leu Thr Thr His His Leu Arg Thr Gly Ala Ala Leu Leu Leu Ala 195 200 205 Gly Ile Leu Leu Ala Gly Cys Asp Gln Ser Ser Ser Glu Ala Gln Pro 210 215 220 Ala Met Ala Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala 225 230 235 240 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Ser Ala Ser Gln Asp Ile 245 250 255 Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 260 265 270 Val Leu Ile Tyr Phe Thr Ser Ser Leu His Ser Gly Val Pro Ser Arg 275 280 285 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser 290 295 300 Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Thr 305 310 315 320 Val Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 325 330 335 Gly Ala Ser Gly Ala Glu Phe Ala Ala Ala Val Asp His His His His 340 345 350 His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 355 360 365 <210> 40 <211> 227 <212> PRT <213> Homo sapiens <400> 40 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 41 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW25 <400> 41 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Leu 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Gly Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Ser Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 42 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW25-G357D <400> 42 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Leu 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Ser Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 43 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW25-S405F <400> 43 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Leu 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Gly Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 44 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW25-G357D, S405F <400> 44 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Leu 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 45 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW86 <400> 45 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Ala Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 46 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Fc1004/IYG-T394A <400> 46 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Ala Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <110> Kookmin University Industry Academy Cooperation Foundation <120> Multimeric Protein Display System using Cell Membrane Fluidity <130> HP7488 <160> 46 <170> KoPatentin 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MJ # 1 <400> 1 ccaggcttta cactttatgc 20 <210> 2 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> MJ # 183 <400> 2 cgaactggcc cagccggcca tggcggacaa aactcacaca tg 42 <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> MJ # 184 <400> 3 agttcgggcc cccgaggccc ctttacccgg ggacagggag 40 <210> 4 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> MJ # 228 <400> 4 cgcagcgagg cccagccggc catggcggac atccagatga ctcaatcacc cagttcac 58 <210> 5 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> MJ # 229 <400> 5 cttaacgcgg cccccgaggc cccggtccgc ttaatctcca ctttggttcc 50 <210> 6 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> MJ # 232 <400> 6 cgcagcgagg cccagccggc catggcggaa gtccagctgg tggagtccg 49 <210> 7 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> MJ # 233 <400> 7 cttaacgcgg cccccgaggc cccactgctt actgtaacaa gagtgccctg 50 <210> 8 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> MJ # 236 <400> 8 ccctaaaatc tagactatta ggcgcgccct ttgtcatc 38 <210> 9 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> 1Fw <400> 9 gacaaaactc acacatgccc accgtgccca gcacctgaa 39 <210> 10 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> 2Rv <400> 10 gagggtgtcc ttgggttttg ggggaargag gaagactgac ggtcccccta mgagttcagg 60 tgctgggcac ggtg 74 <210> 11 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> 2Rv S239D <400> 11 gagggtgtcc ttgggttttg ggggaargag gaagacatcc ggtcccccta mgagttcagg 60 tgctgggcac ggtg 74 <210> 12 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> 3Fw <400> 12 cccaaaaccc aaggacaccc tcatgatctc ccggacccct gaggtcacat gcgtg 55 <210> 13 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> 4Rv <400> 13 cagttgaact tgacctcagg gtcttcgtgg ctcacgtctw ccaccacgca tgtgacctca 60 gggg 64 <210> 14 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> 4Rv S267E <400> 14 cagttgaact tgacctcagg gtcttcgtgt tccacgtctw ccaccacgca tgtgacctca 60 gggg 64 <210> 15 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> 5Fw <400> 15 gaagaccctg aggtcaagtt caactggtac gtggacggcg tggaggtgca taatgccaag 60 acaaagccg 69 <210> 16 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> 6Rv <400> 16 ggtgaggacg ctgaccacac ggtacgcgcy gttgtatygc tcctctsgcg gctttgtctt 60 ggcattatgc acctc 75 <210> 17 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> 6Rv Y300V <400> 17 ggtgaggacg ctgaccacac gcaccgcgcy gttgtatygc tcctctsgcg gctttgtctt 60 ggcattatgc acctc 75 <210> 18 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> 7Fw <400> 18 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 60 tgcaaggtc 69 <210> 19 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> 8Rv <400> 19 ctgccctttg gctttggaga tggttttctc gattgstrmt ggmvhgkmtw tgttggagac 60 cttgcacttg tactccttgc c 81 <210> 20 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> 8Rv I332Y <400> 20 ctgccctttg gctttggaga tggttttctc atatgstrmt ggmvhgkmtw tgttggagac 60 cttgcacttg tactccttgc c 81 <210> 21 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> 8Rv I332E <400> 21 ctgccctttg gctttggaga tggttttctc ttctgstrmt ggmvhgkmtw tgttggagac 60 cttgcacttg tactccttgc c 81 <210> 22 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> 9Fw <400> 22 aaaaccatct ccaaagccaa agggcagccc cgagaaccac aggtgtacrc actgccccca 60 tcccgggatg 70 <210> 23 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> 10Rv <400> 23 gctgggatag aagcctttga ccaggcaggt caggctgacc tggttcttgg tcagctcatc 60 ccgggatggg ggcag 75 <210> 24 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> 11Fw <400> 24 ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggwaagcaa tgggcagccg 60 gagaac 66 <210> 25 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> 12Rv <400> 25 gaggaagaag gagccgtcgg agtccagcac gggaggtgtg gtcttgtagt ygttctccgg 60 ctgcccattg ct 72 <210> 26 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> 12Rv P396L <400> 26 gaggaagaag gagccgtcgg agtccagcac cagaggtgtg gtcttgtagt ygttctccgg 60 ctgcccattg ct 72 <210> 27 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> 13Fw <400> 27 ctccgacggc tccttcttcc tctacagcaa gctcaccgtg gacaagagca ggtggcagca 60 ggggaacgtc ttc 73 <210> 28 <211> 94 <212> DNA <213> Artificial Sequence <220> <223> 14Rv <400> 28 tttacccggg gacagggaga ggctcttctg cgtgtagtgg ttgtgcagag cctcatgsak 60 cacggagcat gagaagacgt tcccctgctg ccac 94 <210> 29 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Pro-amplificationRv <400> 29 ctctagggcc cccgaggccc cgtggcagca ggggaacgtc ttc 43 <210> 30 <211> 1167 <212> DNA <213> Artificial Sequence <220> <223> WT Fc-gIII <400> 30 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 240 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 360 gggcagcccc gagaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccgt gctggactcc 540 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa aggggcctcg ggggccgaag gcggcggttc tggttccggt 720 gattttgatt atgaaaagat ggcaaacgct aataaggggg ctatgaccga aaatgccgat 780 gaaaacgcgc tacagtctga cgctaaaggc aaacttgatt ctgtcgctac tgattacggt 840 gctgctatcg atggtttcat tggtgacgtt tccggccttg ctaatggtaa tggtgctact 900 ggtgattttg ctggctctaa ttcccaaatg gctcaagtcg gtgacggtga taattcacct 960 ttaatgaata atttccgtca atatttacct tccctccctc aatcggttga atgtcgccct 1020 tttgtcttta gcgctggtaa accatatgaa ttttctattg attgtgacaa aataaactta 1080 ttccgtggtg tctttgcgtt tcttttatat gttgccacct ttatgtatgt attttctacg 1140 tttgctaaca tactgcgtaa taaggag 1167 <210> 31 <211> 1167 <212> DNA <213> Artificial Sequence <220> <223> MG48-gIII <400> 31 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 240 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 360 gggcagcccc gagaccaca ggtgtacgcc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccgt gctggactcc 540 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa aggggcctcg ggggccgaag gcggcggttc tggttccggt 720 gattttgatt atgaaaagat ggcaaacgct aataaggggg ctatgaccga aaatgccgat 780 gaaaacgcgc tacagtctga cgctaaaggc aaacttgatt ctgtcgctac tgattacggt 840 gctgctatcg atggtttcat tggtgacgtt tccggccttg ctaatggtaa tggtgctact 900 ggtgattttg ctggctctaa ttcccaaatg gctcaagtcg gtgacggtga taattcacct 960 ttaatgaata atttccgtca atatttacct tccctccctc aatcggttga atgtcgccct 1020 tttgtcttta gcgctggtaa accatatgaa ttttctattg attgtgacaa aataaactta 1080 ttccgtggtg tctttgcgtt tcttttatat gttgccacct ttatgtatgt attttctacg 1140 tttgctaaca tactgcgtaa taaggag 1167 <210> 32 <211> 789 <212> DNA <213> Artificial Sequence <220> <223> NlpA-WT Fc <400> 32 atgaaactga caacacatca tctacggaca ggggccgcat tattgctggc cggaattctg 60 ctggcaggtt gcgaccagag tagcagcgag gcccagccgg ccatggcgga caaaactcac 120 acatgcccac cgtgcccagc acctgaactc ctggggggac cgtcagtctt cctcttcccc 180 ccaaaaccca aggacaccct catgatctcc cggacccctg aggtcacatg cgtggtggtg 240 gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt acgtggacgg cgtggaggtg 300 cataatgcca agacaaagcc gcgggaggag cagtacaaca gcacgtaccg tgtggtcagc 360 gtcctcaccg tcctgcacca ggactggctg aatggcaagg agtacaagtg caaggtctcc 420 aacaaagccc tcccagcccc catcgagaaa accatctcca aagccaaagg gcagccccga 480 gaaccacagg tgtacaccct gcccccatcc cgggatgagc tgaccaagaa ccaggtcagc 540 ctgacctgcc tggtcaaagg cttctatccc agcgacatcg ccgtggagtg ggagagcaat 600 gggcagccgg agaacaacta caagaccaca cctcccgtgc tggactccga cggctccttc 660 ttcctctaca gcaagctcac cgtggacaag agcaggtggc agcaggggaa cgtcttctca 720 tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtcc 780 ccgggtaaa 789 <210> 33 <211> 789 <212> DNA <213> Artificial Sequence <220> <223> NlpA-MG48 <400> 33 atgaaactga caacacatca tctacggaca ggggccgcat tattgctggc cggaattctg 60 ctggcaggtt gcgaccagag tagcagcgag gcccagccgg ccatggcgga caaaactcac 120 acatgcccac cgtgcccagc acctgaactc ctggggggac cgtcagtctt cctcttcccc 180 ccaaaaccca aggacaccct catgatctcc cggacccctg aggtcacatg cgtggtggag 240 gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt acgtggacgg cgtggaggtg 300 cataatgcca agacaaagcc gcgggaggag cagtacaaca gcacgtaccg tgtggtcagc 360 gtcctcaccg tcctgcacca ggactggctg aatggcaagg agtacaagtg caaggtctcc 420 aacaaagccc tcccagcccc catcgagaaa accatctcca aagccaaagg gcagccccga 480 gaaccacagg tgtacgccct gcccccatcc cgggatgagc tgaccaagaa ccaggtcagc 540 ctgacctgcc tggtcaaagg cttctatccc agcgacatcg ccgtggagtg ggagagcaat 600 gggcagccgg agaacaacta caagaccaca cctcccgtgc tggactccga cggctccttc 660 ttcctctaca gcaagctcac cgtggacaag agcaggtggc agcaggggaa cgtcttctca 720 tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtcc 780 ccgggtaaa 789 <210> 34 <211> 1101 <212> DNA <213> Artificial Sequence <220> NLpA-VH (bevacizumab) -FLAG-NlpA-VL (bevacizumab) -His-cMyc <400> 34 atgaaactga caacacatca tctacggaca ggggccgcat tattgctggc cggaattctg 60 ctggcaggtt gcgaccagag tagcagcgag gcccagccgg ccatggcgga agtccagctg 120 gtggagtccg gtggcggcct cgtgcagcct ggggggtcat tgcgcctatc atgcgcagcc 180 tccggatata cttttacaaa ctacggaatg aactgggtgc ggcaagcccc cggaaaaggc 240 ctggagtggg tgggttggat caatacctat accggtgaac caacatatgc tgctgacttc 300 aagaggagat ttaccttctc cctggacact agtaagtcta cagcttatct gcagatgaat 360 agcctgcgag ccgaggatac cgcagtttat tactgtgcta aatatcctca ctattatgga 420 tcttctcact ggtattttga tgtgtggggc cagggcactc ttgttacagt aagcagtggg 480 gcctcggggg ccgaattcgc ggccgctgca ccagattata aagatgacga tgacaaaggg 540 cgcgcctaat agtctagaga aggagatata catatgaaac tgacaacaca tcatctacgg 600 acaggggccg cattattgct ggccggaatt ctgctggcag gttgcgacca gagtagcagc 660 gaggcccagc cggccatggc ggacatccag atgactcaat cacccagttc actgtctgcg 720 tctgttgggg atcgggtgac cattacgtgc tccgcctctc aagacattag taactatctc 780 aactggtatc aacagaaacc aggcaaagcc cctaaggtgt tgatatactt cacctccagc 840 ctgcacagcg gtgttccgtc acgcttttct ggcagtggct ccgggacgga cttcacactc 900 acaatctcga gcctgcaacc cgaggacttc gcaacctact attgccagca gtactccacc 960 gtcccctgga cctttggcca gggaaccaaa gtggagatta agcggaccgg ggcctcgggg 1020 gccgaattcg cggccgcagt cgaccatcat catcaccatc acggggccgc agaacaaaaa 1080 ctcatctcag aagaggatct g 1101 <210> 35 <211> 389 <212> PRT <213> Artificial Sequence <220> <223> WT Fc-gIII <400> 35 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys Gly Ala Ser Gly Ala Glu Gly Gly Gly Gly Ser Gly Ser Gly 225 230 235 240 Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr                 245 250 255 Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu             260 265 270 Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly         275 280 285 Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala     290 295 300 Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro 305 310 315 320 Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val                 325 330 335 Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser             340 345 350 Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu         355 360 365 Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile     370 375 380 Leu Arg Asn Lys Glu 385 <210> 36 <211> 389 <212> PRT <213> Artificial Sequence <220> <223> MG48-gIII <400> 36 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys Gly Ala Ser Gly Ala Glu Gly Gly Gly Gly Ser Gly Ser Gly 225 230 235 240 Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr                 245 250 255 Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu             260 265 270 Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly         275 280 285 Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala     290 295 300 Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro 305 310 315 320 Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val                 325 330 335 Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser             340 345 350 Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu         355 360 365 Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile     370 375 380 Leu Arg Asn Lys Glu 385 <210> 37 <211> 263 <212> PRT <213> Artificial Sequence <220> <223> NlpA-WT Fc <400> 37 Met Lys Leu Thr Thr His Leu Arg Thr Gly Ala Ala Leu Leu   1 5 10 15 Ala Gly Ile Leu Leu Ala Gly Cys Asp Gln Ser Ser Ser Glu Ala Gln              20 25 30 Pro Ala Met Ala Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro          35 40 45 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys      50 55 60 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val  65 70 75 80 Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp                  85 90 95 Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr             100 105 110 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp         115 120 125 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu     130 135 140 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 145 150 155 160 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys                 165 170 175 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp             180 185 190 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys         195 200 205 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser     210 215 220 Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 225 230 235 240 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser                 245 250 255 Leu Ser Leu Ser Pro Gly Lys             260 <210> 38 <211> 263 <212> PRT <213> Artificial Sequence <220> <223> NlpA-MG48 <400> 38 Met Lys Leu Thr Thr His Leu Arg Thr Gly Ala Ala Leu Leu   1 5 10 15 Ala Gly Ile Leu Leu Ala Gly Cys Asp Gln Ser Ser Ser Glu Ala Gln              20 25 30 Pro Ala Met Ala Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro          35 40 45 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys      50 55 60 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu  65 70 75 80 Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp                  85 90 95 Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr             100 105 110 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp         115 120 125 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu     130 135 140 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 145 150 155 160 Glu Pro Gln Val Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys                 165 170 175 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp             180 185 190 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys         195 200 205 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser     210 215 220 Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 225 230 235 240 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser                 245 250 255 Leu Ser Leu Ser Pro Gly Lys             260 <210> 39 <211> 367 <212> PRT <213> Artificial Sequence <220> NlpA-VH (bevacizumab) -NlpA-VL (bevacizumab) <400> 39 Met Lys Leu Thr Thr His Leu Arg Thr Gly Ala Ala Leu Leu   1 5 10 15 Ala Gly Ile Leu Leu Ala Gly Cys Asp Gln Ser Ser Ser Glu Ala Gln              20 25 30 Pro Ala Met Ala Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val          35 40 45 Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Tyr Thr      50 55 60 Phe Thr Asn Tyr Gly Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly  65 70 75 80 Leu Glu Trp Val Gly Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr                  85 90 95 Ala Ala Asp Phe Lys Arg Arg Phe Thr Phe Ser Leu Asp Thr Ser Lys             100 105 110 Ser Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala         115 120 125 Val Tyr Tyr Cys Ala Lys Tyr Pro His Tyr Tyr Gly Ser Ser His Trp     130 135 140 Tyr Phe Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly 145 150 155 160 Ala Ser Gly Ala Glu Phe Ala Ala Ala Ala Pro Asp Tyr Lys Asp Asp                 165 170 175 Asp Asp Lys Gly Arg Ala *** *** Ser Arg Glu Gly Asp Ile His Met             180 185 190 Lys Leu Thr Thr His Leu Ala Leu Leu Ala         195 200 205 Gly Ile Leu Leu Ala Gly Cys Asp Gln Ser Ser Ser Glu Ala Gln Pro     210 215 220 Ala Met Ala Asp Ile Gln Met Thr Gln Ser Ser Ser Ser Leu Ser Ala 225 230 235 240 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Ser Ala Ser Gln Asp Ile                 245 250 255 Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys             260 265 270 Val Leu Ile Tyr Phe Thr Ser Ser Leu His Ser Gly Val Ser Ser Arg         275 280 285 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser     290 295 300 Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Thr 305 310 315 320 Val Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr                 325 330 335 Gly Ala Ser Gly Ala Glu Phe Ala Ala Ala Val Asp His His His             340 345 350 His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu         355 360 365 <210> 40 <211> 227 <212> PRT <213> Homo sapiens <400> 40 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 41 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW25 <400> 41 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Leu  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Gly Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 42 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW25-G357D <400> 42 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Leu  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 43 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW25-S405F <400> 43 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Leu  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Gly Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 44 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW25-G357D, S405F <400> 44 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Leu  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 45 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> HW86 <400> 45 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Ala Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 46 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Fc1004 / IYG-T394A <400> 46 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Ala Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225

Claims (15)

다음의 단계를 포함하는 다중체(multimer)인 목적단백질 디스플레이 시스템의 제조 방법:
(a)(i) 디스플레이하고자 하는 목적단백질의 단량체(monomer) 및 앵커(anchor) 폴리펩타이드를 코딩하는 뉴클레오타이드 서열 및 (ii) 상기 코딩 뉴클레오타이드 서열에 작동적(operatively)으로 결합된 프로모터를 포함하는 벡터를 구축(construction)하는 단계;
(b) 상기 벡터로 미생물을 형질전환(transformation)시키는 단계;
(c) 상기 형질전환된 미생물을 배양하여 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 발현시키는 단계로서, 상기 앵커 폴리펩타이드는 미생물의 내막에 앵커링(anchoring)되고 목적단백질의 단량체는 상기 미생물의 원형질막 주위 공간(periplasmic region)에 전시되는 단계; 및
(d) 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체는 세포막의 유동성(membrane fluidity)에 의해 자가-조립(self-assemble)되어 다중체(multimer)를 형성하는 단계.
A method for producing a multimeric target protein display system comprising the steps of:
(a) a vector comprising (i) a nucleotide sequence encoding a monomer and anchor polypeptide of the target protein to be displayed and (ii) a vector comprising a promoter operatively linked to the coding nucleotide sequence Constructing a second image;
(b) transforming the microorganism with the vector;
(c) culturing the transformed microorganism to express a monomer of the target protein fused with the anchor polypeptide, wherein the anchor polypeptide is anchored to the inner membrane of the microorganism, and the monomer of the target protein is the protoplasm of the microorganism Displayed in a periplasmic region; And
(d) the monomer of the objective protein to which the anchor polypeptide is fused is self-assemble by membrane fluidity to form a multimer.
제 1 항에 있어서, 상기 목적단백질은 이량체(dimder)를 포함하는 다중체(multimer) 형태인 것을 특징으로 하는 방법.
The method according to claim 1, wherein the target protein is in a multimer form including a dimer.
제 2 항에 있어서, 상기 목적단백질은 항체, 항체 항원 결합영역 (VH 또는 VL), scFv, Fab, Fc 단백질, G-단백질, 헤모글로빈, M-CSF, CD28, 인터류킨, 인터페론-γ, TGF-β 또는 이의 단편인 것을 특징으로 하는 방법.
3. The method of claim 2, wherein the target protein is selected from the group consisting of an antibody, an antibody antigen binding region (VH or VL), an scFv, a Fab, an Fc protein, a G protein, a hemoglobin, M- CSF, CD28, an interleukin, Or a fragment thereof.
제 1 항에 있어서, 상기 목적단백질의 단량체는 Fc 단백질 단량체 또는 이의 단편인 것을 특징으로 하는 방법.
The method according to claim 1, wherein the monomer of the target protein is an Fc protein monomer or a fragment thereof.
제 1 항에 있어서, 상기 목적단백질의 단량체는 항체의 중쇄 가변부위(VH), 경쇄 가변부위(VL) 및 이의 단편으로 구성된 군으로부터 선택되는 1 또는 2 이상의 단량체인 것을 특징으로 하는 방법.
The method according to claim 1, wherein the monomer of the target protein is one or more monomers selected from the group consisting of heavy chain variable region (VH), light chain variable region (VL) and fragments thereof.
제 1 항에 있어서, 상기 앵커 폴리펩타이드는 gIII 단백질, NlpA 리더 펩타이드, MalF, Pf3 코트 단백질, M13 프로코트 단백질, ProW Nt/TM1/3K 및 KdpD 단백질로 구성된 군으로부터 선택되는 것을 특징으로 하는 방법.
2. The method of claim 1, wherein the anchor polypeptide is selected from the group consisting of gIII protein, NlpA leader peptide, MalF, Pf3 coat protein, M13 pro coat protein, ProW Nt / TM1 / 3K and KdpD protein.
제 1 항에 있어서, 상기 미생물은 세균세포인 것을 특징으로 하는 방법.
The method according to claim 1, wherein the microorganism is a bacterial cell.
앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 포함하는 목적단백질 디스플레이 시스템으로써, 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체는 제 1 항의 방법으로 제조되어 미생물 세포막의 유동성(membrane fluidity)에 의해 자가-조립(self-assemble)되어 다중체(multimer)를 형성하여 상기 미생물의 원형질막 주위 공간(periplasmic region)에 전시되는 것을 특징으로 하는 목적단백질 디스플레이 시스템.
A monomer of a target protein to which the anchor polypeptide is fused is prepared by the method of claim 1, and the monomer protein of the self protein is fused to the self protein by the membrane fluidity of the microbial cell membrane, Wherein the microorganism is self-assemble to form a multimer and is displayed in a periplasmic region of the microorganism.
제 8 항의 앵커 폴리펩타이드가 융합된 목적단백질의 단량체, 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체를 코딩하는 핵산분자 또는 상기 핵산분자를 포함하는 벡터를 포함하는 목적단백질 디스플레이용 조성물.
9. A composition for a target protein display comprising a monomer of a target protein to which an anchor polypeptide of claim 8 is fused, a nucleic acid molecule that encodes a monomer of a target protein fused with said anchor polypeptide, or a vector comprising said nucleic acid molecule.
제 9 항에 있어서, 상기 앵커 폴리펩타이드가 융합된 목적단백질의 단량체는 서열목록 제35서열 내지 제39서열로 구성된 군으로부터 선택되는 서열을 포함하는 것을 특징으로 하는 조성물.
10. The composition of claim 9, wherein the monomer of the target protein to which the anchor polypeptide is fused comprises a sequence selected from the group consisting of SEQ ID NOS: 35 to 39.
제 9 항에 있어서, 상기 핵산분자는 서열목록 제30서열 내지 제34서열로 구성된 군으로부터 선택되는 서열을 포함하는 것을 특징으로 하는 조성물.
10. The composition of claim 9, wherein the nucleic acid molecule comprises a sequence selected from the group consisting of SEQ ID NOS: 30 to 34.
다음의 단계를 포함하는 FcγR에 대한 친화도가 향상된 Fc 변이체의 선별방법:
(a) (i) 디스플레이하고자 하는 Fc 변이체의 단량체(monomer) 및 앵커(anchor) 폴리펩타이드를 코딩하는 뉴클레오타이드 서열 및 (ii) 상기 코딩 뉴클레오타이드 서열에 작동적(operatively)으로 결합된 프로모터를 포함하는 벡터를 구축(construction)하는 단계;
(b) 상기 벡터로 미생물을 형질전환(transformation)시키는 단계;
(c) 상기 형질전환된 미생물을 배양하여 앵커 폴리펩타이드가 융합된 Fc 변이체의 단량체를 발현시키는 단계로서, 상기 앵커 폴리펩타이드는 미생물의 내막에 앵커링(anchoring)되고 Fc 변이체의 단량체는 상기 미생물의 원형질막 주위 공간(periplasmic region)에 전시되는 단계;
(d) 상기 앵커 폴리펩타이드가 융합된 Fc 변이체의 단량체는 세포막의 유동성(membrane fluidity)에 의해 자가-조립(self-assemble)되어 이량체(dimer)를 형성하는 단계; 및
(e) 상기 Fc 변이체의 이량체가 디스플레이된 미생물에 FcγR를 처리한 후, FcγR에 대한 결합력을 야생형(wild type) Fc의 경우와 비교하는 단계.
A method of screening Fc variants with enhanced affinity for Fc [gamma] R comprising the steps of:
(a) a vector comprising (i) a nucleotide sequence encoding a monomer and anchor polypeptide of the Fc variant to be displayed and (ii) a vector comprising a promoter operably linked to the coding nucleotide sequence Constructing a second image;
(b) transforming the microorganism with the vector;
(c) culturing the transformed microorganism to express a monomer of an Fc variant fused with the anchor polypeptide, wherein the anchor polypeptide is anchored to the inner membrane of the microorganism, and the monomer of the Fc variant is a protoplast of the microorganism Displayed in a periplasmic region;
(d) the monomer of the Fc variant to which the anchor polypeptide is fused is self-assembled by membrane fluidity to form a dimer; And
(e) treating the microorganism displaying the dimer of the Fc variant with Fc [gamma] R, and comparing the binding force against Fc [gamma] R with the case of wild type Fc.
제 12 항에 있어서, 상기 Fc 변이체는 카밧 넘버링 시스템(Kabat numbering system)에 따른 하기의 아미노산 치환으로 구성된 군으로부터 선택되는 1 또는 2 이상의 아미노산 치환을 포함하는 것을 특징으로 하는 선별방법: L235V, G236A, S239D, F243L, V264E, S267E, R292P, Q295R, S298G, T299A, Y300L, K326I, A327Y, L328F, L328G, L328W, A330L, P331A, I332E, I332Y, T350A, D357G, E382V, N390D, T394A, P396L, F405S, M428I 및 M428L.
13. The method of claim 12, wherein said Fc variant comprises one or more amino acid substitutions selected from the group consisting of the following amino acid substitutions according to Kabat numbering system: L235V, G236A, S239D, F243L, V264E, S267E, R292P, Q295R, S298G, T299A, Y300L, K326I, A327Y, L328F, L328G, L328W, A330L, P331A, I332E, I332Y, T350A, D357G, E382V, N390D, T394A, P396L, F405S, M428I and M428L.
다음의 단계를 포함하는 항원에 대한 결합력을 갖는 항원 결합 영역 (VH 또는 VL)의 선별방법:
(a) (i) 디스플레이하고자 하는 항체의 중쇄 또는 경쇄 가변부위와 앵커(anchor) 폴리펩타이드를 코딩하는 뉴클레오타이드 서열 및 (ii) 상기 코딩 뉴클레오타이드 서열에 작동적(operatively)으로 결합된 프로모터를 포함하는 벡터를 구축(construction)하는 단계;
(b) 상기 벡터로 미생물을 형질전환(transformation)시키는 단계;
(c) 상기 형질전환된 미생물을 배양하여 앵커 폴리펩타이드가 융합된 항체의 중쇄 또는 경쇄 가변부위를 발현시키는 단계로서, 상기 앵커 폴리펩타이드는 미생물의 내막에 앵커링(anchoring)되고 항체의 중쇄 또는 경쇄 가변부위는 상기 미생물의 원형질막 주위 공간(periplasmic region)에 전시되는 단계;
(d) 상기 앵커 폴리펩타이드가 융합된 항체의 중쇄 또는 경쇄 가변부위는 세포막의 유동성(membrane fluidity)에 의해 항체의 경쇄 또는 중쇄 가변부위와 자가-조립(self-assemble)되어 다중체(multimer)를 형성하는 단계; 및
(e) 상기 다중체가 디스플레이된 미생물에 항원을 처리하는 단계.
A method for screening an antigen binding region (VH or VL) having a binding force for an antigen comprising the steps of:
(a) a vector comprising (i) a nucleotide sequence encoding an heavy chain or light chain variable region of an antibody to be displayed and an anchor polypeptide, and (ii) a vector comprising a promoter operatively linked to the coding nucleotide sequence Constructing a second image;
(b) transforming the microorganism with the vector;
(c) culturing the transformed microorganism to express a heavy or light chain variable region of the antibody fused with the anchor polypeptide, wherein the anchor polypeptide is anchored to the inner membrane of the microorganism and the heavy or light chain variable Wherein the site is displayed in a periplasmic region of the microorganism;
(d) The heavy or light chain variable region of the antibody fused with the anchor polypeptide is self-assemble with the light or heavy chain variable region of the antibody by membrane fluidity of the antibody to form a multimer ; And
(e) treating the antigen with the microorganism for which the complex is displayed.
제 14 항에 있어서, 상기 항체의 중쇄 가변부위를 코딩하는 뉴클레오타이드 서열 및 경쇄 가변부위를 코딩하는 뉴클레오타이드 서열은 동일한 벡터에 구축되거나, 서로 다른 벡터에 구축되는 것을 특징으로 하는 선별방법.15. The screening method according to claim 14, wherein the nucleotide sequence encoding the heavy chain variable region of the antibody and the nucleotide sequence encoding the light chain variable region are constructed in the same vector or constructed in different vectors.
KR1020170136668A 2017-10-20 2017-10-20 Multimeric Protein Display System using Cell Membrane Fluidity KR102048037B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170136668A KR102048037B1 (en) 2017-10-20 2017-10-20 Multimeric Protein Display System using Cell Membrane Fluidity
PCT/KR2018/012212 WO2019078591A1 (en) 2017-10-20 2018-10-17 Multimeric protein display system utilizing cell membrane fluidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170136668A KR102048037B1 (en) 2017-10-20 2017-10-20 Multimeric Protein Display System using Cell Membrane Fluidity

Publications (2)

Publication Number Publication Date
KR20190044347A true KR20190044347A (en) 2019-04-30
KR102048037B1 KR102048037B1 (en) 2019-11-22

Family

ID=66174613

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170136668A KR102048037B1 (en) 2017-10-20 2017-10-20 Multimeric Protein Display System using Cell Membrane Fluidity

Country Status (2)

Country Link
KR (1) KR102048037B1 (en)
WO (1) WO2019078591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005424A1 (en) * 2022-06-29 2024-01-04 고려대학교 산학협력단 Human fc variants having improved fcγriia binding selectivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795579B2 (en) 2017-12-11 2023-10-24 Abalone Bio, Inc. Yeast display of proteins in the periplasmic space

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2155789B1 (en) * 2007-05-01 2013-07-24 Research Development Foundation Immunoglobulin fc libraries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012214643B2 (en) * 2011-02-07 2016-12-15 Research Development Foundation Engineered immunoglobulin Fc polypeptides
WO2017040380A2 (en) * 2015-08-28 2017-03-09 Research Development Foundation Engineered antibody fc variants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2155789B1 (en) * 2007-05-01 2013-07-24 Research Development Foundation Immunoglobulin fc libraries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005424A1 (en) * 2022-06-29 2024-01-04 고려대학교 산학협력단 Human fc variants having improved fcγriia binding selectivity

Also Published As

Publication number Publication date
KR102048037B1 (en) 2019-11-22
WO2019078591A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US20230340160A1 (en) Bispecific t cell activating antigen binding molecules
KR102414120B1 (en) Interleukin-21 muteins and methods of treatment
KR102269584B1 (en) Bi-specific monovalent diabodies that are capable of binding to gpa33 and cd3, and uses thereof
KR101901458B1 (en) TCR Complex immunotherapeutics
AU2018203491A1 (en) CD86 antagonist multi-target binding proteins
CN108341872A (en) Target antibody and its application of BCMA
CN106928371B (en) Recombinant complement factor H-immunoglobulin fusion protein with complement regulation activity and preparation method and application thereof
CN110719920A (en) Protein heterodimers and uses thereof
CN109336980B (en) Muc 1-targeted chimeric antigen receptor modified T cell and application thereof
CN109971713B (en) Muc 1-specific CAR-T cells stably expressing PD-1 antibodies and uses thereof
CN109971723B (en) T cells comprising CD40 antibody and muc1 specific chimeric antigen receptor gene and uses thereof
KR102048037B1 (en) Multimeric Protein Display System using Cell Membrane Fluidity
CA2404340C (en) Methods of blocking tissue destruction by autoreactive t cells
KR101985863B1 (en) An Antibody Fc Variant for Enhancing ADCC Activity
KR101957431B1 (en) Antibody Fc variants for Prolonged Serum Half-Life
KR101924485B1 (en) Antibody Fc variants for Prolonged Serum Half-Life
KR101913743B1 (en) Antibody Fc variants for Prolonged Serum Half-Life
JP2004500110A5 (en)
KR101883886B1 (en) Aglycosylated Antibody Fc Region for Treating Cancer
CN101896502B (en) A human anti-tumor necrosis factor alpha monoclonal antibody and use thereof
KR101900384B1 (en) Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor
US20030106084A1 (en) Methods of blocking tissue destruction by autoreactive T cells
KR101792205B1 (en) Antibody Fc variants for Prolonged Serum Persistence
CN113416244A (en) Fully human novel crown IgG3 single-chain antibody and application thereof
KR101792191B1 (en) Antibody Fc variants for Extended Serum Half-life

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant