KR101900384B1 - Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor - Google Patents

Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor Download PDF

Info

Publication number
KR101900384B1
KR101900384B1 KR1020160148002A KR20160148002A KR101900384B1 KR 101900384 B1 KR101900384 B1 KR 101900384B1 KR 1020160148002 A KR1020160148002 A KR 1020160148002A KR 20160148002 A KR20160148002 A KR 20160148002A KR 101900384 B1 KR101900384 B1 KR 101900384B1
Authority
KR
South Korea
Prior art keywords
val
pro
antibody
lys
polypeptide
Prior art date
Application number
KR1020160148002A
Other languages
Korean (ko)
Other versions
KR20180051100A (en
Inventor
정상택
조미경
Original Assignee
국민대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교 산학협력단 filed Critical 국민대학교 산학협력단
Priority to KR1020160148002A priority Critical patent/KR101900384B1/en
Priority to DE112017005457.5T priority patent/DE112017005457T5/en
Priority to US16/345,062 priority patent/US11414493B2/en
Priority to AU2017348982A priority patent/AU2017348982B2/en
Priority to PCT/KR2017/009153 priority patent/WO2018079997A1/en
Priority to GB1907421.0A priority patent/GB2571036B/en
Publication of KR20180051100A publication Critical patent/KR20180051100A/en
Application granted granted Critical
Publication of KR101900384B1 publication Critical patent/KR101900384B1/en
Priority to US17/861,920 priority patent/US20220348654A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against Fc-receptors, e.g. CD16, CD32, CD64
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1055Protein x Protein interaction, e.g. two hybrid selection
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype

Abstract

본 발명은 인간 항체 Fc 도메인의 아미노산 서열 중 일부가 다른 아미노산 서열로 치환된 Fc 도메인을 포함하는 폴리펩타이드 또는 이를 포함하는 무당화 항체에 관한 것이다. 본 발명의 Fc 도메인은 야생형 Fc 도메인의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 Fc 수용체 중 FcγRIIIa에 선택적 결합력이 우수하여 암의 치료에 유용하며, 박테리아 배양을 통해서 균질의 무당화 항체로 제조될 수 있다.The present invention relates to a polypeptide comprising an Fc domain in which part of the amino acid sequence of the human antibody Fc domain is replaced with another amino acid sequence, or to an immobilized antibody comprising the same. The Fc domain of the present invention is optimized for substitution of some amino acid sequences of a wild-type Fc domain with another amino acid sequence, thereby being excellent in the selective binding ability to FcγRIIIa among Fc receptors and being useful for the treatment of cancer. .

Description

Fcγ 수용체에 대한 결합 특이성이 향상된 무당화 항체 Fc 영역{Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor}Aglycosylated Antibody Fc Region Exhibits Enhanced Binding Specificity to an Fc < RTI ID = 0.0 > Receptor < / RTI >

본 발명은 Fcγ 수용체에 대한 결합 특이성이 향상된 무당화 항체 Fc 영역 및 이의 제조방법에 관한 것이다.The present invention relates to an immobilized antibody Fc region with improved binding specificity for an Fc [gamma] receptor and to a method for its preparation.

전 세계적으로 유전자 재조합, 세포 배양 등 생명공학기술의 발달에 따라 단백질의 구조와 기능에 대한 연구가 활발히 진행되어왔으며, 이는 생명현상에 대한 이해를 높일 뿐만 아니라, 각종 질병들의 발병 기작을 규명하는데 결정적 역할을 함으로써 효과적인 질병 진단과 치료의 길을 마련해 삶의 질 향상에 크게 기여 하고 있다. 특히, 1975년에 B 세포 (B Cell)와 골수암 세포 (Myeoloma cell)를 융합하여 단일클론항체를 생산하는 하이브리도마 기술(Hybridoma technology)이 개발(Kohler and Milstein, Nature, 256:495-497, 1975)되면서 암, 자가면역질환, 염증, 심혈관 질환, 감염 등의 임상 분야에서 치료용 항체를 이용한 면역 치료(Immunotherapy)에 대한 연구개발이 활발히 이루어지고 있다.Studies on the structure and function of proteins have been actively conducted according to the development of biotechnology such as genetic recombination and cell culture all over the world. This not only enhances understanding of life phenomena, The role plays a role in the improvement of quality of life by providing effective disease diagnosis and treatment. Particularly, in 1975, a hybridoma technology was developed (Kohler and Milstein, Nature , 256: 495-497, 1988) which produces monoclonal antibodies by fusing B cells and Myeoloma cells, 1975), there has been active research and development on immunotherapy using therapeutic antibodies in clinical fields such as cancer, autoimmune diseases, inflammation, cardiovascular diseases, and infections.

치료용 항체는 기존의 저분자 약물에 비해 타깃에 매우 높은 특이성을 보이며, 생체 독성이 낮고 부작용이 적을 뿐만 아니라, 약 3주의 우수한 혈중 반감기를 가지기 때문에 가장 효과적인 암 치료방법 중의 하나로 여겨지고 있다. 실제로 전 세계의 거대 제약회사들과 연구소들에서 암 발병 원인인자를 비롯한 암세포에 특이적으로 결합하여 효과적으로 제거하는 치료용 항체의 연구 개발에 박차를 가하고 있다. 치료용 항체 의약품 개발 기업으로는 로슈, 암젠, 존슨앤존슨, 애보트, 비엠에스 등의 제약 기업이 주를 이루고 있으며, 특히 로슈는 항암 치료 목적의 허셉틴(Herceptin), 아바스틴(Avastin), 리툭산(Rituxan) 등이 대표적 상품으로 이 세 가지 치료용 항체로 2012년 세계시장에서 약 195억 달러의 매출을 달성하는 등 큰 이윤을 창출하고 있을 뿐 아니라, 세계의 항체 의약품 시장을 이끌고 있다. 레미케이드(Remicade)를 개발한 존슨앤존슨 역시 매출의 증가로 세계 항체 시장에서 빠르게 성장해나가고 있으며, 애보트와 비엠에스 등의 제약 기업 역시 개발 막바지 단계의 치료용 항체를 다수 보유하고 있는 것으로 알려져 있다. 이에 따른 결과로 저분자 의약품이 주도권을 가지고 있던 세계 제약 시장에서 질병 타깃에 특이적이고 부작용이 낮은 치료용 항체를 포함한 바이오 의약품이 빠르게 그 자리를 대체해 나가고 있다.Therapeutic antibodies are considered to be one of the most effective cancer treatment methods because they exhibit very high specificity to the target, low bio-toxicity and low side effects, as well as excellent blood half-lives of about 3 weeks, compared with conventional low-molecular drugs. In fact, major pharmaceutical companies and laboratories around the world are spurring research and development on therapeutic antibodies that specifically bind to cancer cells, including cancer-causing factors and effectively eliminate them. Roche is a leading company in the development of therapeutic antibody medicines including Roche, Amgen, Johnson & Johnson, Abbott and BMS. Especially Roche has developed Herceptin, Avastin, Rituxan ) Is a representative product. With these three therapeutic antibodies, it generates a huge profit of around US $ 19.5 billion in the global market in 2012, and is leading the global antibody drug market. Johnson & Johnson, who developed Remicade, is also growing rapidly in the global antibody market due to increased sales, and pharmaceutical companies such as Abbott and BMS are also known to have a number of therapeutic antibodies at the developmental stage. As a result, biopharmaceuticals, including therapeutic antibodies specific to disease targets and low side effects, are rapidly replacing the global pharmaceutical market, where low-molecular drugs have taken the initiative.

치료용 항체의 가장 중요한 기작 중 하나는 면역세포들을 모집하여 타깃 항원으로 전달하는 기작인데, 항체의 Fc 도메인이 면역세포의 모집과 ADCC( antibody-dependent cell-mediated cytotoxicity)에 결정적인 역할을 한다. 특히, 항체의 ADCC 기능은 많은 세포의 표면에 존재하는 Fc 수용체(FcR)와의 상호작용에 의존한다. 사람의 Fc 수용체는 5가지로 분류되며, 항체가 어떠한 Fc 수용체에 결합되는지에 따라 모집되는 면역세포의 종류가 결정된다. 따라서, 특정한 세포를 모집할 수 있도록 항체를 변형하는 시도는 치료 분야에 있어서 매우 중요하다고 할 수 있다.One of the most important mechanisms of the therapeutic antibody is to collect the immune cells and transfer them to the target antigen. The Fc domain of the antibody plays a crucial role in the immune cell recruitment and antibody-dependent cell-mediated cytotoxicity (ADCC). In particular, the ADCC function of the antibody depends on the interaction with the Fc receptor (FcR) present on the surface of many cells. Human Fc receptors are classified into five categories, and the type of immune cells to be recruited depends on which Fc receptor the antibody binds to. Thus, attempts to modify antibodies to recruit specific cells can be of great importance in the therapeutic field.

하지만, 현재까지 대부분의 시도는 포유동물이 발현하는 IgG 분자를 이용하여 Fc 도메인을 변형하는 것이었다. 포유동물의 항체는 당화(glycosylated)되어 있는데, 이러한 당화 항체 Fc 부위에 수식된 탄화수소 사슬이 단백질의 구조를 안정화 해주어 항체가 Fc 수용체에 결합할 수 있도록 한다. 이와 반대로, 박테리아에서 생산되는 무당화(aglycosylated) 항체는 Fc 부위에 결합된 탄화수소 사슬이 없기 때문에 Fc 수용체에 결합을 하지 못하여 ADCC 기능을 나타낼 수 없다. 따라서, Fc 수용체에 결합을 할 수 있는 무당화 항체가 개발된다면, 기존 동물세포가 아닌 박테리아를 이용한 생산이 가능하여 생산 원가를 절감할 수 있는 장점을 가질 수 있다.However, to date, most attempts have been to modify the Fc domain using IgG molecules expressed by mammals. The mammalian antibody is glycosylated, and the hydrocarbon chain modified on the glycated antibody Fc region stabilizes the structure of the protein, allowing the antibody to bind to the Fc receptor. In contrast, aglycosylated antibodies produced by bacteria can not bind to Fc receptors because they do not have a chain of hydrocarbons bound to the Fc region and therefore can not exhibit ADCC function. Therefore, if an amelogenous antibody capable of binding to the Fc receptor is developed, it is possible to produce using bacteria, which is not an existing animal cell, and thus it is possible to reduce the production cost.

또한, Fc 부위를 변형한 포유동물의 항체는 특정 Fc 수용체에 대한 결합력이 증가되지만, 다른 Fc 수용체에 대한 결합력도 유지를 하기 때문에 바람직하지 않은 면역반응을 여전히 유지하는 문제가 있다. 인간에게는 5 종류의 주요 FcγR가 존재한다. 상기 수용체 중 4가지는 면역 활성화 또는 염증 반응을 유도하고, FcγRIIb는 면역 저해 또는 항염증 반응을 유도하는데, 대부분의 자연적으로 생산된 항체 또는 재조합된 당화 항체는 활성화 및 저해 Fc 수용체에 모두 결합을 한다. 항체의 ADCC 유도능은 활성화 FcγR에 결합하는 능력과 저해 FcγRIIb에 결합하는 능력의 비율(A/I ratio)에 달려 있다(Boruchov et al, J Clin Invest, 115(10):2914-23, 2005). 하지만, FcγRIIb는 활성화 FcγR와 96%의 상동성을 갖는 문제로 인하여, 당화항체에 유전적 돌연변이를 도입하여 A/I ratio를 증가시키기 위한 노력은 큰 결실을 거두지 못하고 있는 실정이다.In addition, antibodies to mammalian cells that have modified the Fc region increase binding capacity for specific Fc receptors, but also retain the binding capacity to other Fc receptors, thus retaining the undesirable immune response. There are five major types of Fc [gamma] R in humans. Four of these receptors induce an immune activation or inflammatory response, and Fc [gamma] RIIb induces immunosuppression or anti-inflammatory responses, with most naturally occurring antibodies or recombinant glycated antibodies binding to both activated and inhibitory Fc receptors. The ADCC-inducing ability of the antibody depends on the ratio of the ability to bind to the activated Fc [gamma] R and the ability to bind the inhibitory Fc [gamma] RIIb (Boruchov et al, J Clin Invest , 115 (10): 2914-23, 2005) . However, due to the fact that Fc [gamma] RIIb has a homology of 96% with the activated Fc [gamma] R, efforts to increase the A / I ratio by introducing a genetic mutation into the glycated antibody have not achieved great results.

추가적으로, 현재 임상에 이용되고 있는 치료용 IgG 항체를 이용한 암세포 사멸 작용기작에 관여하는 여러 가지의 면역세포들 중 자연살해세포(NK 세포)는 가장 강력한 암세포 사멸 효능을 가지고 있는 것으로 알려져 있는데, 다른 면역세포들(예: monocytes, macrophages, dendritic cells)과는 달리 NK 세포는 표면에 FcγRIIIa를 발현하고, FcγRI과 FcγRIIa, FcγRIIb 및 FcγRIIIb는 발현하지 않는 특징을 갖는다. 따라서 기존의 치료용 항체와 차별화 할 수 있도록 암세포 사멸 작용기작을 극대화하기 위해서는 IgG 항체의 Fc 부위의 최적화를 통해 NK 세포 표면에 발현되는 FcγRIIIa와의 친화도를 향상시키는 것이 필수적이다.In addition, among the various immune cells involved in the cancer cell death mechanism using the therapeutic IgG antibody currently in clinical use, natural killer cells (NK cells) are known to have the most potent cytotoxic killer effect, Unlike cells (eg, monocytes, macrophages, dendritic cells), NK cells express FcγRIIIa on the surface, and FcγRI and FcγRIIa, FcγRIIb, and FcγRIIIb are not expressed. Therefore, it is essential to improve the affinity with FcγRIIIa expressed on the surface of NK cells by optimizing the Fc region of the IgG antibody in order to maximize the mechanism of action of cancer cells to differentiate from existing therapeutic antibodies.

상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as adhering to the prior art already known to those skilled in the art.

본 발명자들은 기존의 당화 항체가 갖는 비균질의 문제가 없고 NK 세포의 표면에 발현된 FcγRIIIa와의 향상된 결합력을 보유한 무당화 항체를 개발하고자 예의 노력을 하였다. 그 결과, 야생형 Fc 도메인의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 Fc 수용체 중 FcγRIIIa에 선택적으로 결합력이 크게 향상되고, 이를 통해 NK 세포의 암세포 사멸효과가 증대됨을 확인하여 본 발명을 완성하였다.The inventors of the present invention have made efforts to develop an immobilized antibody having improved binding ability with FcγRIIIa expressed on the surface of NK cells without the problem of heterogeneity of existing glycated antibodies. As a result, it was confirmed that the binding ability to FcγRIIIa in the Fc receptor was greatly enhanced by substituting some amino acid sequences of the wild-type Fc domain with other amino acid sequences, thereby enhancing the cancer cell killing effect of NK cells, thereby completing the present invention .

따라서, 본 발명의 목적은 인간 항체 Fc 도메인의 아미노산 서열 중 일부가 다른 아미노산 서열로 치환된 Fc 도메인을 포함하는 폴리펩타이드를 제공하는데 있다.Accordingly, it is an object of the present invention to provide a polypeptide comprising an Fc domain in which a part of the amino acid sequence of the human antibody Fc domain is replaced with another amino acid sequence.

본 발명의 다른 목적은 상기 폴리펩타이드를 포함하는 무당화 항체를 제공하는데 있다.It is another object of the present invention to provide an immobilized antibody comprising the polypeptide.

본 발명의 또 다른 목적은 상기 폴리펩타이드를 코딩하는 핵산분자를 제공하는데 있다.It is still another object of the present invention to provide a nucleic acid molecule encoding the polypeptide.

본 발명의 또 다른 목적은 상기 핵산분자를 포함하는 벡터를 제공하는데 있다.It is still another object of the present invention to provide a vector comprising the nucleic acid molecule.

본 발명의 또 다른 목적은 상기 벡터를 포함하는 숙주세포를 제공하는데 있다.It is still another object of the present invention to provide a host cell comprising the vector.

본 발명의 또 다른 목적은 상기 폴리펩타이드 또는 핵산분자를 포함하는 조성물을 제공하는데 있다.It is another object of the present invention to provide a composition comprising the polypeptide or the nucleic acid molecule.

본 발명의 또 다른 목적은 상기 폴리펩타이드 또는 무당화 항체의 제조방법을 제공하는데 있다.It is still another object of the present invention to provide a method for producing the polypeptide or the non-glycosylated antibody.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 인간 항체 Fc 도메인의 아미노산 서열 중 일부가 다른 아미노산 서열로 치환된 Fc 도메인을 포함하는 폴리펩타이드를 제공한다.According to one aspect of the present invention, the present invention provides a polypeptide comprising an Fc domain in which a part of the amino acid sequence of the human antibody Fc domain is replaced with another amino acid sequence.

본 발명자들은 기존의 당화 항체가 갖는 비균질의 문제가 없고 NK 세포의 표면에 발현된 FcγRIIIa와의 향상된 결합력을 보유한 무당화 항체를 개발하고자 예의 노력을 하였다. 그 결과, 야생형 Fc 도메인의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 Fc 수용체 중 FcγRIIIa에 선택적으로 결합력이 크게 향상되고, 이를 통해 NK 세포의 암세포 사멸효과가 증대됨을 확인하였다.The inventors of the present invention have made efforts to develop an immobilized antibody having improved binding ability with FcγRIIIa expressed on the surface of NK cells without the problem of heterogeneity of existing glycated antibodies. As a result, it was confirmed that the binding ability to FcγRIIIa selectively increased in the Fc receptor by substituting some amino acid sequences of the wild type Fc domain with other amino acid sequences, thereby enhancing the cancer cell killing effect of NK cells.

항체는 특정 항원에 특이적으로 결합을 나타내는 단백질로, 천연 항체는 통상 2개의 동일한 경쇄(L) 및 2개의 동일한 중쇄(H)로 구성된, 약 150,000 달톤의 헤테로다이머 당단백질이다. An antibody is a protein that specifically binds to a specific antigen, and the natural antibody is a heterodimeric glycoprotein of about 150,000 daltons, usually composed of two identical light chains (L) and two identical heavy chains (H).

본 발명에서 사용되는 인간 항체는 IgA, IgD, IgE, IgG 및 IgM의 5개의 주요 클래스가 있으며, 바람직하게는 IgG이다. 항체의 파파인 분해는 2개의 Fab 단편과 1개의 Fc 단편을 형성하며, 인간 IgG 분자에서, Fc 영역은 Cys 226의 N-말단을 파파인 분해함으로써 생성된다(Deisenhofer, Biochemistry 20: 2361-2370, 1981).Human antibodies used in the present invention have five main classes of IgA, IgD, IgE, IgG and IgM, preferably IgG. Papain degradation of the antibody forms two Fab fragments and one Fc fragment, and in the human IgG molecule, the Fc region is generated by papain digestion of the N-terminus of Cys 226 (Deisenhofer, Biochemistry 20: 2361-2370, 1981) .

항체 Fc 도메인은 IgA, IgM, IgE, IgD, 또는 IgG 항체의 Fc 도메인, 혹은 이들의 변형일 수 있다. 일 실시 양태에 있어서는 상기 도메인은 IgG 항체의 Fc 도메인(예를 들면 IgG1, IgG2a, IgG2b, IgG3, 또는 IgG4 항체의 Fc 도메인)이다. 일 실시 양태에 있어서는 상기 Fc 도메인은 IgG1 Fc 도메인(예를 들면 항HER2 항체의 Fc 도메인, 보다 구체적으로는 트라스트주맙의 Fc 도메인)일 수 있다. 본 발명의 Fc 도메인을 포함하는 폴리펩타이드는 폴리펩타이드 전체가 당화되어 있지 않거나 폴리펩타이드의 일부(예를 들면, Fc 도메인)만이 당화되지 않을 수 있다. 또한, 폴리펩타이드에 Fc 도메인에 더해 항체에서 유래하는 하나 이상의 영역이 포함될 수도 있다. 추가적으로, 상기 폴리펩타이드에는 항체 유래의 항원 결합 도메인(antigen binding domain)이 포함될 수도 있으며, 복수의 폴리펩타이드가 항체 또는 항체형 단백질을 형성할 수도 있다.The antibody Fc domain may be the Fc domain of an IgA, IgM, IgE, IgD, or IgG antibody, or a variant thereof. In one embodiment, the domain is the Fc domain of an IgG antibody (e.g., the Fc domain of an IgG1, IgG2a, IgG2b, IgG3, or IgG4 antibody). In one embodiment, the Fc domain may be an IgGl Fc domain (e. G., The Fc domain of an anti-HER2 antibody, more specifically the Fc domain of trastuzumab). In the polypeptide comprising the Fc domain of the present invention, the entire polypeptide may not be glycosylated or only a part of the polypeptide (for example, Fc domain) may not be glycosylated. In addition, one or more regions derived from an antibody in addition to the Fc domain may be included in the polypeptide. In addition, the polypeptide may comprise an antigen-binding domain from an antibody, and the plurality of polypeptides may form an antibody or antibody-type protein.

본 명세서에서 항체 Fc 도메인의 아미노산 잔기 번호는 당업계에서 통상적으로 사용되는 카밧 EU 넘버링 시스템(Kabat EU numbering system)에 따른다(Kabat et al., in “of Proteins of Immunological Interest”5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호). As used herein, the amino acid residue number of the antibody Fc domain follows the Kabat EU numbering system commonly used in the art (Kabat et al., In "Proteins of Immunological Interest" 5th Ed., US Department of Health and Human Services, NIH Publication No. 91-3242, 1991).

본 발명의 바람직한 구현예에 따르면, 본 발명의 치환된 Fc 도메인은 카밧 EU 넘버링 시스템에 따른 하기의 9가지 아미노산 치환을 포함한다: V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D 및 M428L.According to a preferred embodiment of the invention, the substituted Fc domain of the invention comprises the following nine amino acid substitutions according to the Kabat EU numbering system: V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D and M428L .

본 발명의 일 실시 양태에 있어서는 무당화 Fc 도메인은 FcγRIa, FcγRIIa, FcγRIIb, FcγRIIc, FcγRIIIa, FcγRIIIb 또는 FcαRI 중의 하나 이상에 결합할 수 있도록 변이된다. 상기 변이된 무당화 Fc 도메인은 상기 Fc 수용체 중 어느 하나 이상에 대한 결합력이 야생형 당화 Fc 도메인과 비교하여 10% 이내, 20% 이내, 30% 이내, 40% 이내, 50% 이내, 60% 이내, 70% 이내, 80% 이내, 90% 이내 또는 100% 이내이거나, 야생형 당화 Fc 도메인 보다 2배 이상, 3배 이상, 4배 이상, 5배 이상, 6배 이상, 7배 이상, 8배 이상, 9배 이상, 10배 이상 또는 20배 이상 증가될 수 있다.In one embodiment of the invention, the unmodified Fc domain is mutated to bind to one or more of Fc [gamma] RIa, Fc [gamma] RIIa, Fc [gamma] RIIb, Fc [gamma] RIIc, Fc [gamma] RIIa, Fc [gamma] RIIb or Fc [ Wherein the mutated non-fused Fc domain has a binding affinity for any one or more of the Fc receptors within 10%, within 20%, within 30%, within 40%, within 50%, within 60% More than 2 times, 3 times or more, 4 times or more, 5 times or more, 6 times or more, 7 times or more, 8 times or more than 70%, 80%, 90% or 100% 9 times, 10 times or 20 times or more.

본 발명의 바람직한 구현예에 따르면, 본 발명의 폴리펩타이드가 포함하는 Fc 도메인은 상기 9가지 아미노산으로 치환되지 않은 Fc 도메인과 비교하여 FcγRIIIa에 대한 결합력이 향상된 것이다.According to a preferred embodiment of the present invention, the Fc domain of the polypeptide of the present invention has improved binding ability to FcγRIIIa as compared to the Fc domain which is not substituted with the above nine amino acids.

본 발명의 실시예에 따르면, S298G, T299A, N390D, E382V 및 M428L만이 치환된 Fc 도메인(Fc1004, 미국 등록특허 제8,952,132호)이 야생형 Fc 도메인과 같이 FcγRIIIa와 결합하지 않고, T299A, K326I, A327Y 및 L328G만이 치환된 Fc 도메인(A/IYG, 미국 등록특허 제8,815,237호) 역시 야생형 Fc 도메인에 비해 FcγRIIIa에 대한 결합력 증가가 상당히 약하다. 본 발명의 상기 9가지 아미노산 치환을 포함하는 Fc 도메인의 FcγRIIIa에 대한 결합력은 야생형 Fc 도메인 또는 Fc1004나 A/IYG와 비교하여 크게 향상되는 것을 확인하였다(실시예 3 및 4).According to an embodiment of the present invention, the Fc domain (Fc1004, U.S. Patent No. 8,952,132) substituted only with S298G, T299A, N390D, E382V and M428L does not bind FcγRIIIa as in the wild type Fc domain but does not bind T299A, K326I, A327Y and The Fc domain substituted only with L328G (A / IYG, US Patent No. 8,815,237) is also significantly weaker in binding capacity to Fc [gamma] RIIIa than the wild type Fc domain. It was confirmed that the binding ability of the Fc domain containing the 9 amino acid substitutions of the present invention to Fc [gamma] RIIIa was greatly improved as compared with the wild type Fc domain or Fc1004 or A / IYG (Examples 3 and 4).

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 폴리펩타이드를 포함하는 무당화(aglycosylated) 항체를 제공한다.According to another aspect of the invention, the present invention provides an aglycosylated antibody comprising said polypeptide.

본 명세서에서 용어 “항체”는 폴리클로날 항체, 모노클로날 항체, 인간항체 및 인간화 항체와 이들의 단편을 의미한다.The term " antibody " as used herein refers to polyclonal antibodies, monoclonal antibodies, human antibodies, and humanized antibodies and fragments thereof.

현재 상용화된 모든 치료용 항체들은 동물세포 배양을 통해 제조되고 있는데 항체를 생산할 때 다양한 당(carbohydrate) 변이체들이 항체 단백질에 수식되게 되고, 이로 인한 당화 비균질성(glycan heterogeniety)은 항체의 효능과 안정성에 변이를 유발하며, 항체 제조 공정 중 정제, 분석, QC(Quality Control)에 많은 비용을 요구하게 된다.All currently available therapeutic antibodies are produced from animal cell cultures. When producing antibodies, a variety of carbohydrate mutants are modified into antibody proteins, and the resulting glycan heterogeneity results in variations in the efficacy and stability of the antibody And it requires a lot of cost for purification, analysis and QC (quality control) in the process of manufacturing the antibody.

고가의 동물세포 배양 시스템이 요구되는 상기 당화 항체에 비해 무당화 항체(aglycosylated)는 박테리아에서 대량 생산이 가능하고 속도와 비용 면에서 탁월한 우수성을 지닌다. 하지만, 당화 항체의 Asn297 아미노산에 생성된 N-linked glycan은 항체의 구조와 기능에 결정적인 역할을 하는데, 무당화 항체 Fc 영역은 동물세포에서 생산이 되는 당화(glycosylated) 항체 Fc와 다르게 상위 CH2 영역이 닫혀져 있는 구조(closed structure) 혹은 아주 가변적인 구조 (flexible structure)를 가지게 되며, 이에 따라 무당화 항체는 NK 세포 모집과 활성화에 결정적인 역할을 담당하는 FcγRIIIa에 결합을 하지 못하고, 암세포 사멸 작용기작을 보이지 못하게 된다. Compared to the glycated antibody, which requires an expensive animal cell culture system, the aglycosylated antibody is capable of mass production in bacteria and has excellent excellence in terms of speed and cost. However, the N-linked glycans produced in the Asn297 amino acid of the glycated antibody play a crucial role in the structure and function of the antibody. Unlike the glycosylated antibody Fc produced in animal cells, And thus has a closed structure or a flexible structure. Thus, an immobilized antibody can not bind FcγRIIIa, which plays a crucial role in NK cell recruitment and activation, and exhibits a cancer cell death mechanism I can not.

본 발명의 바람직한 구현예에 따르면, 본 발명은 무당화 항체 Fc 영역의 최적화(V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D 및 M428L의 9가지 아미노산으로 치환)를 통해 당화 비균질성 문제가 없고 저렴한 비용으로 박테리아에서도 생산이 가능함과 동시에 NK 세포의 표면에 발현된 FcγRIIIa와의 향상된 결합력으로 암세포 사멸 작용기작을 극대화할 수 있다.According to a preferred embodiment of the present invention, the present invention relates to the use of an antibody against the glycated heterogeneity problem through optimization of the ungultered antibody Fc region (V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D and M428L replaced by nine amino acids) In addition, it can be produced in bacteria at low cost and at the same time, it can maximize the mechanism of cancer cell death by the enhanced binding force with FcγRIIIa expressed on the surface of NK cells.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 폴리펩타이드를 코딩하는 핵산분자, 상기 핵산분자를 포함하는 벡터 또는 상기 벡터를 포함하는 숙주세포를 제공한다.According to another aspect of the present invention, there is provided a nucleic acid molecule encoding the polypeptide, a vector comprising the nucleic acid molecule, or a host cell comprising the vector.

본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 인간 항체 Fc 도메인을 포함하는 폴리펩타이드의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for producing a polypeptide comprising a human antibody Fc domain comprising the steps of:

a) 제 1 항의 폴리펩타이드를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 단계; 및a) culturing a host cell comprising a vector comprising a nucleic acid molecule encoding the polypeptide of claim 1; And

b) 상기 숙주세포에 의해 발현된 폴리펩타이드를 회수하는 단계. b) recovering the polypeptide expressed by said host cell.

본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 무당화 항체의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for producing an immobilized antibody comprising the steps of:

a) 제 1 항의 폴리펩타이드를 포함하는 무당화 항체를 발현하는 숙주세포를 배양하는 단계; 및a) culturing a host cell expressing an immortalized antibody comprising the polypeptide of claim 1; And

b) 상기 숙주세포로부터 발현된 항체를 정제하는 단계. b) purifying the antibody expressed from said host cell.

본 발명의 핵산분자는 단리된 것이거나 재조합된 것일 수 있으며, 단일쇄 및 이중쇄 형태의 DNA 및 RNA뿐만 아니라 대응하는 상보성 서열이 포함된다. “단리된 핵산”은 천연 생성 원천에서 단리된 핵산의 경우, 핵산이 단리된 개체의 게놈에 존재하는 주변 유전 서열로부터 분리된 핵산이다. 주형으로부터 효소적으로 또는 화학적으로 합성된 핵산, 예컨대 PCR 산물, cDNA 분자, 또는 올리고뉴클레오타이드의 경우, 이러한 절차로부터 생성된 핵산이 단리된 핵산분자로 이해될 수 있다. 단리된 핵산분자는 별도 단편의 형태 또는 더 큰 핵산 구축물의 성분으로서의 핵산 분자를 나타낸다. 핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 “작동가능하게 연결”된다. 예를 들면, 전서열 또는 분비 리더(leader)의 DNA는 폴리펩타이드가 분비되기 전의 형태인 전단백질(preprotein)로서 발현되는 경우 폴리펩타이드의 DNA에 작동가능하게 연결되고, 프로모터 또는 인핸서는 폴리펩타이드 서열의 전사에 영향을 주는 경우 코딩 서열에 작동가능하게 연결되며, 또는 리보솜 결합 부위는 번역을 촉진하도록 배치될 때 코딩 서열에 작동가능하게 연결된다. 일반적으로 “작동가능하게 연결된”은 연결될 DNA 서열들이 인접하여 위치함을 의미하며, 분비 리더의 경우 인접하여 동일한 리딩 프레임 내에 존재하는 것을 의미한다. 그러나 인핸서는 인접하여 위치할 필요는 없다. 연결은 편리한 제한 효소 부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오타이드 어댑터 또는 링커를 통상적인 방법에 따라 사용한다. The nucleic acid molecules of the present invention may be isolated or recombinant, and include DNA and RNA in single and double stranded form as well as corresponding complementary sequences. &Quot; Isolated nucleic acid " is a nucleic acid isolated from a peripheral genetic sequence present in the genome of an isolated nucleic acid, in the case of a nucleic acid isolated from a naturally occurring source. In the case of a nucleic acid that is enzymatically or chemically synthesized from a template, such as a PCR product, a cDNA molecule, or an oligonucleotide, the nucleic acid generated from such a procedure can be understood as an isolated nucleic acid molecule. The isolated nucleic acid molecule represents a nucleic acid molecule as a separate fragment or as a component of a larger nucleic acid construct. A nucleic acid is " operably linked " when placed in a functional relationship with another nucleic acid sequence. For example, the DNA of a full-length or secretory leader is operably linked to the DNA of the polypeptide when expressed as a preprotein in the form before secretion of the polypeptide, and the promoter or enhancer comprises a polypeptide sequence Or the ribosome binding site is operably linked to a coding sequence when it is placed to facilitate translation. Generally, " operably linked " means that the DNA sequences to be ligated are located adjacent to each other, and in the case of a secretory leader, it means that the DNA sequences are adjacent to each other in the same reading frame. However, the enhancer need not be located contiguously. Linking is accomplished by ligation at convenient restriction sites. If such sites are not present, synthetic oligonucleotide adapters or linkers are used according to conventional methods.

본 명세서에서 용어 “벡터”는 핵산 서열을 복제할 수 있는 세포로의 도입을 위해서 핵산 서열을 삽입할 수 있는 전달체를 의미한다. 핵산 서열은 외생(exogenous) 또는 이종(heterologous)일 수 있다. 벡터로서는 플라스미드, 코스미드 및 바이러스(예를 들면 박테리오파지)를 들 수 있으나, 이에 제한되지 않는다. 당업자는 표준적인 재조합 기술에 의해 벡터를 구축할 수 있다(Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; 및 Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994 등).As used herein, the term " vector " means a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating a nucleic acid sequence. The nucleic acid sequence may be exogenous or heterologous. Vectors include, but are not limited to, plasmids, cosmids, and viruses (e.g., bacteriophage). Those skilled in the art can establish a vector by standard recombinant techniques (Maniatis, et al, Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1988; and Ausubel et al, In:.. Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994).

본 명세서에서 용어 “발현 벡터”는 전사되는 유전자 산물 중 적어도 일부분을 코딩하는 핵산 서열을 포함한 벡터를 의미한다. 일부의 경우에는 그 후 RNA 분자가 단백질, 폴리펩타이드, 또는 펩타이드로 번역된다. 발현 벡터에는 다양한 조절서열을 포함할 수 있다. 전사 및 번역을 조절하는 조절서열과 함께 벡터 및 발현 벡터에는 또 다른 기능도 제공하는 핵산 서열도 포함될 수 있다.As used herein, the term " expression vector " means a vector comprising a nucleic acid sequence encoding at least a portion of the gene product to be transcribed. In some cases, the RNA molecules are then translated into proteins, polypeptides, or peptides. The expression vector may contain various regulatory sequences. Vectors and expression vectors may also include nucleic acid sequences that provide another function, as well as regulatory sequences that regulate transcription and translation.

본 명세서에서 용어 “숙주세포”는 진핵생물 및 원핵생물을 포함하며, 상기 벡터를 복제할 수 있거나 벡터에 의해 코딩되는 유전자를 발현할 수 있는 임의의 형질 전환 가능한 생물을 의미한다. 숙주세포는 상기 벡터에 의해 형질감염(transfected) 또는 형질전환(transformed) 될 수 있으며, 이는 외생의 핵산분자가 숙주세포 내에 전달되거나 도입되는 과정을 의미한다. As used herein, the term " host cell " refers to any transgenic organism that includes eukaryotes and prokaryotes and is capable of replicating the vector or expressing the gene encoded by the vector. The host cell may be transfected or transformed by the vector, which means that the exogenous nucleic acid molecule is transferred or introduced into the host cell.

본 발명의 바람직한 구현예에 따르면, 본 발명의 숙주세포는 세균(bacteria)세포, 보다 바람직하게는 그람 음성 세균세포이다. 상기 세포는 내막과 외막 사이에 원형질막 주위 공간 영역(periplasmic region)을 가지는 점에서 본 발명의 실시에 적합하다. 본 발명의 바람직한 숙주세포의 예로는 E. coli, Pseudomonas aeruginosa, Vibrio cholera, Salmonella typhimurium, Shigella flexneri, Haemophilus influenza, Bordotella pertussi, Erwinia amylovora, Rhizobium sp .등이 포함되나, 이에 제한되는 것은 아니다.According to a preferred embodiment of the present invention, the host cell of the present invention is a bacterial cell, more preferably a gram-negative bacterial cell. The cells are suitable for the practice of the present invention in that they have a periplasmic region between the inner membrane and the outer membrane. Examples of preferred host cells of the present invention include E. coli , Pseudomonas aeruginosa , Vibrio cholera , Salmonella typhimurium , Shigella flexneri , Haemophilus influenza , Bordotella pertussi , Erwinia amylovora , Rhizobium sp . But are not limited thereto.

본 발명의 제조방법에 있어서, 항체의 정제는 여과, HPLC, 음이온 교환 또는 양이온 교환, 고속 액체 크로마토그래피(HPLC), 친화도 크로마토그래피, 또는 이들의 조합을 하는 것이 포함될 수 있으며, 바람직하게는 Protein A를 사용하는 친화도 크로마토그래피를 이용할 수 있다.In the preparation method of the present invention, the purification of the antibody may include filtration, HPLC, anion exchange or cation exchange, high performance liquid chromatography (HPLC), affinity chromatography, or a combination thereof, preferably Protein An affinity chromatography using A can be used.

본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 FcγRIIIa에 결합하는 Fc 도메인을 포함하는 폴리펩타이드의 스크리닝 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method of screening a polypeptide comprising an Fc domain that binds to Fc [gamma] RIIIa comprising the steps of:

a) 상기 9가지 아미노산 치환(V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D 및 M428L)을 포함하는 Fc 도메인에 무작위적인 점 돌연변이를 가하는 단계를 포함하는 Fc 도메인을 포함하는 폴리펩타이드의 라이브러리를 구축하는 단계; 및comprising the steps of: a) applying a random point mutation to the Fc domain comprising the nine amino acid substitutions (V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D and M428L) Building a library; And

b) 상기 라이브러리에서 FcγRIIIa에 결합하는 Fc 도메인을 포함하는 폴리펩타이드를 선별하는 단계.b) selecting a polypeptide comprising an Fc domain that binds to FcγRIIIa in said library.

본 발명의 치환된 Fc 도메인은 상기 9가지 아미노산 치환과 더불어, 추가적인 아미노산 치환을 포함할 수 있다.The substituted Fc domain of the present invention may comprise additional amino acid substitutions, in addition to the nine amino acid substitutions.

본 발명의 일 실시예에 따르면, 박테리아 세포(바람직하게는, 대장균)를 이용하여 Fc 라이브러리를 구축하였으며, 이로부터 FcγRIIIa와 높은 친화도를 보이는 변이체들을 선별하였다(실시예 5 및 6).According to one embodiment of the present invention, an Fc library was constructed using bacterial cells (preferably Escherichia coli), from which mutants showing high affinity with FcγRIIIa were selected (Examples 5 and 6).

상기 Fc 도메인의 추가적인 아미노산 치환은 특별히 제한되지 않으며, 바람직하게는 카밧 EU 넘버링 시스템에 따른 226, 243, 246, 250, 253, 307, 347, 350, 400 및 421번 아미노산으로 구성된 군으로부터 선택되는 1 이상의 추가적인 아미노산 치환, 보다 바람직하게는 C226R, F243L, K246E, T250I, I253N, T307S, C347R, T350A, S400T 및 N421S로 구성된 군으로부터 선택되는 1 이상의 추가적인 아미노산 치환을 포함한다.The additional amino acid substitution of the Fc domain is not particularly limited and is preferably selected from the group consisting of amino acids 226, 243, 246, 250, 253, 307, 347, 350, 400 and 421 according to Kabat EU numbering system More preferably at least one additional amino acid substitution selected from the group consisting of C226R, F243L, K246E, T250I, I253N, T307S, C347R, T350A, S400T and N421S.

본 발명의 스크리닝 방법은 형광표지세포분리(FACS) 스크리닝, 또는 다른 자동화된 유세포 분석 기술을 사용할 수 있다. 유세포 분석기를 실시하기 위한 기기는 당업자에게 공지이다. 그러한 기기의 예로는 FACSAria, FACS Star Plus, FACScan 및 FACSort 기기(Becton Dickinson, Foster City, CA), Epics C(Coulter Epics Division, Hialeah, FL), MOFLO(Cytomation, Colorado Springs, Colo.), MOFLO-XDP (Beckman Coulter, Indianapolis, IN)를 들 수 있다. 일반적으로 유세포 분석기 기술에는 액체 시료 중의 세포 또는 다른 입자의 분리가 포함된다. 전형적으로는 유세포 분석기의 목적은 분리된 입자를 이들의 하나 이상의 특성(예를 들면 표지된 리간드 또는 다른 분자의 존재)에 대해서 분석하는 것이다. 입자는 센서에 의해 하나씩 통과되며, 크기, 굴절, 광산란, 불투명도, 조도, 형상, 형광 등에 기초하여 분류된다.The screening method of the present invention can use fluorescence labeled cell separation (FACS) screening or other automated flow cell analysis techniques. Devices for conducting flow cytometry analyzers are well known to those skilled in the art. Examples of such devices include FACSAria, FACS Star Plus, FACScan and FACSort instruments (Becton Dickinson, Foster City, CA), Epics C (Coulter Epics Division, Hialeah, FL), MOFLO (Cytomation, Colorado Springs, Colo. XDP (Beckman Coulter, Indianapolis, Ind.). Flow cytometry techniques generally involve the separation of cells or other particles in a liquid sample. Typically, the purpose of a flow cytometer is to analyze the discrete particles for one or more of their properties (e.g., the presence of a labeled ligand or other molecule). Particles are passed one by one by the sensor and are classified based on size, refraction, light scattering, opacity, roughness, shape, fluorescence and the like.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 아미노산 치환을 포함하는 Fc 도메인을 포함하는 폴리펩타이드 또는 이를 코딩하는 핵산분자를 포함하는 조성물을 제공한다.According to another aspect of the present invention, there is provided a composition comprising a polypeptide comprising an Fc domain comprising said amino acid substitution or a nucleic acid molecule encoding said polypeptide.

본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물은 암의 예방 또는 치료용 약제학적 조성물이다.According to a preferred embodiment of the present invention, the composition of the present invention is a pharmaceutical composition for preventing or treating cancer.

본 발명의 약제학적 조성물은 (a) 상기 폴리펩타이드, 무당화 항체 또는 이를 코딩하는 핵산분자; 및 (b) 약제학적으로 허용되는 담체를 포함할 수 있다.The pharmaceutical composition of the present invention comprises (a) a nucleic acid molecule encoding the polypeptide, the non-germinated antibody or the polypeptide; And (b) a pharmaceutically acceptable carrier.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 약제학적 조성물을 투여하는 단계를 포함하는 암의 예방 또는 치료방법을 제공한다.According to another aspect of the present invention, there is provided a method of preventing or treating cancer, comprising administering the pharmaceutical composition.

본 발명이 예방 또는 치료하고자 하는 암의 종류는 제한되지 않으며, 백혈병(leukemias) 및 급성 림프구 백혈병(acute lymphocytic leukemia), 급성 비림프구 백혈병(acute nonlymphocytic leukemias), 만성 림프구 백혈병(chronic lymphocytic leukemia), 만성 골수 백혈병(chronic myelogenous leukemia), 호지킨 병(Hodgkin's Disease), 비호지킨 림프종(non-Hodgkin's lymphomas) 및 다발 골수종(multiple myeloma) 등과 같은 림프종(lymphomas), 뇌종양(brain tumors), 신경모세포종(neuroblastoma), 망막모세포종(retinoblastoma), 윌름즈종양(Wilms Tumor), 골종양(bone tumors) 및 연부조직육종(soft-tissue sarcomas) 등과 같은 소아 고형 종양(childhood solid tumors), 폐암(lung cancer), 유방암(breast cancer), 전립선암(prostate cancer), 요로암(urinary cancers), 자궁암(uterine cancers), 구강암(oral cancers), 췌장암(pancreatic cancer), 흑색종(melanoma) 및 기타 피부암(skin cancers), 위암(stomach cancer), 난소암(ovarian cancer), 뇌종양(brain tumors), 간암(liver cancer), 후두암(laryngeal cancer), 갑상선암(thyroid cancer), 식도암(esophageal cancer) 및 고환암(testicular cancer) 등과 같은 성인들의 통상의 고형 종양(common solid tumors)들을 포함하여 다수의 암들을 치료하도록 투여될 수 있다.The types of cancer to be prevented or treated according to the present invention are not limited and include leukemias and acute lymphocytic leukemia, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic lymphocytic leukemia, Lymphomas such as chronic myelogenous leukemia, Hodgkin's disease, non-Hodgkin's lymphomas and multiple myeloma, brain tumors, neuroblastoma, Childhood solid tumors such as retinoblastoma, Wilms Tumor, bone tumors and soft-tissue sarcomas, lung cancer, breast cancer, cancer cancers, prostate cancer, urinary cancers, uterine cancers, oral cancers, pancreatic cancer, melanoma and other skin cancers. cancer, stomach cancer, ovarian cancer, brain tumors, liver cancer, laryngeal cancer, thyroid cancer, esophageal cancer and testicular cancer. ), ≪ / RTI > and the like.

본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다. The pharmaceutically acceptable carriers to be contained in the pharmaceutical composition of the present invention are those conventionally used in the present invention and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, But are not limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. It is not. The pharmaceutical composition of the present invention may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington ' s Pharmaceutical Sciences (19th ed., 1995).

본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 바람직하게는 비경구 투여이며, 예컨대, 정맥 내 주입, 국소 주입 및 복강 주입 등으로 투여할 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally, preferably parenterally, and can be administered, for example, by intravenous injection, local injection, and intraperitoneal injection.

본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 약제학적 조성물의 1일 투여량은 0.0001-100 ㎎/㎏이다.The appropriate dosage of the pharmaceutical composition of the present invention varies depending on factors such as the formulation method, administration method, age, body weight, sex, pathological condition, food, administration time, administration route, excretion rate and responsiveness of the patient, Usually, a skilled physician can readily determine and prescribe dosages effective for the desired treatment or prophylaxis. According to a preferred embodiment of the present invention, the daily dosage of the pharmaceutical composition of the present invention is 0.0001-100 mg / kg.

본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition of the present invention may be formulated into a unit dose form by formulating it using a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs. Or by intrusion into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media, or in the form of excipients, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.

본 발명의 약제학적 조성물은 단독의 요법으로 이용될 수 있으나, 다른 통상적인 화학 요법 또는 방사 요법과 함께 이용될 수도 있으며, 이러한 병행 요법을 실시하는 경우에는 보다 효과적으로 암 치료를 할 수 있다. 본 발명의 조성물과 함께 이용될 수 있는 화학 요법제는 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 프로카르바진(procarbazine), 메클로레타민(mechlorethamine), 시클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 멜팔란(melphalan), 클로라부실(chlorambucil), 비술판(bisulfan), 니트로소우레아(nitrosourea), 디악티노마이신(dactinomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 블레오마이신(bleomycin), 플리코마이신(plicomycin), 미토마이신(mitomycin), 에토포시드(etoposide), 탁목시펜(tamoxifen), 택솔(taxol), 트랜스플라티눔(transplatinum), 5-플루오로우라실(5-fluorouracil), 빈크리스틴(vincristin), 빈블라스틴(vinblastin) 및 메토트렉세이트(methotrexate) 등을 포함한다. 본 발명의 조성물과 함께 이용될 수 있는 방사 요법은 X-선 조사 및 γ-선 조사 등이다.The pharmaceutical composition of the present invention may be used alone, but may be used in combination with other conventional chemotherapy or radiotherapy, and cancer therapy can be more effectively performed when such concurrent therapy is carried out. Chemotherapeutic agents that can be used with the compositions of the present invention include, but are not limited to, cisplatin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, But are not limited to, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosourea, dactinomycin, daunorubicin, doxorubicin, , Bleomycin, plicomycin, mitomycin, etoposide, tamoxifen, taxol, transplatinum, 5-fluoro 5-fluorouracil, vincristin, vinblastin and methotrexate, and the like. Radiation therapies that can be used with the compositions of the present invention include X-ray irradiation and gamma-ray irradiation.

본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:

(ⅰ) 본 발명은 인간 항체 Fc 도메인의 아미노산 서열 중 일부가 다른 아미노산 서열로 치환된 Fc 도메인을 포함하는 폴리펩타이드 또는 이를 포함하는 무당화 항체를 제공한다.(I) The present invention provides a polypeptide comprising an Fc domain in which a part of the amino acid sequence of the human antibody Fc domain is replaced with another amino acid sequence, or an immobilized antibody comprising the polypeptide.

(ⅱ) 또한, 본 발명은 상기 폴리펩타이드 또는 무당화 항체의 제조방법을 제공한다.(Ii) In addition, the present invention provides a method for producing the polypeptide or the non-glycosylated antibody.

(ⅲ) 본 발명의 Fc 도메인은 야생형 Fc 도메인의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 Fc 수용체 중 FcγRIIIa에 선택적 결합력이 우수하여 암의 치료에 유용하며, 박테리아 배양을 통해서 균질의 무당화 항체로 제조될 수 있다.(Iii) The Fc domain of the present invention is optimized by substituting some amino acid sequences of a wild-type Fc domain with another amino acid sequence, thereby being excellent in the selective binding ability to FcγRIIIa among the Fc receptors and being useful for the treatment of cancer. Antibody. ≪ / RTI >

도 1은 Tetrameric FcγRIIIa의 정제(왼쪽, SDS-PAGE) 사진과 활성 확인을 위한 ELISA(오른쪽) 실험결과를 나타낸다.
도 2는 Alexa 488 Flour를 이용한 tetrameric FcγRIIIa 형광 표지 후 활성 확인을 위한 ELISA 실험결과를 나타낸다.
도 3은 A/IYG와 Fc1004의 FcγRIIIa에 대한 결합력을 비교한 그래프를 나타낸다.
도 4는 A/IYG와 Fc1004-IYG의 FcγRIIIa에 대한 결합력을 비교한 그래프를 나타낸다.
도 5는 Fc1004-IYG를 기반으로 한 무당화 항체 Fc 라이브러리 구축에 관한 모식도를 나타낸다.
도 6은 유세포 분석기를 이용한 라이브러리 스크리닝을 통해 발굴한 FcγRIIIa high affinity Fc 변이체의 결합력을 비교한 그래프를 나타낸다.
도 7은 발굴한 변이체 및 대조군(야생형, A/IYG)의 soluble expression 및 정제를 SDS-PAGE로 확인한 사진을 나타낸다.
도 8은 ELISA를 통한 변이체들의 다양한 FcγRs에 대한 친화도 분석 결과를 나타낸다.
도 9는 변이체들의 SPR 분석을 나타낸 그래프이다(a. FcγRIIIa(V158)에 대한 결합력 분석. b. FcγRIIIa(F158)에 대한 결합력 분석).
도 10은 MCF-7과 SKBR-3의 HER2 발현 정도를 확인인 결과를 나타낸다.
도 11은 Effector cell: Target cell의 비율에 따른 ADCC 경향성 분석을 나타낸다.
도 12는 인간 PBMC와 SKBR-3, MCF-7을 이용한 각 변이체들의 암세포 사멸 효과를 분석한 결과를 나타낸다.
Figure 1 shows tablets (left, SDS-PAGE) photographs of Tetrameric FcγRIIIa and ELISA (right) test results for activity confirmation.
Figure 2 shows ELISA results for confirmation of activity after tetrameric FcγRIIIa fluorescent labeling using Alexa 488 Flour.
Figure 3 shows a graph comparing the binding strength of A / IYG and Fc1004 to Fc [gamma] RIIIa.
Figure 4 shows a graph comparing the binding strength of A / IYG and Fc1004-IYG to Fc [gamma] RIIIa.
Figure 5 shows a schematic diagram of the construction of an untreated antibody Fc library based on Fc1004-IYG.
FIG. 6 is a graph comparing binding capacities of FcγRIIIa high affinity Fc variants extracted through library screening using a flow cytometer.
FIG. 7 shows photographs obtained by SDS-PAGE of soluble expression and purification of excavated mutants and a control (wild type, A / IYG).
Figure 8 shows the affinity analysis results for various Fc [gamma] Rs of mutants through ELISA.
Figure 9 is a graph showing SPR analysis of variants (a) binding assay for FcγRIIIa (V158), and b) binding assay for FcγRIIIa (F158).
FIG. 10 shows the results of confirming the degree of HER2 expression of MCF-7 and SKBR-3.
11 shows ADCC tendency analysis according to the ratio of Effector cell: Target cell.
FIG. 12 shows the results of analysis of the cancer cell killing effect of each mutant using human PBMC, SKBR-3, and MCF-7.

이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

실시예Example 1:  One: 무당화Unwarranted 항체를 full-length  The antibody was incubated with full-length IgGIgG 형태로 박테리아  Bacteria in the form 내막에 디스플레이 하기Display on the inside 위한  for FcFc 변이체Mutant 클로닝Cloning (A/(A / IYGIYG , , Fc1004Fc1004 -- IYGIYG ))

A/IYG(미국특허등록번호 제8,815,237호) 변이체와 Fc1004-IYG를 full-length IgG 디스플레이 하기 위하여 각 Fc 변이체를 중쇄 형태의 플라스미드로 제작하였다. pMopac12-PelB-VH-CH1-CH2-CH3(wild type)-FLAG 플라스미드에 T299A 치환이 이루어지도록 2개의 절편으로 나눈 뒤 각각의 가닥을 프라이머 MJ#36, MJ#43/MJ#42, MJ#37를 이용하여 Vent polymerase(New England Biolab)로 증폭하였다. 두 개의 절편은 프라이머 MJ#36, MJ#37을 이용하여 assembly PCR 과정 및 SfiI(New England Biolab) cut, T4 DNA ligase(invitrogen)을 이용한 라이게이션 과정을 차례로 진행해 pMopac12-PelB-VH-CH1-CH2-CH3(T299A)-FLAG 플라스미드를 제작하였다. 이 플라스미드를 주형으로 하고 프라이머 MJ#36, MJ#39/MJ#38, MJ#37을 사용해 위와 동일한 방법으로 326IYG 치환을 가하였다(pMopac12-PelB-VH-CH1-CH2-CH3(A/IYG)-FLAG 제작). 동일한 프라이머인 MJ#36, MJ#39/MJ#38, MJ#37을 사용하여 pMopac12-PelB-VH-CH1-CH2-CH3(Fc1004)-FLAG에 326IYG 점 돌연변이를 도입해 pMopac12-PelB-VH-CH1-CH2-CH3(Fc1004-IYG)-FLAG을 제작하였다.In order to display the full-length IgG of A / IYG (US Patent No. 8,815,237) mutant and Fc1004-IYG, each Fc variant was constructed with a heavy chain plasmid. The primers MJ # 36, MJ # 43 / MJ # 42, and MJ # 37 were prepared by dividing into two fragments so that T299A substitution was performed on the pMOPac12-PelB-VH-CH1- Were amplified with Vent polymerase (New England Biolab). Two fragments are primer MJ # 36, MJ # 37 by using a PCR assembly process, and Sfi I (New England Biolab) cut , T4 DNA ligase (invitrogen) proceed with the ligation and then using the process pMopac12-PelB-VH-CH1- CH2-CH3 (T299A) -FLAG plasmid. (PMopac12-PelB-VH-CH1-CH2-CH3 (A / IYG)) was substituted with the primer MJ # 36, MJ # 39 / MJ # 38, and MJ # 37 using this plasmid as a template. -FLAG manufactured). The 326IYG point mutation was introduced into pMopac12-PelB-VH-CH1-CH2-CH3 (Fc1004) -FLAG using the same primers MJ # 36, MJ # 39 / MJ # 38 and MJ # 37 to obtain pMopac12- CH1-CH2-CH3 (Fc1004-IYG) -FLAG.

실험에 사용한 프라이머The primers used in the experiments 프라이머 #primer # 뉴클레오타이드 서열 (5’→3’)The nucleotide sequence (5 '- > 3') MJ#36 (서열목록 제17서열)MJ # 36 (SEQ ID NO: 17 sequence) CGCAGCGAGGCCCAGCCGGCCATGGCGGAGGTTCAATTAGTGGAATCTGCGCAGCGAGGCCCAGCCGGCCATGGCGGAGGTTCAATTAGTGGAATCTG MJ#43 (서열목록 제18서열)MJ # 43 (SEQ ID NO: 18) GGACGCTGACCACACGGTACGCGCTGTTGTACTGCTCCTCCCGGGACGCTGACCACACGGTACGCGCTGTTGTACTGCTCCTCCCG MJ#42 (서열목록 제19서열)MJ # 42 (SEQ ID NO: 19) CGGGAGGAGCAGTACAACAGCGCGTACCGTGTGGTCAGCGTCCCGGGAGGAGCAGTACAACAGCGCGTACCGTGTGGTCAGCGTCC MJ#37 (서열목록 제20서열)MJ # 37 (Sequence Listing 20 sequence) CGCAATTCGGCCCCCGAGGCCCCTTTACCCGGGGACAGGGAGCGCAATTCGGCCCCCGAGGCCCCTTTACCCGGGGACAGGGAG MJ#39 (서열목록 제21서열)MJ # 39 (SEQ ID NO: 21) GGTTTTCTCGATGGGGGCTGGGCCATAAATGTTGGAGACCTTGCATTTGTACTCCTTGGGTTTTCTCGATGGGGGCTGGGCCATAAATGTTGGAGACCTTGCATTTGTACTCCTTG MJ#38 (서열목록 제22서열)MJ # 38 (SEQ ID NO: 22) CAAGGAGTACAAATGCAAGGTCTCCAACATTTATGGCCCAGCCCCCATCGAGAAAACCCAAGGAGTACAAATGCAAGGTCTCCAACATTTATGGCCCAGCCCCCATCGAGAAAACC MJ#45 (서열목록 제23서열)MJ # 45 (SEQ ID NO: 23) CGACAAGAAAGTTGAGCCCAAATCTTGTCGACAAGAAAGTTGAGCCCAAATCTTGT MJ#46 (서열목록 제24서열)MJ # 46 (SEQ ID NO: 24) CGCAATTCCGGCCCCCGAGGCCCCCGCAATTCCGGCCCCCGAGGCCCC MJ#44 (서열목록 제25서열)MJ # 44 (Sequence Listing No. 25) ACAAGATTTGGGCTCAACTTTCTTGTCGACAAGATTTGGGCTCAACTTTCTTGTCG MJ#2 (서열목록 제26서열)MJ # 2 (SEQ ID NO: 26) CTGCCCATGTTGACGATTGCTGCCCATGTTGACGATTG MJ#49 (서열목록 제27서열)MJ # 49 (SEQ ID NO: 27) CGCAGCGAGCGCGCACTCCATGGCGGAGGTTCAATTAGTGGAATCTGCGCAGCGAGCGCGCACTCCATGGCGGAGGTTCAATTAGTGGAATCTG MJ#50 (서열목록 제28서열)MJ # 50 (SEQ ID NO: 28) CCCTAAAATCTAGACCTTTACCCGGGGACAGGGAGCCCTAAAATCTAGACCTTTACCCGGGGACAGGGAG

실시예Example 2:  2: TetramericTetrameric FcγRIIIa의Of FcγRIIIa 제조와  Manufacturing Alexa488Alexa488 fluor를fluor 이용한 형광 표지  Used fluorescent label

pMAZ-FcγRIIIa(V158)-FLAG-Streptavidin-His 플라스미드를 HEK 293F 세포에 300 ㎖ 규모로 임시 발현하여 1 ㎖의 Ni-NTA agarose(Qiagen) 슬러리를 이용한 친화도 크로마토그래피를 수행하였다. 배양이 끝난 현탁배양액은 7000 rpm, 10 분간 원심분리를 통해 세포를 제거하고 상등액을 취해 25x PBS를 이용해 평형을 맞추고 bottle top filter를 이용해 0.2 μm 필터(Merck Millipore)로 여과하였다. PBS로 평형을 맞춘 Ni-NTA 슬러리를 첨가해 4℃, 16 시간 교반한 다음 폴리프로필렌 칼럼(Thermo Fisher Scientific)에 흘려주었다. pass-through solution을 취해 한 번 더 레진에 흘려서 바인딩 시킨 뒤, 50 ㎖의 1x PBS, 25 ㎖의 10 mM 이미다졸 버퍼, 25 ㎖의 20 mM 이미다졸 버퍼, 200 ㎕의 250 mM 이미다졸 버퍼 순으로 세척 과정을 수행하였다. 2.5 ㎖의 250 mM 이미다졸 버퍼로 elution을 받아 Amicon Ultra4(Merck Millipore)을 통해 PBS로 버퍼를 교체한 후 농축 과정을 거쳐 SDS-PAGE를 통해 정제된 단백질을 확인하였다(도 1). 정제된 단백질은 ELISA를 실시하여 Rituxan(Roche)과의 결합 여부 분석을 통해 활성을 확인한 후, 1 ㎎을 취하여 Alexa Fluor 488 Protein Labeling Kit(Thermo Fisher Scientific)을 이용해 형광 표지 하였다. 형광 표지 후 활성 여부를 ELISA를 통해 분석하였다(도 2). 이로써 고순도의 active한 tetrameric FcγRIIIa를 성공적으로 제조하였으며, Alexa 488 flour 형광 물질을 표지한 이후에도 단백질의 활성이 유지되는 것을 확인하였다.The plasmid pMAZ-FcγRIIIa (V158) -FLAG-Streptavidin-His was temporarily expressed on HEK 293F cells at a size of 300 ml and subjected to affinity chromatography using 1 ml of Ni-NTA agarose (Qiagen) slurry. The cultured suspension was centrifuged at 7000 rpm for 10 minutes to remove cells, and the supernatant was equilibrated with 25 × PBS and filtered with a 0.2 μm filter (Merck Millipore) using a bottle top filter. The slurry of Ni-NTA equilibrated with PBS was added and stirred at 4 캜 for 16 hours and then poured into a polypropylene column (Thermo Fisher Scientific). pass-through solution was added to the resin one more time to bind, followed by 50 ml of 1x PBS, 25 ml of 10 mM imidazole buffer, 25 ml of 20 mM imidazole buffer, and 200 占 퐇 of 250 mM imidazole buffer A cleaning process was performed. After elution with 2.5 ml of 250 mM imidazole buffer, the buffer was replaced with PBS through Amicon Ultra4 (Merck Millipore), and the purified protein was identified through SDS-PAGE through concentration process (Fig. 1). The purified protein was assayed by ELISA for binding to Rituxan (Roche), and then 1 ㎎ of the purified protein was fluorescently labeled using Alexa Fluor 488 Protein Labeling Kit (Thermo Fisher Scientific). Activity after fluorescence labeling was analyzed by ELISA (Fig. 2). This resulted in the successful production of high purity active tetrameric FcγRIIIa and confirmed that the protein activity was maintained even after labeling with Alexa 488 fluorescent material.

실시예Example 3: 야생형과  3: Wild type Fc1004Fc1004 및 A/ And A / IYG의IYG's FcγRIIIa에On FcγRIIIa 대한 결합력 비교 Bond strength comparison

분석할 클론들은 중쇄를 코딩하는 플라스미드인 pMopac12-PelB-VH-CH1-CH2-CH3(wild type)-FLAG, pMopac12-PelB-VH-CH1-CH2-CH3(Fc1004)-FLAG, pMopac12-PelB-VH-CH1-CH2-CH3(A/IYG)-FLAG 형태 이므로 E . coli Jude 1 세포(F' [ Tn10 (Tetr ) proAB+ lacI qΔ(lacZ)M15] mcrA Δ(mrr-hsdRMS-mcrBC)80dlacZΔM15 ΔlacX74 deoR recA1 araD139 Δ(ara leu)7697 galU galKrpsLendA1nupG) (Kawarasaki et al, 2003)에 pBAD30-Km-PelB-VL-Ck-NlpA-VL-Ck-His-cMyc 플라스미드와 함께 transformation하여 중쇄 및 경쇄가 각각 원형질막 주위 공간 영역(periplasmic region)에 발현될 수 있도록 준비하였다. Terrific broth(TB, BD)에 glucose(Sigma-Aldrich)가 2% 함유된 배지 5 ㎖에서 각각 37℃, 16 시간 배양한 후 TB 5.5 ㎖을 100 ㎖ 플라스크에 분주하여 1:100 접종하였다. OD600=0.6까지 배양한 후 20 분간 25℃, 250 rpm에서 cooling 과정을 거친 후 0.2% arabinose, 1 mM IPTG를 첨가하여 25℃, 250 rpm, 20 시간 동안 과발현 하였다. 과발현 후 OD600 normalize를 통해 균일한 양 만큼씩 14000 rpm, 1 분간 원심분리를 통해 세포를 수확하였다. 1 ㎖의 10 mM Tris-HCl(pH 8.0)을 첨가해 세포를 resuspension하고 1 분간 원심분리하는 세척 과정을 2회 반복하였다. 1 ㎖의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10mM EDTA(pH 8.0)]로 resuspension하여 37℃, 30 분간 rotation을 통해 세포 외막을 제거하였다. 원심분리하여 상등액을 버린 후 1 ㎖의 Solution A[0.5 M sucrose, 20 mM MgCl2, 10 mM MOPS pH 6.8]을 첨가해 resuspension과 원심분리를 하였다. 1 ㎖의 Solution A와 50 ㎎/㎖ lysozyme solution 20 ㎕를 혼합한 용액을 1 ㎖ 첨가해 resuspension한 뒤 37℃, 15 분 간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리 후 상등액을 제거하고 1 ㎖의 PBS로 resuspension한 뒤 300 ㎕를 취해 700 ㎕의 PBS와 형광 표지 된 tetrameric FcγRIIIa-Alexa 488 flour 프로브를 함께 넣고 상온에서 rotation하여 spheroplast에 형광 프로브를 표지하였다. 표지 후 1 ㎖의 PBS로 1회 세척한 후 Guava(Merck Millipore) 장비를 이용해 분석하였다(도 3). 그 결과 야생형 Fc와 A/IYG, Fc1004 모두가 각각 30-42의 mean 값을 나타내어 FcγRIIIa와 잘 결합하지 않는다는 것을 확인하였다.The clones to be analyzed were pMOPac12-PelB-VH-CH1-CH2-CH3 (wild type) -FLAG, pMopac12-PelB-VH-CH1-CH2-CH3 (Fc1004) -FLAG, pMopac12-PelB-VH -CH1-CH2-CH3 (A / IYG) so -FLAG type E. coli Jude 1 cells (F '[Tn 10 (Tet r) proAB + lacI q Δ (lacZ) M15] mcrA Δ (mrr - hsdRMS - mcrBC) 80d lac ZΔM15 Δ lacX74 deoR recA1 araD139 ? ( intermediate leu ) 7697 galU galKrpsLendA1nupG) (Kawarasaki et al, 2003 ) for the transformation with pBAD30-Km-PelB-VL- Ck-NlpA-VL-Ck-His-cMyc Plasmid the heavy and light chains to be expressed in each periplasmic space area (periplasmic region) . Five ml of glucose (Sigma-Aldrich) medium containing 2% glucose was added to Terrific broth (TB, BD) for 16 hours at 37 ° C, and then 5.5 ml of TB was dispensed into a 100 ml flask. After the cooling process, until OD 600 = 25 ℃ and incubated 20 minutes, and 0.6 eseo 250 rpm was overexpressed during the 0.2% arabinose, 1 mM IPTG was added to 25 ℃, 250 rpm, 20 hours. After over-expression cells were harvested with a uniform amount by 14000 rpm, 1 bungan by centrifugation through the OD 600 normalize. The cells were resuspended in 1 ml of 10 mM Tris-HCl (pH 8.0) and centrifuged for 1 minute. Resuspension was performed with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] and the extracellular membrane was removed by rotation at 37 ° C for 30 minutes. After centrifugation, the supernatant was discarded and 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added and centrifuged with resuspension. 1 ml of Solution A and 20 μl of 50 ㎎ / ㎖ lysozyme solution was added to 1 ml of the solution. The solution was then resuspensioned and then rotated at 37 ° C for 15 minutes to remove the peptidoglycan layer. After centrifugation, the supernatant was removed and resuspension in 1 ml of PBS. 300 μl of the supernatant was resuspended in 700 μl of PBS and fluorescently labeled tetrameric FcγRIIIa-Alexa 488 flour probe. The fluorescence probe was labeled with spheroplast by rotation at room temperature. After labeling, the plate was washed once with 1 ml of PBS and analyzed using Guava (Merck Millipore) equipment (Fig. 3). As a result, it was confirmed that wild type Fc and A / IYG and Fc1004 showed a mean value of 30-42, respectively, and did not bind FcγRIIIa well.

실시예Example 4: A/ 4: A / IYG와IYG and Fc1004Fc1004 -- IYG의IYG's FcγRIIIa에On FcγRIIIa 대한 결합력 비교 Bond strength comparison

pMopac12-PelB-VH-CH1-CH2-CH3(IYG)-FLAG, pMopac12-PelB-VH-CH1-CH2-CH3(Fc1004-IYG)-FLAG는 E. coli Jude 1 세포에 pBAD30-Km-PelB-VL-Ck-NlpA-VL-Ck-His-cMyc 플라스미드와 함께 transformation하여 중쇄 및 경쇄가 각각 원형질막 주위 공간 영역(periplasmic region)에 발현될 수 있도록 준비하였다. TB에 glucose가 2% 함유된 배지 5 ㎖에서 각각 37℃, 16 시간 배양한 후 TB 5.5 ㎖을 100 ㎖ 플라스크에 분주하여 1:100 접종하였다. OD600=0.6까지 배양한 후 20 분간 25℃, 250 rpm에서 cooling 과정을 거친 후 0.2% arabinose, 1 mM IPTG를 첨가하여 25℃, 250 rpm, 20 시간 동안 과발현하였다. 과발현 후 OD600 normalize를 통해 동일한 양 만큼씩 14000 rpm, 1 분간 원심분리를 통해 세포를 수확하였다. 1 ㎖의 10 mM Tris-HCl(pH 8.0)을 첨가해 세포를 resuspension하고 1 분간 원심분리하는 세척 과정을 2회 반복하였다. 1 ㎖의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10mM EDTA(pH 8.0)]로 resuspension하여 37℃, 30 분간 rotation을 통해 세포 외막을 제거하였다. 원심분리하여 상등액을 버린 후 1 ㎖의 Solution A[0.5 M sucrose, 20 mM MgCl2, 10 mM MOPS pH 6.8]을 첨가해 resuspension과 원심분리를 하였다. 1 ㎖의 Solution A와 50 ㎎/㎖ lysozyme solution 20 ㎕를 혼합한 용액을 1 ㎖ 첨가해 resuspension한 뒤 37℃, 15 분 간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리 후 상등액을 제거하고 1 ㎖의 PBS로 resuspension한 뒤 300 ㎕를 취해 700 ㎕의 PBS와 형광 표지된 tetrameric FcγRIIIa-Alexa 488 flour 프로브를 함께 넣고 상온에서 rotation하여 spheroplast에 형광 프로브를 표지하였다. 표지 후 1 ㎖의 PBS로 1회 세척한 후 Guava(Merck Millipore) 장비를 이용해 분석하였다(도 4). 분석 결과 Fc1004-IYG의 형광 신호 세기는 199.85로써 야생형(23.92)에 비해 8.4배 증가되어, 지금까지 알려진 무당화 항체 Fc 변이체들 중 FcγRIIIa에 가장 높은 친화도를 보이는 것으로 알려진 A/IYG(41.24, 야생형에 비해 1.7배 증가)와 비교하여, Fc1004-IYG의 결합력이 크게 향상되는 것을 확인하였다.PelB-VH-CHl-CH2-CH3 (Fc1004-IYG) -FLAG was introduced into E. coli Jude 1 cells by pBAD30-Km-PelB-VL Ck-NlpA-VL-Ck-His-cMyc plasmid so that the heavy and light chains can be expressed in the periplasmic region, respectively. TB was cultured in 5 ml of glucose medium containing 2% of glucose at 37 ° C for 16 hours, and TB 5.5 ml was inoculated in a 100 ml flask at a ratio of 1: 100. After the cooling process, until OD 600 = 25 ℃ and incubated 20 minutes, and 0.6 eseo 250 rpm was overexpressed during the 0.2% arabinose, 1 mM IPTG was added to 25 ℃, 250 rpm, 20 hours. After over-expression cells were harvested with by 14000 rpm, 1 bungan centrifugation by the same amount through the OD 600 normalize. The cells were resuspended in 1 ml of 10 mM Tris-HCl (pH 8.0) and centrifuged for 1 minute. Resuspension was performed with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] and the extracellular membrane was removed by rotation at 37 ° C for 30 minutes. After centrifugation, the supernatant was discarded and 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added and centrifuged with resuspension. 1 ml of Solution A and 20 μl of 50 ㎎ / ㎖ lysozyme solution was added to 1 ml of the solution. The solution was then resuspensioned and then rotated at 37 ° C for 15 minutes to remove the peptidoglycan layer. After centrifugation, the supernatant was removed and resuspension in 1 ml of PBS. 300 μl of the supernatant was resuspended in 700 μl of PBS and fluorescently labeled tetrameric FcγRIIIa-Alexa 488 flour probe. The fluorescence probe was labeled with spheroplast by rotation at room temperature. After labeling, the plate was washed once with 1 ml of PBS and analyzed using Guava (Merck Millipore) equipment (Fig. 4). The fluorescence intensity of Fc1004-IYG was 199.85, which was 8.4-fold higher than that of wild-type (23.92), indicating that A / IYG (41.24), which is known to exhibit the highest affinity to FcγRIIIa among the known mutated Fc variants, , The binding force of Fc1004-IYG was greatly improved as compared with that of the case of Fc1004-IYG.

실시예Example 5:  5: Fc1004Fc1004 -- IYG를IYG 기반으로 한  Based 무당화Unwarranted 항체 라이브러리 구축 Construction of antibody library

Fc1004-IYG를 기반으로 한 무당화 항체 Fc 라이브러리를 제작하기 위하여 pMopac12-PelB-VH-CH1-CH2-CH3(Fc1004-IYG)-FLAG을 주형으로 하여 error prone PCR 및 assemble PCR을 진행하였다. Fc(CH2-CH3)부분에 무작위적인 점 돌연변이를 가하기 위한 방법으로 Taq polymerase(Invitrogen)을 이용한 error prone PCR 기법을 사용하였으며, 프라이머 MJ#45, MJ#46를 사용하여 전제 Fc 유전자에서 0.5%의 뉴클레오타이드에 점 돌연변이가 도입되도록 하였다. 또한 이 Fc의 앞부분은 Fab와 중첩되도록 디자인하여 중쇄 형태로 assembly가 가능하도록 제작하였다. 따라서 Fab(VH-CH1)부분은 프라이머 MJ#36, MJ#44와 Vent polymerase를 이용하여 conventional PCR을 진행한 뒤, 프라이머 MJ#36, MJ#46을 사용하여 Fab fragment와 Fc fragment를 연결해 주는 assemble PCR을 수행하여 전체 heavy chain 형태의 PCR product를 제작하였다. 그런 다음 SfiI 제한효소 처리 및 라이게이션 과정을 거쳐 Jude 1에 transformation하여 중쇄 형태의 무당화 항체 Fc 라이브러리를 제작하였다(라이브러리 크기: 1.14 x 109,experimental error rate:0.457%). 이 라이브러리에서 유전자를 확보하고 pBAD30-Km-PelB-VL-Ck-NlpA-VL-Ck-His-cMyc가 transformation되어 있는 Jude 1 세포에 다시 transformation함으로써 대장균의 내막에 full-length IgG가 디스플레이 되는 라이브러리를 구축하였다(도 5). The error prone PCR and the assemble PCR were performed using pMopac12-PelB-VH-CH1-CH2-CH3 (Fc1004-IYG) -FLAG as a template in order to prepare the Fc1004-IYG-based immobilized antibody Fc library. The error prone PCR method using Taq polymerase (Invitrogen) was used for random point mutation in the Fc (CH2-CH3) region. Primers MJ # 45 and MJ # A point mutation was introduced into the nucleotide. In addition, the front part of the Fc was designed to be overlapped with the Fab and assembled in the form of a heavy chain. Therefore, the Fab (VH-CH1) portion was subjected to conventional PCR using primers MJ # 36, MJ # 44 and Vent polymerase and then assembled using primers MJ # 36 and MJ # 46 to assemble Fab fragment and Fc fragment PCR was performed to produce full heavy chain type PCR product. Then, Sfi I restriction enzyme digestion and ligation were performed to transform into Jude 1 to prepare an immobilized antibody Fc library in the form of a heavy chain (library size: 1.14 × 10 9 , experimental error rate: 0.457%). A library in which full-length IgG is displayed in the inner membrane of Escherichia coli is obtained by securing the gene in this library and re-transforming it into Jude 1 cells transformed with pBAD30-Km-PelB-VL-Ck-NlpA-VL-Ck- (Fig. 5).

실시예Example 6: 구축된 라이브러리와  6: With built libraries 유세포Flow cell 분석기를 스크리닝 및 MG42, MG48, MG59, MG87 등의  The analyzer is screened and analyzed using MG42, MG48, MG59, MG87, etc. 변이체Mutant 선별( Selection( FcγRIIIa에On FcγRIIIa 대한 결합력 확인) Confirmation of bond strength)

구축된 라이브러리는 250 ㎖ 플라스크에서 TB+2% glucose 배지 25 ㎖에 1 vial(1 ㎖)을 풀어 37℃, 4 시간 배양한 후 2.5 ℓ 플라스크에 TB 110 ㎖을 분주하여 1:100 접종하였다. OD600=0.6까지 배양한 후 20 분간 25℃, 250 rpm에서 cooling 과정을 거친 후 0.2% arabinose, 1 mM IPTG를 첨가하여 25℃, 250 rpm, 20 시간 동안 과발현 하였다. 과발현 후 OD600값을 측정하여 normalize된 양 만큼씩 14000 rpm, 1 분간 원심분리를 통해 세포를 수확하였다. 위의 spheroplast 제조 과정을 그대로 진행 한 후 tetrameric FcγRIIIaAlexa 488 flour로 표지 후 1 ㎖의 PBS로 1회 세척하였다. 최종적으로 1 ㎖의 PBS로 resuspension한 샘플을 20 ㎖의 PBS에 희석하여 S3 Cell sorter(BioRad)를 이용해 상위 3%의 신호를 내는 세포들만 분리하여 취하였다. 분리한 세포들은 한 번 더 sorting을 진행하여 걸러내는 작업을 수행하였다. 걸러낸 세포들은 MJ#36, MJ#2 프라이머와 Taq polymerase(Biosesang)을 이용해 PCR로 유전자를 증폭하고 SfiI 제한효소 처리 라이게이션, transformation 과정을 거쳐 선별된 세포의 유전자들이 증폭된 서브라이브러리를 제작하였다. 이 과정을 총 5라운드에 걸쳐 반복한 후, 90여개의 individual 클론들을 각각 분석하여 FcγRIIIa와 높은 친화도를 보이는 변이체들을 선별하였다(도 6a 및 6b, 표 2, 돌연변이 위치는 Kabat EU 넘버링 시스템(Kabat et al., in “of Proteins of Immunological Interest”5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호에 따름). The constructed library was incubated at 37 ° C for 4 hours with 1 vial (1 ㎖) in 25 ml of TB + 2% glucose medium in a 250 ml flask, and then 110 ㎖ of TB was dispensed into a 2.5 ℓ flask at a ratio of 1: 100. After the cooling process, until OD 600 = 25 ℃ and incubated 20 minutes, and 0.6 eseo 250 rpm was overexpressed during the 0.2% arabinose, 1 mM IPTG was added to 25 ℃, 250 rpm, 20 hours. After overexpression, the OD 600 value was measured and the cells were harvested by centrifugation at 14000 rpm for 1 minute at the normalized amount. The spheroplast preparation was performed as described above, followed by labeling with tetrameric FcγRIIIaAlexa 488 flour and washing with 1 ml of PBS once. Finally, a sample resuspensioned with 1 ml of PBS was diluted in 20 ml of PBS, and only the cells receiving the upper 3% signal were isolated using S3 Cell sorter (BioRad). Separated cells were subjected to further sorting and screening. Filtered out cells produce MJ # 36, MJ # 2 amplified genes by PCR using the primers and Taq polymerase (Biosesang) and to amplify the gene of the cell selected through the Sfi I restriction enzyme treatment ligation, transformation process sublibrary Respectively. After repeating this process for a total of 5 rounds, mutants with high affinity with Fc [gamma] RIIa were selected by analyzing each of 90 individual clones (Fig. 6a and 6b, Table 2, mutation positions were determined by Kabat EU numbering system according to the EU index number as in " Proteins of Immunological Interest ", 5th Ed., US Department of Health and Human Services, NIH Publication No. 91-3242, 1991).

주요 변이체들의 점 돌연변이Point mutations of major variants Fc 변이체Fc variant 점 돌연변이Point mutation A/IYG (서열목록 제5서열)A / IYG (SEQ ID NO: 5) T299A, K326I, A327Y, L328GT299A, K326I, A327Y, L328G Fc1004 (서열목록 제3서열)Fc1004 (SEQ ID No. 3) S298G, T299A, E382V, N390D, M428LS298G, T299A, E382V, N390D, M428L Fc1004-IYG (서열목록 제7서열)Fc1004-IYG (SEQ ID No. 7) S298G, T299A, K326I, A327Y, L328G, E382V, N390D, M428LS298G, T299A, K326I, A327Y, L328G, E382V, N390D, M428L MG42 (서열목록 제9서열)MG42 (SEQ ID NO: 9) (Fc1004-IYG)+264E, 350A, 421S(Fc1004-IYG) + 264E, 350A, 421S MG48 (서열목록 제11서열)MG48 (SEQ ID NO: 11) (Fc1004-IYG)+264E, 350A(Fc1004-IYG) + 264E, 350A MG59 (서열목록 제13서열)MG59 (SEQ ID NO: 13) (Fc1004-IYG)+264E(Fc1004-IYG) + 264E MG87 (서열목록 제15서열)MG87 (Sequence Listing 15 sequence) (Fc1004-IYG)+264E, 421S(Fc1004-IYG) + 264E, 421S

또한, 상기 변이체 이외에도 추가적으로 A/IYG보다 FcγRIIIa와 높은 친화도를 보이는 변이체들(MG61: (Fc1004-IYG)+T307S, MG86: (Fc1004-IYG)+C226R+F243L+K246E MG54: (Fc1004-IYG)+T250I+I253N 및 MG14:(Fc1004-IYG)+C347R)을 선별하였다(도 6c). (MG61: (Fc1004-IYG) + T307S, MG86: (Fc1004-IYG) + C226R + F243L + K246E MG54: (Fc1004-IYG) mutants showing high affinity with FcγRIIIa than A / IYG, + T250I + I253N and MG14 (Fc1004-IYG) + C347R) (Fig. 6C).

실시예Example 7: 발굴한  7: Excavated 변이체를Mutant 동물세포에서 발현하기 위한  For expression in animal cells 클로닝Cloning 및 발현 정제 And expression purification

발굴한 변이체들 중 MG59, MG87, MG48을 포함하여 대조군으로 사용할 야생형과 A/IYG를 HEK293F 세포에서 soluble한 IgG 형태로 제조하기 위하여 중쇄를 코딩하고 있는 ‘’부분을 Vent polymerase와 프라이머 MJ#49, MJ#50을 사용해 PCR로 증폭한 뒤 BssHII, XbaI(New England Biolab)으로 제한효소 처리, 라이게이션하여 pMAZ-IgH(wild type), pMAZ-IgH(A/IYG), pMAZ-IgH(MG59), pMAZ-IgH(MG87), pMAZ-IgH(MG48)를 제작하였다. IgG 형태로 발현을 위해 pMAZ-IgL플라스미드와 함께 HEK 293F 세포에 co-transfection하고 300 ㎖ 규모로 임시발현 하였다. 배양이 끝난 배양액은 7000 rpm, 10 분간 원심분리를 통해 제거하고 상등액을 취해 25x PBS를 이용해 평형을 맞추었다. bottle top filter를 이용해 0.2 ㎛ 필터(Merck Millipore)로 여과하였다. PBS로 평형을 맞춘 Protein A agarose(Genscript) 1 ㎖ 슬러리를 첨가해 4℃, 16 시간 교반한 다음 폴리프로필렌 칼럼(Thermo Fisher Scientific)에 흘려주었다. pass-through solution을 취해 한 번 더 레진에 흘려서 바인딩 시킨 뒤, 1x PBS를 10 CV(Column Volume) 이상 흘려주어 세척하였다. 3 ㎖의 100 mM glycineHCl(pH 2.7)로 elution을 받고 그 즉시 1 ㎖의 1 M Tris(pH 8.0)로 중성화 하였다. Amicon Ultra4(Merck Millipore)을 통해 PBS로 버퍼를 교체한 후 농축 과정을 거쳐 SDS-PAGE(BioRad)를 통해 정제된 단백질을 확인하였다(도 7). SDS-PAGE 상에서 IgG 형태의 단백질(150 kDa)이 고순도로 정제되었음이 확인되었다.The wild-type and A / IYG, which contain MG59, MG87 and MG48 among the mutants excised, were labeled with the Vent polymerase and primers MJ # 49, IgG (A / IYG), and pMAZ-IgH (MG59) were digested with restriction enzymes and ligated with BssH II and Xba I (New England Biolab) ), pMAZ-IgH (MG87), and pMAZ-IgH (MG48). For expression in IgG form, HEK 293F cells were co-transfected with pMAZ-IgL plasmid and transiently expressed at 300 ml scale. The cultured medium was removed by centrifugation at 7000 rpm for 10 minutes, and the supernatant was taken and equilibrated using 25x PBS. and filtered with a 0.2 탆 filter (Merck Millipore) using a bottle top filter. 1 ml slurry of Protein A agarose (Genscript) equilibrated with PBS was added, and the mixture was stirred at 4 ° C for 16 hours and then poured into a polypropylene column (Thermo Fisher Scientific). After pass-through solution was taken, it was flowed once more to bind resin and washed with 1x PBS at 10 CV (Column Volume) or more. After elution with 3 ml of 100 mM glycine HCl (pH 2.7), it was immediately neutralized with 1 ml of 1 M Tris (pH 8.0). After replacing the buffer with PBS through Amicon Ultra4 (Merck Millipore), the purified protein was identified through SDS-PAGE (BioRad) through concentration process (FIG. 7). It was confirmed that IgG type protein (150 kDa) was purified to high purity on SDS-PAGE.

실시예Example 8:  8: 변이체들의Mutant FcRs에On FcRs 대한 결합력 확인을 위한 ELISA 분석 ELISA analysis for confirming binding strength

0.05 M Na2CO3 pH 9.6에 4 ㎍/㎖로 희석한 IgG Fc 변이체를 각각 50 ㎕ 씩 Flat Bottom Polystyrene High Bind 96 well microplate(costar)에 4℃, 16 시간 동안 고정화 한 후 100 ㎕의 5% BSA(in 0.05% PBST)로 상온에서 2 시간 동안 블로킹하였다. 0.05% PBST 180 ㎕로 4 회씩 세척한 뒤 blocking solution으로 serially dilution 된 FcRs를 50 ㎕ 각 well에 분주하여 상온에서 1 시간 동안 반응시켰다. 세척 과정 후 anti-HisHRP conjugate (Sigma-Aldrich), anti-GST-HRP conjugate (GE Healthcare) 50 ㎕ 씩을 이용해 상온에서 1 시간 동안 항체 반응을 진행하고 세척 과정을 수행하였다. 1-Step Ultra TMB-ELISA Substrate Solution(Thermo Fisher Scientific) 50 ㎕ 씩 첨가해 발색 한 뒤 2 M H2SO4 50 ㎕ 씩 넣어주어 반응을 종료 시킨 다음 Epoch Microplate Spectrophotometer(BioTek)을 이용해 분석하였다(도 8). 각 실험은 모두 duplicate으로 진행하였으며 ELISA 결과 각각의 FcRs[FcγRI, FcγRIIa(H), FcγRIIa(R), FcγRIIb, FcRn)에 대한 결합력을 확인할 수 있었다. 0.05 M Na 2 CO 3 50 μl of IgG Fc mutant diluted to 4 μg / ml at pH 9.6 was immobilized in a flat bottom polystyrene high-bind 96-well microplate (Costar) at 4 ° C for 16 hours, and then 100 μl of 5% BSA ) At room temperature for 2 hours. After washing 4 times with 180 μl of 0.05% PBST, serially diluted FcRs with blocking solution was added to each well of 50 μl, and reacted at room temperature for 1 hour. After washing, 50 μl of anti-HisHRP conjugate (Sigma-Aldrich) and anti-GST-HRP conjugate (GE Healthcare) were reacted at room temperature for 1 hour and washed. 50 μl of 1-Step Ultra TMB-ELISA Substrate Solution (Thermo Fisher Scientific) was added to each well. After development, 50 μl of 2 MH 2 SO 4 was added to terminate the reaction and analyzed using an Epoch Microplate Spectrophotometer (BioTek) ). All experiments were performed in duplicate and ELISA confirmed the binding ability of each FcRs [FcγRI, FcγRIIa (H), FcγRIIa (R), FcγRIIb, and FcRn.

실시예Example 9:  9: SPR을SPR 통한  through FcγRIIIa와FcγRIIIa and trastuzumabtrastuzumab 변이체들의Mutant K K D D value측정measure value

BIAcore T200(GE Healthcare)을 사용하여 trastuzumab 변이체들의 결합력을 측정하였다. 야생형 무당화 항체(Aglyco-T), A/IYG, 야생형 당화 항체(Glyco-T; HEK 293F 세포 배양을 통해 생산), Herceptin(CHO 세포에서 생산된 임상 약물, MG48, MG59를 각각 amine coupling을 이용하여 CM5 chip에 고정화 하고, HBS-EP buffer(10 mM HEPES pH 7.4, 150 mM NaCl, 3.4 mM EDTA, and 0.005% P20 surfactant)(GE Healthcare)를 사용하여 dimeric FcγRIIIa-V158-GST, FcγRIIa-F158-GST를 주입하여 결합력을 분석하였다(도 9). CM5 chip의 regeneration은 50 mM glycine pH 3.9와 50 mM glycine pH 9.5, 3 M NaCl을 이용해 순차적으로 진행하였다. Monovalent receptor binding 상태의 equilibrium dissociation constants(KD)를 계산하기 위하여 BIAevaluation 3.2 software(GE Healthcare)의 2:1 bivalent analyte model을 활용하였다(표 3). Binding capacity of trastuzumab mutants was measured using BIAcore T200 (GE Healthcare). (Aglyco-T), A / IYG, wild-type glycated antibody (produced through HEK 293F cell culture), Herceptin (clinical drug produced from CHO cells, MG48 and MG59) And then immobilized on a CM5 chip and immobilized on dimeric FcγRIIIa-V158-GST, FcγRIIa-F158-GST using HBS-EP buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3.4 mM EDTA, and 0.005% P20 surfactant) The regeneration of CM5 chip was carried out sequentially with 50 mM glycine pH 3.9, 50 mM glycine pH 9.5, and 3 M NaCl. The equilibrium dissociation constants (K D ) was calculated using the 2: 1 bivalent analyte model of BIAevaluation 3.2 software (GE Healthcare) (Table 3).

변이체들의 SPR KD valueThe SPR K D value KD(M)K D (M) Fold increase
(V / F)
Fold increase
(V / F)
FcγRIIIa(158V)FcγRIIIa (158V) FcγRIIIa(158F)Fc [gamma] RIIIa (158F) Aglyco-TAglyco-T N.DN.D. N.DN.D. 00 A/IYGA / IYG 1.110 X 10-6 1.110 X 10 -6 1.737 X 10-5 1.737 X 10 -5 1One Glyco-T (HEK)Glyco-T (HEK) 1.200 X 10-7 1.200 X 10 -7 5.782 X 10-6 5.782 X 10 -6 9.25 / 3.009.25 / 3.00 Herceptin (CHO)Herceptin (CHO) 8.418 X 10-8 8.418 X 10 -8 5.142 X 10-6 5.142 X 10 -6 13.19 / 3.3813.19 / 3.38 MG48MG48 6.793 X 10-8 6.793 X 10 -8 6.763 X 10-7 6.763 X 10 -7 16.34 / 25.6816.34 / 25.68 MG59MG59 1.070 X 10-7 1.070 X 10 -7 1.049 X 10-6 1.049 X 10 -6 10.37 / 16.5610.37 / 16.56

그 결과 본 연구를 통해 발굴한 MG48과 MG59가 A/IYG와 비교하여 FcγRIIIa-V158에 대해서는 최고 16배, FcγRIIa-F158에 대해서는 최고 25배 이상 결합력이 증가된 것을 확인할 수 있었다. As a result, it was confirmed that the binding capacity of MG48 and MG59 isolated from this study increased by at least 16 times for FcγRIIIa-V158 and up to 25 times for FcγRIIa-F158 compared to A / IYG.

실시예Example 10: Target  10: Target cell인cell SKBRSKBR -- 3와3 and MCFMCF -7의 -7 HER2HER2 발현 정도 확인 실험 Expression level confirmation experiment

100 mm dish에 배양된 세포(80% confluency)는 배양액을 제거하고 DPBS로 1회 세척 후 Accutase(Merck Millipore) 1.5 ㎖를 처리하여 2-3 분간 37℃ CO2 incubator에 incubation 하였다. 세포가 dish의 바닥에서 떨어진 것을 확인한 후 세포배양 배지 6 ㎖을 첨가하였다. 10 ㎖ 피펫을 이용하여 세포를 포함한 모든 solution을 취한 후 15 ㎖ tube에 담아 1200 rpm, 3 분간 원심분리 한 후 15 ㎖ tube 내의 solution을 모두 제거하고 DPBS 5 ㎖을 15 ㎖ tube에 넣고 세포와 잘 혼합한 뒤 1200 rpm, 3 분간 원심분리 하였다. Tube 내 DPBS를 제거하고 washing buffer (PBS+1% BSA) 3 ㎖를 15 ㎖ tube에 넣고 세포와 잘 혼합한 후 1200 rpm, 3 분간 원심분리 후 tube 내 washing buffer를 제거한다. 위의 세척 과정을 2회 반복한 후, 최종 1 ㎖의 washing buffer를 첨가하여 세포와 잘 혼합하였다. FACS tube(Falcon)는 각 세포마다 non-staining, isotype control(normal human IgG-Alexa488), trastuzumab-alexa488로 표기하여 준비하였다. 세포를 계수하여 tube 당 1 X 105 cell/300 ㎕씩 분주하였다. 4℃에서 15 분간 블로킹을 실시하고 원심분리를 통해 cell down 시키고 상층액은 제거하였다. FACS tube에 washing buffer 100 ㎕씩 분주한 후 세포와 잘 혼합하였다. Non-staining을 제외하고 isotype control과 trastuzumab-alexa488을 1 ㎍씩 첨가하였다. 알루미늄 호일로 차광한 후 30 분 동안 4℃에서 항체 반응을 진행한 다음 반응이 완료되면 원심분리를 통해 세포만 남기고 상층액을 제거한다. Washing buffer 1 ㎖씩 첨가하여 세척 과정을 3 회 반복 실시하였다. Running buffer(PBS) 300 ㎕를 각 tube에 첨가하여 세포와 잘 혼합한 후 FACS 분석을 실시하였다. 그 결과 SKBR-3는 MCF-7에 비해 훨씬 높은 HER2 발현을 보이는 것을 확인하였다(도 10). 따라서 HER2를 표적으로 하는 항체 시료의 ADCC 활성 평가에는 MCF-7에 비해 HER2의 발현이 높은 SKBR-3가 보다 적합한 target cell로 확인되었다. Cells cultured in 100 mm dish (80% confluency) were washed once with DPBS, treated with 1.5 μl of Accutase (Merck Millipore), and incubated for 2-3 minutes at 37 ° C in a CO 2 incubator. After confirming that the cells were separated from the bottom of the dish, 6 ml of the cell culture medium was added. 10 ml pipette was used to collect all the solution containing the cells. After centrifugation at 1200 rpm for 3 minutes, the solution in the 15 ml tube was removed and 5 ml of DPBS was added to the 15 ml tube. And then centrifuged at 1200 rpm for 3 minutes. Remove the DPBS in the tube, add 3 ml of washing buffer (PBS + 1% BSA) to the 15 ml tube, mix well with the cells, centrifuge for 3 minutes at 1200 rpm and remove the washing buffer in the tube. After repeating the above washing procedure twice, the final 1 ml of washing buffer was added and mixed well with the cells. FACS tubes (Falcon) were prepared by non-staining for each cell, labeled with isotype control (normal human IgG-Alexa488) and trastuzumab-alexa488. Cells were counted and dispensed at 1 × 10 5 cells / 300 μl per tube. The cells were blocked by centrifugation at 4 ° C for 15 minutes, and the supernatant was removed. 100 μl of washing buffer was dispensed into the FACS tube and mixed well with the cells. 1 ㎍ of isotype control and trastuzumab-alexa488 were added except non-staining. After shading with aluminum foil, the antibody reaction is carried out at 4 ° C for 30 minutes. After completion of the reaction, the cells are removed by centrifugation and the supernatant is removed. Washing buffer was added in an amount of 1 ml each time, and the washing procedure was repeated three times. 300 μl of running buffer (PBS) was added to each tube, mixed well with the cells, and analyzed by FACS. As a result, it was confirmed that SKBR-3 showed much higher HER2 expression than MCF-7 (FIG. 10). Therefore, SKBC-3, which has higher expression of HER2 than MCF-7, has been found to be a more suitable target cell for evaluation of ADCC activity of antibody samples targeting HER2.

실시예Example 11:  11: ADCC를ADCC 위한  for EffectorEffector cell( cell ( PBMCPBMC ): Target cell (): Target cell ( SKBRSKBR -3, -3, MCFMCF -- 7)의7) of 비율 결정을 위한 예비실험 Preliminary experiment for rate determination

Target cell인 SKBR-3, MCF-7을 배양하고 Target cell을 1 X 104 cells/50 ㎕/well로 96-well V-bottom plate(Corning)에 seeding한 후 trastuzumab(20 μ을 well당 10 ㎕씩 첨가한다. PBMC(CTL, 표 4)는 37℃ water bath에서 quick thawing하여 상온에서 DNase I을 30분간 처리하고 세포를 계수한 후, 각 well 당 비율에 따라 적정 수의 PBMC를 첨가하였다. Target cells SKBR-3 and MCF-7 were cultured. Target cells were seeded in 96-well V-bottom plates (Corning) at 1 × 10 4 cells / 50 μl / well and trastuzumab PBMC (CTL, Table 4) were treated with DNase I at room temperature for 30 minutes at 37 ° C in a water bath at 37 ° C. Cells were counted, and an appropriate number of PBMCs were added to each well.

PBMC 공여자 정보PBMC Donor Information Sample ID#Sample ID # EthnicityEthnicity AgeAge GenderGender ABO/PHABO / PH 2009102620091026 Caucasian Caucasian 2424 MaleMale A/POSA / POS 2010041220100412 HispanicHispanic 3030 MaleMale A/POSA / POS HHU20120530HHU20120530 African/AmericanAfrican / American 3535 MaleMale AB/POSAB / POS HHU20130318HHU20130318 AsianAsian 3838 MaleMale A/POSA / POS HHU20150924HHU20150924 Asian/FilipinoAsian / Filipino 4040 MaleMale A/POSA / POS

Effector cell: Target cell 비율은 1.5625:1, 3.125:1, 6.25:1, 12.5:1, 25:1로 하여 진행하였으며, 100xg, 1 분간 원심분리를 한 뒤, 37℃, CO2 incubator에서 4 시간 동안 배양하였다. 4 시간 후, plate를 300xg, 3 분간 원심분리 한 뒤 상층액 50 ㎕를 취하여 SpectraPlate-96-well plate(PerkinElmer)에 옮긴 후, CytoTox 96® Reagent(Promega)를 각 well당 50 ㎕ 씩 첨가하여 30 분간 상온에서 incubation 하였다. 50 ㎕의 Stop solution을 첨가하여 반응을 종료 시킨 다음 490 nm에서 흡광도를 측정하였다. 본 과정을 duplicate로 3회 반복 시험하여 평균값을 취하였다. 그 결과 HER2 발현이 높은 SKBR-3(1 X 104 cells/well)을 target cell로 사용하고, effector cell로 PBMC를 사용한 ADCC assay에서 effector cell 수 의존적인 cytotoxicity 증가를 보였으며, HER2 발현이 낮은 MCF-7의 경우도 effector cell수 의존적인 cytotoxicity 증가를 보였으나, HER2 발현이 높은 SKBR-3에 비해서는 낮은 증가율을 보였다(도 11). HER2 발현이 높은 SKBR-3에 대한 cytotoxicity가 HER2 발현이 낮은 MCF-7에 비해 높아, cytotoxicity가 HER2 특이적임을 보여주고 있으며, effector cell로 사용하는 PBMC의 FcγRIIIa F/V variant 분포 차를 고려하여, ADCC 활성 평가를 위한 effector cell:target cell 비율은 최소 25:1 이상으로 사용하는 것이 적절하다고 확인하였다(표 5).Effector cell: Target cell ratio was 1.5625: 1, 3.125: 1, 6.25: 1, 12.5: 1, 25: 1, centrifuged at 100xg for 1 minute and then incubated at 37 ℃ in CO 2 incubator for 4 hours Lt; / RTI > After 4 hours, the plate was centrifuged at 300 × g for 3 minutes, and 50 μl of the supernatant was transferred to a SpectraPlate-96-well plate (PerkinElmer) and 50 μl of CytoTox 96 ® Reagent (Promega) Incubation was carried out at room temperature for several minutes. 50 μl of stop solution was added to terminate the reaction and the absorbance was measured at 490 nm. The procedure was repeated three times in duplicate and the mean value was taken. As a result, SKC-3 (1 × 10 4 cells / well), which is highly expressed in HER2, was used as a target cell. In the ADCC assay using PBMC as an effector cell, effector cell number-dependent cytotoxicity was increased. -7 also showed an increase in cytotoxicity depending on the number of effector cells, but the rate of increase was lower than that of SKBR-3, which has a high expression of HER2 (FIG. 11). The cytotoxicity of SKBR-3 with high HER2 expression was higher than that of MCF-7 with low HER2 expression and cytotoxicity was HER2-specific. Considering the difference in FcγRIIIa F / V variant distribution of PBMC used as effector cells, The effector cell: target cell ratio for ADCC activity evaluation was confirmed to be at least 25: 1 (Table 5).

Effector: Target cell 비율에 따른 ADCC 정도Effector: ADCC degree according to target cell ratio Effector: TargetEffector: Target % Cytotoxicity% Cytotoxicity SKBR-3SKBR-3 MCF-7MCF-7 1.5625 : 11.5625: 1 1.651.65 0.230.23 3.125 : 13.125: 1 2.002.00 0.980.98 6.25 : 16.25: 1 13.5413.54 1.011.01 12.5 : 112.5: 1 17.4717.47 7.007.00 25 : 125: 1 40.2140.21 10.3810.38

실시예Example 12: Human  12: Human PBMC를PBMC 사용한  Used HerceptinHerceptin variants의  variants ADCCADCC 활성 비교 평가 Active comparative evaluation

SKBR-3와 MCF-7을 배양하고 96-well plate(V-bottom)에 well당 1 x 104 cells/50 ㎕)로 seeding한 후, 시험물질을 0, 0.032, 0.16, 0.8, 4, 20 ㎍/㎖로 각 well당 10 ㎕ 씩 첨가하였다. PBMC는 5개 individual PBMC를 pooling 하여 37℃ water bath에서 quick thawing한 후, DNase I을 실온에서 30 분간 처리하였다. 세포를 계수하고, 각 well 당 2.5 x 105 cells/50 ㎕의 PBMC를 첨가한 다음 plate를 100xg에서 1 분간 원심분리, 37℃ CO2 incubator에서 4 시간 배양을 통해 반응을 진행하였다. 4 시간 후, plate를 꺼내 300xg에서 3 분간 원심분리하고 상층액 50 ㎕를 취하여 SpectraPlate-96-well plate에 옮긴 후, 각 well 당 CytoTox 96® Reagent 50 ㎕를 첨가하여 30 분간 실온에서 반응을 진행하였다. Stop solution 50 ㎕를 첨가하여 반응을 종료시킨 후, 490 nm에서 흡광도를 측정하였다. 본 과정을 duplicate로 독립적인 3회의 반복 시험 후 평균값을 % Cytotoxicity로 나타내었다. HER2 고발현 세포주인 SKBR-3에서는 % Cytotoxicity가 4-31%로 높게 나타나고 HER2 저발현 세포주인 MCF-7에서는 2-15%로 낮게 나타나는 것으로 보아 시험물질의 표적 특이적인 세포 독성을 확인하였으며, 야생형 무당화 항체와 인간 IgG 항체에 비해 암세포 사멸 효과가 월등히 향상된 것을 확인하였다(도 12). SKBR-3 and MCF-7 were cultured and seeded in a 96-well plate (V-bottom) at 1 × 10 4 cells / 50 μl per well. The test material was then seeded at 0, 0.032, 0.16, 0.8, 4, Mu] g / ml in each well. The PBMCs were pooled in 5 individual PBMCs, subjected to quick thawing in a 37 ° C water bath, and treated with DNase I at room temperature for 30 minutes. The cells were counted, and 2.5 x 10 5 cells / 50 μl of PBMC was added per well. The plate was centrifuged at 100 × g for 1 minute and incubated in a 37 ° C. CO 2 incubator for 4 hours. After 4 hours, the plate was taken out and centrifuged at 300 × g for 3 minutes. 50 μl of the supernatant was transferred to SpectraPlate-96-well plate and 50 μl of CytoTox 96 ® Reagent was added to each well. . After stopping the reaction by adding 50 μl of stop solution, the absorbance was measured at 490 nm. The mean value was expressed as% Cytotoxicity after three independent repetitions of this procedure in duplicate. The cell-specific cytotoxicity of the test substance was confirmed by the fact that% Cytotoxicity was high as 4-31% in SKBR-3, a high-expression cell line, and 2-15% in MCF-7, a HER2 low-expression cell line. It was confirmed that the cancer cell killing effect was significantly improved as compared with the non-immunized antibody and the human IgG antibody (FIG. 12).

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Kookmin University Industry Academy Cooperation Foundation <120> Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fc gamma Receptor <130> HPC-7061 <160> 28 <170> KoPatentIn 3.0 <210> 1 <211> 227 <212> PRT <213> Homo sapiens <400> 1 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 2 <211> 681 <212> DNA <213> Homo sapiens <400> 2 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 240 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 360 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccgt gctggactcc 540 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 3 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (Fc1004) <400> 3 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 4 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (Fc1004) <400> 4 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagca atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 5 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (A/IYG) <400> 5 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 6 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (A/IYG) <400> 6 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcgcgtac 240 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc caaagccaaa 360 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccgt gctggactcc 540 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 7 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (Fc1004-IYG) <400> 7 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 8 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (Fc1004-IYG) <400> 8 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagca atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 9 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG42) <400> 9 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Ser Val Phe Ser Cys Ser Val Leu 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 10 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG42) <400> 10 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ctccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaaccaca ggtgtacgcc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagta atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 agcgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 11 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG48) <400> 11 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 12 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG48) <400> 12 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ctccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaaccaca ggtgtacgcc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagca atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 13 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG59) <400> 13 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 14 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG59) <400> 14 gacaaaactc acacatgccc accatgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagca atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 15 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG87) <400> 15 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His 35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr 65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile 100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Ser Val Phe Ser Cys Ser Val Leu 195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220 Pro Gly Lys 225 <210> 16 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG87) <400> 16 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ctccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagta atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 agcgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 17 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#36) <400> 17 cgcagcgagg cccagccggc catggcggag gttcaattag tggaatctg 49 <210> 18 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#43) <400> 18 ggacgctgac cacacggtac gcgctgttgt actgctcctc ccg 43 <210> 19 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#42) <400> 19 cgggaggagc agtacaacag cgcgtaccgt gtggtcagcg tcc 43 <210> 20 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#37) <400> 20 cgcaattcgg cccccgaggc ccctttaccc ggggacaggg ag 42 <210> 21 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#39) <400> 21 ggttttctcg atgggggctg ggccataaat gttggagacc ttgcatttgt actccttg 58 <210> 22 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#38) <400> 22 caaggagtac aaatgcaagg tctccaacat ttatggccca gcccccatcg agaaaacc 58 <210> 23 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#45) <400> 23 cgacaagaaa gttgagccca aatcttgt 28 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#46) <400> 24 cgcaattccg gcccccgagg cccc 24 <210> 25 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#44) <400> 25 acaagatttg ggctcaactt tcttgtcg 28 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#2) <400> 26 ctgcccatgt tgacgattg 19 <210> 27 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#49) <400> 27 cgcagcgagc gcgcactcca tggcggaggt tcaattagtg gaatctg 47 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer (MJ#50) <400> 28 ccctaaaatc tagaccttta cccggggaca gggag 35 <110> Kookmin University Industry Academy Cooperation Foundation <120> Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding          Specificity to an Fc gamma Receptor <130> HPC-7061 <160> 28 <170> KoPatentin 3.0 <210> 1 <211> 227 <212> PRT <213> Homo sapiens <400> 1 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 2 <211> 681 <212> DNA <213> Homo sapiens <400> 2 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 240 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 360 gggcagcccc gagaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccgt gctggactcc 540 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 3 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (Fc1004) <400> 3 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 4 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (Fc1004) <400> 4 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagca atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 5 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (A / IYG) <400> 5 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 6 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (A / IYG) <400> 6 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcgcgtac 240 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc caaagccaaa 360 gggcagcccc gagaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccgt gctggactcc 540 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 7 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (Fc1004-IYG) <400> 7 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 8 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (Fc1004-IYG) <400> 8 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagca atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 9 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG42) <400> 9 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Ser Val Phe Ser Cys Ser Val Leu         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 10 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG42) <400> 10 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ctccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaccaca ggtgtacgcc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagta atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 agcgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 11 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG48) <400> 11 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Ala Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 12 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG48) <400> 12 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ctccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaccaca ggtgtacgcc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagca atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 13 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG59) <400> 13 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Leu         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 14 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG59) <400> 14 gacaaaactc acacatgccc accatgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagca atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 aacgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 15 <211> 227 <212> PRT <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG87) <400> 15 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly   1 5 10 15 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met              20 25 30 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Glu Asp Val Ser His          35 40 45 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val      50 55 60 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Gly Ala Tyr  65 70 75 80 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly                  85 90 95 Lys Glu Tyr Lys Cys Lys Val Ser Asn Ile Tyr Gly Pro Ala Pro Ile             100 105 110 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val         115 120 125 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser     130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160 Trp Val Ser Asn Gly Gln Pro Glu Asn Asp Tyr Lys Thr Thr Pro Pro                 165 170 175 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val             180 185 190 Asp Lys Ser Arg Trp Gln Gln Gly Ser Val Phe Ser Cys Ser Val Leu         195 200 205 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser     210 215 220 Pro Gly Lys 225 <210> 16 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Antibody Fc Sequence (MG87) <400> 16 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60 ttcctcttcc ctccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120 tgcgtggtgg aggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cggcgcgtac 240 cgtgtggtca gtgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaaa 300 tgcaaggtct ccaacattta tggcccagcc cccatcgaga aaaccatctc taaagccaaa 360 gggcagcccc gagaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480 tgggtgagta atgggcagcc ggagaacgac tacaagacca cacctcccgt gctggactcc 540 gacggctctt tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600 agcgtcttct catgctccgt gttacatgag gctctgcaca accactacac gcagaagagc 660 ctctccctgt ccccgggtaa a 681 <210> 17 <211> 49 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 36) <400> 17 cgcagcgagg cccagccggc catggcggag gttcaattag tggaatctg 49 <210> 18 <211> 43 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 43) <400> 18 ggacgctgac cacacggtac gcgctgttgt actgctcctc ccg 43 <210> 19 <211> 43 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 42) <400> 19 cgggaggagc agtacaacag cgcgtaccgt gtggtcagcg tcc 43 <210> 20 <211> 42 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 37) <400> 20 cgcaattcgg cccccgaggc ccctttaccc ggggacaggg ag 42 <210> 21 <211> 58 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 39) <400> 21 ggttttctcg atgggggctg ggccataaat gttggagacc ttgcatttgt actccttg 58 <210> 22 <211> 58 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 38) <400> 22 caaggagtac aaatgcaagg tctccaacat ttatggccca gcccccatcg agaaaacc 58 <210> 23 <211> 28 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 45) <400> 23 cgacaagaaa gttgagccca aatcttgt 28 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 46) <400> 24 cgcaattccg gcccccgagg cccc 24 <210> 25 <211> 28 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 44) <400> 25 acaagatttg ggctcaactt tcttgtcg 28 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 2) <400> 26 ctgcccatgt tgacgattg 19 <210> 27 <211> 47 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 49) <400> 27 cgcagcgagc gcgcactcca tggcggaggt tcaattagtg gaatctg 47 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> Synthetic primer (MJ # 50) <400> 28 ccctaaaatc tagaccttta cccggggaca gggag 35

Claims (12)

인간 항체 Fc 도메인을 포함하는 폴리펩타이드로서, 상기 Fc 도메인은 카밧 EU 넘버링 시스템(Kabat EU numbering system)에 따른 하기의 9가지 아미노산 치환을 포함하는 것을 특징으로 하는 폴리펩타이드: V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D 및 M428L.
A polypeptide comprising a human antibody Fc domain, wherein said Fc domain comprises the following nine amino acid substitutions according to the Kabat EU numbering system: V264E, S298G, T299A, K326I , A327Y, L328G, E382V, N390D and M428L.
제 1 항에 있어서, 상기 아미노산 치환은 카밧 EU 넘버링 시스템에 따른 226, 243, 246, 250, 253, 307, 350, 347, 400 및 421번 아미노산으로 구성된 군으로부터 선택되는 1 이상의 추가적인 아미노산 치환을 포함하는 것을 특징으로 하는 폴리펩타이드.
The method of claim 1, wherein said amino acid substitution comprises one or more additional amino acid substitutions selected from the group consisting of amino acids 226, 243, 246, 250, 253, 307, 350, 347, 400 and 421 according to Kabat EU numbering system &Lt; / RTI &gt;
제 1 항에 있어서, 상기 아미노산 치환을 포함하는 Fc 도메인은 치환되지 않은 Fc 도메인과 비교하여 FcγRIIIa에 대한 결합력이 향상된 것을 특징으로 하는 폴리펩타이드.
The polypeptide according to claim 1, wherein the Fc domain comprising the amino acid substitution has improved binding to Fc [gamma] RIIIa as compared to the Fc domain that is not substituted.
제 1 항의 폴리펩타이드를 포함하는 무당화 항체.
An immobilized antibody comprising the polypeptide of claim 1.
제 1 항의 폴리펩타이드를 코딩하는 핵산분자.
A nucleic acid molecule encoding the polypeptide of claim 1.
제 5 항의 핵산분자를 포함하는 벡터.
A vector comprising the nucleic acid molecule of claim 5.
제 6 항의 벡터를 포함하는 숙주세포.
A host cell comprising the vector of claim 6.
제 7 항에 있어서, 상기 숙주세포는 세균세포인 것을 특징으로 하는 숙주세포.
8. The host cell according to claim 7, wherein the host cell is a bacterial cell.
제1항의 폴리펩타이드, 제4항의 무당화 항체 또는 제5항의 핵산분자를 포함하고, 상기 폴리펩타이드, 무당화 항체 또는 핵산분자는 암 항원을 인식하는 항원 결합 도메인을 포함하는 것인, 암의 예방 또는 치료용 약제학적 조성물.
5. A method for the prevention of cancer, which comprises the polypeptide of claim 1, the immunizing antibody of claim 4, or the nucleic acid molecule of claim 5, wherein the polypeptide, the non-attenuated antibody or nucleic acid molecule comprises an antigen- Or a pharmaceutical composition for therapeutic use.
하기의 단계를 포함하는 인간 항체 Fc 도메인을 포함하는 폴리펩타이드의 제조방법:
a) 제 1 항의 폴리펩타이드를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 단계; 및
b) 상기 숙주세포에 의해 발현된 폴리펩타이드를 회수하는 단계.
A method for producing a polypeptide comprising a human antibody Fc domain comprising the steps of:
a) culturing a host cell comprising a vector comprising a nucleic acid molecule encoding the polypeptide of claim 1; And
b) recovering the polypeptide expressed by said host cell.
하기의 단계를 포함하는 무당화 항체의 제조방법:
a) 제 1 항의 폴리펩타이드를 포함하는 무당화 항체를 발현하는 숙주세포를 배양하는 단계; 및
b) 상기 숙주세포로부터 발현된 항체를 정제하는 단계.
A method for preparing an immobilized antibody comprising the steps of:
a) culturing a host cell expressing an immortalized antibody comprising the polypeptide of claim 1; And
b) purifying the antibody expressed from said host cell.
하기의 단계를 포함하는 FcγRIIIa에 결합하는 Fc 도메인을 포함하는 폴리펩타이드의 스크리닝 방법:
a) 카밧 EU 넘버링 시스템에 따른 V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D 및 M428L의 9가지 아미노산 치환을 포함하는 Fc 도메인에 추가적으로 무작위적인 점 돌연변이를 가한 Fc 도메인을 포함하는 폴리펩타이드의 라이브러리를 구축하는 단계; 및
b) 상기 라이브러리에서 FcγRIIIa에 결합하는 Fc 도메인을 포함하는 폴리펩타이드를 선별하는 단계.
A screening method of a polypeptide comprising an Fc domain binding to Fc [gamma] RIIIa comprising the steps of:
a polypeptide comprising an Fc domain that additionally has a random point mutation in addition to the Fc domain comprising nine amino acid substitutions of V264E, S298G, T299A, K326I, A327Y, L328G, E382V, N390D and M428L according to the Kabat EU numbering system Building a library of &lt; RTI ID = 0.0 &gt; And
b) selecting a polypeptide comprising an Fc domain that binds to FcγRIIIa in said library.
KR1020160148002A 2016-10-27 2016-11-08 Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor KR101900384B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020160148002A KR101900384B1 (en) 2016-11-08 2016-11-08 Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor
DE112017005457.5T DE112017005457T5 (en) 2016-10-27 2017-08-22 FC AREA OF AGLY COSMATED ANTIBODIES FOR CANCER TREATMENT
US16/345,062 US11414493B2 (en) 2016-10-27 2017-08-22 Aglycosylated antibody Fc region for treating cancer
AU2017348982A AU2017348982B2 (en) 2016-10-27 2017-08-22 Aglycosylated antibody Fc region for treating cancer
PCT/KR2017/009153 WO2018079997A1 (en) 2016-10-27 2017-08-22 Aglycosylated antibody fc region for treating cancer
GB1907421.0A GB2571036B (en) 2016-10-27 2017-08-22 Aglycosylated antibody Fc region for treating cancer
US17/861,920 US20220348654A1 (en) 2016-10-27 2022-07-11 AGLYCOSYLATED ANTIBODY Fc REGION FOR TREATING CANCER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160148002A KR101900384B1 (en) 2016-11-08 2016-11-08 Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor

Publications (2)

Publication Number Publication Date
KR20180051100A KR20180051100A (en) 2018-05-16
KR101900384B1 true KR101900384B1 (en) 2018-09-20

Family

ID=62452027

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160148002A KR101900384B1 (en) 2016-10-27 2016-11-08 Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor

Country Status (1)

Country Link
KR (1) KR101900384B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044348A (en) * 2017-10-20 2019-04-30 국민대학교산학협력단 An Antibody Fc Variant for Enhancing ADCC Activity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230041211A (en) * 2021-09-17 2023-03-24 고려대학교 산학협력단 Fc variants with improved binding to multiple Fc gamma receptors
KR20230041210A (en) * 2021-09-17 2023-03-24 고려대학교 산학협력단 Fc variants with improved binding to Fc gamma receptor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120208238A1 (en) 2011-02-07 2012-08-16 George Georgiou Engineered immunoglobulin fc polypeptides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120208238A1 (en) 2011-02-07 2012-08-16 George Georgiou Engineered immunoglobulin fc polypeptides
US8952132B2 (en) 2011-02-07 2015-02-10 Research Development Foundation Engineered immunoglobulin FC polypeptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACS Chemical Biology. Vol. 8, pp. 368-375 (2013)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044348A (en) * 2017-10-20 2019-04-30 국민대학교산학협력단 An Antibody Fc Variant for Enhancing ADCC Activity
KR101985863B1 (en) * 2017-10-20 2019-06-04 국민대학교 산학협력단 An Antibody Fc Variant for Enhancing ADCC Activity

Also Published As

Publication number Publication date
KR20180051100A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
CN111601825B (en) Fully human anti-B Cell Maturation Antigen (BCMA) single-chain antibody and application thereof
CN107002068B (en) Therapeutic agents inducing cytotoxicity
WO2017071625A1 (en) Anti-pd-1 monoclonal antibody, and pharmaceutical composition and use thereof
JP7264383B2 (en) Antibody Fc variants for improved serum half-life
KR20210143192A (en) Modified Fc fragments, antibodies comprising same, and applications thereof
WO2021213475A1 (en) Anti-cd73-anti-pd-1 bispecific antibody and use thereof
WO2022143794A1 (en) Anti-cldn18.2 antibody, and preparation method therefor and use thereof
KR101900384B1 (en) Aglycosylated Antibody Fc Region Exhibiting Enhanced Binding Specificity to an Fcγ Receptor
KR101883886B1 (en) Aglycosylated Antibody Fc Region for Treating Cancer
TW200808830A (en) Mutant polypeptide having effector function
KR101924485B1 (en) Antibody Fc variants for Prolonged Serum Half-Life
KR101957431B1 (en) Antibody Fc variants for Prolonged Serum Half-Life
KR101913743B1 (en) Antibody Fc variants for Prolonged Serum Half-Life
KR101792205B1 (en) Antibody Fc variants for Prolonged Serum Persistence
US20220348654A1 (en) AGLYCOSYLATED ANTIBODY Fc REGION FOR TREATING CANCER
KR101985863B1 (en) An Antibody Fc Variant for Enhancing ADCC Activity
KR101792191B1 (en) Antibody Fc variants for Extended Serum Half-life
KR101872455B1 (en) Antibody Fc Region Comprising a New Mutation
WO2023027164A1 (en) Reactive oxygen species (ros) production promoter
KR20230041219A (en) Glycosylated Fc variants with improved binding selectivity to Fc gamma receptor IIIa
WO2023208014A1 (en) Antibodies binding bcma and cd3 and uses thereof
KR20230041218A (en) Glycosylated Fc variants with enhanced binding to Fc gamma receptor IIIa
KR20230041210A (en) Fc variants with improved binding to Fc gamma receptor
KR20230041211A (en) Fc variants with improved binding to multiple Fc gamma receptors
KR101787485B1 (en) Methods for producing recombinant PICP proteins and antibodies specifically binding thereto

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right