KR20190029912A - A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst - Google Patents

A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst Download PDF

Info

Publication number
KR20190029912A
KR20190029912A KR1020170116985A KR20170116985A KR20190029912A KR 20190029912 A KR20190029912 A KR 20190029912A KR 1020170116985 A KR1020170116985 A KR 1020170116985A KR 20170116985 A KR20170116985 A KR 20170116985A KR 20190029912 A KR20190029912 A KR 20190029912A
Authority
KR
South Korea
Prior art keywords
butene
alkene
range
catalyst
producing
Prior art date
Application number
KR1020170116985A
Other languages
Korean (ko)
Other versions
KR102155613B1 (en
Inventor
전종기
이동건
김현아
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Priority to KR1020170116985A priority Critical patent/KR102155613B1/en
Publication of KR20190029912A publication Critical patent/KR20190029912A/en
Application granted granted Critical
Publication of KR102155613B1 publication Critical patent/KR102155613B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • B01J35/1023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/24Catalytic processes with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method of producing a high quality of alkene through an oligomerization reaction of butene, and more specifically, to a method of producing a high quality of alkene of a jet fuel region by using a mesoporous aluminosilicate catalyst, on which a mesoporous aluminosilicate catalyst and nickel are supported to promote an oligomerization reaction of butene. Compared to an existing catalyst, the mesoporous aluminosilicate catalyst, on which the mesoporous aluminosilicate catalyst and nickel are supported, of the present invention is effective in improving conversion ratio of butane and yield of a high quality of alkene (an alkene in the C_8-C_16 range) of the jet fuel region. The present invention is expected to be industrially useful by exhibiting excellent performance in the production of the high quality of alkene (the alkene in the C_8-C_16 range) of the jet fuel region by oligomerizing butene.

Description

중간기공의 알루미노실리케이트 촉매를 이용한 부텐으로부터 고급 알켄 제조방법{A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing an advanced alkene from butene using a mesoporous aluminosilicate catalyst,

본 발명은 부텐의 소중합반응을 통해서 고급 알켄을 제조하는 방법에 관한 것으로, 더욱 상세하게는 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a high-quality alkene through a polymerization reaction of butene, and more particularly, to a method for producing a high-quality alkene by the polymerization reaction of butene by using an intermediate alumino silicate catalyst and nickel- To a process for producing advanced alkenes in the aerosol region.

바이오매스를 원료로 활용한 항공유 합성에 관한 연구가 주목을 받고 있다. 바이오매스를 원료로 사용하여 알코올을 제조하고, 알코올로부터 항공유를 제조하기 위한 Alcohol to Jet(ATJ) 공정이 최근 들어 관심을 끌기 시작했다. 특히 부탄올을 원료로 사용하여 항공유를 제조하는 공정이 주목을 받고 있는데, 이 공정은 부탄올의 탈수반응을 통한 부텐 제조, 생성된 부텐의 소중합 반응에 의한 항공유 범위의 고급 알켄(C8 ~ C16 범위의 올레핀) 제조, 그리고 고급 알켄의 수소화 반응 등을 거쳐야 한다. Research on the synthesis of aviation oil using biomass as a raw material is attracting attention. The Alcohol to Jet (ATJ) process for producing alcohols using biomass as a raw material and for manufacturing aviation oil from alcohol has recently begun to attract attention. Particularly, a process for producing aviation oil using butanol as a raw material is attracting attention. This process is a process in which butene is produced through dehydration reaction of butanol, and high alkenes (C 8 -C 16 Range olefins), and the hydrogenation of higher alkenes.

부텐의 소중합반응에 대해서는 균일계 촉매 또는 제올라이트 등의 불균일계 산 촉매를 사용할 수 있다. 미국특허 제8,395,007호에서는 촉매로 비스(시클로펜타디에닐)지르코늄 염화물을 사용하여, 1-부텐으로부터 디젤유분 범위의 고급알켄을 합성하였다고 보고하였으나, 균일계 촉매를 사용하였기 때문에 촉매 회수 및 재사용이 어렵다는 문제점이 있다. For the polymerization of butene, a homogeneous catalyst or a heterogeneous catalyst such as zeolite can be used. U.S. Patent No. 8,395,007 reported using bis (cyclopentadienyl) zirconium chloride as a catalyst to synthesize high alkenes ranging from 1-butene to diesel oil fractions. However, since homogeneous catalysts were used, catalyst recovery and reuse were difficult There is a problem.

미국특허 제9,732,295호에서는 촉매로 지르코늄메탈로센을 사용하여, 1-부텐으로부터 디젤유분 범위의 고급알켄을 합성하였다고 보고하였으나, 균일계 촉매를 사용하였기 때문에 촉매 회수 및 재사용이 어렵다는 문제점이 있다.U.S. Patent No. 9,732,295 reports the use of zirconium metallocenes as catalysts to synthesize higher alkenes ranging from 1-butene to diesel oil fractions. However, since homogeneous catalysts are used, there is a problem that catalyst recovery and reuse are difficult.

미국특허 제4,227,992호와 미국 특허 제4,211,640호는 올레핀 소중합 공정을 위한 촉매로서 ZSM-11을 청구하고 ZSM-12, ZSM-21 및 모데나이트와 같은 다른 미세기공 제올라이트를 사용 가능하다고 보고하였다. 영국 특허 제2,106,131호 및 영국 특허 제2,106,533호는 경질 올레핀의 소중합 반응에 미세기공 제올라이트인 ZSM-5 및 ZSM-11를 사용하는 방법을 보고하였다. WO93/082780에는 미세기공 제올라이트 ZSM-23을 촉매로 사용하여 부텐의 소중합 반응을 수행하는 방법이 제시되어 있다. 미국특허 제9,550,706호에는 미세기공 제올라이트인  ITQ-39 촉매를 사용하여 부텐으로부터 고급알켄을 제조하는 방법이 기술되어 있다. 이상에서 언급한 미세기공 제올라이트 촉매들은 기공의 크기가 작기 때문에 기공 내부에서 반응물과 생성물의 확산이 제한을 받을 가능성이 높고 코크의 생성 가능성이 높다는 문제점이 있다.U.S. Pat. No. 4,227,992 and U.S. Pat. No. 4,211,640 claim ZSM-11 as a catalyst for olefin polymerization and report the use of other microporous zeolites such as ZSM-12, ZSM-21 and mordenite. British Patent No. 2,106,131 and British Patent No. 2,106,533 reported the use of microporous zeolites, ZSM-5 and ZSM-11, in the oligomerization of light olefins. WO93 / 082780 discloses a method of carrying out the oligomerization reaction of butene using microporous zeolite ZSM-23 as a catalyst. U.S. Patent No. 9,550,706 describes a method for producing high-grade alkenes from butene using ITQ-39 catalyst, a microporous zeolite. The above-mentioned microporous zeolite catalysts have a problem that the diffusion of reactants and products in the pores is likely to be limited because of the small pore size, and the possibility of formation of coke is high.

이에, 본 발명자들은 상술한 문제를 해결하기 위하여 연구 노력한 결과, 불균일계 촉매인 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합 반응을 촉진시켜서 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 고수율로 제조 할 수 있음을 확인함으로써 본 발명을 완성하게 되었다. The present inventors have made efforts to solve the above-mentioned problems, and as a result, they have found that by using an aluminosilicate catalyst having a mesopore catalyst as a heterogeneous catalyst and a mesoporous aluminosilicate bearing nickel, (Alkene in the range of C 8 to C 16 ) can be produced in a high yield.

따라서, 본 발명의 목적은 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a method for producing a high-grade alkene in an aerosol region by promoting a polymerization reaction of butene using a mesoporous aluminosilicate catalyst and a nickel-supported mesopore aluminosilicate .

다만, 본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한과제들로 제한되지 않으며, 또 다른 기술적 과제들은 아래의 기재로부터 평균적 기술자에게 명확하게 이해될 수 있을 것이다.It is to be understood, however, that the technical scope of the present invention is not limited to the above-mentioned problems, and other technical problems can be clearly understood by those skilled in the art from the following description.

상기 목적을 달성하기 위하여 본 발명의 일 구현예는 중간기공의 알루미노 실리케이트가 고정 촉매상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합반응을 실시하여 부텐으로부터 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는 방법을 제공하는 것이다. Implementing one of the present invention in order to attain the object example was to which the aluminosilicate is a medium pore filled with a fixed catalyst bed reactor through the butene as the reactant advanced alkene of jet fuel region from butene by carrying out predetermined polymerization (C 8 To C < 16 >).

본 발명의 다른 일 구현예는 니켈이 담지된 중간기공의 알루미노 실리케이트가 고정 촉매상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합반응을 실시하여 부텐으로부터 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는 방법을 제공하는 것이다. Another embodiment of the present invention is advanced alkene of jet fuel region from butene by carrying out predetermined polymerization reaction to nickel is passed through the butene as the reactant in which the aluminosilicate in the supported medium pore filled with a fixed catalyst reactor (C 8 ~ C 16 range of alkenes).

기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other details of the embodiments of the present invention are included in the following detailed description.

본 발명에 따르면, 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트 촉매의 기공의 크기가 2 ~ 10㎚이어서 부텐 분자 또는 부텐 소중합체 분자의 촉매 기공 내의 확산이 빨라서 촉매 기공 내의 표면 활성점에 도달하기 용이하고 코크의 생성에 의한 기공 막힘현상을 지연시킬 수 있는 촉매를 제조할 수 있었으며, 기존에 사용된 촉매에 비하여 부텐의 전환율과 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄) 수율의 향상에 효과적이었다. 따라서 본 발명에 따른 방법은 부텐을 소중합하여 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는데 우수한 성능을 보이므로 산업적으로 유용할 것으로 기대된다.According to the present invention, since the size of the pores of the mesoporous aluminosilicate catalyst supported on nickel and the pore size of mesoporous aluminosilicate catalyst is 2 to 10 nm, the diffusion of butene oligomer molecules into the catalyst pores is fast, The catalysts were found to be able to reach the surface active sites in the catalysts and to retard the pore clogging due to the formation of coke. In comparison with the conventional catalysts, the conversion of butene and the higher alkenes (C 8 -C 16 range of alkene) yield. Therefore, the method according to the present invention is expected to be industrially useful because it exhibits excellent performance in producing advanced alkenes (alkenes in the range of C 8 to C 16 ) in the aerospace region by slightly polymerizing butene.

이하, 본 발명을 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail.

전술한 바와 같이, 본 발명은 중간기공의 알루미노실리케이트가 고정 촉매상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합반응을 실시하여 부텐으로부터 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는 방법에 관한 것이다. As it described above, the present invention was to which the aluminosilicate is a medium pore filled with a fixed catalyst bed reactor through the butene as the reactant in the high alkene (C 8 ~ C 16 range of jet fuel region from butene by carrying out predetermined polymerization Alkene ").≪ / RTI >

본 발명에서 촉매는 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트 촉매이다. 본 발명에 따른 중간기공 알루미노 실리케이트 촉매는 표면적이 600m2/g ~ 1000m2/g이고, ZSM-5 단위구조로 구성되어 있어서 산점을 보유하기 때문에 소중합 반응을 촉진시킬 수 있고, 기공의 크기가 2 ~ 10㎚이어서 부텐 분자 또는 부텐 소중합체 분자의 촉매 기공 내의 확산이 빨라서 촉매 기공 내의 표면 활성점에 도달하기 용이하다는 장점이 있다. 또한, 니켈이 담지된 중간기공의 알루미노실리케이트 촉매는 상기 메조기공 알루미노 실리케이트 촉매의 장점과 더불어서 강한 세기의 산점을 보유하고 있어서 소중합 반응을 효과적으로 촉진시킬 수 있다는 장점이 있다. In the present invention, the catalyst is a mesoporous aluminosilicate catalyst and nickel supported mesoporous aluminosilicate catalyst. The mesoporous aluminosilicate catalyst according to the present invention has a surface area of 600 m 2 / g to 1000 m 2 / g and has a ZSM-5 unit structure, which can promote the oligomerization reaction due to the acid sites, Is 2 to 10 nm, so that the diffusion of the butene molecule or the butene oligomer molecule in the catalyst pores is fast, and it is easy to reach the surface active sites in the catalyst pores. In addition, the mesoporous aluminosilicate catalyst supported with nickel has advantages of mesoporesic aluminosilicate catalyst as well as strong acidity of acid, which can effectively promote the polymerization reaction.

본 발명에서 니켈이 담지된 중간기공의 알루미노실리케이트 촉매는 니켈의 담지량이 10 wt% 미만인 촉매가 바람직하게 사용될 수 있으며, 더욱 바람직하게는, 5 wt% 미만인 촉매가 사용된다. 여기서 니켈의 담지량을 10 wt% 이상인 촉매를 사용하면 니켈에 의해 중간기공의 알루미노실리케이트 촉매의 기공이 막혀서 촉매의 표면적과 기공크기가 큰 폭으로 감소하는 문제점으로 인하여 바람직하지 않게 된다.In the present invention, the intermediate-pore aluminosilicate catalyst supported with nickel in the present invention is preferably a catalyst in which the loading amount of nickel is less than 10 wt%, more preferably, less than 5 wt% is used. If a catalyst having a nickel loading of 10 wt% or more is used, the pores of the mesoporous aluminosilicate catalyst are clogged by nickel, and thus the surface area and the pore size of the catalyst are greatly reduced.

상기 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트 촉매는, 1-부텐, 2-부텐, 또는 1-부텐과 2-부텐의 혼합물을 반응물로 이용한 소중합반응에 다음과 같은 반응조건에서 적용될 수 있다. The intermediate pore aluminosilicate catalyst and nickel-supported mesoporous aluminosilicate catalyst were prepared by the following polymerization process using 1-butene, 2-butene, or a mixture of 1-butene and 2-butene as reactants Can be applied under the same reaction conditions.

본 발명에서 중간기공의 알루미노실리케이트와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합 반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 반응은 고정 촉매상으로 충진된 반응기에서 부텐을 반응물로 통과시켜 200℃ ~ 550℃, 바람직하게는 250℃ ~ 450℃의 반응온도에서 수행되는 데, 상기 반응온도가 200℃ 미만이면 반응활성이 낮아지고,  550℃를 초과하면 중간기공 촉매 구조에 변화가 와서 반응 활성이 낮아질 수 있다. 또한, 부텐의 유량과 촉매의 비는 WHSV(weigh hour space velocity)로 1 hr-1 ~ 50 hr-1, 더욱 바람직하게는 WHSV 5 hr-1 ~ 30 hr-1이며, 1 hr-1 미만에서는 부반응으로 인하여 선택도가 감소할 수 있고, 30 hr-1 를 초과하면 접촉시간이 너무 짧아서 활성이 낮아질 수 있다. In the present invention, the reaction for producing the advanced alkene in the aerosol region by promoting the polymerization of butene by using the intermediate pore aluminosilicate and nickel-supported aluminosilicate in the present invention is carried out in a reactor packed with a fixed catalyst bed, Is conducted at a reaction temperature of 200 ° C to 550 ° C, preferably 250 ° C to 450 ° C. When the reaction temperature is lower than 200 ° C, the reaction activity is lowered. When the reaction temperature is higher than 550 ° C, And the reaction activity may be lowered. In addition, the flow rate of n-butene and the catalyst ratio is 1 hr -1 ~ 50 hr -1, and more preferably from WHSV 5 hr -1 ~ 30 hr -1 to (weigh hour space velocity) WHSV, hr -1 is less than 1 The selectivity may be reduced due to the side reaction, and if it exceeds 30 hr <" 1 >, the contact time may be too short and the activity may be lowered.

본 발명에서 중간기공의 알루미노실리케이트와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합 반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 반응에 사용하는 반응기는 내경 1/4인치(inch), 길이 10㎝의 스테인레스 스틸 튜브로 제작하여 사용하였다. 부텐 저장탱크와 반응기 사이에 질량 유량 조절기를 설치하여 유량을 조절하였다. 반응기의 온도는 주문 제작한 관상로를 사용하여 조절하였으며, 액상 생성물을 받아 낸 후에 기상 생성물은 가스 크로마토그래피에 직접 연결하여 분석하였다. 하기의 수학식 1 내지 3에 의해 전환율, 선택도 및 수율을 계산하였다.In the present invention, the reactor used for the reaction for producing the advanced alkene in the aerosol region by promoting the polymerization of butene by using the intermediate pore aluminosilicate and the nickel-supported mesoporous aluminosilicate has the inner diameter of 1/4 inch (inch) and 10 cm long stainless steel tube. A mass flow regulator was installed between the butene storage tank and the reactor to regulate the flow rate. The temperature of the reactor was adjusted using a customized tubular furnace, and the gaseous products were analyzed by direct connection to gas chromatography after receiving the liquid product. The conversion, selectivity and yield were calculated by the following formulas (1) to (3).

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

이하, 실시예를 통해 본 발명을 좀 더 구체적으로 설명하나, 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited thereto.

[비교예 1][Comparative Example 1]

고정층 연속식반응기에 미세기공 제올라이트인 HZSM-5 촉매를 1g 충진하고 1-부텐과 2-부텐이 1:1.3의 중량비로 혼합된 부텐 혼합물을 10.0g/h의 유량으로 투입하고, 350℃, 10기압에서 소중합반응 실험을 실시하였다. 반응 시작 5시간 후에 가스 크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 76.9%, C8 ~ C16 범위의 알켄 선택도는 64.9%, C8 ~ C16 범위의 알켄의 수율은 49.9%이었다. 1 g of a microporous zeolite HZSM-5 catalyst was charged and a butene mixture of 1-butene and 2-butene in a weight ratio of 1: 1.3 was charged at a flow rate of 10.0 g / h, The polymerization was carried out at atmospheric pressure. Analysis of the product by gas chromatography 5 hours after the start of the reaction showed that the butene conversion was 76.9%, the alkene selectivity in the range of C 8 to C 16 was 64.9%, and the yield of the alkene in the C 8 to C 16 range was 49.9% .

[실시예 1][Example 1]

중간기공의 알루미노실리케이트를 사용하여 부텐혼합물의 소중합반응을 수행하는 것이다. 상기 중간기공의 알루미노실리케이트는 제조한 것을 사용하였으며, 이러한 상기 중간기공의 알루미노실리케이트의 제조 방법은 제올라이트와 염기성 수용액을 이용하여 제올라이트 골격의 중간기공의 물질을 제조하는 방법을 이용한다. To perform the oligomerization reaction of the butene mixture using mesoporous aluminosilicate. The mesoporous aluminosilicate is prepared by using the method of preparing mesoporous material of zeolite skeleton by using zeolite and basic aqueous solution.

먼저, 76.5g의 증류수에 15g의 수산화나트륨을 용해하여 수산화나트륨 수용액을 제조하고, 33.8g의 HZSM-5 제올라이트(실리콘과 알루미늄의 비가 50)를 수산화나트륨 수용액에 섞어 1시간 동안 교반하여 중간기공 물질을 합성하기 위한 전구체 용액으로 사용한다. 헥사데실트리메틸암모늄브로마이드 69g을 1050g의 증류수에 용해하여 계면활성제 용액을 준비하고, 상기 계면활성제 용액을 HZSM-5 제올라이트가 포함된 용액에 한 방울씩 떨어뜨려 첨가하면서 24시간 동안 교반한다. 100℃ 오븐에서 교반 없이 12시간 동안 수열합성 반응한 후, 실온에서 50% 초산으로 pH 10을 맞추고 100 오븐에서 12시간 건조하였다. 전술한 pH 조절과 건조 과정을 2회 더 반복하였다. 이렇게 얻어진 침전물을 진공여과법으로 얻어내고 증류수로 세척하고, 100℃ 오븐에서 24시간 건조하였다. 전술한 세척과 건조 과정을 2회 더 반복한다. 에탄올로 세척하여 잔존한 계면활성제를 제거하고, 100℃ 오븐에서 24시간 건조한 후, 550℃에서 3시간 동안 소성한다. 1M의 염화암모늄 수용액을 이용해 이온교환을 실시하여 암모늄 치환 물질로 전환 시키고, 500℃에서 3시간 동안 소성과정을 거쳐 수소 치환 물질로 전환된 중간기공을 가지는 알루미노실리케이트(MMZZSM-5)를 얻을 수 있게 된다. First, an aqueous sodium hydroxide solution was prepared by dissolving 15 g of sodium hydroxide in 76.5 g of distilled water, and 33.8 g of HZSM-5 zeolite (ratio of silicon to aluminum = 50) was mixed with an aqueous solution of sodium hydroxide and stirred for 1 hour, Is used as a precursor solution for synthesis. 69 g of hexadecyltrimethylammonium bromide is dissolved in 1050 g of distilled water to prepare a surfactant solution. The surfactant solution is added dropwise to the solution containing HZSM-5 zeolite while stirring for 24 hours. After hydrothermal synthesis in an oven at 100 ° C for 12 hours without stirring, the solution was adjusted to pH 10 with 50% acetic acid at room temperature and dried in a 100 oven for 12 hours. The pH control and drying process described above was repeated two more times. The precipitate thus obtained was collected by vacuum filtration, washed with distilled water, and dried in an oven at 100 ° C for 24 hours. The above-described washing and drying process is repeated two more times. The remaining surfactant is removed by washing with ethanol, dried in an oven at 100 ° C for 24 hours, and then calcined at 550 ° C for 3 hours. (MMZ ZSM-5 ) having mesopores converted to a hydrogen substitute material by calcination at 500 ° C. for 3 hours is obtained by performing ion exchange using a 1 M ammonium chloride aqueous solution .

고정층 연속식반응기에 상기 중간기공의 알루미노실리케이트(MMZZSM -5) 촉매를 1g 충진하고 1-부텐과 2-부텐이 1:1.3의 중량비로 혼합된 부텐 혼합물을 10.0g/h의 유량으로 투입하고, 350℃, 10기압에서 소중합반응 실험을 실시하였다. 반응 시작 5시간 후에 가스 크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 85.0%, C8 ~ C16 범위의 알켄의 선택도는 68.0%, C8 ~ C16 범위의 알켄의 수율은 57.8%이었다. A fixed-bed continuous reactor was charged with 1 g of the mesoporous aluminosilicate (MMZ ZSM -5 ) catalyst, and a butene mixture of 1-butene and 2-butene in a weight ratio of 1: 1.3 was charged at a flow rate of 10.0 g / h And the polymerization reaction was carried out at 350 ° C and 10 atm. The reaction started is 85.0% 5 hours after the result butene conversion rate by using the gas chromatography analysis of the product, C 8 ~ C the selectivity to 16 range alkene is the yield of alkene, of 68.0%, C 8 ~ C 16 range is 57.8% .

[실시예 2][Example 2]

니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐혼합물의 소중합반응을 수행하는 것이다. 상기 니켈이 담지된 중간기공의 알루미노실리케이트는 제조한 것을 사용하였으며, 이러한 상기 중간기공의 알루미노실리케이트의 제조 방법은 제올라이트와 염기성 수용액을 이용하여 제올라이트 골격의 중간기공의 물질을 지지체로 사용하고 이 지지체에 니켈금속을 담지하여 제조하는 방법을 이용한다.And then carrying out the oligomerization reaction of the butene mixture using the nickel-supported mesoporous aluminosilicate. The mesoporous aluminosilicate prepared above was prepared by using zeolite and a basic aqueous solution as a support in a mesopore of zeolite skeleton, A method in which nickel metal is supported on a support is used.

먼저, 실시예 1에서 전술한 바와 동일한 방법으로 중간기공의 알루미노실리케이트(MMZZSM-5)를 제조한다. 질산니켈수화물(Nickel nitrate hexahydrate) 0,47g을 증류수 5g에 니켈 수용액을 제조한 후, 중간기공의 알루미노실리케이트(MMZZSM-5) 3g에 젖음법을 사용하여 상기 니켈 수용액을 담지하였다. 이렇게 제조한 촉매의 니켈 금속 담지량은 3wt%이다. 100℃ 오븐에서 24시간 건조한 후, 550℃에서 4시간 동안 소성과정을 거쳐 니켈이 담지된 중간기공의 알루미노실리케이트 (NiO/MMZZSM-5)촉매를 완성하였다. First, a mesoporous aluminosilicate (MMZ ZSM-5 ) is prepared in the same manner as in Example 1. A nickel aqueous solution was prepared by adding 0.47 g of nickel nitrate hexahydrate to 5 g of distilled water and then 3 g of alumino silicate (MMZ ZSM-5 ) having intermediate pores was immersed in the nickel aqueous solution by using a wetting method. The amount of nickel metal supported on the thus prepared catalyst is 3 wt%. After drying in an oven at 100 ° C. for 24 hours, the catalyst was calcined at 550 ° C. for 4 hours to complete a mesoporous aluminosilicate (NiO / MMZ ZSM-5 ) catalyst carrying nickel.

고정층 연속식반응기에 상기 니켈이 담지된 중간기공의 알루미노실리케이트 (Ni/MMZZSM-5)촉매를 1g 충진하고 1-부텐과 2-부텐이 1:1.3의 중량비로 혼합된 부텐 혼합물을 10.0g/h의 유량으로 투입하고, 350℃, 10기압에서 소중합반응 실험을 실시하였다. 반응 시작 5시간 후에 가스 크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 89.4%, C8 ~ C16 범위의 알켄의 선택도는 69.1%, C8 ~ C16 범위의 알켄의 수율은 61.0 %이었다. A fixed-bed continuous reactor was charged with 1 g of the mesoporous aluminosilicate (Ni / MMZ ZSM-5 ) catalyst on which nickel was supported, and 10.0 g of a butene mixture mixed at a weight ratio of 1-butene and 2-butene of 1: / h, and the polymerization reaction was carried out at 350 ° C and 10 atm. The reaction started is 89.4% 5 hours after the result butene conversion rate by using the gas chromatography analysis of the product, C 8 ~ C the selectivity to 16 range alkene is the yield of alkene, of 69.1%, C 8 ~ C 16 range is 61.0% .

  촉매 catalyst 반응온도
(℃)
Reaction temperature
(° C)
반응압력 (bar)Reaction pressure (bar) WHSV
(hr-1)
WHSV
(hr -1 )
부텐
전환율(%)
Butene
Conversion Rate (%)
C8 ~ C16 범위의
알켄 선택도(%)
C 8 ~ C 16 in the range
Alken selectivity (%)
C8 ~ C16 범위의 알켄 수율(%)Alken yield (%) in the range of C 8 to C 16
비교예 1Comparative Example 1 HZSM-5HZSM-5 350350 1010 1010 76.976.9 64.964.9 49.949.9 실시예 1Example 1 MMZZSM -5 MMZ ZSM -5 350350 1010 1010 85.085.0 68.068.0 57.857.8 실시예 2Example 2 Ni/MMZZSM -5 Ni / MMZ ZSM -5 350350 1010 1010 89.489.4 69.169.1 61.061.0

상기 실시예 및 비교예에 나타낸 바와 같이, 종래 부텐의 소중합반응에 사용되었던 촉매에 비하여 본 발명에 따른 촉매를 사용할 경우, 부텐의 전환율과 C8 ~ C16 범위의 알켄의 수율이 향상됨을 확인할 수 있었다.  As shown in the above Examples and Comparative Examples, when the catalyst according to the present invention was used in comparison with the catalyst used in the conventional polymerization of butene, it was found that the conversion of butene and the yield of alkene in the range of C 8 to C 16 were improved I could.

Claims (8)

중간기공의 알루미노실리케이트가 고정 촉매 상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합 반응을 실시하여 C8 ~ C16 범위의 알켄을 수득하는 것을 특징으로 하는 부텐으로부터 C8 ~ C16 범위의 알켄의 제조방법. C 8 ~ C 16 range from butene, characterized in that the aluminosilicate of the mesopores by passing the butene in a reactor filled with a fixed catalyst bed to the reactants subjected to predetermined polymerization to give the alkene 16 range C 8 ~ C ≪ / RTI > 제1항에 있어서, 상기 부텐은 1-부텐, 2-부텐, 또는 1-부텐과 2-부텐의 혼합물인 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법.  The method of claim 1, wherein the butene is 1-butene, 2-butene, or a method for producing 1-butene and 2 of C 8 ~ C 16 range, characterized in that a mixture of butene-alkene. 제1항에 있어서, 상기 소중합 반응은 200 ℃ 내지 550 ℃의 반응온도에서 수행되는 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법. The method of claim 1, wherein the predetermined polymerization method for producing a C 8 ~ C 16 range, characterized in that is carried out at a reaction temperature of 200 ℃ to 550 ℃ alkene. 제1항에 있어서, 상기 소중합 반응의 WHSV(weight hour space velocity)는 1 hr-1 내지  50 hr-1인 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법. The method of claim 1, wherein the address of the polymerization WHSV (weight hour space velocity) is 1 hr -1 to 50 hr -1 in the method of producing a alkene of C 8 ~ C 16 range, characterized. 제 1항에 있어서, 상기 중간기공의 알루미노실리케이트는 ZSM-5 단위구조로 구성되는 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법. The method of claim 1, wherein the alumino-silicate of the mesopores is method of producing a alkene of C 8 ~ C 16 range, characterized in that consisting of a ZSM-5 structure unit. 제5항에 있어서, 상기 중간기공의 알루미노실리케이트는 표면적이 600 내지 1000 m2/g 인 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법. 6. The method of claim 5, wherein the production of the intermediate pore aluminosilicate is a C 8 ~ C 16 range, characterized in that a surface area of 600 to 1000 m 2 / g alkenes. 제1항에 있어서, 상기 중간기공의 알루미노실리케이트는 니켈이 담지된 중간기공의 알루미노실리케이트인 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법. The method of claim 1, wherein the alumino-silicate of the mesopores is C 8 ~ process for producing a C 16 range alkenes, characterized in that aluminosilicates of the mesopores of the nickel is supported. 제7항에 있어서, 상기 니켈이 담지된 중간기공의 알루미노실리케이트는 니켈의 담지량이 10 wt% 미만인 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법.The method of claim 7, wherein the aluminosilicate in the mesopores of the nickel is carried manufacturing method of the 8 C ~ C 16 range, characterized in that the amount of nickel is less than 10 wt% alkenes.
KR1020170116985A 2017-09-13 2017-09-13 A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst KR102155613B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170116985A KR102155613B1 (en) 2017-09-13 2017-09-13 A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170116985A KR102155613B1 (en) 2017-09-13 2017-09-13 A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst

Publications (2)

Publication Number Publication Date
KR20190029912A true KR20190029912A (en) 2019-03-21
KR102155613B1 KR102155613B1 (en) 2020-09-14

Family

ID=66036800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170116985A KR102155613B1 (en) 2017-09-13 2017-09-13 A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst

Country Status (1)

Country Link
KR (1) KR102155613B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023535A (en) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 Polymerization method of low-carbon olefin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100095004A (en) * 2007-12-03 2010-08-27 게보 인코포레이티드 Renewble compositions
JP2013540861A (en) * 2010-09-21 2013-11-07 シンフュエルズ インターナショナル,インコーポレーテッド System and method for production of liquid fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100095004A (en) * 2007-12-03 2010-08-27 게보 인코포레이티드 Renewble compositions
JP2013540861A (en) * 2010-09-21 2013-11-07 シンフュエルズ インターナショナル,インコーポレーテッド System and method for production of liquid fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023535A (en) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 Polymerization method of low-carbon olefin

Also Published As

Publication number Publication date
KR102155613B1 (en) 2020-09-14

Similar Documents

Publication Publication Date Title
JP6084963B2 (en) Method for producing 1,3-butadiene
JP5497667B2 (en) Dehydration of alcohol on crystalline silicate
KR101227221B1 (en) Process to make olefins from ethanol
EP1249486B1 (en) Process for obtaining a "diesel cut" fuel by the oligomerization of olefins or their mixtures
US4766265A (en) Catalysts for the conversion of ethane to liquid aromatic hydrocarbons
EP2196444A1 (en) Process to make alpha olefins from ethanol
JP7033127B2 (en) Diene manufacturing method
US11136276B2 (en) Single-stage method of butadiene production
JP5116043B2 (en) Propylene production method
JP2772046B2 (en) Chemical processes and catalysts
EP2913328A1 (en) Catalyst and catalytic process for the etherification/reduction of furfuryl derivatives to tetrahydrofurfuryl ethers
KR101731165B1 (en) Catalysts for ethanol dehydration and production method of ethylene using same
JP2017510556A (en) Dehydration-hydrolysis method and catalyst therefor
CN100368355C (en) Method for raising yield of ethene, propylene
KR20190029912A (en) A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst
JP2014024006A (en) Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin
JP6976679B2 (en) Methods for Producing Aromatic Hydrocarbons, P-Xylene and Terephthalic Acid
KR102090402B1 (en) A method for producing the higher alkene from butene by using desilicated pentasil structure zeolite catalyst
JPS60222428A (en) Catalytic conversion of hydrocarbon
KR101553899B1 (en) Preparation method for oligomer of dicyclopentadiene and cyclopentadiene using aluminium silicate catalyst, aluminium silicate catalyst, and preparing method for the same
US11230511B2 (en) Method for the isomerizing dehydration of a non-linear primary alcohol feedstock in the presence of water injection and a catalyst comprising a FER or MFS zeolite
DE112006002167T5 (en) Process for the preparation of lower olefins under reduced pressure
KR20240000547A (en) Systems and methods for catalytic conversion of C1-C5 alcohols to C2-C5 olefin mixtures
CN111344272B (en) Method for dehydrating methanol
US8168842B2 (en) Process for the alkylation of a cycloalkene

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant