KR20190043318A - Method for enhancing saponin of Kalopanax septemlobus cell - Google Patents

Method for enhancing saponin of Kalopanax septemlobus cell Download PDF

Info

Publication number
KR20190043318A
KR20190043318A KR1020170135225A KR20170135225A KR20190043318A KR 20190043318 A KR20190043318 A KR 20190043318A KR 1020170135225 A KR1020170135225 A KR 1020170135225A KR 20170135225 A KR20170135225 A KR 20170135225A KR 20190043318 A KR20190043318 A KR 20190043318A
Authority
KR
South Korea
Prior art keywords
saponin
cell
embryogenic
callus
production
Prior art date
Application number
KR1020170135225A
Other languages
Korean (ko)
Other versions
KR102022248B1 (en
Inventor
박응준
한무호
이나념
최미나
김지아
이효신
Original Assignee
대한민국(산림청 국립산림과학원장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(산림청 국립산림과학원장) filed Critical 대한민국(산림청 국립산림과학원장)
Priority to KR1020170135225A priority Critical patent/KR102022248B1/en
Publication of KR20190043318A publication Critical patent/KR20190043318A/en
Application granted granted Critical
Publication of KR102022248B1 publication Critical patent/KR102022248B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/20Preparation of steroids containing heterocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/001Culture apparatus for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/002Culture media for tissue culture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13132Squalene monooxygenase (1.14.13.132)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Environmental Sciences (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for promoting the production of saponin of Kalopanax septemlobus cells. More particularly, the present invention relates to a method for promoting the production of saponin of Kalopanax septemlobus cells, and a Kalopanax septemlobus cell composition having higher saponin productivity than a conventional Kalopanax septemlobus cell composition manufactured using the same. The method for promoting the production of saponin of Kalopanax septemlobus cells of the present invention can promote the production of saponin by inducing and culturing a non-embryogenic callus of Kalopanax septemlobus which has difficulties in mass proliferation. The Kalopanax septemlobus cell composition of the present invention is excellent in the availability as a raw material component for pharmaceuticals, functional foods, and cosmetics containing saponin as an active ingredient since the saponin of Kalopanax septemlobus is promoted.

Description

음나무 세포의 사포닌 생성 증진방법 {Method for enhancing saponin of Kalopanax septemlobus cell}[0001] The present invention relates to a method for enhancing the production of saponin in a mammal,

본 발명은 음나무 세포의 사포닌 생성 증진방법에 관한 것으로서, 상세하게는 음나무 세포의 사포닌 생성 증진방법 및 이를 이용하여 제조된 기존 음나무 세포에 비하여 사포닌 생산성이 높은 음나무 세포 조성물에 관한 것이다.More particularly, the present invention relates to a method for promoting the production of saponin of bamboo cells and a method for enhancing saponin production of bamboo cells.

음나무(Kalopanax septemlobus)는 한방에서 해동으로, 그 수피는 해동피로 불리워져 오는 약용식물이다. 두릅나무과(Araliaceae)에 속하는 수고 20∼25m의 낙엽활엽교목으로 전국 산야에 산재되어 분포하는 낙엽교목이다. Kalpanax septemlobus is a medicinal plant that is made from oriental herb and thawing, and its bark is called sea tangle. The labor 20~25m belonging to Araliaceae (Araliaceae) deciduous broad-leaved tall tree is a deciduous arborescent distributed scattered over the country and mountain.

음나무의 주요 약리성분은 칼로파낙스사포닌 A(kalopanaxsaponin A), 칼로파낙스사포닌 B 등의 사포닌이며, 특히 음나무의 사포닌은 인삼의 사포닌과 비슷한 작용이 있어서 음나무는 인삼 대용품으로도 사용되어 왔다. The main pharmacological component of the chestnut tree is saponin such as kalopanaxsaponin A and chalopanax saponin B. Especially, saponin of chestnut has a similar action to saponin of ginseng, and the chestnut has been used as a substitute for ginseng.

음나무의 약리활성으로는 진해, 항염증, 강장 작용, 혈당저하 작용 등이 알려져 있으며, 음나무 및 이로부터 유래되는 조성물을 약제, 기능성 식품 및 화장품으로 활용하는 기술의 개발이 시도되고 있다 (등록특허 10-0588448호).The pharmacological activities of the phloem are known to be Jinhae, antiinflammation, tonic action, hypoglycemic action, etc., and development of a technique utilizing phamaceae and a composition derived therefrom as medicines, functional foods and cosmetics has been attempted -0588448).

음나무는 종자번식에 의한 증식이 가능하나 중복휴면(double dormancy) 종자로 2년 발아 특성이 있어 당년 발아율이 평균 8% 내외로 매우 낮은바, 이를 극복하고자 무성번식이 가능한 음나무 신품종이 개발되고, 또한 대량으로 음나무 종묘를 생산하는 방법이 개발된 바 있다 (등록특허 10-0365491호, 등록특허 10-0767050호). It is possible to propagate by the breeding of the seedling, but it is a double dormancy seed and the germination rate is about 8% on average due to the germination characteristic of 2 years. In order to overcome this problem, A method of producing a large quantity of a climbing seedling has been developed (Patent No. 10-0365491, Patent No. 10-0767050).

그러나 음나무의 약리성분인 사포닌의 생성을 증진시키는 기술은 개발된 바 없다. However, no technique has been developed for promoting the production of saponin, a pharmacological component of the Japanese apricot.

본 발명의 목적은 음나무 세포의 사포닌 생성 증진방법을 제공하는 것이다.It is an object of the present invention to provide a method for promoting the production of saponin in a bamboo cell.

본 발명의 또 다른 목적은 상기 음나무 세포의 사포닌 생성 증진방법에 의해 제조된, 통상의 음나무 세포에 비해 사포닌 생산성이 증진된 음나무 세포 조성물을 제공하는 것이다. It is still another object of the present invention to provide a feminine cell composition prepared by the method for promoting the production of saponin in the feminine cell, wherein the productivity of the feminine cell is improved compared to the conventional feminine cell.

본 발명의 또 다른 목적은 상기 음나무 세포 조성물 또는 이의 추출물을 포함하는 피부 외용제 조성물을 제공하는 것이다.It is still another object of the present invention to provide a composition for external application for skin comprising the above-described bamboo cell composition or an extract thereof.

상기 본 발명의 목적을 달성하기 위하여, 본 발명은In order to achieve the object of the present invention,

ⅰ) 음나무의 종자를 살균하여 도정하는 단계;I) sterilizing the seeds of the barks;

ⅱ) 상기 도정된 종자로부터 비-배발생(non-embryogenic) 캘러스를 유도하는 단계; 및Ii) inducing non-embryogenic callus from the harvested seed; And

ⅲ) 비-배발생 캘러스를 선별하여 배양하는 단계를 포함하고,Iii) selectively culturing non-embryogenic calli,

상기 비-배발생 캘러스 유도는 옥신류 식물성장호르몬을 4 ~ 5μM 이상으로 포함하는 배지에서 배양된 음나무 세포의 사포닌 생성 증진방법을 제공한다. The non-embryogenic callus induction method provides a method for promoting the production of saponin in cultured bovine cells in a medium containing 4 to 5 μM or more of auxin plant growth hormone.

본 발명에서 '캘러스(callus)'는 식물체의 조직배양시 외식편 (外植片)을 배지 위에 치상하고 적정 배양조건에서 배양하면 일정한 체제를 이루고 있는 세포괴를 형성하는데 이 세포괴를 의미한다. In the present invention, 'callus' refers to a cell mass that forms a uniformly shaped cell mass when the explant is sprouted on a medium and cultured under appropriate culture conditions during tissue culture of a plant.

본 발명에서 '비-배발생(non-embryogenic) 캘러스'는 상기 캘러스가 배형성 능력을 가지지 않는 캘러스를 의미한다. In the present invention, the term 'non-embryogenic callus' means a callus in which the callus does not have embryogenic ability.

단계 i): 음나무 종자 준비Step i): Preparation of females seed

음나무의 종자를 살균하여 도정하여 제공한다. The seeds of the chestnut are sterilized and supplied.

종자는 성숙 종자 또는 미성숙 종자를 사용할 수 있다. 성숙 종자의 성숙배에서 유도된 캘러스는 비-배발생 캘러스 유도가 잘 이루어지는 장점이 있다. 따라서 성숙된 종자만을 선별하여 비-배발생 캘러스 유도에 사용할 수도 있다. 미성숙 종자를 사용할 경우는 비-배발생 외에도 배발생 캘러스로의 유도가 동시에 이루어지나, 증식 속도가 빠른 장점이 있다. Seeds can use mature seeds or immature seeds. The callus derived from the mature embryo of mature seed has the advantage of inducing non-embryogenic callus well. Therefore, only mature seeds can be selected and used for induction of non-embryogenic calli. When immature seeds are used, induction to embryogenic callus is performed at the same time in addition to non - embryogenesis, but the growth rate is fast.

종자의 살균은, 70% 에탄올에 30초~1분 담그어서 살균하고, 2% 차아염소산나트륨(NaOCl) 용액으로 20~30분 동안 표면 소독 후, 무균 증류수로 3~5회 헹구어서 수행할 수 있다. Sterilization of seeds can be carried out by soaking in 70% ethanol for 30 seconds to 1 minute, disinfection with 2% sodium hypochlorite (NaOCl) solution for 20-30 minutes and rinsing 3 to 5 times with sterile distilled water have.

종자의 도정은 현미경 혹은 돋보기 하에서 종피를 제거하거나, 그 외 통상의 방법으로 수행할 수 있다. Seedling can be carried out by removing the seed coat under a microscope or a magnifying glass or by any other conventional method.

단계 ⅱ) 비-Step ii) 배발생Embryogenesis 캘러스Callus 유도 Judo

단계 i)로부터의 도정된 종자로부터 비-배발생 캘러스를 유도한다. Induce non-embryogenic calli from the seed obtained from step i).

비-배발생 캘러스 유도에 사용될 수 있는 배지는 WPM(woody plant medium), MS(Murashige & Skoog), B5(Gamborg's B5), 더잔(Durzan), SH(Schenk & Hildebrandt), White, DKW(Driver-Kuniyuk-Walnut), GD(Gresshoff & Doy), LP(Quoirin & Lepiovre) 배지 등이며, 바람직하게는 WPM(woody plant medium) 배지를 사용한다. The media that can be used for inducing non-embryogenic calli are woody plant medium, MS (Murashige & Skoog), B5 (Gamborg's B5), Durzan, SH (Schenk & Hildebrandt), White, DKW Kuniyuk-Walnut, GD (Gresshoff & Doy), LP (Quoirin & Lepiovre) medium, and preferably WPM (woody plant medium) medium.

비-배발생 캘러스 유도를 위한 배지에는 옥신류 식물성장호르몬을 4 ~ 5 μM 포함하는 것이 바람직하다. 캘러스 유도용 배지에 옥신류 식물성장호르몬이 4 μM 미만으로 포함하면 캘러스 유도 효율이 낮아지거나, 세포의 발달 스위치에 충분히 강한 스트레스가 부여되지 않아서 배발생(embryogenic) 캘러스의 유도의 빈도가 높아질 수 있고, 5 μM 초과로 포함하면 캘러스가 유도되기 전에 종자배가 고사되는 문제가 발생할 수 있다. 가장 바람직하게는 옥신류 식물성장호르몬이 4.4 μM 로 포함된다.The medium for inducing non-embryogenic calli preferably contains 4-5 μM auxin plant growth hormone. Incorporation of auxin plant growth hormone below 4 μM into the callus induction medium may result in lower callus induction efficiency or insufficiently strong stress to the developmental switch of cells, leading to a higher incidence of embryogenic callus induction If it is contained in excess of 5 [mu] M, there may arise a problem that the seed is broken before the callus is induced. Most preferably, auxin plant growth hormone is included at 4.4 [mu] M.

본 발명에서 사용될 수 있는 '옥신류 식물성장호르몬'으로는 2,4-디클로로페녹시아세트산(2-4-Dichlorophenoxyacetic acid; 2,4-D) 등이 있다. Examples of the 'auxin plant growth hormone' that can be used in the present invention include 2,4-dichlorophenoxyacetic acid (2,4-D) and the like.

하기 실시예에서와 같이, 도정된 음나무 종자를 4 ~ 5 μM 2,4-디클로로페녹시아세트산(2,4-D)와 함께 3% 슈크로스, 0.3% 젤라이트 (gelrite)가 포함된 WPM(woody plant medium) 배지에 치상하여 캘러스를 유도할 수 있다. 이때 24~26℃의 어두운 배양실에서 3~6주간 배양하여 음나무 비-배발생 캘러스를 유도할 수 있다.As in the following examples, the determined females seeds were seeded with 4 to 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) together with 3% sucrose, 0.3% WPM containing gelrite woody plant medium) medium to induce callus. At this time, cultured in a dark incubation room at 24 ~ 26 ℃ for 3 ~ 6 weeks to induce non-embryogenic callus.

단계 ⅲ): 비-배발생 캘러스 배양Step iii): Culture of non-embryogenic callus

비-배발생 캘러스를 선별하여 배양함에 의해서, 사포닌 생산성이 증진된 음나무 세포를 대량으로 얻는다. By selecting and culturing non-embryogenic calli, a large amount of mammalian cells with enhanced saponin productivity are obtained.

비-배발생 캘러스의 선별은 형태학적 특성에 의해 용이하게 수행될 수 있다 (도 1). 비-배발생 캘러스는 하얗고 반투명이며 (도 1a), 이에 비하여 배발생 캘러스는 황갈색(도 1b)이어서 육안으로 쉽게 구별될 수 있다. Selection of non-embryogenic calli can be easily performed by morphological characteristics (Fig. 1). Non-embryogenic calli are white and translucent (FIG. 1A), whereas embryogenic calli are yellowish brown (FIG. 1B) and can be readily distinguished visually.

또한 비-배발생 캘러스는 세포구조 특성에 의해서도 구별될 수 있다. 비-배발생 캘러스의 세포는 크고, 액포(空胞)가 많으며, 작은 핵을 갖고 길쭉한 구조를 갖는 반면에 (도 2a, 도 2b), 배발생 캘러스는 두드러진 핵 및 밀도가 높은 세포질을 가진 조직화된 구조를 보인다 (도 2c, 도 2d). Non-embryogenic calli can also be distinguished by cellular structural properties. Cells of non-embryogenic callus are large, have many vacuoles, have elongated structures with small nuclei (Figs. 2a and 2b), whereas embryogenic calli are composed of prominent nucleoli and dense cytoplasm (Fig. 2C, Fig. 2D).

비-배발생 캘러스 배양은 상기와 같은 방식으로 선별된 비-배발생 캘러스 만을 취하여 배양배지에 치상하여 pH 5.0~6.0 및 24~26℃의 어두운 배양실에서 3~6 주간 배양한다. 상기 배양조건으로 배양시 본 발명의 음나무 세포의 사포닌 생합성 관련 효소들의 발현량이 현저하게 증진되어 결과적으로 사포닌 생성이 촉진될 수 있다. Non-embryogenic callus cultures are cultured for 3 to 6 weeks in a dark incubation chamber at pH 5.0 to 6.0 and 24 to 26 째 C in a culture medium, taking only non-embryogenic calli selected in the above manner. When cultured under the above-mentioned culture conditions, the expression level of saponin biosynthesis-related enzymes of the present invention is significantly increased, resulting in promotion of saponin production.

본 발명에서 비-배발생 캘러스의 배양 배지는 WPM(woody plant medium), MS(Murashige & Skoog), B5(Gamborg's B5), 더잔(Durzan), SH(Schenk & Hildebrandt), White, DKW(Driver-Kuniyuk-Walnut), GD(Gresshoff & Doy), LP(Quoirin & Lepiovre) 배지 등이며, 바람직하게는 WPM 배지를 사용한다.In the present invention, the culture medium of non-embryogenic callus is selected from woody plant medium, MS (Murashige & Skoog), B5 (Gamborg's B5), Durzan, SH (Schenk & Hildebrandt), White, DKW Kuniyuk-Walnut, GD (Gresshoff & Doy), LP (Quoirin & Lepiovre) medium, and preferably WPM medium.

본 발명에서 캘러스 유도 배지에 포함된 옥신류 식물성장호르몬은 비-배발생 캘러스 배양시 파괴되어, 최종 음나무 세포에는 거의 포함되지 않게 된다.In the present invention, the auxin plant growth hormone contained in the callus inducing medium is destroyed when cultured in non-embryogenic callus, and is hardly contained in the final phylum cells.

본 발명의 또 다른 목적에 따라서, 상기 음나무 세포의 사포닌 생성 증진방법에 의해 제조된, 사포닌 생산성이 증진된 음나무 세포 조성물을 제공한다.According to another aspect of the present invention, there is provided a feminine cell composition produced by the method for promoting the production of saponin of the feminine cells, the feminine cell having an improved saponin productivity.

본 발명에 따른 음나무 세포 조성물은 사포닌을 활성성분으로 하는 약제, 기능성 식품 및 화장품의 원료성분으로 사용될 수 있다. The composition of the present invention can be used as a raw material for medicines, functional foods and cosmetics containing saponin as an active ingredient.

본 발명의 또 다른 목적에 따라서, 상기 음나무 세포 조성물 또는 이의 추출물을 포함하는 피부 외용제 조성물을 제공한다. According to another object of the present invention, there is provided an external preparation for skin comprising the above-described bamboo cell composition or an extract thereof.

본 발명에서 상기 추출물은 상기 음나무 세포 조성물을 유기용매를 이용하여 추출한 것일 수 있다. 상기 추출에 사용될 수 있는 유기용매로는 아세톤, 에틸아세테이트, 디에틸에테르, 글리세린, 에틸렌글리콜, 프로필렌글리콜, 부틸렌글리콜, 벤젠, 클로로포름, 헥산 및 탄소수 1~4의 알코올 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.In the present invention, the extract may be obtained by extracting the bark cell composition using an organic solvent. Examples of the organic solvent that can be used for the extraction include acetone, ethyl acetate, diethyl ether, glycerin, ethylene glycol, propylene glycol, butylene glycol, benzene, chloroform, hexane and alcohols having 1 to 4 carbon atoms. These may be used alone or in combination of two or more.

상기 피부 외용제 조성물에 포함된 사포닌은 피부염증의 치료, 개선, 예방 및 완화효과, 항산화 효과, 미백 및 피부톤 개선 효과가 우수할 수 있다.The saponin contained in the composition for external application for skin may be excellent in treating, improving, preventing and alleviating skin inflammation, antioxidant effect, whitening and improving skin tone.

본 발명의 음나무 세포의 사포닌 생성 증진방법은 대량증식이 어려운 음나무를 비-배발생 캘러스 유도 및 배양함에 의하여 음나무 세포의 사포닌 생성을 증진시킬 수 있다. The method of promoting the production of saponin of the present invention can promote the production of saponin in the skin of the bark by inducing and culturing the non-embryogenic calli of the bark which is difficult to mass-proliferate.

본 발명의 음나무 세포 조성물은 음나무 사포닌이 증진되어 사포닌을 활성성분으로 하는 약제, 기능성 식품 및 화장품의 원료성분으로서 유용성이 우수하며, 본 발명에 따른 피부 외용제 조성물은 음나무 사포닌이 증진되어 피부염증의 치료, 개선, 예방 및 완화효과, 항산화 효과, 미백 및 피부톤 개선 효과를 가질 수 있다.The composition of the present invention improves the saponin content of the skin, and thus has excellent utility as a raw material ingredient for medicines, functional foods and cosmetics containing saponin as an active ingredient. The composition for external application for skin according to the present invention is effective for treating skin inflammation , Improvement, prevention and alleviation effect, antioxidant effect, whitening, and improvement of skin tone.

도 1은 본 발명에 따라 유도된 음나무의 비-배발생 캘러스(도 1a)의 형태를 보여주는 사진이다.
도 2는 본 발명에 따라 유도된 음나무의 비-배발생의 세포 조직 및 초미세구조를 광학 현미경 및 TEM으로 관찰 촬영한 사진이다 (도 2a, 도 2b; Nu - 핵, V - 액포).
도 3은 본 발명에 따른 음나무 비-배발생 캘러스(NEC)와 비교예의 음나무 배발생 캘러스(EC)의 유전자 온톨로지(GO) 분류와 각 카테고리 유니진의 백분율을 나타낸 그래프이다.
도 4는 본 발명에 따른 음나무 비-배발생 캘러스(NEC)와 비교예의 음나무 배발생 캘러스(EC)의 유전자 온톨로지(GO) 농축 분석의 클러스터 히트맵을 나타낸다.
도 5는 본 발명에 따른 음나무 비-배발생 캘러스(NEC)와 비교예의 음나무 배발생 캘러스(EC)의 사포닌 생합성과 관련된 5종 주요 효소의 유니진의 발현을 비교한 그래프이다 (SE - 스쿠알렌 에폭시다제; CYP450s - 시토크롬 P450; GTs - UDP-글리코실 트랜스퍼라제).
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a photograph showing the morphology of non-embryogenic calli (Fig.
FIG. 2 is a photomicrograph and TEM photographs of the cell structure and ultrastructure of non-embryogenic cells of the barks derived according to the present invention (FIGS. 2a and 2b; Nu-nucleus, V-vacuole).
FIG. 3 is a graph showing the gene ontology (GO) classification and the percentage of each category Uniin of the non-embryogenic callus (NEC) according to the present invention and the non-embryogenic callus (EC) of the comparative example.
Figure 4 shows a cluster heatmap of the gene ontology (GO) enrichment analysis of the non-embryogenic callus (NEC) according to the present invention and the non-embryogenic callus (EC) of the comparative example.
FIG. 5 is a graph comparing the expression of the five major enzymes related to saponin biosynthesis of the non-embryogenic callus (NEC) according to the present invention and the non-embryogenic callus (EC) of the comparative example (SE-squalene epoxidase CYP450s-cytochrome P450; GTs-UDP-glycosyltransferase).

이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예를 통하여 본 발명의 구성 및 효과를 보다 상세히 설명하기로 한다. 그러나 하기 실시예는 본 발명을 보다 명확하게 이해시키기 위하여 예시한 것일 뿐이며, 본 발명의 권리범위가 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to specific embodiments in order to facilitate understanding of the present invention. However, the following examples are merely illustrative of the present invention in order to more clearly understand the present invention, and the scope of the present invention is not limited by the following examples.

실시예Example

실시예 1: 음나무 세포의 사포닌 생성 증진Example 1: Promoting the production of saponin in the femoral cell

<음나무 종자 준비 및 비-배발생 캘러스 유도>&Lt; Preparation of females seed and non-embryogenic callus induction >

개화기의 음나무 꽃봉오리로부터 미성숙 종자를 수확하였다. 1분 동안 70% 에탄올에 담그고 2% 차아염소산나트륨(NaOCl)으로 20분 동안 표면 소독한 다음, 무균 증류수로 5회 헹구었다. 현미경 혹은 돋보기 하에서 종피를 제거하여 종자를 도정하였다. The immature seeds were harvested from the mulberry buds of the flowering stage. Dipped in 70% ethanol for 1 minute, surface sterilized with 2% sodium hypochlorite (NaOCl) for 20 minutes, and rinsed 5 times with sterile distilled water. Seeds were removed by removing seeds under a microscope or a magnifying glass.

도정된 음나무 종자를 3% 슈크로스, 0.3% 젤라이트 및 4.4 μM 2,4-디클로로페녹시아세트산(2,4-D)을 포함하는 WPM(woody plant medium) 배지인 캘러스 유도 배지가 담긴 10 X 2cm 플라스틱 페트리디쉬에 치상하여 어두운 배양실에서 25±1℃로 유지면서 3주간의 배양하여 비-배발생 캘러스를 유도하였다. 유도된 캘러스는 대부분 하얗고 반투명인 형태를 보이는 비-배발생 캘러스였으며(도 1a), 황갈색의 형태를 보이는 배발생 캘러스(도 1b)도 일부 유도되어 있었다. The resulting females seeds were seeded in a 10 x (density) medium containing callus induction medium in WPM (woody plant medium) medium containing 3% sucrose, 0.3% gelite and 4.4 μM 2,4-dichlorophenoxyacetic acid Non-embryogenic calli were induced by culturing for 3 weeks while keeping 25 ± 1 ° C in a dark culture chamber in a 2 cm plastic petri dish. The induced callus was mostly non-embryogenic calli showing white and translucent form (FIG. 1A) and embryogenic callus (FIG. 1B) showing a yellowish brown form.

<음나무 비-배발생 캘러스 배양> &Lt; Culture of calli of embryonic non-embryogenic >

하얗고 반투명인 형태를 보이는 비-배발생 캘러스를 선별하여 취한 후 WPM(woody plant medium) 배양배지에 치상하여 pH 5.0~6.0 및 24~26℃의 어두운 배양실에서 3~6 주간 배양하여, 사포닌 생산성이 증진된 음나무 세포를 대량으로 제조하였다. White and translucent non-embryogenic calli were selected and cultured in WPM (woody plant medium) culture medium for 3 to 6 weeks at pH 5.0 ~ 6.0 and 24 ~ 26 ℃ for 3-6 weeks. Enhanced bovine cells were prepared in large quantities.

실시예Example 2: 음나무 비- 2: 배발생Embryogenesis 캘러스Callus 조직 관찰 Tissue observation

본 발명에 따른 음나무 비-배발생 캘러스와 비교예로서 음나무 배발생 캘러스를 광학현미경과 TEM으로 조직학적 관찰하여 비교하여 그 결과를 도 2에 나타냈다. As a comparative example of the callus of the non-embryogenic callus according to the present invention, the callus of the embryogenic callus was compared with the optical microscope and TEM, and the results are shown in FIG.

구체적으로는 본 발명에 따른 음나무 비-배발생 캘러스와 비교예로서 음나무 배발생 캘러스를 각각 실온에서 24시간 동안 0.05M 인산 완충액(pH 6.8)으로 완충된 2.5% 글루타르 알데하이드 및 1.6% 파라포름알데하이드를 함유하는 고정 용액에 고정시킨 시료를 알코올 계열에서 탈수시킨 다음 Yeung (1999)에 따라 Technovit 7100 (Kulzer, Germany)에 인베드하였다. 그리고 나서 Autocut rotary microtome (RM 2165, Leica, Wetzlar GmbH, Germany)에 일회용 텅스텐 나이프로 연속 3㎛ 절편을 생성한 후, 각 절편을 톨루이딘 블루 O로 15분 동안 염색하였다. 그리고 나서 각 절편은 Leica DMR 광학현미경을 사용하여 검사하고 디지털 카메라 (Leica DC 300F) 및 Leica Application Suite 소프트웨어로 기록하였다 (도 2a: 비-배발생 캘러스 조직, 도 2c: 배발생 캘러스 조직). Specifically, the callus of the present invention was compared with the callus of the non-embryogenic callus of the present invention, and the callus of the callus of the callus was incubated at room temperature for 24 hours with 2.5% glutaraldehyde and 1.6% paraformaldehyde buffered with 0.05M phosphate buffer (pH 6.8) Were dehydrated in the alcohol system and then inbed onto Technovit 7100 (Kulzer, Germany) according to Yeung (1999). Subsequently, a continuous 3 μm slice was formed in an Autocut rotary microtome (RM 2165, Leica, Wetzlar GmbH, Germany) with a disposable tungsten knife, and each slice was stained with toluidine blue O for 15 minutes. Each section was then examined using a Leica DMR optical microscope and recorded with a digital camera (Leica DC 300F) and Leica Application Suite software (Fig. 2a: non-embryogenic callus tissue, Fig. 2c: embryogenic callus tissue).

초미세구조(ultrastructural) 분석을 위하여, 내부 세포의 발달은 상대적으로 늦었지만 대사 활동이 높은 캘러스의 외층의 세포가 쉽게 배아를 형성할 수 있기 때문에, 캘러스 표면 세포를 사용하였다. 본 발명에 따른 음나무 비-배발생 캘러스와 비교예로서 음나무 배발생 캘러스의 표면 세포를 각각 0.05 M 소듐 카코딜레이트 버퍼(sodium cacodylate buffer)로 pH 7.2로 조정한 2% 글루타르 알데히드 용액에 예비고정하고 동일한 완충액에서 1% OsO4에 고정시키고, 탈수시키고, 수지 및 EPON 812에 순차적으로 인베드하였다. 그리고 나서 MT-X 울트라미이크로톰(ultramicrotome (RMC, Tucson, AZ, USA))으로 얻은 극미세 절편을 우라닐 아세테이트로 염색하고 이어서 시트르산납으로 염색하였다. 이미지 관찰 및 기록은 LIBRA 120 투과전자현미경 (Carl Zeiss, Germany)을 사용하여 수행하였고 그 결과를 도 2b(비-배발생 캘러스) 및 도 2d(배발생 캘러스)에 나타냈다.For ultrastructural analysis, callus surface cells were used because the inner cell development was relatively late but the cells of the outer layer of callus with high metabolic activity could easily form embryos. As a comparative example of the non-embryogenic callus according to the present invention, the surface cells of the embryogenic embryogenic callus were pretreated with 2% glutaraldehyde solution adjusted to pH 7.2 with 0.05 M sodium cacodylate buffer , and it was fixed to 1% OsO 4 in the same buffer solution and dehydrated, and the bed with the resin and EPON 812 sequentially. Ultrafine slices obtained with MT-X ultramicrotome (RMC, Tucson, AZ, USA) were then stained with uranyl acetate and then stained with lead citrate. Image observations and recordings were performed using a LIBRA 120 transmission electron microscope (Carl Zeiss, Germany) and the results are shown in Figure 2b (non-embryogenic callus) and Figure 2d (embryogenic callus).

도 1에 나타난 바와 같이, 음나무 비-배발생 캘러스 (NEC)는 하얗고 잘 부서지며 반투명한 반면에, 배발생 캘러스 (EC)는 황갈색, 부드럽고 콤팩트하였다. As shown in Fig. 1, the horn non-embryogenic callus (NEC) was white, well broken and translucent while the embryogenic callus (EC) was yellowish brown, smooth and compact.

도 2에 나타난 바와 같이, 세포 구조 측면에서 볼 때, 음나무 비-배발생 캘러스 (NEC)의 세포는 크고, 고도로 액포성(空胞性)이고, 작은 핵을 가지고 길쭉하게 구성되어 있었고 (도 2의 a, c), 배발생 캘러스 (EC)는 두드러진 핵 및 밀도가 높은 세포질을 가진, 작고 등축성의 세포 덩어리를 갖는 보다 조직화된 구조를 보였다 (도 2의 b 및 d).As shown in Fig. 2, in the cell structure, the cells of the non-embryogenic callus (NEC) were large, highly vacuolar, elongated with small nuclei (Fig. 2 a, c), Embryogenic callus (EC) showed a more organized structure with small, equiaxed cell masses with pronounced nuclei and dense cytoplasm (Fig. 2b and d).

실시예 3: 파이로시퀀싱 및 디노보(de novo) 어셈블리 분석Example 3: Pyrosequencing and de novo assembly analysis

음나무 비-배발생 캘러스와 비교예로서 음나무 배발생 캘러스의 454 파이로시퀀싱 기술을 사용한 전사체 비교분석을 수행하였다. A comparative analysis of transcripts using the 454 pyrosequencing technique of the callus of the callus was conducted as a comparative example to that of the non-embryogenic callus.

<RNA 추출, cDNA 라이브러리 구축 및 454 파이로시퀀싱><RNA extraction, cDNA library construction and 454 pyrosequencing>

세틸트리메틸암모늄 브로마이드(cetyltrimethylammonium bromide; CTAB) 방법을 사용하여 음나무 비-배발생 캘러스와 비교예로서 음나무 배발생 캘러스 각각의 세포의 총 RNA를 추출한 후, RNeasy 컬럼 (Qiagen Ltd., Crawley, UK)으로 클린업했다. 총 RNA의 품질은 NanoDrop 분광 광도계 (Thermo, Wilmington, USA)를 사용하여 결정하였고, 260:280의 비율이 1.9에서 2.1 사이인 RNA 샘플을 분석을 위해 선택하였다. Total RNAs of cells of each non-horn embryogenic callus were compared with those of non-horn embryogenic calli using the cetyltrimethylammonium bromide (CTAB) method, and then analyzed by RNeasy column (Qiagen Ltd., Crawley, UK) Cleaned up. The total RNA quality was determined using a NanoDrop spectrophotometer (Thermo, Wilmington, USA) and RNA samples with a ratio of 260: 280 between 1.9 and 2.1 were selected for analysis.

Dynabeads mRNA Purification Kit와 Magnetic Particle Concentrator (MPC) (Invitrogen, Carlsbad, USA)를 사용하여 다음과 같이 음나무 비-배발생 캘러스와 비교예로서 음나무 배발생 캘러스 세포에 대한 각각의 cDNA 라이브러리를 구축하였다: Using the Dynabeads mRNA Purification Kit and the Magnetic Particle Concentrator (MPC) (Invitrogen, Carlsbad, USA), the following cDNA libraries were constructed for the non-embryogenic calli and the dermal embryogenic callus cells as comparative examples:

이중 가닥 cDNAs는 cDNA 합성 시스템 키트와 400μm "무작위" Roche 프라이머(Roche, Mannheim, Germany)를 사용하여 단편 200ng의 mRNA로부터 합성하였다. 이중 가닥 cDNA의 양말단을 신속 라이브러리 (RL) 예비 키트 (Invitrogen, Carlsbad, USA)를 사용하여 복구하였다. 어댑터 연결은 1 ㎕ MID 어댑터와 1 ㎕ RL 리가제의 반응에 의해 25℃에서 10분 동안 수행하였다. AMPure XP Beads와 사이징 용액 (Beckman Coulter, CA, USA)을 사용하여 작은 단편을 제거했다. 일회용 큐벳용 TBS 380 Fluorometer를 사용하여 라이브러리 정량을 수행했다. cDNA 라이브러리의 품질은 Agilent2100 Bioanalyzer™(Agilent Technologies, CA, USA)의 High Sensitivity Chip을 사용하여 평균 단편 크기를 결정하여 평가했다. Double stranded cDNAs were synthesized from 200 ng fragment of mRNA using cDNA synthesis system kit and 400 mu m "random" Roche primer (Roche, Mannheim, Germany). Both ends of the double-stranded cDNA were recovered using the Rapid Library (RL) preliminary kit (Invitrogen, Carlsbad, USA). The adapter connection was carried out at 25 ° C for 10 minutes by the reaction of 1 μl MID adapter and 1 μl RL ligase. Small fragments were removed using AMPure XP Beads and sizing solution (Beckman Coulter, CA, USA). Library quantification was performed using a TBS 380 fluorometer for disposable cuvettes. The quality of the cDNA library was assessed by determining the average fragment size using a High Sensitivity Chip from Agilent 2100 Bioanalyzer ™ (Agilent Technologies, CA, USA).

<시퀀스 트리밍(trimming), 디노보 전사체(transcriptome) 어셈블리>&Lt; Sequencing trimming, dinovo transcriptome assembly >

상기에서 합성된 2종의 cDNA 템플릿을 에멀젼 PCR (emPCR)에 의해 증폭하였고 454 GS-FLX Titanium 플랫폼에서의 cDNA 파이로시퀀싱을 다음과 같이 수행하였다: The two cDNA templates synthesized above were amplified by emulsion PCR (emPCR) and cDNA pyrosequencing on a 454 GS-FLX Titanium platform was performed as follows:

사용자 PerlScript, SeqClean (http : //compbio.dfci. harvard.edu) 및 RepeatMasker (http://www.repeatmasker.org) 프로그램을 사용하여 어셈블리를 위한 시퀀스를 준비했다. 시퀀싱 오류로 인해 잘못된 어셈블리가 생성될 수 있기 때문에 엄격한 필터링 프로세스를 적용했다. 즉 낮은 품질의 판독(reads)은 Phred 품질 스코어가 15 이하인 컷오프 값에서 제거하였으며 그 후 라이브러리 어댑터 시퀀스, 폴리 A/T 스트레치 및 낮은 복잡성 영역을 제거하였다. 마지막으로 짧은 판독 (길이가 50 염기 미만)을 걸러냈다. 상기와 같이 전처리된 서열은 MIRA (버전 3.2.1) 등을 사용하여 어셈블리하였다. I have prepared sequences for assemblies using PerlScript, SeqClean (http://compbio.dfci.harvard.edu) and RepeatMasker (http://www.repeatmasker.org) programs. We applied a rigorous filtering process because sequencing errors can create incorrect assemblies. That is, low quality reads were removed from the cut-off value with a Phred quality score of 15 or less and then removed the library adapter sequence, poly A / T stretch and low complexity areas. Finally, a short reading (length less than 50 bases) was filtered out. The pre-treated sequences were assembled using MIRA (version 3.2.1) or the like.

이 cDNA의 파이로시퀀싱은 음나무 비-배발생 캘러스(NEC)로부터 269,692개의 원시 판독(raw reads)과 배발생 캘러스(EC로)부터의 281,714개의 원시 판독을 생성하였다(표 1).Pyrosequencing of this cDNA produced 269,692 raw reads and 281,714 primordial readings from embryogenic calli (EC) from non-embryogenic calli (NEC) (Table 1).

  배발생Embryogenesis 비-배발생Non-abortion Sequencing Sequencing Total number of raw readsTotal number of raw reads 281,714281,714 269,692269,692 Total length of sequencing reads Total length of sequencing reads 91,158,58691,158,586 86,620,00486,620,004 Average read length (bp)Average read length (bp) 323.6323.6 321.2321.2 Maximum read length (bp)Maximum read length (bp) 927927 942942 TrimmingTrimming Total number of raw readsTotal number of raw reads 204,164204,164 168,065168,065 Total length of sequencing reads Total length of sequencing reads 66,133,22166,133,221 54,494,25754,494,257 Average read length (bp)Average read length (bp) 323.9323.9 324.2324.2 Maximum read length (bp)Maximum read length (bp) 740740 751751 De Novo De Novo AssemblyAssembly All assembled unigenesAll assembled unigenes 80,28080,280 63,12863,128 Number of contig (by MIRA)Number of contig (by MIRA) 25,84125,841 20,52120,521 Number of reads assembledNumber of reads assembled 149,725149,725 125,459125,459 The sequence depthThe sequence depth 5.85.8 6.16.1 Average length of contigs (bp)Average length of contigs (bp) 749.1749.1 745.0745.0 N50 of contigs (bp)N50 of contigs (bp) 827827 817817 Number of contig with >500bp Number of contig with> 500bp 19,07719,077 15,20315,203 Number of singletonsNumber of singletons 54,44054,440 42,60742,607 Average length of singletons (bp)Average length of singletons (bp) 248.1248.1 245.5245.5 AnnotationAnnotation NCBI-NRNCBI-NR 45,832 45,832 35,194 35,194 UniProtUniProt 47,714 47,714 38,890 38,890 COGCOG 42,919 42,919 37,55737,557 All annotated unigenesAll annotated unigenes 48,97448,974 39,90039,900

<주석(Annotation)><Annotation>

위에서 어셈블리된 유니진은 E-value 1e-5의 역치를 갖는 BLASTX 알고리즘을 사용하여 COG, UniProtKB 및 NCBI-NR과 같은 3가지 데이터베이스에 대한 서열과 비교하여 주석처리를 수행하였고, 그 결과 음나무 비-배발생 캘러스의 경우 39,900개와 배발생 캘러스의 경우 48,974개를 확인하였다 (표 1). Unigen assembled above was annotated using sequences of three databases, such as COG, UniProtKB and NCBI-NR, using the BLASTX algorithm with a threshold of E-value 1e-5, 39,900 of embryogenic calli and 48,974 of embryogenic calli were identified (Table 1).

<유전자 온톨로지 (GO) 분류><Gene Ontology (GO) classification>

GO-기반 기능 분류는 분자 기능, 생물학적 과정 및 세포 성분 온톨로지에 따라 Blast2GO 프로그램을 사용하여, 각 어셈블리된 유니진이 세 가지 주요 GO 범주와 35 가지 하위 범주로 할당될 수 있었고, 그 결과를 도 3에 나타내었다. Using the Blast2GO program according to molecular functions, biological processes and cellular component ontologies, GO-based functional classifications could be assigned to each of the three major GO categories and 35 subcategories, and the results are shown in FIG. 3 Respectively.

상기 표 1 및 도 3으로부터 음나무 비-배발생 캘러스와 비교예로서 음나무 배발생 캘러스 세포는 전사체(유전자)가 차등 발현된다는 것을 확인할 수 있다. 특히 생물학적 프로세스가 가장 두드러졌다. From Table 1 and FIG. 3, it can be confirmed that the callus cells of the callus cells of the genus Epidermis, as a comparative example, are differentially expressed in the transcripts (genes). In particular, biological processes were most prominent.

실시예 4: 차등 발현된 유전자(DEGs)의 동정과 특성 규명Example 4 Identification and Characterization of Differentially Expressed Gene (DEGs)

상기에서 차등 발현된 유전자(DEGs)를 다음과 같이 확인하고 농축(enrichment) 분석하였다. Differentially expressed genes (DEGs) were identified and enrichment was analyzed as follows.

유니진은 그들의 접근번호에 의해 클러스터하였고 각 유니진에 상응하는 판독의 합계 또한 정량화하였다. 라이브러리 크기와 유전자 길이의 차이에 따라 판독의 수를 정규화했다. 차등 발현된 유전자(DEGs)의 확인은: 1) NEC와 EC 라이브러리 간의 유전자 발현의 차이와 2) 그 차이의 유의 수준을 취함으로써 수행하였다. 차등 발현된 유전자가 풍부하게 농축된 GO 항목(term)의 농축 분석은 다중 검사를 위한 Benjamini-Hochberg 수정된 초고지(hypergeometric) 검정법에 의해 결정하였다. 모든 DEGs는 주석을 기반으로 GO 항목으로 맵핑되었고, NooKaew 등이 개발한 방법을 사용하여 농축된 GO 항목의 조정된 p-값으로 전환후, R 프로그램의 히트맵 기능을 사용하여 히트맵을 완성하였고, 그 결과를 표 2와 도 4에 나타냈다. Unijin was clustered by their access number and also quantified the sum of the corresponding readings for each Unijin. The number of readings was normalized according to the difference between the library size and the gene length. Identification of differentially expressed genes (DEGs) was performed by: 1) differences in gene expression between the NEC and EC libraries, and 2) a significant level of difference. Concentration analysis of the GO-term enriched in the differentially expressed genes was determined by a modified Benjamini-Hochberg hypergeometric assay for multiple tests. All DEGs were mapped to GO items based on annotations and converted to adjusted p-values of the enriched GO items using the method developed by NooKaew et al., And then completed the heat map using the R program's heat map function , And the results are shown in Table 2 and Fig.

CategoryCategory 유니진 수Unijin Can GO-IDGO-ID GO-termGO-term ECEC NECNEC Biological processBiological process GO:0008152GO: 0008152 Metabolic processMetabolic process 19,73519,735 16,51016,510 GO:0050896GO: 0050896 Response to stimulusResponse to stimulus 8,6848,684 7,4487,448 GO:0009987GO: 0009987 Cellular processCellular process 15,45615,456 12,09412,094 GO:0032502GO: 0032502 Developmental processDevelopmental process 5,6195,619 4,0924,092 GO:0065007GO: 0065007 Biological regulationBiological regulation 7,5117,511 5,8605,860 GO:0000003GO: 0000003 ReproductionReproduction 3,3963,396 2,4142,414 GO:0032501GO: 0032501 Multicellular organismal processMulticellular organismal process 5,4375,437 3,9593,959 GO:0071840GO: 0071840 Cellular component organization or biogenesisCellular component organization or biogenesis 5,0785,078 3,7123,712 GO:0051179GO: 0051179 LocalizationLocalization 4,8974,897 4,2664,266 GO:0023052GO: 0023052 SignalingSignaling 2,7342,734 2,3032,303 GO:0040007GO: 0040007 GrowthGrowth 1,2451,245 1,0281,028 GO:0008283GO: 0008283 Cell proliferationCell proliferation 353353 219219 GO:0016265GO: 0016265 DeathDeath 391391 405405 GO:0051704GO: 0051704 Multi-organism processMulti-organism process 314314 220220 GO:0016032GO: 0016032 Viral reproductionViral reproduction 6363 4646 Molecular functionMolecular function GO:0005488GO: 0005488 BindingBinding 18,27018,270 15,03515,035 GO:0003824GO: 0003824 Catalytic activityCatalytic activity 17,19517,195 14,93414,934 GO:0005215GO: 0005215 Transporter activityTransporter activity 2,0922,092 1,7821,782 GO:0005198GO: 0005198 Structural molecule activityStructural molecule activity 1,0191,019 782782 GO:0001071GO: 0001071 Nucleic acid binding transcription factor activityNucleic acid binding transcription factor activity 704704 544544 GO:0030234GO: 0030234 Enzyme regulator activityEnzyme regulator activity 384384 333333 GO:0009055GO: 0009055 Electron carrier activityElectron carrier activity 379379 445445 GO:0060089GO: 0060089 Molecular transducer activityMolecular transducer activity 424424 346346 GO:0004872GO: 0004872 Receptor activityReceptor activity 148148 146146 GO:0016209GO: 0016209 Antioxidant activityAntioxidant activity 161161 195195 GO:0045735GO: 0045735 Nutrient reservoir activityNutrient reservoir activity 2828 1212 GO:0045182GO: 0045182 Translation regulator activityTranslation regulator activity 1414 1818 GO:0031386GO: 0031386 Protein tagProtein tag 00 33 Cellular componentsCellular components GO:0005623GO: 0005623 CellCell 25,75625,756 20,92620,926 GO:0043226GO: 0043226 OrganelleOrganelle 19,33019,330 15,48315,483 GO:0016020GO: 0016020 MembraneMembrane 6,6646,664 5,7105,710 GO:0032991GO: 0032991 Macromolecular complexMacromolecular complex 6,1616,161 4,8684,868 GO:0005576GO: 0005576 Extracellular regionExtracellular region 1,3331,333 1,3111,311 GO:0031974GO: 0031974 Membrane-enclosed lumenMembrane-enclosed lumen 2,6412,641 1,8951,895 GO:0031012GO: 0031012 Extracellular matrixExtracellular matrix 66 33

상기 표 2와 도 3에 나타난 바와 같이, 디지털 발현 프로파일링 분석은 13,766 DEGs를 확인하였으며, 그 중 4,895 및 5,820개의 유전자가 각각 EC 및 NEC에서 특이적으로 발현되었다. 나머지 3,051 DEGs는 공통적으로 발현되었지만 두 개의 라이브러리 사이에는 발현 수준이 2배 이상 차이가 있었다 (p <0.001). 13,766 DEGs를 이용한 유전자 농축 분석 결과, 35개의 GO 항목이 EC와 NEC 사이에 유의한 차이를 보였다 (p <0.001) (도 4).As shown in Table 2 and FIG. 3, the digital expression profiling analysis confirmed 13,766 DEGs, of which 4,895 and 5,820 genes were specifically expressed in EC and NEC, respectively. The remaining 3,051 DEGs were expressed in common, but there was a difference of more than 2-fold between the two libraries (p <0.001). As a result of gene concentration analysis using 13,766 DEGs, 35 GO items showed a significant difference between EC and NEC (p <0.001) (Fig. 4).

특히 이차대사 과정에 관여하는 유전자(GO: 0019748)는 NEC에서 특이적이거나 과발현되었음을 확인할 수 있다 (도 4).In particular, the gene involved in the secondary metabolism (GO: 0019748) can be confirmed to be specific or overexpressed in NEC (FIG. 4).

더 구체적으로 확인하고자 EC에 비하여 NEC에서 많이 발현되는 10가지 전사체를 검정하여 표 3에 나타내었다.In order to confirm more specifically, 10 transcripts that are highly expressed in NEC compared with EC were assayed and shown in Table 3.

Contig IDContig ID Annotation IDAnnotation ID No of readsNo of reads DescriptionDescription ECEC NECNEC EPT001TT0427C001067EPT001TT0427C001067 ACN96317ACN96317 33 949949 Class 1 chitinaseClass 1 chitinase EPT001TT0427C011401EPT001TT0427C011401 AAC62510AAC62510 1One 219219 Metallothionein-1-likeMetallothionein-1-like EPT001TT0427C011059EPT001TT0427C011059 AEY75220AEY75220 1One 195195 Cytochrome P450 Cytochrome P450 EPT001TT0427C013752EPT001TT0427C013752 YP_005090323YP_005090323 22 126126 Putative p-coumarate 3-hydroxylasePutative p-coumarate 3-hydroxylase EPT001TT0427C001895EPT001TT0427C001895 ACD45060ACD45060 1One 123123 Beta-1,3-glucanaseBeta-1,3-glucanase EPT001TT0427C001116EPT001TT0427C001116 XP_002517441XP_002517441 1One 113113 ATP binding proteinATP binding protein EPT001TT0427C000406EPT001TT0427C000406 XP_002264896XP_002264896 22 109109 Root phototropism protein 2Root phototropism protein 2 EPT001TT0427C013102EPT001TT0427C013102 JN604544JN604544 1One 106106 Cytochrome P450 Cytochrome P450 EPT001TT0427C000759EPT001TT0427C000759 XM_002264642XM_002264642 1One 9999 Beta-glucosidase 46-likeBeta-glucosidase 46-like EPT001TT0427C002999EPT001TT0427C002999 ACL31667ACL31667 1One 7676 4-coumarate coenzyme A ligase4-coumarate coenzyme A ligase

표 3에 나타낸 바와 같이, NEC에서는 두 개의 시토크롬 P450, 추정 p-쿠마레이트 3- 히드록실라제 및 4-쿠마레이트 보효소 A 리가제 등의 이차대사 과정에 관여하는 여러 유전자, 산화 스트레스 관련 유전자가 EC에 비하여 현저하게 높게 발현되었음을 알 수 있다.As shown in Table 3, in NEC, various genes involved in secondary metabolism such as two cytochrome P450s, presumed p-cumarate 3-hydroxylase and 4-coumarate coenzyme A ligase, oxidative stress-related genes EC. &Lt; / RTI &gt;

실시예 4: RT-qPCR에 의한 유전자 발현 확인Example 4: Confirmation of gene expression by RT-qPCR

음나무 사포닌의 생합성 경로에 다음과 같다: The biosynthetic pathway of the chinese saponins is as follows:

Figure pat00001
Figure pat00001

음나무 사포닌의 합성에서 첫번째 단계는 스쿠알렌 에폭시다제(Squalene epoxidase)에 의해 촉매되고, 후속 단계는 시토크롬 P450 (Cytochrome P450; CYP) 효소 및 UDP-글리코실 트랜스퍼라제 (GT)에 의한 트리테르펜 골격의 후속 산화 및 글리코실화로부터 각각 합성된다. CYP는 광범위한 생합성 경로에서 유기 물질의 산화를 촉매하는 모노옥시게나제의 크고 다양한 수퍼패밀리이다. CYP는 트리테르펜 스카폴드(triterpene scaffold; 사포게닌이라고 불리는 사포닌의 아글리콘 부분)의 기능화에 핵심적인 역할을 한다. The first step in the synthesis of chinese saponins is catalyzed by squalene epoxidase and the subsequent step is the subsequent oxidation of the triterpene skeleton by cytochrome P450 (CYP) enzyme and UDP-glycosyltransferase (GT) And glycosylation, respectively. CYP is a large and diverse super family of monooxygenases that catalyze the oxidation of organic materials in a wide range of biosynthetic pathways. CYP plays a key role in the functionalization of the triterpene scaffold (the aglycone portion of saponin called sapogenin).

따라서 음나무 사포닌의 생합성 경로에 관여하는 상기 스쿠알렌 에폭시다제, 시토크롬 P450 (CYP) 효소 및 UDP-글리코실 트랜스퍼라제 (GT)에 해당하는 5가지 전사체의 발현량을 NEC와 EC에서 비교분석하였다. Therefore, the expression amounts of the five transcripts corresponding to the squalene epoxidase, cytochrome P450 (CYP) enzyme and UDP-glycosyltransferase (GT) involved in the biosynthesis pathway of the chrysanthemum saponin were compared and analyzed in NEC and EC.

<RNA 분리 및 실시간 PCR 분석><RNA isolation and real-time PCR analysis>

총 RNA는 TRI 시약 (Molecular Research Center, USA)을 사용하여 추출하였고, 실시간 정량 PCR (RT-qPCR) 프라이머는 Primer3 프로그램 (http: // fokker.wi.mit.edu)에 의해 표 4와 같이 디자인하여 사용하였다. Total RNA was extracted using TRI reagent (Molecular Research Center, USA) and real-time quantitative PCR (RT-qPCR) primer was designed by Primer3 program (http: // fokker.wi.mit.edu) Respectively.

Contig IDContig ID DescriptionDescription ForwardForward ReverseReverse EPT001TT0427C001363EPT001TT0427C001363 Squalene epoxidase2 (SE2) mRNASqualene epoxidase 2 (SE2) mRNA TTTTTTCATAATGGCCGTTTCATTTTTTTCATAATGGCCGTTTCAT TTTCCATTTTTGGCCTTGTATTGTTTCCATTTTTGGCCTTGTATTG EPT001TT0427C001289EPT001TT0427C001289 UDP-glucosyltransferase, putative, mRNAUDP-glucosyltransferase, putative, mRNA TTTTGGCTAGCCTTTGTTCACTTTTTTGGCTAGCCTTTGTTCACTT TTTGGAAGGCGGTCAATATTTCTTTTGGAAGGCGGTCAATATTTCT EPT001TT0427C000589EPT001TT0427C000589 Cytochrome P450 mRNA, complete cdsCytochrome P450 mRNA, complete CDS ATTGTTGATTGAGGTGGTGGAAGATTGTTGATTGAGGTGGTGGAAG ATACTCATCCCCGTGACATACTCATACTCATCCCCGTGACATACTC EPT001TT0427C001063EPT001TT0427C001063 Cytochrome P450 mRNACytochrome P450 mRNA AAAACTCCCCAAAGAATGTAGGGAAAACTCCCCAAAGAATGTAGGG AAAGTTCAAAAGTCTCCGCGTTAAAAGTTCAAAAGTCTCCGCGTTA EPT001TT0427C007998EPT001TT0427C007998 Cytochrome P450 mRNACytochrome P450 mRNA ATAGATAGATGCACTGCGAGGATATAGATAGATGCACTGCGAGGAT ATTAGTCTTGCTCCGATTCATTGATTAGTCTTGCTCCGATTCATTG

유전자 발현 수준은 2-△△Ct 방법으로 결정하였다. 첫번째 가닥 cDNA는 PrimeScript RT Reagent Kit(Takara, Japan)로 합성하였고 RT-qPCR은 SYBR Green PCR Master Mix (BioRad laboratories, USA)를 사용하여 제조자의 지시에 따라 수행하였다. RT-qPCR은 DNA Engine OpticonTM 연속 형광 검출 시스템 (MJ Research Inc., Walthan, MA)을 사용하여 수행하였다.Gene expression levels were determined by the 2- DELTA Ct method. The first strand cDNA was synthesized with PrimeScript RT Reagent Kit (Takara, Japan) and RT-qPCR was performed using SYBR Green PCR Master Mix (BioRad laboratories, USA) according to the manufacturer's instructions. RT-qPCR was performed using DNA Engine Opticon TM continuous fluorescence detection system (MJ Research Inc., Waltham, Mass.).

각 PCR 혼합물은 cDNA 1 ㎕, 2 x SYBR Green PCR 마스터 믹스 10 ㎕, 최종 PCR 반응 믹스 20 ㎕에서 각 PCR 프라이머 (10 μM) 1 ㎕, nuclease-free water 7 ㎕를 포함하도록 하였다. 증폭을 위한 사이클링 조건은 95℃에서 30분, 40℃에서 30초, 60℃에서 30초, 72℃에서 30초의 40 사이클로 하였고, 그 결과를 도 5a~도 5c에 나타냈다. Each PCR mixture contained 1 μl of cDNA, 2 μl SYBR Green PCR Master Mix 10 μl, 1 μl of each PCR primer (10 μM) and 7 μl of nuclease-free water in 20 μl of the final PCR reaction mix. The cycling conditions for the amplification were 30 minutes at 95 ° C, 30 seconds at 40 ° C, 30 seconds at 60 ° C, and 30 seconds at 72 ° C. The results are shown in FIGS. 5a to 5c.

도 5a~도 5c에 나타난 바와 같이, NEC에서 스쿠알렌 에폭시다제(Squalene epoxidase)는 10배 이상 발현이 증진되었고, 3종의 시토크롬 P450(CYP) 중 2종은 NEC에서만 발현이 확인되고, 나머지 1종의 경우도 발현이 현저히 증진되었으며, UDP-글리코실 트랜스퍼라제(GT)도 NEC에서 발현이 3배 이상 증진되었음이 확인된다. 결과적으로 NEC의 음나무 세포에서는 사포닌의 생산성이 현저히 증진됨을 알 수 있다. As shown in Figs. 5A to 5C, Squalene epoxidase was promoted in NEC 10 times or more, and two of cytochrome P450 (CYP) was confirmed to be expressed only in NEC, , And the expression of UDP-glycosyltransferase (GT) was also three times or more increased in NEC. As a result, the productivity of saponin was significantly increased in NEC cells.

<110> National Institute of Forest Science <120> Method for enhancing saponin of Kalopanax septemlobus cell <130> P-10183 <160> 10 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Squalene epoxidase2 (SE2) mRNA forward primer <400> 1 ttttttcata atggccgttt cat 23 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Squalene epoxidase2 (SE2) mRNA reverse primer <400> 2 tttccatttt tggccttgta ttg 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> UDP-glucosyltransferase mRNA forward primer <400> 3 ttttggctag cctttgttca ctt 23 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> UDP-glucosyltransferase mRNA reverse primer <400> 4 tttggaaggc ggtcaatatt tct 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 1 forward primer <400> 5 attgttgatt gaggtggtgg aag 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 1 reverse primer <400> 6 atactcatcc ccgtgacata ctc 23 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 2 forward primer <400> 7 aaaactcccc aaagaatgta ggg 23 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 2 reverse primer <400> 8 aaagttcaaa agtctccgcg tta 23 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 3 forward primer <400> 9 atagatagat gcactgcgag gat 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 3 reverse primer <400> 10 attagtcttg ctccgattca ttg 23 <110> National Institute of Forest Science <120> Method for enhancing saponin of Kalopanax septemlobus cell <130> P-10183 <160> 10 <170> KoPatentin 3.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Squalene epoxidase 2 (SE2) mRNA forward primer <400> 1 ttttttcata atggccgttt cat 23 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Squalene epoxidase 2 (SE2) mRNA reverse primer <400> 2 tttccatttt tggccttgta ttg 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> UDP-glucosyltransferase mRNA forward primer <400> 3 ttttggctag cctttgttca ctt 23 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> UDP-glucosyltransferase mRNA reverse primer <400> 4 tttggaaggc ggtcaatatt tct 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 1 forward primer <400> 5 attgttgatt gaggtggtgg aag 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 1 reverse primer <400> 6 atactcatcc ccgtgacata ctc 23 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 2 forward primer <400> 7 aaaactcccc aaagaatgta ggg 23 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 2 reverse primer <400> 8 aaagttcaaa agtctccgcg tta 23 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 3 forward primer <400> 9 atagatagat gcactgcgag gat 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 mRNA 3 reverse primer <400> 10 attagtcttg ctccgattca ttg 23

Claims (8)

ⅰ) 음나무의 종자를 살균하여 도정하는 단계;
ⅱ) 상기 도정된 종자로부터 비-배발생(non-embryogenic) 캘러스를 유도하는 단계; 및
ⅲ) 비-배발생 캘러스를 선별하여 배양하는 단계를 포함하고,
상기 비-배발생 캘러스 유도는 옥신류 식물성장호르몬을 4 ~ 5 μM로 포함하는 배지에서 배양함에 의한 것인 음나무 세포의 사포닌 생성 증진방법.
I) sterilizing the seeds of the barks;
Ii) inducing non-embryogenic callus from the harvested seed; And
Iii) selectively culturing non-embryogenic calli,
Wherein said non-embryogenic callus induction is by culturing in a medium containing 4 ~ 5 [mu] M auxin plant growth hormone.
제 1항에 있어서, 옥신류 식물성장호르몬은 2,4-디클로로페녹시아세트산 인 것을 특징으로 하는 음나무 세포의 사포닌 생성 증진방법.
The method according to claim 1, wherein the auxin plant growth hormone is 2,4-dichlorophenoxyacetic acid.
제 1항에 있어서, 비-배발생 캘러스 유도는 4.4 μM 2,4-디클로로페녹시아세트산(2,4-D), 3% 슈크로스, 0.3% 젤라이트를 함유하는 WPM(woody plant medium) 배지에 치상하여 이루어지는 것을 특징으로 하는 음나무 세포의 사포닌 생성 증진방법.
2. The method of claim 1, wherein the non-embryogenic callus induction is carried out in WPM (woody plant medium) medium containing 4.4 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 3% sucrose, 0.3% And a method for promoting the production of saponin of a feminine cell.
제 1항에 따른 음나무 세포의 사포닌 생성 증진방법에 의해 제조된, 사포닌 생산성이 증진된 음나무 세포 조성물.
A fern cell composition improved by saponin production by the method for promoting the production of saponin of a fern cell according to claim 1.
제 4항에 있어서, 상기 음나무 세포는 스쿠알렌 에폭시다제, 시토크롬 P450, 및 UDP-글리코실 트랜스퍼라제의 발현이 증진된 것을 특징으로 하는 사포닌 생산성이 증진된 음나무 세포 조성물.
[Claim 5] The composition according to claim 4, wherein the mN cells have enhanced expression of squalene epoxidase, cytochrome P450, and UDP-glycosyltransferase.
제 4항에 있어서, 사포닌을 활성성분으로 하는 약제, 기능성 식품 및 화장품의 원료성분으로 사용되는 것을 특징으로 사포닌 생산성이 증진된 음나무 세포 조성물.
The feminine cell composition according to claim 4, wherein saponin is used as a raw material for pharmaceuticals, functional foods and cosmetics containing saponin as an active ingredient.
제 4항에 따른 음나무 세포 조성물 또는 이의 추출물을 포함하는 피부 외용제 조성물.
A composition for external application for skin comprising the bark cell composition according to claim 4 or an extract thereof.
제 7항에 있어서, 증진된 사포닌에 의해 피부염증의 개선 및 완화 작용, 항산화 작용, 미백 및 피부톤 개선 작용을 갖는 것을 특징으로 하는 피부 외용제 조성물.8. The composition for external application for skin according to claim 7, wherein the enhanced saponin has an effect of improving and alleviating skin inflammation, antioxidative action, whitening and improving skin tone.
KR1020170135225A 2017-10-18 2017-10-18 Method for enhancing saponin of Kalopanax septemlobus cell KR102022248B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170135225A KR102022248B1 (en) 2017-10-18 2017-10-18 Method for enhancing saponin of Kalopanax septemlobus cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170135225A KR102022248B1 (en) 2017-10-18 2017-10-18 Method for enhancing saponin of Kalopanax septemlobus cell

Publications (2)

Publication Number Publication Date
KR20190043318A true KR20190043318A (en) 2019-04-26
KR102022248B1 KR102022248B1 (en) 2019-09-18

Family

ID=66281128

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170135225A KR102022248B1 (en) 2017-10-18 2017-10-18 Method for enhancing saponin of Kalopanax septemlobus cell

Country Status (1)

Country Link
KR (1) KR102022248B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116656727A (en) * 2023-06-12 2023-08-29 昆明理工大学 Preparation method of panax japonicus saponin IVa

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"특용수종 음나무 및 두릅나무 재배기술", 국립산림과학원 (2013.11.)* *
Acta Physiol. Plant, Vol. 37, pp. 1710 (1-9) (2014.11.19.)* *
Hort. Environ. Biotechnol., Vol. 52, pp. 74-82 (2011.) *
J. Plant Biotechnol., Vol. 42, pp. 388-395 (2015.) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116656727A (en) * 2023-06-12 2023-08-29 昆明理工大学 Preparation method of panax japonicus saponin IVa
CN116656727B (en) * 2023-06-12 2024-04-16 昆明理工大学 Preparation method of panax japonicus saponin IVa

Also Published As

Publication number Publication date
KR102022248B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
Mori et al. Loss of anthocyanins in red-wine grape under high temperature
Park et al. Agrobacterium rhizogenes‐mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures
Ge et al. Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray
Julião et al. Induction of synthetic polyploids and assessment of genomic stability in Lippia alba
Park et al. Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees
Pérez et al. Temporary immersion systems (RITA®) for the improvement of cork oak somatic embryogenic culture proliferation and somatic embryo production
JP2012527890A (en) Plant stem cells derived from the formation layer of Ziraceae and method for separating and culturing the same
US20200239835A1 (en) Method for isolating and/or culturing cambium stem cells of panax ginseng
Sandoval et al. Flow cytometric analysis of the cell cycle in different coconut palm (Cocos nucifera L.) tissues cultured in vitro
Grilli Caiola et al. Ultrastructure of chromoplasts and other plastids in Crocus sativus L.(Iridaceae)
CN103477985A (en) Regeneration culture medium and culture method for improving regenerated adventitious buds of echinacea explants
Wang et al. De novo assembly and annotation of the juvenile tuber transcriptome of a Gastrodia elata hybrid by RNA sequencing: detection of SSR markers
KR102022248B1 (en) Method for enhancing saponin of Kalopanax septemlobus cell
Ren et al. Clonal bulblet regeneration and endophytic communities profiling of Lycoris sprengeri, an economically valuable bulbous plant of pharmaceutical and ornamental value
Xia et al. Deciphering transcriptome profiles of tetraploid Artemisia annua plants with high artemisinin content
Jiménez-Ruiz et al. Transcriptomic time-series analysis of early development in olive from germinated embryos to juvenile tree
Liu et al. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): a comprehensive review
Chen et al. The effect of anti-browning agent activated carbon and polyvinyl pyrrolidone on the rooting of embryo seedlings of “FengDan” and its transcriptome analysis
KR101432278B1 (en) New plant variety of rape
Trémouillaux-Guiller et al. A cryptic intracellular green alga in Ginkgo biloba: ribosomal DNA markers reveal worldwide distribution
Amini et al. RNA-seq data from different developmental stages of Rafflesia cantleyi floral buds
Fujinami et al. Dimorphic chloroplasts in the epidermis of Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae
CN104774853B (en) The function of E3 ubiquitin ligase gene OsPIW adjusting and controlling rice roots and application
Shi et al. Genetic mapping and identification of the candidate gene for white seed coat in Cucurbita maxima
CN110205367B (en) Method for screening active substance for protecting skin cell telomere

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant