KR102090402B1 - A method for producing the higher alkene from butene by using desilicated pentasil structure zeolite catalyst - Google Patents
A method for producing the higher alkene from butene by using desilicated pentasil structure zeolite catalyst Download PDFInfo
- Publication number
- KR102090402B1 KR102090402B1 KR1020180131970A KR20180131970A KR102090402B1 KR 102090402 B1 KR102090402 B1 KR 102090402B1 KR 1020180131970 A KR1020180131970 A KR 1020180131970A KR 20180131970 A KR20180131970 A KR 20180131970A KR 102090402 B1 KR102090402 B1 KR 102090402B1
- Authority
- KR
- South Korea
- Prior art keywords
- butene
- pentasil
- alkene
- catalyst
- producing
- Prior art date
Links
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 239000003054 catalyst Substances 0.000 title claims abstract description 59
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 48
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000010457 zeolite Substances 0.000 title claims abstract description 45
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000011049 filling Methods 0.000 claims abstract description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 22
- 239000011148 porous material Substances 0.000 claims description 20
- 239000007864 aqueous solution Substances 0.000 claims description 6
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 abstract description 4
- 239000001273 butane Substances 0.000 abstract 4
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 abstract 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 abstract 4
- 238000006384 oligomerization reaction Methods 0.000 abstract 4
- 239000000446 fuel Substances 0.000 abstract 3
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 230000003606 oligomerizing effect Effects 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000012691 depolymerization reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002815 homogeneous catalyst Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- QRUYYSPCOGSZGQ-UHFFFAOYSA-L cyclopentane;dichlorozirconium Chemical compound Cl[Zr]Cl.[CH]1[CH][CH][CH][CH]1.[CH]1[CH][CH][CH][CH]1 QRUYYSPCOGSZGQ-UHFFFAOYSA-L 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/02—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
- C07C2/04—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
- C07C2/06—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
- C07C2/08—Catalytic processes
- C07C2/12—Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B01J35/1019—
-
- B01J35/1061—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 부텐의 소중합반응을 통해서 고급 알켄을 제조하는 방법에 관한 것으로, 더욱 상세하게는 탈실리카된 펜타실구조형 제올라이트 촉매를 사용하여 부텐의 소중합반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a high-grade alkene through a small polymerization reaction of butene, and more specifically, by using a desilica pentasil-structured zeolite catalyst to promote the small polymerization reaction of butene to prepare a high-grade alkene in the aviation oil region. How to do.
바이오매스를 원료로 활용한 항공유 합성에 관한 연구가 주목을 받고 있다. 바이오매스를 원료로 사용하여 알코올을 제조하고, 알코올로부터 항공유를 제조하기 위한 Alcohol to Jet(ATJ) 공정이 최근 들어 관심을 끌기 시작했다. 특히 부탄올을 원료로 사용하여 항공유를 제조하는 공정이 주목을 받고 있는데, 이 공정은 부탄올의 탈수반응을 통한 부텐 제조, 생성된 부텐의 소중합 반응에 의한 항공유 범위의 고급 알켄(C8 ~ C16 범위의 올레핀) 제조, 그리고 고급 알켄의 수소화 반응 등을 거쳐야 한다.Studies on the synthesis of aviation oil using biomass as a raw material are attracting attention. The Alcohol to Jet (ATJ) process for producing alcohol using biomass as a raw material and manufacturing aviation oil from alcohol has recently begun to draw attention. In particular, the process of manufacturing aviation oil using butanol as a raw material has attracted attention, and this process produces butene through dehydration reaction of butanol, and high-grade alkene in the range of aviation oil by small polymerization reaction of produced butene (C 8 ~ C 16 Range of olefins) and hydrogenation of higher alkenes.
부텐의 소중합반응에 대해서는 균일계 촉매 또는 제올라이트 등의 불균일계 산 촉매를 사용할 수 있다. 미국특허 제8,395,007호에서는 촉매로 비스(시클로펜타디에닐)지르코늄 염화물을 사용하여, 1-부텐으로부터 디젤유분 범위의 고급 알켄을 합성하였다고 보고하였으며, 미국특허 미국특허 제9,732,295호에서는 촉매로 지르코늄메탈로센을 사용하여, 1-부텐으로부터 디젤유분 범위의 고급 알켄을 합성하였다고 보고하였으나, 균일계 촉매를 사용하였기 때문에 촉매 회수 및 재사용이 어렵다는 문제점이 있다.For the small polymerization reaction of butene, a homogeneous catalyst or a heterogeneous acid catalyst such as zeolite can be used. U.S. Patent No. 8,395,007 reported that bis (cyclopentadienyl) zirconium chloride was used as a catalyst to synthesize high-grade alkenes ranging from 1-butene to diesel oil, and U.S. Patent No. 9,732,295 reported that zirconium metal was used as a catalyst. Using Sen, it has been reported that high-grade alkenes in the range of diesel oil from 1-butene were synthesized, but there is a problem in that it is difficult to recover and reuse the catalyst because a homogeneous catalyst is used.
미국특허 제4,227,992호와 미국특허 제4,211,640호는 올레핀 소중합 공정을 위한 촉매로써 ZSM-11, ZSM-12, ZSM-21 및 모데나이트와 같은 다른 미세기공 제올라이트를 사용할 수 있다고 보고하였다. 영국특허 제2,106,131호 및 영국특허 제2,106,533호는 경질 올레핀의 소중합 반응에 미세기공 제올라이트인 ZSM-5 및 ZSM-11을 사용하는 방법을 보고하였다. WO93/082780에는 미세기공 제올라이트 ZSM-23을 촉매로 사용하여 부텐의 소중합 반응을 수행하는 방법이 제시되어 있다. 미국특허 제9,550,706에는 미세기공 제올라이트인 ITQ-39 촉매를 사용하여 부텐으로부터 고급 알켄을 제조하는 방법이 기술되어 있다.U.S. Patent Nos. 4,227,992 and 4,211,640 reported that other microporous zeolites such as ZSM-11, ZSM-12, ZSM-21 and mordenite can be used as catalysts for the olefin subpolymerization process. British Patents 2,106,131 and British Patent 2,106,533 have reported methods of using microporous zeolites ZSM-5 and ZSM-11 for the small polymerization reaction of light olefins. In WO93 / 082780, a method for performing a small polymerization reaction of butene using microporous zeolite ZSM-23 as a catalyst is proposed. U.S. Patent No. 9,550,706 describes a method for producing higher grade alkenes from butenes using the ITQ-39 catalyst, a microporous zeolite.
그러나, 이상에서 언급한 미세기공 제올라이트 촉매들은 기공의 크기가 작기 때문에 기공 내부에서 반응물과 생성물의 확산이 제한을 받을 가능성이 크고 코크의 생성 가능성이 크다는 문제점이 있다.However, the above-mentioned microporous zeolite catalysts have a problem in that since the pore size is small, diffusion of reactants and products within the pores is likely to be limited and the possibility of coke formation is large.
이에, 본 발명은 상술한 문제를 해결하기 위하여, 불균일계 촉매인 탈실리카된 펜타실구조형 제올라이트 촉매를 제공하고, 탈실리카된 제올라이트 촉매를 사용하여 부텐의 소중합 반응을 촉진시켜 고급 알켄(C8 ~ C16 범위의 알켄)을 고수율로 제조하고자 한다.Accordingly, in order to solve the above-mentioned problems, the present invention provides a desilica-type pentasil structure-type zeolite catalyst that is a heterogeneous catalyst, and promotes the small polymerization reaction of butene by using a desilica-type zeolite catalyst to promote high-grade alkene (C 8 ~ C 16 range of alkene) is intended to be produced in high yield.
또한, 본 발명의 다른 목적은 탈실리카된 펜타실구조형 제올라이트 촉매를 사용하여 부텐의 소중합반응을 촉진시켜 항공유 영역의 고급 알켄을 제조하는 방법을 제공하는 데 있다.In addition, another object of the present invention is to provide a method for producing high-grade alkenes in the aviation oil region by promoting depolymerization reaction of butene by using a desilica pentasil-structured zeolite catalyst.
상기 목적을 달성하기 위하여 본 발명은 탈실리카된 펜타실구조형 제올라이트 촉매를 준비하는 단계, 상기 탈실리카된 펜타실구조형 제올라이트를 고정 촉매 상으로 반응기에 충진하는 단계, 상기 반응기에 부텐을 통과시켜 소중합 반응을 유도하는 단계 및 상기 소중합 반응을 통해 C8 ~ C16 범위의 알켄을 수득하는 단계를 포함하는 것을 특징으로 하는 부텐으로부터 C8 ~ C16 범위의 알켄을 제조하는 방법을 제공하고 있다.In order to achieve the above object, the present invention comprises the steps of preparing a desilica pentasil structured zeolite catalyst, filling the desilica pentasil structured zeolite in a reactor with a fixed catalyst, and passing the butene through the reactor to undergo small polymerization. It provides a method for producing an alkene ranging from C 8 to C 16 from butene, characterized in that it comprises the step of inducing a reaction and obtaining an alkene ranging from C 8 to C 16 through the small polymerization reaction.
상기 부텐은 1-부텐, 2-부텐 중 1종 이상이 선택될 수 있고, 상기 소중합 반응은 200 ~ 550℃의 반응온도에서 WHSV(weight hour space velocity)가 1 ~ 50hr-1인 범위에서 부텐으로부터 C8 ~ C16 범위의 알켄을 제조할 수 있다.The butene may be selected from one or more of 1-butene and 2-butene, and the small-polymerization reaction is butene in the range of WHSV (weight hour space velocity) 1 to 50hr -1 at a reaction temperature of 200 to 550 ° C. It is possible to prepare alkenes ranging from C 8 to C 16 .
상기 탈실리카된 펜타실구조형 제올라이트 촉매는 ZSM-5 단위구조로 구성되는 것으로, 펜타실구조형 제올라이트를 0.2 ~ 0.5M 농도의 염기성 수용액 하에서 처리하여 탈실리카된 펜타실구조형 제올라이트 촉매를 제조할 수 있다. 상기 염기성 수용액은 특별하게 제한되지 않으며, 수산화나트륨 수용액 등일 수 있다, The desilica-type pentasil-structured zeolite catalyst is composed of a ZSM-5 unit structure, and the pentasil-structured zeolite catalyst can be prepared by treating the pentasil-structured zeolite under a basic aqueous solution having a concentration of 0.2 to 0.5M. The basic aqueous solution is not particularly limited, and may be an aqueous sodium hydroxide solution, etc.,
상기 탈실리카된 펜타실구조형 제올라이트 촉매는 중간기공 크기가 4 ~ 25nm 범위를 가지며, 비표면적은 450 ~ 500m2/g의 범위를 갖는 것을 특징으로 하고 있다.The desilica pentasil-structured zeolite catalyst has a medium pore size in the range of 4 to 25 nm, and a specific surface area of 450 to 500 m 2 / g.
본 발명에 따르면, 탈실리카된 펜타실구조형 제올라이트 촉매의 기공 크기가 4 ~ 25㎚이기 때문에 부텐 분자 또는 부텐 소중합체 분자의 촉매 기공 내의 확산이 빨라서 촉매 기공 내의 표면 활성점에 도달하기 용이하고, 코크의 생성에 의한 기공 막힘 현상을 지연시킬 수 있는 촉매를 제조할 수 있다.According to the present invention, since the pore size of the desilica pentasil-structured zeolite catalyst is 4 to 25 nm, diffusion of butene molecules or butene oligomer molecules in the catalyst pores is quick, so it is easy to reach the surface active point in the catalyst pores, and coke It is possible to prepare a catalyst that can delay the phenomenon of pore clogging due to the production of.
이에 기존에 사용된 촉매에 비하여 부텐의 전환율과 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄) 수율이 향상되며, 촉매 수명을 늘리는 것에 효과적이다.Accordingly, the conversion rate of butene and the high-grade alkene (alkenes in the range of C 8 to C 16 ) in the aviation oil area are improved compared to the catalysts used in the past, and it is effective in extending the life of the catalyst.
따라서 본 발명에 따른 방법은 부텐을 소중합하여 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는데 우수한 성능을 보이므로 산업적으로 유용할 것으로 기대된다.Therefore, the method according to the present invention is expected to be useful industrially because it shows excellent performance in preparing high-grade alkenes (alkenes in the C 8 to C 16 range) in the aviation oil area by small polymerization of butenes.
도 1은 본 발명에 따른 탈실리카된 펜타실구조형 제올라이트 촉매의 기공 크기 분포를 나타낸 그래프이다.1 is a graph showing the pore size distribution of a desilica pentasil structured zeolite catalyst according to the present invention.
이하, 본 발명을 하기의 실시예에 의거하여 좀 더 상세히 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only intended to illustrate the present invention and are not limited.
본 발명은 촉매가 고정 촉매상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합반응을 실시하여 부텐으로부터 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing high-grade alkenes (alkenes in the range of C 8 to C 16 ) from the butenes by performing a small polymerization reaction by passing butene as a reactant through a reactor in which the catalyst is filled with a fixed catalyst bed.
본 발명에서 촉매는 탈실리카된 펜타실구조형 제올라이트 촉매이다. 본 발명에 따른 탈실리카된 펜타실구조형 제올라이트 촉매는 비표면적이 450 ~ 500m2/g이고, 펜타실 구조형 제올라이트 단위구조로 구성되어 있어서 산점을 보유하기 때문에 소중합 반응을 촉진시킬 수 있고, 기공의 크기가 4 ~ 25㎚ 범위를 갖고 있기 때문에, 부텐 분자 또는 부텐 소중합체 분자의 촉매 기공 내의 확산이 빨라서 촉매 기공 내의 표면 활성점에 도달하기 용이하다는 장점이 있다.The catalyst in the present invention is a desilica pentasil-structured zeolite catalyst. The desilica pentasil-structured zeolite catalyst according to the present invention has a specific surface area of 450 to 500 m 2 / g, and is composed of a pentasil-structured zeolite unit structure, and thus has a scattering point, so it can promote small polymerization reaction, and Since the size is in the range of 4 to 25 nm, there is an advantage that the diffusion of butene molecules or butene oligomer molecules in the catalytic pores is fast, and thus it is easy to reach the surface active point in the catalytic pores.
탈실리카된 펜타실구조형 제올라이트 촉매는 수산화나트륨 수용액 하에서 펜타실구조형 제올라이트의 탈실리카 처리가 수행되는데, 상기 수산화나트륨 농도가 0.1M보다 낮으면 충분한 정도의 중간기공을 형성시키지 못하며, 1.0M을 초과하면 과다하게 탈실리카가 진행되어 펜타실구조형 제올라이트 자체의 미세구조를 무너뜨려 반응 활성을 크게 감소시킬 수 있다. 따라서, 상기 수산화나트륨 농도는 0.1 ~ 1.0M인 것이 바람직하고, 보다 바람직하게는 0.2 ~ 0.5M의 수산화나트륨 수용액 하에서 펜타실구조형 제올라이트의 탈실리카 처리가 수행되는 것을 특징으로 한다.The desilica pentasil-structured zeolite catalyst is desilica-treated in a pentasil-structured zeolite under an aqueous sodium hydroxide solution. If the sodium hydroxide concentration is lower than 0.1 M, it does not form a sufficient degree of intermediate pores. Excess desilica progresses to break down the microstructure of the pentasil-structured zeolite itself, which can significantly reduce the reaction activity. Therefore, the sodium hydroxide concentration is preferably 0.1 to 1.0M, and more preferably, it is characterized in that the desilica treatment of the pentasil-structured zeolite is performed under an aqueous solution of 0.2 to 0.5M sodium hydroxide.
상기 탈실리카된 펜타실구조형 제올라이트 촉매는, 1-부텐, 2-부텐, 또는 1-부텐과 2-부텐의 혼합물을 반응물로 이용한 소중합 반응에 다음과 같은 반응조건에서 적용될 수 있다.The desilica-type pentasil-structured zeolite catalyst can be applied in the following reaction conditions to a small polymerization reaction using 1-butene, 2-butene, or a mixture of 1-butene and 2-butene as reactants.
본 발명에서 탈실리카된 펜타실구조형 제올라이트 촉매를 사용하여 부텐의 소중합 반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 반응은 고정 촉매상으로 충진된 반응기에서 부텐을 반응물로 통과시켜 200 ~ 550℃, 바람직하게는 250 ~ 450℃의 반응온도에서 수행되는데, 상기 반응온도가 200℃ 미만이면 반응 활성이 낮아지고, 550℃를 초과하면 중간기공 촉매 구조에 변화가 와 반응 활성이 낮아질 수 있다. In the present invention, the reaction for producing high-grade alkenes in the aviation oil region by promoting the depolymerization reaction of butenes by using the desilica pentasil-structured zeolite catalyst is 200 to 550 ° C. by passing the butenes as reactants in a reactor filled with a fixed catalyst bed. , It is preferably carried out at a reaction temperature of 250 to 450 ° C. If the reaction temperature is less than 200 ° C, the reaction activity decreases, and if it exceeds 550 ° C, the change in the structure of the intermediate pore catalyst may decrease the reaction activity.
또한, 부텐의 유량과 촉매의 비는 WHSV(weigh hour space velocity)로 1 ~ 50hr-1, 더욱 바람직하게는 WHSV가 5 ~ 30hr-1이며, 1hr-1 미만에서는 부반응으로 인하여 선택도가 감소할 수 있고, 30hr-1를 초과하면 접촉시간이 너무 짧아서 활성이 낮아질 수 있다.In addition, the ratio of the flow rate of the butene and the catalyst is 1 to 50 hr -1 as a WHSV (weigh hour space velocity), more preferably, the WHSV is 5 to 30 hr -1 , and the selectivity decreases due to a side reaction under 1 hr -1 . If it exceeds 30hr -1 , the contact time is too short, and the activity may be lowered.
본 발명에서 탈실리카된 펜타실구조형 제올라이트 촉매를 사용하여 부텐의 소중합 반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 반응에 사용하는 반응기는 내경 1/4인치(inch), 길이 10㎝의 스테인레스 스틸 튜브로 제작하여 사용하였다. 부텐 저장탱크와 반응기 사이에 질량 유량 조절기를 설치하여 유량을 조절하였다. 반응기의 온도는 주문 제작한 관상로를 사용하여 조절하였으며, 액상 생성물을 받아 낸 후에 기상 생성물은 가스크로마토그래피에 직접 연결하여 분석하였다. 하기의 수학식 1 내지 3에 의해 전환율, 선택도 및 수율을 계산하였다. In the present invention, the reactor used for the reaction for producing high-grade alkenes in the aviation oil region by promoting the depolymerization reaction of butenes using the desilica pentasil-structured zeolite catalyst is stainless steel having an inner diameter of 1/4 inch (inch) and a length of 10 cm. It was manufactured and used as a steel tube. A mass flow regulator was installed between the butene storage tank and the reactor to control the flow. The temperature of the reactor was adjusted using a custom-made tube furnace, and after receiving the liquid product, the gaseous product was analyzed by directly connecting to gas chromatography. Conversion rate, selectivity and yield were calculated by the following
[수학식 1][Equation 1]
부텐 전환율(%) = (소비된 부텐의 중량/공급한 부텐의 중량) × 100 Butene conversion (%) = (weight of butene consumed / weight of butene fed) × 100
[수학식 2][Equation 2]
C8 ~ C16 범위의 알켄 선택도(%) = (생성된 C8 ~ C16 범위의 알켄/소비된 부텐 중량) × 100 Alken selectivity in the range of C 8 to C 16 (%) = (Alken / consumed butene weight in the range of C 8 to C 16 generated) × 100
[수학식 3][Equation 3]
C8 ~ C16 범위의 알켄 수율(%) = (부텐 전환율 × 항공유분 선택도)/100 Alkene yield (%) in the range of C 8 ~ C 16 = (butene conversion × air oil selectivity) / 100
이하, 실시예를 통해 본 발명을 좀 더 구체적으로 설명하나, 이에 본 발명의 범주가 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples, but the scope of the present invention is not limited thereto.
탈실리카된 펜타실구조형 제올라이트 촉매의 제조Preparation of desilica pentasil structured zeolite catalyst
탈실리카된 펜타실구조형 제올라이트 촉매를 사용하여 부텐 혼합물의 소중합반응을 수행하는 것이다. 상기 탈실리카된 펜타실구조형 제올라이트 촉매는 제조한 것을 사용하였으며, 이러한 상기 탈실리카된 펜타실구조형 제올라이트 촉매의 제조방법은 제올라이트와 염기성 수용액을 이용하여 제올라이트 골격으로부터 실리카를 제거하여 중간기공의 물질을 제조하는 방법을 이용하였다.It is to perform a small polymerization reaction of a butene mixture by using a desilica pentasil-structured zeolite catalyst. The desilica-type pentasil-structured zeolite catalyst was used, and the method for preparing the de-silica-type pentasil-structured zeolite catalyst was prepared by removing silica from the zeolite skeleton using a zeolite and a basic aqueous solution to prepare a material for the intermediate pores. Method was used.
먼저, 600g의 증류수에 4.8g의 수산화나트륨을 용해하여 0.2M 수산화나트륨 수용액을 제조하고, 10g의 ZSM-5 제올라이트(실리카와 알루미나의 몰비(molar ratio)가 80)를 상기 수산화나트륨 수용액에 섞어 65℃에서 30분간 환류냉각시키면서 탈실리카된 ZSM-5(DS-ZSM-5)를 합성하였다. 이렇게 얻어진 침전물을 진공여과법으로 얻어낸 후 증류수로 세척하고, 100℃ 오븐에서 24시간 건조하였다. 이어서 0.1M의 염화암모늄 수용액을 이용해 이온교환을 실시하여 암모늄 치환 물질로 전환시키고, 500℃에서 3시간 동안 소성 과정을 거쳐 수소 치환 물질로 전환된 4 ~ 25㎚의 중간기공을 가지는 탈실리카된 ZSM-5(DS-ZSM-5, 실리카와 알루미나의 몰비가 53)를 얻을 수 있게 되었다.First, a 0.2 M sodium hydroxide solution was prepared by dissolving 4.8 g of sodium hydroxide in 600 g of distilled water, and 10 g of ZSM-5 zeolite (molar ratio of silica and alumina of 80) was mixed with the aqueous sodium hydroxide solution. Desilicazed ZSM-5 (DS-ZSM-5) was synthesized while reflux cooling for 30 minutes at ℃. The precipitate thus obtained was obtained by vacuum filtration, washed with distilled water, and dried in an oven at 100 ° C. for 24 hours. Subsequently, the ion exchange was carried out using an aqueous solution of 0.1 M ammonium chloride to convert to an ammonium-substituted material, and desilica ZSM having an intermediate pore of 4 to 25 nm converted to a hydrogen-substituted material through a calcination process at 500 ° C. for 3 hours. -5 (DS-ZSM-5, a molar ratio of silica and alumina of 53) was obtained.
다공특성은 질소 흡착-탈착 등온선 분석(Nitrogen adsorption-desorption isotherm analysis) 결과를 통해 비표면적 및 기공 크기를 측정하였고, 도 1은 탈실리카 반응 전후의 기공 크기 변화를 나타낸 결과이다.Porosity was measured by specific surface area and pore size through the results of nitrogen adsorption-desorption isotherm analysis, and FIG. 1 shows the results of pore size change before and after desilica reaction.
촉매의 기공 크기 분포를 도시한 도 1을 참조하여 보면, ZSM-5에 비해 탈실리카된 ZSM-5 촉매의 중간기공 크기가 4 ~ 25nm로 넓은 범위를 가지고 있는 것을 확인할 수 있고, 비표면적도 실리카 반응 전의 비표면적은 430m2/g에서 탈실리카 반응 후에는 484m2/g으로 증가하였다는 점을 확인할 수 있었다.Referring to FIG. 1, which shows the pore size distribution of the catalyst, it can be seen that the intermediate pore size of the desilica ZSM-5 catalyst has a wide range of 4 to 25 nm compared to ZSM-5, and the specific surface area is also silica. It was confirmed that the specific surface area before the reaction increased from 430 m 2 / g to 484 m 2 / g after the desilica reaction.
실시예Example
고정층 연속식 반응기에 상기에서 제조된 중간기공을 가지는 탈실리카된 ZSM-5 촉매를 1g 충진하고 1-부텐과 2-부텐이 1:1.3의 중량비로 혼합된 부텐 혼합물을 10hr-1의 유량으로 투입하고, 350℃, 15bar에서 소중합반응 실험을 실시하였다. In a fixed bed continuous reactor, 1 g of desilica ZSM-5 catalyst having the intermediate pores prepared above was charged, and a butene mixture in which 1-butene and 2-butene was mixed in a weight ratio of 1: 1.3 was added at a flow rate of 10 hr -1 . Then, a small polymerization reaction experiment was performed at 350 ° C and 15 bar.
반응 시작 3시간 후에 가스크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 82.9%, C8 ~ C16 범위의 알켄의 선택도는 68.7%, C8 ~ C16 범위의 알켄의 수율은 57.0%이었다. After 3 hours from the start of the reaction, the product was analyzed using gas chromatography, butene conversion was 82.9%, the selectivity of the alkene in the range of C 8 to C 16 was 68.7%, and the yield of the alkene in the range of C 8 to C 16 was 57.0%. Was.
반응 시작 40시간 후에 가스크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 84.9%, C8 ~ C16 범위의 알켄의 선택도는 70.9%, C8 ~ C16 범위의 알켄의 수율은 60.2%이었다. After 40 hours from the start of the reaction, the product was analyzed using gas chromatography to find that the butene conversion rate was 84.9%, the selectivity of alkenes in the range of C 8 to C 16 was 70.9%, and the yield of alkenes in the range of C 8 to C 16 was 60.2%. Was.
비교예Comparative example
고정층 연속식 반응기에 펜타실구조형 제올라이트의 일종인 HZSM-5 촉매를 1g 충진하고 1-부텐과 2-부텐이 1:1.3의 중량비로 혼합된 부텐 혼합물을 10hr-1의 유량으로 투입하고, 350℃, 15bar에서 소중합반응 실험을 실시하였다. A fixed bed continuous reactor was charged with 1 g of HZSM-5 catalyst, a type of pentasil-structured zeolite, and a butene mixture in which 1-butene and 2-butene was mixed in a weight ratio of 1: 1.3 was introduced at a flow rate of 10 hr -1 , and 350 ° C. , A small polymerization reaction experiment was conducted at 15 bar.
반응 시작 3시간 후에 가스크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 81.4%, C8 ~ C16 범위의 알켄의 선택도는 65.6%, C8 ~ C16 범위의 알켄의 수율은 53.4%이었다.After 3 hours from the start of the reaction, the product was analyzed using gas chromatography, butene conversion was 81.4%, the selectivity of the alkene in the range of C 8 to C 16 was 65.6%, and the yield of the alkene in the range of C 8 to C 16 was 53.4%. Was.
반응 시작 40시간 후에 가스크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 68.6%, C8 ~ C16 범위의 알켄의 선택도는 68.2%, C8 ~ C16 범위의 알켄의 수율은 46.5%이었다.When the product was analyzed using gas chromatography 40 hours after the start of the reaction, the butene conversion rate was 68.6%, the selectivity of the alkene in the range of C 8 to C 16 was 68.2%, and the yield of the alkene in the range of C 8 to C 16 was 46.5%. Was.
하기 표 1에 반응조건 및 분석결과를 종합적으로 나타내었다.Table 1 shows the reaction conditions and analysis results comprehensively.
(℃)Reaction temperature
(℃)
(hr-1)WHSV
(hr -1 )
전환율
(%)Butene
Conversion rate
(%)
알켄 수율 (%)C 8 ~ C 16 range
Alken yield (%)
상기 표 1의 실시예 및 비교예에 나타낸 바와 같이, 종래 부텐의 소중합반응에 사용되었던 촉매에 비하여 본 발명에 따른 촉매를 사용할 경우, 알켄 선택도가 68% 이상을 갖고 수율도 54% 이상을 갖는 것으로 나타났고, 특히 반응시간이 40시간 경과한 이후에 탈실리카된 펜타실구조형 제올라이트 촉매의 부텐의 전환율과 C8 ~ C16 범위의 알켄의 수율이 모두 향상됨을 확인할 수 있으며, 이에 촉매 수명이 기존의 펜타실구조형 제올라이트 촉매보다 크게 증가한 것을 확인할 수 있다. As shown in the Examples and Comparative Examples in Table 1, when using the catalyst according to the present invention compared to the catalyst used for the small polymerization reaction of the conventional butene, the alkene selectivity has 68% or more and the yield is 54% or more. In particular, after the reaction time has elapsed, it can be seen that both the conversion rate of butenes of the desilica pentasil structured zeolite catalyst and the yield of alkenes in the range of C 8 to C 16 are improved. It can be seen that the increase was significantly greater than the existing pentasil-structured zeolite catalyst.
Claims (8)
상기 탈실리카된 펜타실구조형 제올라이트를 고정 촉매 상으로 반응기에 충진하는 단계,
상기 반응기에 부텐을 통과시켜 소중합 반응을 유도하는 단계 및
상기 소중합 반응을 통해 C8 ~ C16 범위의 알켄을 수득하는 단계를 포함하되,
상기 탈실리카된 펜타실구조형 제올라이트 촉매는 ZSM-5 단위구조로 구성되며, 중간기공 크기가 4 ~ 25nm이고, 비표면적이 450 ~ 500m2/g인 것을 특징으로 하는 부텐으로부터 C8 ~ C16 범위의 알켄의 제조방법.Preparing a desilica pentasil structured zeolite catalyst prepared by treating a pentasil structured zeolite under a basic aqueous solution having a concentration of 0.2 to 0.5M,
Filling the reactor with a fixed catalyst on the desilica pentasil-structured zeolite,
Inducing a small polymerization reaction by passing butene through the reactor, and
The step of obtaining an alken in the range of C8 ~ C16 through the small polymerization reaction,
The desilica pentasil-structured zeolite catalyst is composed of a ZSM-5 unit structure, has an intermediate pore size of 4 to 25 nm, and a specific surface area of 450 to 500 m 2 / g, from a butene to a range of C8 to C16 alkenes. Method of manufacturing.
상기 부텐은 1-부텐, 2-부텐 중 1종 이상이 선택되는 것을 특징으로 하는 부텐으로부터 C8 ~ C16 범위의 알켄의 제조방법. According to claim 1,
The butene is a method for producing alkene in the range of C 8 to C 16 from butene, characterized in that at least one of 1-butene and 2-butene is selected.
상기 소중합 반응은 200 ~ 550℃의 반응온도에서 수행되는 것을 특징으로 하는 부텐으로부터 C8 ~ C16 범위의 알켄의 제조방법. According to claim 1,
The small polymerization reaction is a method of producing alkenes ranging from C 8 to C 16 from butene, which is performed at a reaction temperature of 200 to 550 ° C.
상기 소중합 반응의 WHSV(weight hour space velocity)는 1 ~ 50hr-1인 것을 특징으로 하는 부텐으로부터 C8 ~ C16 범위의 알켄의 제조방법. According to claim 1,
The method for producing alkenes ranging from C 8 to C 16 from butene, characterized in that the weight hour space velocity (WHSV) of the small polymerization reaction is 1-50 hr −1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180131970A KR102090402B1 (en) | 2018-10-31 | 2018-10-31 | A method for producing the higher alkene from butene by using desilicated pentasil structure zeolite catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180131970A KR102090402B1 (en) | 2018-10-31 | 2018-10-31 | A method for producing the higher alkene from butene by using desilicated pentasil structure zeolite catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102090402B1 true KR102090402B1 (en) | 2020-03-17 |
Family
ID=70003884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180131970A KR102090402B1 (en) | 2018-10-31 | 2018-10-31 | A method for producing the higher alkene from butene by using desilicated pentasil structure zeolite catalyst |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102090402B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116023535A (en) * | 2021-10-25 | 2023-04-28 | 中国石油化工股份有限公司 | Polymerization method of low-carbon olefin |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2106131A (en) | 1934-05-24 | 1938-01-18 | Diamond Alkali Co | Method of producing strontium carbonate |
US2106533A (en) | 1934-06-30 | 1938-01-25 | Nielsen Frederic | Reflector, in particular for vehicles |
US4211640A (en) | 1979-05-24 | 1980-07-08 | Mobil Oil Corporation | Process for the treatment of olefinic gasoline |
US4227992A (en) | 1979-05-24 | 1980-10-14 | Mobil Oil Corporation | Process for separating ethylene from light olefin mixtures while producing both gasoline and fuel oil |
WO1993008278A1 (en) | 1991-10-16 | 1993-04-29 | Affymax Technologies N.V. | Peptide library and screening method |
US8395007B2 (en) | 2009-07-29 | 2013-03-12 | The United States Of America As Represented By The Secretary Of The Navy | Diesel and jet fuels based on the oligomerization of butene |
US9550706B2 (en) | 2012-07-19 | 2017-01-24 | Exxonmobil Chemical Patents Inc. | Method for oligomerising alkenes using the ITQ-39 zeolite |
US9732295B1 (en) | 2009-07-29 | 2017-08-15 | The United States Of America As Represented By The Secretary Of The Navy | Diesel and jet fuels based on the oligomerization of butene |
-
2018
- 2018-10-31 KR KR1020180131970A patent/KR102090402B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2106131A (en) | 1934-05-24 | 1938-01-18 | Diamond Alkali Co | Method of producing strontium carbonate |
US2106533A (en) | 1934-06-30 | 1938-01-25 | Nielsen Frederic | Reflector, in particular for vehicles |
US4211640A (en) | 1979-05-24 | 1980-07-08 | Mobil Oil Corporation | Process for the treatment of olefinic gasoline |
US4227992A (en) | 1979-05-24 | 1980-10-14 | Mobil Oil Corporation | Process for separating ethylene from light olefin mixtures while producing both gasoline and fuel oil |
WO1993008278A1 (en) | 1991-10-16 | 1993-04-29 | Affymax Technologies N.V. | Peptide library and screening method |
US8395007B2 (en) | 2009-07-29 | 2013-03-12 | The United States Of America As Represented By The Secretary Of The Navy | Diesel and jet fuels based on the oligomerization of butene |
US9732295B1 (en) | 2009-07-29 | 2017-08-15 | The United States Of America As Represented By The Secretary Of The Navy | Diesel and jet fuels based on the oligomerization of butene |
US9550706B2 (en) | 2012-07-19 | 2017-01-24 | Exxonmobil Chemical Patents Inc. | Method for oligomerising alkenes using the ITQ-39 zeolite |
Non-Patent Citations (2)
Title |
---|
Applied Catalysis A* * |
공주대학교대학원 석사학위논문, 김현아, 2017.02.* * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116023535A (en) * | 2021-10-25 | 2023-04-28 | 中国石油化工股份有限公司 | Polymerization method of low-carbon olefin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1249486B1 (en) | Process for obtaining a "diesel cut" fuel by the oligomerization of olefins or their mixtures | |
KR101217984B1 (en) | Dehydration of alcohols in the presence of an inert component | |
KR101227221B1 (en) | Process to make olefins from ethanol | |
US9029619B2 (en) | Process to make alpha olefins from ethanol | |
KR100501922B1 (en) | Process for preparing dimethyl ether from methanol | |
EP2238094B1 (en) | Dehydration of alcohols on crystalline silicates | |
US8901364B2 (en) | Alkene oligomerization process | |
KR100822318B1 (en) | Alkene oligomerization process | |
KR20100102706A (en) | Process to make olefins from ethanol | |
JP5116043B2 (en) | Propylene production method | |
EP2500334A1 (en) | Process for producing lower alkenes with methanol or dimethyl ether | |
US20180162788A1 (en) | Production of iso-octene from tertiary alcohols | |
EP2108637A1 (en) | Process to make olefins from ethanol. | |
EP3162763A1 (en) | Simultaneous dehydration and skeletal isomerisation of isobutanol on ti-containing zeolite catalysts | |
KR102090402B1 (en) | A method for producing the higher alkene from butene by using desilicated pentasil structure zeolite catalyst | |
KR101731165B1 (en) | Catalysts for ethanol dehydration and production method of ethylene using same | |
KR20240000547A (en) | Systems and methods for catalytic conversion of C1-C5 alcohols to C2-C5 olefin mixtures | |
KR101553899B1 (en) | Preparation method for oligomer of dicyclopentadiene and cyclopentadiene using aluminium silicate catalyst, aluminium silicate catalyst, and preparing method for the same | |
WO2011103697A1 (en) | A catalyst for preparing propylene and ethylene through c4 olefin catalytic cracking and use thereof | |
KR102155613B1 (en) | A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst | |
Boltz et al. | A general overview on the methanol to olefins reaction: recent catalyst developments | |
CN104557377B (en) | The method of oxygenatedchemicals and naphtha coupled reaction production ethylene and propylene | |
KR20070109489A (en) | Process for the selective production of 1-butene from 2-butene | |
JP2003534300A (en) | Process for producing propylene from an olefin stream | |
CA1178622A (en) | Process for the preparation of tertiary olefines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |