KR20190019017A - 접합부 테스트 장치 및 방법 - Google Patents

접합부 테스트 장치 및 방법 Download PDF

Info

Publication number
KR20190019017A
KR20190019017A KR1020180091248A KR20180091248A KR20190019017A KR 20190019017 A KR20190019017 A KR 20190019017A KR 1020180091248 A KR1020180091248 A KR 1020180091248A KR 20180091248 A KR20180091248 A KR 20180091248A KR 20190019017 A KR20190019017 A KR 20190019017A
Authority
KR
South Korea
Prior art keywords
jaws
test tool
force
test
sensor
Prior art date
Application number
KR1020180091248A
Other languages
English (en)
Other versions
KR102382146B1 (ko
Inventor
마틴 버그
로버트 데어즈
Original Assignee
노드슨 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노드슨 코포레이션 filed Critical 노드슨 코포레이션
Publication of KR20190019017A publication Critical patent/KR20190019017A/ko
Application granted granted Critical
Publication of KR102382146B1 publication Critical patent/KR102382146B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/04Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B5/043Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0033Force sensors associated with force applying means applying a pulling force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/28Investigating ductility, e.g. suitability of sheet metal for deep-drawing or spinning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0296Welds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • G01N2203/0635Electrical or magnetic indicating, recording or sensing means using magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2896Testing of IC packages; Test features related to IC packages

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

접합부 테스트 장치는 접합부 테스트 동안 접합부를 접촉하도록 구성된 테스트 도구(40)를 포함하는 테스트 도구 조립체(200), 테스트 도구 조립체에 결합되는 굴곡부(80), 및 센서를 포함한다. 센서는 굴곡부로의 힘의 인가시에 굴곡부의 제2 단부에 대한 굴곡부(80)의 제1 단부의 변위의 측정치를 제공하며, 프로세서는 센서로부터의 변위 신호를 수신하고 변위 신호 및 선택적으로 굴곡부의 알려진 강성에 기초하여 굴곡부 상의 힘을 결정하도록 구성된다. 접합부 테스트 장치를 위한 카트리지, 접합부 테스트 장치에서의 힘을 측정하는 방법, 및 접합부 테스트 도구의 죠오들에서의 폐쇄력을 측정하는 방법이 또한 제공된다.

Description

접합부 테스트 장치 및 방법{Bond Test Apparatus and Method}
본 발명은 PCB 또는 반도체 디바이스와 같은 전기 회로 상에서 접합의 강도를 테스트하기 위한 접합부 테스트 장치에 관한 것이다. 특히, 본 발명은 접합부 테스트 동안 테스트 도구 상의 힘을 측정하기 위한 장치에 관한 것이다. 특히 바람직하게, 본 발명은 접합부 테스트 동안 테스트 도구의 죠오(jaw)들에 대한 폐쇄력을 측정하기 위한 장치에 관한 것이다.
반도체 디바이스들은 전형적으로 5 mm x 5 mm 정사각형으로부터 50 mm x 50 mm 정사각형까지 매우 작고, 전형적으로 반도체 기판에 전기 전도체의 본딩을 위한 수많은 부위를 포함한다. 각각의 접합부(bond)는 "범프"로서 공지된 납땜 또는 금구 침착(gold ball deposit), 구리 필라(copper pillar) 또는 기판에 부착된 와이어로 이루어진다.
특정 본딩 방법이 적절하다는 것을 확신하기 위하여, 접합부들의 접합 강도를 테스트할 필요가 있다. 접합부들의 매우 작은 크기때문에, 이러한 접합부들의 접합 강도를 테스트하도록 사용되는 도구들은 매우 작은 힘과 편향을 정확하게 측정할 수 있어야만 한다.
접합 강도를 테스트하도록 사용되는 몇몇 상이한 형태의 접합부 테스트가 있다. 예를 들어, 전단 테스트는 접합부의 측면에 전단력을 가하고 기판으로부터 접합부를 전단하는 것에 의해 접합부의 전단 강도를 테스트한다. 당김 테스트는 볼 침착물 또는 볼 부착물에 매립된 와이어를 기판으로부터 멀리 당기는 것에 의해 접합부의 인장 강도를 테스트한다. 밀기 테스트에서, 힘 또는 하중이 수직 평면에서 직접 아래로 접합부에 가해진다.
이러한 테스트를 수행하는 기계는 전형적으로 전단 테스트 도구, 밀기 테스트 도구 또는 당김 테스트 도구인 접합부 테스트 도구를 포함하며, 이러한 도구들은 테스트 하에 있는 접합부에 대해 위치되고 그런 다음 접합부 또는 도구가 접합부를 파괴하는데 필요한 힘을 측정하는 것에 의해 테스트를 수행하기 위해 이동될 수 있다.
많은 경우에, 접합부 테스트 동안 테스트 도구와 접합부 사이에 가해지는 힘은 스트레인 게이지들을 사용하여 직접 측정된다. 예를 들어, 당김 도구는 하나 이상의 수평 빔 또는 굴곡부(flexure)들 상에 장착될 수 있어서, 테스트 도구와 접합부 사이의 수직 당김력의 인가는 굴곡부를 구부러지게 한다. 굴곡부 상에 스트레인 게이지를 장착하는 것에 의해, 테스트 도구 상의 힘이 측정될 수 있다. 그러나, 굴곡부들 상에 스트레인 게이지들을 장착하는 것은 어렵고, 비용이 많이 드는 과정이다.
콜드 범프 풀(Cold Bump Pull, CBP) 테스트와 같은 특정 형태의 접합부 테스트는 수직 당김력을 인가하기 전에 접합부 주위를 폐쇄하고 접합부를 파지하도록 핀셋형(tweezer-like) 죠오들을 포함하는 테스트 도구를 사용한다. 이러한 테스트에서, 각각의 테스트에서 접합부에 인가된 폐쇄/파지력의 일관성을 보장하고 또한 접합 재료의 강도를 평가하기 위해 테스트 도구 죠오들 상에서의 폐쇄력을 측정하고 제어하는 것이 필요하다.
테스트 도구 죠오를 폐쇄하기 위한 기존의 방법은 폐쇄력을 가하고 죠오들을 폐쇄하도록 테스트 도구를 따라서 콜릿(collet)을 이동시기 위해 공압 액튜에이터를 사용하는 것을 포함한다. 콜릿 상의 공기압은 죠오들에 가해지는 폐쇄력을 변화시키도록 변화될 수 있지만, 이러한 방법은 사용자에게 고도의 제어를 제공하지 못한다. 이러한 방법은 또한 죠오 분리에 대한 제어를 거의 허용하지 않아서, 죠오들은 완전히 개방되거나 또는 완전히 폐쇄되며, 테스트 도구 죠오들에 의해 접합부에 가해지는 힘의 어떠한 피드백 정보도 제공하지 않는다.
테스트 도구 죠오를 폐쇄하는 또 다른 공지된 방법은 테스트 도구 죠오들에 폐쇄력을 인가하도록 테스트 도구의 양쪽 측면에 배열되는 한쌍의 파지 죠오를 구동하도록 전기 모터를 사용하는 XYZTEC(RTM) Condor Sigma 시리즈의 접합 테스터들에 의해 이용된다. XYZTEC 접합 테스터는 모터를 통해 흐르는 전류를 조절하는 것에 의해 테스트 도구 상의 폐쇄력을 제어하는 것을 취지로 하는 반면에, 인가된 힘은 파지 죠오들의 스트레인 게이지를 사용하여 직접 측정된다. 이러한 장치는 복잡하고 비싸다.
본 발명은 종래 기술의 이러한 결점을 극복하고 개선된 접합부 테스트 장치 및 접합부 테스트 장치에서의 힘을 측정하는 개선된 방법을 제공하는 것을 목적으로 한다.
본 발명은 첨부된 독립항들에서 한정되며, 이에 대한 참조가 지금 만들어져야 한다. 본 발명의 바람직한 또는 유익한 특징은 종속항들에서 한정된다.
접합부 테스트 장치
제1 양태에 있어서, 본 발명은 테스트 도구 조립체를 포함하는 접합부 테스트 장치를 포함할 수 있으며, 테스트 도구 조립체는 접합부 테스트 동안 접합부와 접촉하도록 구성된 테스트 도구를 포함한다. 접합부 테스트 장치는 테스트 도구 조립체에 결합된 굴곡부, 및 센서를 추가로 포함한다. 센서는 굴곡부에 힘의 인가시에 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위의 측정을 제공되며, 장치는 센서로부터 변위 신호를 수신하고 변위 신호를 사용하여 굴곡부 상의 힘을 결정하도록 구성된 프로세서를 포함한다. 프로세서는 굴곡부 상에서의 힘을 결정하도록 굴곡부의 알려진 강성과 함께 변위 신호를 사용하도록 구성될 수 있다.
굴곡부의 강성이 알려졌으면, 변위의 측정은 굴곡부 상에서의 힘의 크기를 계산하도록 유익하게 사용될 수 있다. 이러한 것은 특히 접합부 테스트 동안 힘의 측정에 유용하다.
센서
센서는 바람직하게 굴곡부의 제1 단부가 굴곡부의 제2 단부에 대해 변위되는 거리의 측정치를 제공하도록 구성된 변위 센서 또는 거리 센서이다. 센서는 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위와 함께 이상적으로 비례하여 변하는 출력을 제공하는 임의의 센서일 수 있다.
센서는 유익하게 굴곡부 또는 센서 자체에 인가되는 힘을 직접 측정하지 않는다. 그러므로, 센서는 스트레인 게이지가 아니다. 스트레인 게이지와 달리, 센서는 변위의 측정치를 제공하도록 구성되며, 직접 힘을 측정하도록 구성되지 않는다.
바람직하게, 센서는 굴곡부로의 힘의 인가에 응답하여 변형 가능하지 않다. 특히 바람직하게, 센서는 굴곡부 자체에 본딩되지 않는다. 바람직하게, 센서는 굴곡부의 제1 또는 제2 단부에 대해 이동 가능하고, 굴곡부의 다른 단부에 대해 고정될 수 있다.
힘의 직접적인 측정보다는 변위의 측정을 제공하고 바람직하게 굴곡부에 대한 힘의 인가에 의해 변형되지 않는 센서는 유익하게 크리프(creep)를 거의 나타내지 않을 수 있다. 그러므로, 이러한 센서들은 접합부 테스트시에 힘을 측정하도록 종래에 사용되는 압전 또는 피에조 저항 스트레인 게이지보다 양호한 정확도를 유지할 수 있다. 굴곡부에 부착된 스트레인 게이지들이 굴곡부의 굽힘시에 고유하게 변형되거나 또는 긴장됨에 따라서, 다음의 심각한 굽힘을 완전히 복구하는데 실패할 수 있어서, 스트레인 게이지들은 전형적으로 시간 경과에 따라 크리프를 보여, 그 출력의 정확도를 덜 정확하게 만든다. 또한, 스트레인 게이지가 굴곡부 상의 힘을 측정하는 것이면 예를 들어 접착 본드에 의해 굴곡부 자체에 부착되어야만 한다. 이러한 접착 본드는 스트레인 게이지의 변형 동안 변형될 수 있으며, 측정 크리프의 중요한 소스를 도입할 수 있다.
본 발명에서 사용된 센서는 바람직하게 힘이 센서 자체가 아니라 굴곡부에 인가됨에 따라서 접합부 테스트 동안 굴곡부에 인가되는 힘을 직접 경험하지 않는다. 이러한 것은 센서의 수명을 증가시키고, 센서에서의 크리프의 가능성을 감소시킨다. 또한, 센서가 굴곡부 자체에 결합되지 않으면, 다른 측정 크리프의 소스를 도입할 수 있는 접착 본드가 필요하지 않다.
센서는 바람직하게 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위에 비례하는 출력 신호를 제공하도록 구성된다. 바람직하게, 센서는 굴곡부의 변위에 직접 비례하는 출력 신호를 제공하도록 구성된다.
접합부 테스트 장치는 신호 또는 변위 신호를 센서로부터 수신하고, 신호 및 굴곡부의 알려진 강성에 기초하여 굴곡부 상의 힘을 결정하도록 구성된 프로세서 또는 컨트롤러를 포함한다. 프로세서는 유익하게 굴곡부 상의 계산된 힘에 기초하여 장치를 제어하도록 프로그램되어서, 센서는 프로세서에 피드백을 제공하고, 프로세서는 이에 기초하여 장치를 제어한다.
사용에 앞서, 굴곡부의 강성은 굴곡부가 공지된 힘으로 적재되고, 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위가 측정되는 교정 절차에 의해 알려질 수 있다.
스트레인 게이지들은 굴곡부에 인가된 힘에 의해 그 자체가 변형되고, 그러므로 인가되는 힘의 직접적인 측정을 제공하며, 스트레인 게이지들을 사용하는 장치는 굴곡부의 강성에 기초한 힘으로 변위의 측정을 변환하지 않는다. 그러므로, 스트레인 게이지를 사용하여 굴곡부 상의 힘을 측정하는 장치는, 센서로부터 변위 신호를 수신하고 변위 신호 및 굴곡부의 알려진 강성에 기초하여, 굴곡부 상의 힘을 결정하도록 구성된 프로세서를 포함하지 않는다.
바람직하게, 센서는 센서 자체와 별개의 검출 가능한 부재 사이의 변위를 검출하도록 구성될 수 있다. 센서는 굴곡부의 제1 단부에 대해 고정될 수 있고, 굴곡부의 제2 단부에 대해 고정된 검출 가능한 부재에 대해 이동 가능할 수 있다. 대안적으로, 센서는 굴곡부의 제2 단부에 대해 고정될 수 있고, 굴곡부의 제1 단부에 대해 고정된 검출 가능한 부재에 대해 이동 가능할 수 있다. 그러므로, 센서와 검출 부재 사이의 변위를 검출하는 것에 의해, 센서는 제2 단부에 대한 굴곡부의 제1 단부의 변위의 측정치를 제공할 수 있다.
예를 들어, 검출 가능한 부재는 자석일 수 있고, 센서는 자기장을 감지하도록 구성될 수 있다. 대안적으로, 검출 가능한 부재는 금속 부재일 수 있고, 센서는 전기장에서의 변화를 감지하도록 구성될 수 있다. 대안적으로, 검출 가능한 부재는 슬롯형 포토인터럽터(slotted photo-interrupter)일 수 있고, 센서는 투과광에서의 변화를 감지하도록 구성될 수 있다.
바람직하게, 센서는 대응하는 검출 가능한 부재의 상대 변위에 비례하는 출력을 제공하도록 구성된 임의의 센서일 수 있다.
이러한 장치는 유익하게 교정 및 유지 보수가 간단한 한편, 변위의 정확하고 반복 가능한 측정을 제공한다. 예를 들어, 센서 및 검출 가능한 부재 중 하나는 굴곡부의 제1 단부에 부착될 수 있는 반면에, 다른 하나는 굴곡부의 제2 단부에 대해 고정된 장치의 부분에 인접하여 부착될 수 있다. 센서는 그런 다음 상대 변위의 범위에 대해 교정될 수 있다. 이러한 장치는, 스트레인 게이지가 기능하기 위하여, 스트레인 게이지들이 정확한 출력 레벨을 제공하는 위치에서 굴곡부에 정확히 접합되어야만 함에 따라서 압전 또는 피에조 저항 스트레인 게이지보다 설정하는데 더욱 간단하다.
접합부 테스트 장치는 자석 부분(magnetic portion)을 추가로 포함할 수 있으며, 센서는 자기장에서의 변화를 감지하도록 구성될 수 있다. 자성 부분은 장치의 임의의 자화된 물품 또는 부분일 수 있지만, 바람직하게 고정 자극 지름 자석(fixed pole diametric magnet), 특히 바람직하게 지름 방향으로 자화된 디스크 자석이다. 자석 부분 또는 센서 중 어느 하나는 굴곡부의 제1 단부에 고정되거나 이에 대해 고정될 수 있는 반면에, 자석 부분 또는 센서 중 다른 하나는 굴곡부의 제2 단부에 대해 고정되어서, 제2 단부에 대한 굴곡부의 제1 단부의 변위는 자석 부분이 센서에 대해 이동하도록 하여, 센서가 겪는 자기장에서의 변화를 초래한다. 그러므로, 센서는 변위 센서로 지칭될 수 있다. 센서에서 자기장에서의 변화는 유익하게 굴곡부의 변위에 비례할 수 있다.
특히 바람직한 실시예에서, 센서는 서로 결합된 2개 이상의 센서를 포함할 수 있다. 이러한 결합된 센서들의 배열은 장치의 감도가 증가되도록 출력 신호의 크기를 유익하게 증가시킬 수 있다. 결합된 센서들은 바람직하게 굴곡부에 힘이 인가되지 않을 때 굴곡부의 제1 단부, 또는 선택적으로 자석이 2개의 센서 사이에 위치되도록 구성된다. 굴곡부로의 힘의 인가시에, 굴곡부의 제1 단부 또는 자석은 결합된 센서들에 대해 변위된다. 센서의 측정 범위는 굴곡부의 제1 단부의 이동 방향을 따라 이격된 2개 이상의 센서, 또는 2개 이상의 자석을 제공하는 것에 의해 증가될 수 있다.
홀 효과 센서
바람직한 실시예에서, 센서는 자기장에서의 변화에 응답하여 전위차(전압) 신호를 출력하도록 구성된 홀 효과 센서이다. 홀 효과 센서는 유익하게 자석의 근방에 위치되어서, 센서는 자석의 자기장을 감지한다. 센서에 대한 자석의 변위는 센서에서의 자기장의 변화를 생성하여, 자석의 변위에 직접적으로 비례하는 센서 전체에 걸쳐서 전위차를 생성한다. 자석 또는 홀 효과 센서는 굴곡부의 제1 단부에 대해 고정될 수 있고, 자석 또는 홀 효과 센서 중 다른 하나는 굴곡부의 제2 단부에 대해 고정될 수 있다. 홀 효과 센서로부터의 출력 신호는 홀 효과 센서가 굴곡부의 제1 단부의 변위의 측정을 제공하도록 센서에 대한 자석의 변위에 비례한다. 그러므로, 홀 효과 센서는 변위 센서로 지칭될 수 있다.
홀 효과 센서들은 자기장에서의 작은 변화에 응답하여 비교적 큰 선형 출력을 유익하게 생성한다. 예를 들어, 본 발명에서 사용하는데 적합한 홀 효과 센서는 2 mm까지의 자석의 상대 변위에 응답하여 수 볼트의 크기를 가지는 출력 신호를 제공할 수 있다. 이러한 것은 홀 효과 센서가 접합 테스터들의 힘을 측정하도록 전형적으로 사용되는 형태의 통상의 스트레인 게이지들의 출력보다 상당히 큰 크기의 출력 신호를 제공한다는 것을 의미한다. 홀 효과 센서의 출력의 큰 크기는 처리를 위해 신호를 프로세서에 전달하기 전에 센서로부터의 출력 신호를 증폭할 필요가 없다는 것을 의미한다. 이러한 것은 본 발명의 장치가 스트레인 게이지들을 사용하여 힘을 측정하는 시스템보다 적은 전기 구성 요소들을 요구할 수 있으며, 그러므로 측정되는 값들로의 에러의 잠재적 원인을 더욱 적게 도입할 수 있다는 것을 의미한다.
일예로서, 굴곡부 상에 장착된 전형적인 종래 기술의 포일 스트레인 게이지는 10V의 여기 전압을 요구하는 브릿지 구성으로 구성될 수 있으며, 완전히 적재될 때 0.0123V의 출력 전압을 줄 수 있다. 본 발명에 따른 홀 효과 센서를 사용하는 유사한 굴곡부는 완전하게 적재될 때 약 2.0V의 출력을 줄 수 있으며, 그러므로, 전압을 측정하기 전에 증폭을 필요로 하지 않는다.
홀 효과 센서는 우수한 내크리프성(resistance to creep)을 보이기 때문에 본 발명의 변위 측정시에 사용하는데 특히 유익할 수 있다.
바람직한 실시예에 따라서, 본 발명은 테스트 도구 조립체를 포함하는 접합부 테스트 장치를 포함할 수 있으며, 상기 테스트 도구 조립체는 접합부 테스트 동안 접합부와 접촉하도록 구성된 테스트 도구를 포함한다. 접합부 테스트 장치는 테스트 도구 조립체에 연결된 굴곡부, 자석, 및 홀 효과 센서를 추가로 포함할 수 있다. 자석 또는 센서 중 하나는 굴곡부의 제1 단부에 대해 고정되는 반면에, 자석 또는 센서 중 다른 하나는 굴곡부의 제2 단부에 대해 고정되고, 홀 효과 센서는 굴곡부의 제1 단부가 굴곡부에 대한 힘의 인가시에 굴곡부의 제2 단부에 대해 변위될 때 자기장에서의 변화를 감지하도록 구성된다. 접합부 테스트 장치는 바람직하게 홀 효과 센서로부터 신호를 수신하고, 신호 및 굴곡부의 알려진 강성에 기초하여 굴곡부 상의 힘을 계산하도록 구성된 프로세서를 포함한다.
가능한 센서
홀 효과 센서 대신에 또는 홀 효과 센서에 추가하여, 센서는 광학 변위 센서, 예를 들어 슬롯형 포토 인터럽터, 전파 시간 센서(time of flight sensor) 또는 광학 삼각 측량 센서(optical triangulation sensor)를 포함할 수 있다. 센서는 자기 저항 또는 거대 자기 저항 센서 또는 용량형 센서를 포함할 수 있다.
굴곡부
바람직하게, 상기 장치는 1개보다 많은 굴곡부를 포함하며, 양 굴곡부의 제1 단부가 힘의 인가시에 동일한 거리만큼 변위되도록 양 굴곡부의 제1 단부는 서로 결합된다. 굴곡부는 당업계에 공지된 바와 같이 접힌 빔(folded beam) 굴곡부, 구불구불한 굴곡부 또는 선형(비접힘) 굴곡부일 수 있다. 특히 바람직하게, 장치는 상기 굴곡부들의 제1 단부가 직선 축을 따라서만 제2 단부에 대해 이동 가능하도록 구성된 2개 이상의 굴곡부를 포함한다. 예를 들어, 장치는 수직 평면에서 겹쳐서 배열된 동일한 길이의 한 쌍의 굴곡부를 포함할 수 있으며, 굴곡부들의 제1 단부는 서로 결합되고, 수직축을 따라서만 이동 가능하다. 이러한 구성은 굴곡부의 측 방향 변위를 제거하거나 또는 감소시킬 수 있으며, 굴곡부의 제1 단부가 항상 선형으로 변위되어, 센서가 단일 축을 따르는 변위를 측정하도록 구성될 수 있는 것을 보장할 수 있다.
굴곡부는 테스트 도구가 굴곡부의 한쪽 단부에 고정되어서, 테스트 도구와 테스트될 접합부 사이의 테스트 힘의 인가가 굴곡부를 굽히도록 구성될 수 있다. 이러한 배열에서, 센서는 도구와 접합부 사이의 테스트 힘의 크기를 결정하도록 사용될 수 있다.
대안적으로, 굴곡부는 당김 테스트 도구의 죠오들 상에서의 폐쇄력과 같은 다른 힘에 응답하여 굽혀지도록 구성된 굴곡부일 수 있다. 이러한 배열에서, 센서는 죠오들 상의 폐쇄력의 크기를 결정하도록 사용될 수 있다.
테스트 도구
테스트 도구가 굴곡부의 제1 단부에 고정될 수 있어서, 접합부에 의한 테스트 도구에서의 테스트 힘의 인가는 사전 결정된 방향으로 굴곡부의 제1 단부의 변위를 유발한다. 센서는 바람직하게 이러한 변위의 측정치를 제공하도록 구성되어서, 굴곡부의 제1 단부의 변위 및 굴곡부의 알려진 강성을 사용하면, 굴곡부 상의 힘, 그러므로 테스트 힘이 계산될 수 있다.
테스트 도구는 특정 유형의 접합부 테스트에 사용하기 위해 구성될 수 있다. 예를 들어, 테스트 도구는 접합부를 파지하도록 구성된 트위저 죠오(tweezer jaw)들을 포함하는 Cold Bump Pull(CBP) 테스트 도구를 포함할 수 있다. 테스트 도구는 접합부에 전단력을 인가하도록 구성된 전단 테스트 도구를 포함할 수 있다. 대안적으로, 테스트 도구는 푸시 테스트 도구를 포함할 수 있다. 테스트 도구는 유익하게 열전도성 재료, 바람직하게 높은 열전도성을 가지는 재료로 만들어진다. 특히 바람직하게, 테스트 도구는 금속으로 형성된다.
테스트 도구는 바람직하게 접합부 테스트 동안 접합부와 접촉하도록 구성된 테스트 도구 팁을 가진다.
구동 메커니즘
바람직한 실시예에서, 본 발명의 접합부 테스트 장치는 접합부 테스트 동안 테스트 도구 죠오들에 의해 접합부에 인가된 폐쇄력 또는 파지력을 측정하도록 구성될 수 있다.
테스트 도구는 대향하는 죠오들을 포함할 수 있으며, 테스트 도구 조립체는 폐쇄 부재, 및 폐쇄 부재에 구동력을 인가하도록 구성된 구동 메커니즘을 포함하여서, 폐쇄 부재는 죠오들에 폐쇄력을 인가할 수 있다. 인가된 폐쇄력의 부재시에, 대향 죠오들은 바람직하게 서로 이격된, 개방 위치로 복귀한다. 폐쇄 부재는 바람직하게 구동 메커니즘으로부터의 구동력을 테스트 도구의 죠오들 상의 폐쇄력으로 변환하도록 구성된다. 죠오 상에서의 폐쇄력의 인가는 사용시에 죠오들을 가압하여서, 죠오들은 죠오들 사이에 위치한 접합부와 접촉하여 파지한다.
바람직하게, 구동 메커니즘은, 구동 메커니즘에 의해 이동된 거리를 측정하고 폐쇄 부재에 구동력을 인가하도록 구성된 구동 메커니즘 거리 센서를 포함한다. 구동 메커니즘 거리 센서는 구동 메커니즘이 사전 결정된 선형 또는 각도 방향으로 얼마나 멀리 이동했는지를 측정하도록 구성된 인코더, 예를 들어 회전식 또는 선형 인코더일 수 있다.
바람직하게, 접합부 테스트 장치는 테스트 도구의 죠오들 사이의 간격 또는 거리를 측정하도록 구성된다. 접합부 테스트 장치는 회전식 또는 선형 인코더와 같은 구동 메커니즘 거리 센서를 사용하여 테스트 도구 죠오들 사이의 간격을 측정하도록 구성될 수 있다. 테스트 도구 죠오들 사이의 간격을 측정하는 것은 유익하게 특정 접합부 테스트 작업을 위해 사전 결정된 간격까지 죠오들이 개방되는 것을 가능하게 할 수 있다. 예를 들어, 죠오들은 공지된 방법에 의해 죠오들의 내부를 세정할 수 있도록 사전 결정된 세정 분리까지 개방될 수 있다. 죠오들은 사전 결정된 사전 테스트 분리까지 개방될 수 있으며, 사전 테스트 분리는 테스트를 위해 접합부 주위에 죠오들을 위치시키기 전에 테스트될 접합부의 크기보다 크다. 그러므로, 죠오들의 분리의 측정은 작업 동안 테스트 도구의 보다 정확한 위치 설정을 유익하게 허용할 수 있다.
구동 메커니즘은 바람직하게 테스트 도구의 죠오들이 접합부를 파지할 때, 구동력의 인가가 제2 단부에 대해 굴곡부의 제1 단부를 변위시키도록 구성된다. 바람직하게, 구동 메커니즘 및/또는 폐쇄 부재는 폐쇄 부재에 구동력의 인가가 죠오들이 접합부에 접촉할 때까지 굴곡부를 변위시키지 않도록 구성된다. 그러나, 테스트 도구의 죠오들이 접합부를 접촉하면, 구동력(그러므로 폐쇄력)의 추가 인가는 접합 재료로부터의 저항성을 충족시켜서, 접합부는 죠오들에 반동력을 부과한다. 반동력의 크기는 유익하게 죠오들에 의해 접합부 상에 가해진 폐쇄력의 크기에 비례할 수 있다. 이러한 반동력은 테스트 도구로부터 폐쇄 부재를 통해 구동 메커니즘으로 전달된다. 구동 메커니즘은 바람직하게 이러한 반동력이 굴곡부의 제1 단부를 제2 단부에 대해 죠오들에서의 폐쇄력에 비례하는 거리만큼 변위시키도록 구성된다.
바람직한 실시예에서, 구동 메커니즘은 굴곡부의 제1 단부에 장착되고, 굴곡부의 제1 단부는 테스트 도구에 대해 이동 가능하다. 테스트 도구의 위치는 사용시에 굴곡부의 제2 단부에 대해 고정될 수 있다. 바람직하게, 구동 메커니즘은 테스트 도구의 죠오들이 접합부를 파지할 때, 구동력의 인가가, 구동 메커니즘에 작용하고 제2 단부에 대해 굴곡부의 제1 단부를 변위시키는 반동력을 생성하도록 구성된다. 이러한 배열에서, 반동력의 크기는 죠오들에 의해 접합부에 가해지는 폐쇄력의 크기 및 반동력에 비례하는 굴곡부에서의 힘에 비례한다. 그러므로, 굴곡부에서의 힘을 측정하는 것은 죠오들에 의해 접합부에 가해지는 폐쇄력을 측정할 수 있다.
장치에서의 마찰력의 효과는 저 마찰재 및/또는 윤활제를 사용하는 것에 의해 유익하게 최소화될 수 있다. 마찰력은 교정에 의해 또한 보상될 수 있다.
구동 메커니즘은 바람직하게 기어드 전동기(geared electric motor)일 수 있는 전기 모터를 포함한다. 바람직하게, 구동 메커니즘은 리드 스크루 및 너트를 추가로 포함한다. 너트는 리드 스크루에 장착될 수 있으며, 바람직하게 회전할 수 없도록 구성된다. 모터는 리드 스크루를 회전시키도록 구성될 수 있어서, 너트는 모터에 의한 리드 스크루의 회전시에 리드 스크루에 대해 이동 가능하다. 구동 메커니즘은 바람직하게 리드 스크루에 대한 너트의 이동이 폐쇄 부재에 구동력을 인가하도록 구성된다.
바람직한 실시예에서, 구동 메커니즘은 레버를 추가로 포함하고, 너트는 레버의 제1 단부와 가동 가능하게 결합되고, 레버는 선회 지점을 중심으로 선회 가능하다. 레버의 사용은 구동 메커니즘으로부터의 힘을 증폭시키고, 선택적으로 적절한 구동력을 제공하도록 예를 들어 소형 모터와 같은 덜 강력한 구동 메커니즘의 사용을 허용할 수 있다. 구동 메커니즘은 레버의 제1 단부에서 힘을 인가할 수 있으며, 이러한 것은 선회 지점의 양측부 상에서의 레버 길이의 비율의 결과로서 그 제2 단부에서의 비교적 큰 힘을 초래한다.
바람직하게, 구동 메커니즘은 사용시에 리드 스크루를 따르는 너트의 이동이 레버의 제1 단부를 이동시켜 레버가 그 선회 지점을 중심으로 선회하도록 구성된다.
바람직하게, 레버는 그 제1 단부 반대편의 제2 단부를 중심으로 선회 가능할 수 있다.
바람직하게, 레버는 폐쇄 부재를 접하도록 배열된 캠 메커니즘을 포함하며, 캠 메커니즘은 사용시에 그 제2 단부를 중심으로 하는 레버의 선회가 캠으로 하여금 폐쇄 부재에 구동력을 인가하도록 구성된다. 레버 및 캠의 사용은 유익하게 폐쇄 부재를 통해 구동 메커니즘으로 다시 전달되는 구동력 및/또는 반동력의 크기를 증폭시킬 수 있어서, 구동 메커니즘의 작은 이동은 폐쇄 부재에 보다 큰 구동력을 인가할 수 있고, 반동력은 굴곡부의 보다 큰 편향을 유발하며, 그러므로 보다 정확하게 측정할 수 있다.
구동 메커니즘이 모터를 포함하는 경우에, 구동 메커니즘 거리 센서는 구동력을 인가하는 동안 모터가 이동하는 거리를 측정하도록 구성된 인코더일 수 있다. 예를 들어, 인코더는 모터 또는 리드 스크루에 의해 수행된 회전수를 카운트할 수 있다.
바람직하게, 리드 스크루는, 너트가 리드 스크루를 따라서 주어진 직선 거리를 이동하는데 비교적 높은 회전수가 요구되도록 미세한 피치를 가지는 스크루를 포함한다. 이러한 것은 인코더가 너트의 선형 이동에 걸쳐서 높은 인코더 카운트를 측정하도록 너트의 고분해능 선형 작동(high resolution linear actuation)을 유익하게 허용한다. 기어드 모터 및 레버 캠과 결합된 이러한 것은 바람직하게 모터의 전력 요구량(power requirements)을 감소시키고, 구동 메커니즘에 의해 이동된 거리의 정확한 측정을 가능하게 하는 한편 캠 표면에서 높은 구동력을 인가한다.
폐쇄 부재
폐쇄 부재는 테스트 도구의 죠오들의 적어도 일부를 둘러싸도록 배열된 슬리브 또는 콜릿을 포함할 수 있다. 슬리브는 테스트 도구에 대해 축 방향으로 이동할 수 있으며, 테스트 도구의 축을 따라서 이동할 수 있다. 슬리브는 바람직하게 상기 죠오들과 결합되도록 구성되어서, 사용시에 죠오들에 대한 슬리브의 이동은 죠오들에 폐쇄력을 인가한다.
바람직한 실시예에서, 각각의 죠오들의 외부면은 죠오들의 팁 단부를 향해 넓어지고, 슬리브의 일부는 그 지름이 개방 구성에서 죠오들의 외부면의 지름보다 작도록 구성된다. 그러므로, 죠오들의 팁 단부를 향한 슬리브의 상대적인 이동은 죠오들을 함께 밀어내는 폐쇄력을 인가한다. 바람직하게, 슬리브는 죠오들의 팁 단부로부터 멀어지는 방향으로 편향되고, 구동 메커니즘은 죠오들의 팁 단부를 향해 슬리브를 이동시키는 방향으로 구동력을 인가하도록 구성된다. 이러한 맥락에서 "팁 단부"는 테스트 동안 접합부와 결합하는 죠오들의 단부를 의미한다. 그러나, 죠오들의 팁 단부로부터 멀어지는 슬리브의 이동이 죠오들을 함께 가압하도록 메커니즘을 설계하는 것이 가능하다.
특히 바람직하게, 슬리브는, 사용시에 슬리브와 죠오들 사이의 마찰력이 죠오들의 폐쇄력보다 적어도 10배, 또는 15배 또는 20배 작도록 저 마찰재로 형성된다. 이러한 것은 마찰로 인한 극히 낮거나 무시할 수 있는 손실과 함께 슬리브가 구동력을 폐쇄력으로서 죠오들에 전달하는 것을 가능하게 하고, 죠오들에 의해 접합부에 가해지는 폐쇄력이 정확하게 측정되는 것을 보장한다.
특히 바람직한 실시예에서, 슬리브는 죠오들의 일부 주위에서 동심원으로 배열된 세라믹 칼라를 포함하여서, 사용시에 세라믹 칼라는 죠오들과 접촉하여 죠오들을 함께 밀어낸다. 세라믹 칼라는 유익하게 슬리브와 테스트 도구 죠오들 사이에 낮은 마찰 접촉면을 제공할 수 있다.
본 발명에서 죠오들의 적어도 일부를 둘러싸도록 배치된 슬리브, 및 선택적으로 세라믹 칼라의 사용은 죠오들에 인가된 폐쇄력의 동심도를 유익하게 개선할 수 있다. 본 발명의 슬리브는 동일한 힘이 각각의 테스트 도구 죠오들에 균일하게 인가되도록 폐쇄력을 분산시키는 것을 돕는다. 이러한 것은 이러한 스케일에서 동심도의 임의의 부재가 신뢰할 수 없는 테스트 결과로 이어질 수 있음에 따라서 전형적으로 지름이 20 내지 800 미크론의 크기 범위인 납땜 범프(solder bump)를 파지할 때 특히 유익하다.
바람직하게 폐쇄 부재 및/또는 테스트 도구는 테스트 도구의 죠오들이 여러 단계로 폐쇄되기 위해 제어 가능하도록 구성될 수 있다. 예를 들어, 제1 구성에서, 테스트 도구 죠오들이 완전히 개방할 수 있어서, 죠오들의 내부가 검사되고 세정될 수 있다. 제2 구성에서, 죠오 분리가 테스트될 접합부의 지름보다 단지 더 크도록 폐쇄 부재가 죠오들을 폐쇄할 수 있어서, 죠오들은 테스트될 기판 상의 다른 접합부들과 접촉없이 접합부 위에 배치될 수 있다. 제3 구성에서, 폐쇄 부재는 테스트 도구 죠오들을 폐쇄하여, 죠오들은 접합부를 파지하여 폐쇄력을 가한다. 장치가 제3 구성으로 있을 때, 추가의 구동력의 인가는 전술한 바와 같이 반동력을 생성하여, 반동력이 굴곡부의 제1 단부의 변위를 유발하고, 변위는 센서에 의해 측정된다. 센서로부터의 신호는 그런 다음 굴곡부의 알려진 강성과 함께 사용되어, 테스트 도구 죠오들에 의해 접합부 상에 가해진 폐쇄력을 계산할 수 있다.
제2 굴곡부
바람직한 실시예에서, 테스트 도구 조립체, 제1 센서 및 제1 굴곡부는 제2 굴곡부의 제1 단부에 장착된다. 제2 굴곡부의 제1 단부는 제2 굴곡부의 제2 단부에 대해 유익하게 이동할 수 있고, 장치는 제2 센서를 추가로 포함하고, 제2 센서는 접합부에 의해 테스트 도구에 테스트 힘의 인가 시에 제2 굴곡부의 제2 단부에 대한 제2 굴곡부의 제1 단부의 변위를 측정하도록 구성된다.
테스트 도구 조립체, 센서 및 굴곡부는 테스트 도구 죠오들에 의해 접합부에 가해지는 폐쇄력을 측정하도록 구성될 수 있다.
바람직하게, 테스트 도구 조립체, 제1 센서 및 제1 굴곡부는 전술한 바와 같이 테스트 도구 죠오들에 의해 접합부에 가해지는 폐쇄력을 측정하도록 구성된다. 환언하면, 테스트 도구 조립체는 전술한 바와 같은 폐쇄 부재 및 구동 메커니즘을 포함할 수 있고, 제2 굴곡부 상의 힘과 관계없이 폐쇄력을 측정하도록 구성될 수 있다.
특히 바람직하게, 테스트 도구가 제2 굴곡부의 제1 단부에 대해 고정되어서, 접합부에 의한 테스트 도구에 대한 테스트 힘의 인가는 제2 굴곡부의 제1 단부의 변위를 유발한다. 제2 센서 및 제2 굴곡부의 알려진 강성을 이용하여, 테스트 도구에 대한 테스트 힘은 전술한 바와 같이 계산될 수 있다.
이러한 배열을 사용하여, 테스트 도구 죠오 상의 폐쇄력 및 테스트 도구 상의 테스트 힘 모두 유익하게 측정될 수 있다. 폐쇄력은 사용시에, 접합부 위에 테스트 도구를 위치시키고, 죠오들이 접합부에 폐쇄력을 가하여 제1 굴곡부의 변위를 유발하는 반동력을 생성하도록 구동력을 작동시키고, 제1 굴곡부의 변위를 측정하고, 제1 골곡부의 알려진 강성을 사용하여 죠오들 사이의 폐쇄력을 계산하는 것에 의해 먼저 측정될 수 있다. 테스트 힘이 그런 다음 테스트 도구와 접합부 사이에 인가되어서, 제2 굴곡부의 제1 단부가 변위된다. 제2 센서가 제2 굴곡부의 변위의 측정치를 제공하여서, 제2 굴곡부에서의 테스트 힘이 제2 굴곡부의 알려진 강성을 사용하여 계산될 수 있다.
광 가이드
접합부 테스트를 수행할 때, 테스트의 정확한 사전 정렬 및 설정, 발생에 따른 테스트의 비디오 레코딩 및 육안 검사, 및 완료된 후 접합부 및 테스트 도구의 이후 육안 검사를 허용하도록 충분한 조명을 이용한 테스트 중인 접합부를 조명하는 것이 필요하다.
접합부 테스트 장치는 전형적으로 자유 단부에 광 피팅(light fitting)을 구비하는 가요성 버팀대인 광 버팀대(light stalk)들이 끼워진다. 이러한 것들은 접합부 테스트 장치에 고정되어 테스트편을 조명하는 위치로 이동시킬 수 있다. 그러나, 이러한 방식으로 조명을 제공하는 것은 많은 문제점을 가진다. 광 버팀대들은 부피가 크고 접합부 테스트 장치 작동의 다른 요소와 간섭을 일으킬 수 있다. 광원의 위치는 그림자(shadow)가 있고 비일관적인 조명이 존재함을 필연적으로 의미한다. 광 버팀대는 우발적으로 움직일 수 있고, 그러므로 빈번한 재조정을 요구할 수 있다. 광원의 원격 위치는 조명이 현재 더 일반적으로 되고있는 소형 테스트편(이러한 문맥에서 소형은 20 내지 100 ㎛(미크론)의 크기 범위를 의미함)과 함께 사용하는데 최적화되지 않을 수 있다는 것을 의미한다.
바람직하게, 접합부 테스트 장치는 하나 이상의 광원으로부터의 테스트 도구 팁으로 광을 유도하도록 구성된 테스트 도구에 대해 고정된 하나 이상의 광원을 포함한다.
하나 이상의 광원은 적어도 하나의 가변 강도 광원(variable intensity light source)을 포함할 수 있다.
바람직한 실시예에서, 하나 이상의 광원은 적어도 하나의 발광 다이오드(LED)를 포함한다. 하나 이상의 광원은, 테스트 도구의 원주 주위에 배열되고 광 가이드 내로 광을 방출하도록 구성된 복수의 LED를 포함할 수 있다.
특히 바람직하게, 상기 장치는, 상기 테스트 도구에 대해 고정되고 상기 하나 이상의 광원으로부터 상기 테스트 도구 팁으로 광을 유도하도록 구성된 광 가이드를 포함한다.
테스트 도구 팁을 조명하기 위한 광 가이드의 사용은 특히 소형 테스트편들을 테스트하기 위한 본 발명에 따른 접합부 테스트 장치에 대해 특히 유익할 수 있다. 광 가이드는 또한 "죠오를 구비한" 테스트 도구들과 함께 사용하는데 특히 유익할 수 있다. 예를 들어, CBP 테스트가 테스트를 위해 접합부 주위에 정밀하게 위치되어야만 하는 한 쌍의 죠오를 구비한 테스트 도구를 사용함에 따라서, 광 가이드는 유익하게 테스트를 위하여 테스트 도구 팁과 접합부를 조명할 수 있어, 테스트 전에 테스트 도구를 정확히 위치시키는 것을 용이하게 한다.
광 가이드는 광 가이드 내의 광의 전체 내부 반사에 의해 하나 이상의 광원으로부터 테스트 도구 팁으로 광을 가이드할 수 있다. 광은 광 가이드의 실축형 반투명 또는 투명 물질을 통해 진행할 수 있다. 대안적으로, 또는 추가적으로, 광 가이드는 중공형일 수 있으며, 광은 광 가이드의 내부 반사면들로부터 반사될 수 있다. 유익하게, 광 가이드는 하나 이상의 원격 광원으로부터의 테스트 도구 팁 주위의 작은 영역으로 광을 효율적으로 유도한다. 이러한 것은 저전력 광원이 사용되는 것을 가능하게 하며, 그림자가 없는 고른 조명을 제공할 수 있다.
광 가이드는 테스트 도구 팁에 광을 집중시키도록 구성될 수 있다. 광 가이드는 테스트 도구 팁 주위의 사전 결정된 영역을 조명하도록 구성된 렌즈를 포함할 수 있다. 광 가이드는 테스트 도구 팁을 향하여 테이퍼진다. 광 가이드의 테이퍼진 부분은 테스트 도구 팁쪽으로 향해 광을 유도하도록 구성될 수 있다. 수행될 테스트의 유형 및 조명이 필요한 영역에 의존하여, 상이한 광 가이드가 상이한 조명 패턴을 제공하도록 사용될 수 있다. 광 가이드는 광의 가변 초점화를 제공하도록 서로에 대해 이동 가능한 2개 이상의 부분을 포함할 수 있다.
광 가이드는 테스트 도구 주위에 끼워지도록 구성된 관형체를 포함할 수 있으며, 광 가이드는 광 가이드의 근위 단부로부터 광 가이드의 원위 단부로 광을 유도하도록 구성된다. 특히, 광 가이드는 테스트 도구의 적어도 일부를 둘러쌀 수 있다. 테스트 도구는 광 가이드 안에 끼워질 수 있다. 광 가이드가 테스트 도구 주위에 밀접하게 끼워질 수 있어서 테스트 도구 주위에서 최소 공간을 차지한다. 광 가이드는 테스트 도구의 형상과 일치하도록 형상화될 수 있다. 광 가이드는 테스트 도구의 주위를 완전히 둘러쌀 수 있다. 이러한 것은 테스트 도구 팁이 강한 그림자를 드리우지 않고 테스트 도구 팁 주변을 고르게 조명을 가능하게 한다.
접합부 테스트 장치는 광 가이드의 근위 단부 상의 대응 구조물과 기계적으로 연동하도록 구성된 인터록 구조물을 포함할 수 있다.
바람직한 실시예에서, 테스트 도구 조립체는 로드 셀 카트리지(load cell cartridge)로 지칭될 수 있는 카트리지에 제공될 수 있다. 카트리지는 하우징을 가질 수 있으며, 테스트 도구는 카트리지 하우징에 고정되고 이로부터 연장된다. 카트리지는 유익하게, 접합부 테스트 장치에 장착 가능하고 접합부 테스트 장치로부터 전력을 수신하고 신호를 교환하도록 구성된 착탈식 카트리지일 수 있다.
광 가이드는 카트리지에 고정되는 것에 의해 간접적으로 테스트 도구에 고정될 수 있다. 광 가이드는 카트리지에 영구적으로 고정될 수 있지만, 유익하게 카트리지에 제거 가능하게 고정될 수 있다. 바람직하게, 광 가이드는 기계적인 인터록(interlock)에 의해 카트리지에 고정된다. 예를 들어, 광 가이드는 베이어닛 피팅(bayonet fitting)을 사용하거나 스크루 연결을 사용하여 카트리지에 고정될 수 있다. 대안적으로, 광 가이드는 스크루, 볼트 또는 리벳과 같은 기계적인 고정구를 사용하여 카트리지에 고정될 수 있다.
대안적으로 또는 추가적으로, 광 가이드는 테스트 도구에 직접 고정될 수 있다. 광 가이드는 테스트 도구에 영구적으로 또는 제거 가능하게 고정될 수 있다. 광 가이드는 기계적인 인터록에 의해 테스트 도구에 고정될 수 있다. 예를 들어 광 가이드는 베이어닛 피팅을 사용하거나 스크루 연결을 사용하여 테스트 도구에 고정될 수 있다. 대안적으로, 광 가이드는 스크루, 볼트 또는 리벳과 같은 기계적인 고정구를 사용하여 테스트 도구에 고정될 수 있다.
유익하게, 광 가이드는 도구없이 카트리지 또는 테스트 도구로부터 수동으로 제거될 수 있다. 바람직한 실시예에서, 광 가이드는 수동으로 제거되도록 때때로 카트리지 또는 테스트 도구를 비틀 수 있다.
광 가이드는 성형된 플라스틱 재료로 형성될 수 있다. 유익하게, 광 가이드는 광학 등급의 플라스틱 재료로 형성된다. 예를 들어, 광 가이드는 아크릴로 형성될 수 있다. 광 가이드의 하나 이상의 표면은 고 반사 표면을 제공하도록 연마될 수 있다. 대안적으로 또는 추가적으로, 광 가이드의 하나 이상의 표면은 고 반사 코팅을 포함할 수 있다. 이러한 것은 광 가이드로부터 광의 원하지 않는 누출을 감소시킬 수 있다. 유익하게, 광 가이드의 출사면(exit surface)은 연마되고, 광은 출사면을 통해 테스트 도구 팁을 향해 광 가이드를 빠져나간다. 이러한 것은 원치않는 광의 산란을 감소시킬 수 있다.
하나 이상의 광원은 테스트 도구에 직접 또는 간접적으로 고정될 수 있다. 바람직한 실시예에서, 하나 이상의 광원은 테스트 도구가 또한 고정되는 카트리지에 고정된다. 하나 이상의 광원은 복수의 상이한 광원을 포함할 수 있다. 예를 들어, 복수의 광원은 상이한 색상 또는 강도의 광원을 포함할 수 있다. 하나 이상의 광원은 복수의 동일한 광원을 포함할 수 있다.
접합부 테스트 장치를 위한 카트리지
본 발명의 제2 양태에 따라서, 접합부 테스트 장치를 위한 카트리지를 제공할 수 있다. 바람직하게, 카트리지는 본 발명의 제1 양태의 테스트 도구 조립체를 포함한다. 카트리지는 유익하게, 접합부 테스트 장치에 장착 가능하고 접합부 테스트 장치로부터 전력을 수신하고 신호를 교환하도록 구성된 착탈식 카트리지일 수 있다.
카트리지는 바람직하게 테스트 도구 조립체를 포함하고, 테스트 도구 조립체는 접합부 테스트 동안 접합부와 접촉하도록 구성된 테스트 도구를 포함한다. 카트리지는 테스트 도구 조립체에 결합된 굴곡부, 및 센서를 추가로 포함한다. 센서는 굴곡부에 대한 힘의 인가시에 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위의 측정치를 제공하도록 구성된다.
카트리지는 테스트 도구에 대해 고정된 하나 이상의 광원, 및 테스트 도구에 대해 고정되고 하나 이상의 광원으로부터 테스트 도구팁으로 유도되도록 구성된 광 가이드를 포함할 수 있다.
카트리지 및 광 가이드의 다른 특징부는 본 발명의 제1 양태와 관련하여 전술한 바와 같을 수 있다.
본 발명의 제1 양태의 테스트 도구 조립체, 및 상기 테스트 도구 팁을 조명하도록 구성된 광 가이드를 포함하는 카트리지를 제공하는 것은, 특히 20 내지 100㎛와 같은 작은 지름의 접합부들을 테스트하는데 특히 적합하게 카트리지를 만들 수 있다. 본 발명이 테스트 도구 죠오 분리의 개선 제어 및 테스트 도구 팁의 개선된 조명을 제공할 수 있음에 따라서, 카트리지는 작은 접합부를 테스트하기 위해 정밀하게 제어 가능하다.
힘 측정 방법
제3 양태에 따라서, 본 발명은 접합부 테스트 장치에서 힘을 측정하는 방법을 제공할 수 있으며, 상기 방법은 제2 단부에 대해 이동 가능한 제1 단부를 가지는 굴곡부를 제공하는 단계, 및 변위 센서를 제공하는 단계를 포함한다. 상기 방법은 굴곡부의 제1 단부에 힘을 가하고, 변위 센서를 사용하여 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위를 측정하는 추가 단계를 포함한다. 상기 방법은 측정된 변위를 사용하여 굴곡부 상의 힘을 결정하는 단계를 추가로 포함한다. 상기 방법은 측정된 변위 및 굴곡부의 알려진 강성에 기초하여 굴곡부 상의 힘을 계산하는 단계를 포함할 수 있다.
바람직하게 굴곡부, 센서, 및 접합부 테스트 장치는 본 발명의 제1 양태와 관련하여 전술한 바와 같다.
굴곡부 상의 힘을 계산하는 단계는 유익하게 프로세서 또는 컨트롤러에 의해 수행될 수 있다.
상기 방법은 굴곡부에 알려진 힘을 인가하고 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위를 측정하는 것에 의해 굴곡부의 강성을 결정하는 추가의 단계를 포함할 수 있다.
폐쇄력 측정 방법
제4 양태에 따라서, 본 발명은 접합부 테스트 도구 상에서 죠오들에 대한 폐쇄력 또는 폐쇄 위치를 측정하는 방법을 제공할 수 있으며, 상기 방법은 제2 단부에 대해 이동 가능한 제1 단부를 가지는 굴곡부를 제공하는 단계, 변위 센서를 제공하는 단계, 및 굴곡부의 제1 단부 상에 장착된 구동 메커니즘을 제공하는 단계를 포함한다. 상기 방법은 접합부 테스트 도구의 죠오들을 접합부 주위에 위치시키고, 죠오들을 통해 전달되는 반동력을 접합부가 구동 메커니즘에 인가하도록 구동 메커니즘을 사용하여 테스트 도구의 죠오들에 폐쇄력을 인가하는 추가 단계를 포함한다. 구동 메커니즘이 굴곡부의 제1 단부 상에 장착됨에 따라서, 반동력은 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위를 유발한다.
상기 방법은 변위 센서를 사용하여 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위를 측정하는 단계, 및 측정된 변위를 사용하여 굴곡부 상의 힘을 결정하는 단계를 추가로 포함한다.
상기 방법은 변위 및 상기 굴곡부의 알려진 강성에 기초하여 굴곡부 상의 상기 힘을 계산하는 단계를 포함할 수 있다.
죠오들에 폐쇄력을 인가하는 단계는 죠오들이 접합부와 접촉하도록 폐쇄력을 먼저 인가하는 단계, 및 죠오들이 접합부와 접촉하면, 죠오들을 통해 전달되는 반동력을 접합부가 구동 메커니즘에 인가하도록 구동 메커니즘을 사용하여 죠오들에 추가의 폐쇄력을 인가하는 단계를 포함할 수 있다.
상기 방법은 접합부 테스트를 수행하는 방법, 또는 접합부 테스트를 수행하는 방법의 일부일 수 있다.
바람직하게, 접합부 테스트 도구, 굴곡부, 변위 센서 및 구동 메커니즘은 본 발명의 제1 양태와 관련하여 전술한 바와 같다.
상기 방법은 굴곡부에 알려진 힘을 인가하고 굴곡부의 제2 단부에 대한 굴곡부의 제1 단부의 변위를 측정하는 것에 의해 굴곡부의 강성을 결정하는 추가의 단계를 포함할 수 있다.
굴곡부 상의 힘을 계산하는 단계는 유익하게 프로세서 또는 컨트롤러에 의해 수행될 수 있다. 특히 바람직하게, 컨트롤러는 굴곡부 상의 계산된 힘에 기초하여 구동 메커니즘을 제어하도록 프로그램될 수 있다. 예를 들어, 컨트롤러는 굴곡부 상의 사전 결정된 힘이 측정될 때까지 폐쇄력을 인가하도록 구동 메커니즘을 제어할 수 있다.
바람직하게, 상기 방법은 구동 메커니즘 거리 센서를 사용하여 죠오들의 분리를 측정하는 단계를 포함할 수 있다. 제1 양태와 관련하여 설명된 바와 같이, 구동 메커니즘 거리 센서는 구동 메커니즘에 의해 진행된 선형 또는 각도 거리를 측정하도록 구성된 선형 또는 회전식 인코더일 수 있다.
바람직한 실시예에 따라서, 상기 방법은 테스트 도구의 죠오들에 사전 결정된 폐쇄력을 인가하도록 구동 메커니즘을 제어하고, 그런 다음 죠오들의 분리를 측정하는 단계를 포함할 수 있다. 즉, 폐쇄력은 굴곡부의 제1 단부가 사전 결정된 거리만큼 변위될 때까지 테스트 도구의 죠오들에 인가될 수 있고, 그 지점에서 죠오들의 분리는 구동 메커니즘 거리 센서에 의해 측정된다.
대안적으로, 상기 방법은 죠오들이 사전 결정된 간격에 도달할 때까지 폐쇄력을 인가하도록 구동 메커니즘을 제어하는 단계, 및 이어서 테스트 도구에 의해 접합부 상에 가해지는 폐쇄력을 계산하도록 굴곡부 상의 힘을 측정하는 단계를 포함할 수 있다. 이러한 것은 접합부를 형성하는 재료의 성질을 평가하는 유용한 방법을 제공할 수 있다. 예를 들어, 죠오들이 예상되는 것보다 적은 폐쇄력이 가해지는 사전 결정된 간격으로 폐쇄되면, 이러한 것은 접합부가 예상보다 작거나, 또는 접합부 재료가 예상보다 약하고 및/또는 낮은 밀도인 것을 나타낼 수 있다.
상기 방법은 테스트 도구 팁 상으로 광을 유도하도록 테스트 도구에 대해 고정된 광원을 사용하는 단계를 포함할 수 있다. 바람직하게, 상기 방법은 테스트를 위해 죠오들을 접합부 주위에 위치시키는 동안 한 쌍의 죠오를 가지는 도구 팁 상으로 광을 유도하는 단계를 포함할 수 있다.
본 발명의 한 양태를 참조하여 기술된 특징들은 본 발명의 다른 양태들에 동등하게 적용될 수 있다. 특히, 본 발명의 제1 양태와 관련하여 기술된 특징들이 본 발명의 제2 양태에 적용될 수 있고, 본 발명의 제3 및 제4 양태와 관련하여 설명된 특징들이 서로 적용될 수 있다는 것이 명백하여야 한다.
본 발명의 실시예들이 첨부된 도면을 참조하여 단지 예의 방식으로 상세히 설명될 것이다:
도 1a는 본 발명과 함께 사용될 수 있는 접합부 테스트 장치의 단순화된 정면도;
도 1b는 접합부 테스트 장치의 테스트 도구 카트리지의 도구 장착 브래킷에 의해 지지되는 테스트 도구를 도시한 단면도;
도 1c는 도구 장착 브래킷에 클램핑된 테스트 도구를 도시한 사시도;
도 1d는 백래시 방지 실린더(anti-backlash cylinder)를 포함하는 접합부 테스트 장치의 테스트 도구 장착부 및 구동부의 사시도;
도 1e는 접합부 테스트 장치의 테스트 도구 카트리지의 사시도;
도 1f는 접합부 테스트 장치의 사시도;
도 2는 본 발명의 바람직한 실시예에 따른 접합부 테스트 장치의 주요 구성 요소를 도시하는 개략 단면도;
도 3은 사용시에 도 2의 접합부 테스트 장치에 의해 인가되는 힘을 예시하는 개략도;
도 4는 사용시에 도 2의 접합부 테스트 장치가 겪는 반동력을 예시하는 개략도;
도 5는 사용시에 도 2, 도 3 및 도 4의 접합부 테스트 장치에 의해 인가된 힘을 예시하는 그래프;
도 6a는 본 발명의 바람직한 제1 실시예에 따른 단일 홀 효과 센서의 사시도;.
도 6b는 본 발명의 바람직한 제2 실시예에 따른 듀얼 홀 효과 센서의 사시도;
도 6c는 도 3a 및 도 3b의 홀 효과 센서로부터의 예시적인 출력 신호를 예시하는 그래프;
도 7은 본 발명의 바람직한 실시예에 따른 접합부 테스트 장치의 일부의 사시도;
도 8a는 광 가이드가 제거된, 본 발명의 양태에 따른 카트리지의 저면 사시도;
도 8b는 광 가이드가 부착된, 본 발명의 양태에 따른 카트리지의 저면 사시도;
도 9a는 도 8b의 광 가이드의 단면도; 및
도 9b는 도 9a의 광 가이드의 사시도.
접합부 테스트 장치
도 1a는 본 발명에 따른 접합부 테스트 장치의 도면이다. 상기 장치는 자체가 접합부 테스트 장치(12)의 본체에 장착된 테스트 도구 카트리지(11)에 장착된 테스트 도구(10)를 포함한다. 테스트 도구 아래에서, 접합부 테스트 장치는 테스트될 샘플 또는 기판(100)이 장착될 수 있는 전동 스테이지 테이블(motorized stage table)(13)을 포함한다.
카트리지(11)에 장착된 테스트 도구(10)는 전단 도구, 푸시 도구 또는 당김 도구일 수 있으며, 상이한 테스트를 수행하기 위해 스위칭될 수 있다. 전단 도구는 예를 들어 기판으로부터 접합부를 전단하도록 보드를 가로질러 수평으로 힘을 인가하는 것에 의해 사용되며, 푸시 도구는 예를 들어 기판의 구성 요소에 수직 압축력을 인가하도록 사용된다. 이러한 도구들에 의해 인가되는 힘이 측정된다. 당김 도구는 예를 들어 회로 기판으로부터 리드를 당기도록 인가되는 수직력으로, 구성 요소와 샘플 회로 기판 사이에 부착된 전기 리드를 후킹하도록 사용되는 후크를 도구의 저부에 가지며, 회로 기판으로부터 리드를 당기는데 요구되는 힘을 측정할 수 있다. 적절한 전단 도구의 예는 그 내용이 참조에 의해 본원에 통합되는 미국 특허 제6,078,387호에 기재되어 있다. 적절한 당김 도구의 예는 그 내용이 참조에 의해 본원에 통합되는 미국 특허 제6,310,971호에 기재되어 있다.
도 1b 및 도 1e에 도시된 바와 같이, 테스트 도구(10)는 전형적으로, 한쪽 단부에서 스크루(73)들에 의해 카트리지(11)에 고정된 외팔보 아암(72, 74)들을 가지는 도구 장착 브래킷(70)에 의해 카트리지(11)에 부착되고, 아암(72, 74)들의 자유 단부는 클랩프(76)를 지지한다. 도 1c에 도시된 바와 같이, 도구(10)는 클램프 스크루(78)에 의해 클램프(76)에서 클램핑된다. 그러나, 테스트 도구를 카트리지 장착 플레이트에 부착하기 위한 임의의 적절한 수단은 본 발명에 따른 시스템에서 사용될 수 있다.
도 1d는 테스트 도구 카트리지(11)가 그 안으로 슬라이되고 그런 다음 하나 이상의 스크루(22)를 사용하여 고정되는 카트리지 장착 플레이트(21) 상의 유지 채널(71)을 도시한다. 이러한 디자인은 상이한 테스트 도구를 가지는 상이한 테스트 도구 카트리지가 사용자가 수행하는 테스트의 형태에 적절한 것으로서 접한 테스트 장치와 함께 사용되는 것을 허용한다. 카트리지 장착 플레이트(21)는, 기판으로부터 솔더 볼(solder ball)을 전단하거나 또는 기판으로부터 리드를 당기는데 요구되는 힘을 나타내는 데이터와 같은, 데이터를 카트리지(11)의 트랜스듀서로부터 PC로 전달하기 위해 테스트 도구 카트리지(11) 상의 전기 커넥터와 결합하는 데이터 포트(23)를 포함한다. 접합부 테스트 장치를 위한 교환 가능한 테스트 도구 카트리지 디자인은 종래에 널리 공지되어 있다. 예를 들어, 25 Faraday Road, Rabans Lane Industrial Area, Aylesbury, Buckinghamshire, United Kingdom에 소재한 Dage Holdings Limited로부터 입수 가능한 Dage 4000 다목적 접합부 테스트 장치를 참조한다.
카트리지(11)는 스테이지 테이블(13) 상의 기판(100)의 표면에 접선인 z 방향으로 이동 가능하다. 이러한 것은 테스트 도구(10)가 테스트 중인 기판(100)에 대해 수직으로 위치되는 것을 가능하게 하여서, 테스트 동안 특정 접합부에 접촉할 수 있다. 기판(100)의 평면에 평행한 방향으로의 테스트 도구(10)와 테이블(13) 사이의 상대적인 x-y 이동은 전형적으로 테이블(13)을 이동시키는 것에 의해 달성된다. x 및 y 로의 테이블(13)의 이동은 또한 상기된 Dage 4000 다목적 접합 테스터와 같은 종래 기술에서 널리 공지된 바와 같이 리드 스크루 및 너트, 볼 스크루 및 너트, 또는 적절한 벨트 구동 메커니즘(도시되지 않음)을 통해 테이블(13)에 결합된 적절한 서보 모터 또는 스테퍼 모터를 사용하여 달성된다.
또한, 테이블(13)의 이동을 제어하는 것을 허용하는 2개의 조이스틱 컨트롤(14, 15), 및 키보드(16)를 포함하는 컨트롤 디바이스가 도 1a 및 도 1f에 도시되어 있다. 디스플레이(17), 테스트 중인 기판(100)을 조명하기 위한 조명(18), 및 테스트 도구(10)의 정확한 위치 선정을 돕는 현미경이 또한 도시되어 있다. 이러한 특징부들은 또한 모두 앞서 언급된 Dage 4000 다목적 접합 테스터와 같은 종래 기술에서 널리 공지되어 있다.
도 1d는 장착 플레이트(21) 및 본체(25)에 대한 그 연결부들을 도시한다. 전술한 바와 같이, 테스트 도구(도 1d에 도시되지 않음)는 테스트 중인 기판을 향하거나 또는 기판으로부터 멀어지도록 이동하여야만 한다. 이러한 것은, 본 명세서에서 z 축 방향 또는 축 방향으로서 지칭되는, 기판을 항하거나 이로부터 멀어지는 방향으로 디바이스의 본체(25)에 대해, 테스트 도구(10)가 부착된 카트리지 장착 플레이트(21)를 이동시키는 것에 의해 달성된다. 카트리지 장착 플레이트(21)는 스크루(75)를 사용하여 이동 블록(24)에 견고하게 결합된다. 이동 블록(24)은 서보 모터 또는 스테퍼 모터(26)에 의해 구동되는 볼 스크루(또는 리드 스크루) 및 너트 및 너트 블록(도시되지 않음)을 통해 본체(25)에 결합된다.
백래시의 문제를 제거하기 위해, 미국 특허 제9,170,189호에 기술된 백래시 방지 메커니즘이 포함될 수 있다. 이러한 메커니즘은 도 1d에 도시되어 있고, 바람직하게 공압 피스톤(27) 및 실린더(28)를 포함한다.
홀 효과 센서를 사용한 접합부 테스트 장치
도 2에 개략적으로 도시된 바와 같이, 접합부 테스트 장치의 제1 실시예(200)는 한 쌍의 대향 죠오(50)를 가지는 당김 테스트 도구(40)를 사용하여 당김 테스트를 수행하도록 구성된다. 접합부 테스트 장치는 수직축을 따르는 모터의 이동을 허용하도록 포개져 구성되는 2개의 구불구불한 굴곡부(80)의 제1 단부 상에 장착된 기어드 모터(60)를 포함한다. 굴곡부들의 제2 단부는 표면(90)에 고정되어서, 각각의 굴곡부의 제1 단부는 그 고정된 제2 단부에 대해 수직축을 따라서 이동 가능하다. 모터가 두 굴곡부에 장착되면 수직축을 따르는 모터의 이동은 동일한 거리만큼 두 굴곡부의 제1 단부를 변위시킨다.
지름을 이루는 디스크 자석(110)은 굴곡부(80)들의 제1 단부에 장착되며, 그 극성들은 굴곡부의 제1 단부가 따라서 움직일 수 있는 축과 정렬된다. 홀 효과 센서(도시되지 않음)는 도시된 바와 같이 자석의 전방 또는 후방의 수직 평면에서 자석(110)에 인접하여 위치된다. 홀 효과 센서는 굴곡부(80)들의 제2 단부에 대해 고정, 즉 움직일 수 없으며, 센서는 프로세서(도시되지 않은)에 출력 전압을 제공하도록 구성되며, 출력 전압의 크기는 센서에서의 자기장에 따라서 변한다.
모터(60)는, 모터 아래로 돌출하고 모터의 수직 이동축을 따라서 놓인 나사 리드 스크루(120)를 회전시키도록 구성된다. 리드 스크루에는 레버(140)의 제1 단부에 의해 회전하는 것이 방지되는 너트(130)가 장착된다. 너트가 회전이 방지됨에 따라서, 모터에 의한 리드 스크루의 회전은 리드 스크루를 따라서 너트를 수직으로 이동시킨다.
레버(140)의 제2 단부는 고정 선회 지점(145), 및 콜릿(160)의 상부면과 접하도록 배열된 캠 표면(150)을 포함한다. 콜릿은 콜릿 복귀 스프링(170)에 의해 윗 쪽으로 편향되고 캠 표면이 형상화되어서, 선회 지점을 중심으로 하는 레버의 아래 방향으로의 회전은 콜릿 복귀 스프링에 대해 아래쪽으로 작용하는 힘을 캠이 콜릿에 부과하도록 한다.
콜릿(160)이 원통형이며, 수직으로 배치된 테스트 도구(40) 주위에서 동축으로 배열되어서, 콜릿은 테스트 도구를 둘러싼다. 콜릿의 내경이 테스트 도구 샤프트(180)의 지름보다 큼에 따라서, 콜릿은 테스트 도구 샤프트의 수직축을 따라서 이동 가능하다. 테스트 도구의 죠오(50)들은 자연적으로 따로, 즉 바깥을 향해 편향되지만, 죠오들의 확장된 부분(190)이 죠오들의 팁을 향해 확장되는 모따기된 외부면(195)을 포함하여서, 확장부의 지름은 콜릿의 내경보다 크다. 콜릿의 하단부는 죠오들의 모따기된 외부면(195)과 협동하도록 구성된 모따기된 내부면(210)을 포함 하지만, 모따기된 내부면(210)의 지름은 확장된 부분(190)보다 작다.
표면(90)을 포함하는 도 2에 도시된 전체 장치는 기판(100)에 대해 이동 가능하다. 바람직한 실시예에서, 예를 들어, 도 2에 도시된 장치는 도 1a 및 도 1f에 도시된 바와 같이 테스트 도구 카트리지(11) 내부에 제공될 수 있다.
폐쇄력 측정
사용시에, 사용자는 당김 테스트 도구(40)가 테스트될 접합부 바로 위에 있도록 장치(200)를 위치시키기 전에 스테이지(도시되지 않음) 상에 테스트하기 위한 접합부를 지닌 기판(100)을 장착하는 것에 의해 접합부 테스트를 수행할 수 있다.
제1 구성
제1 구성(도시되지 않음)에서, 너트(130)가 리드 스크루(120)의 상단부로 이동되어서, 캠(150)이 콜릿 복귀 스프링(170)에 대해 작용하지 않는다. 따라서, 콜릿 복귀 스프링은 완전히 연장되고, 콜릿(160)은 테스트 도구 샤프트(180)의 상단을 향하여, 즉 테스트 도구의 확장된 부분(190)으로부터 멀리 편향된다. 이러한 것은 콜릿을 테스트 도구의 확장된 부분(190)과 접촉하지 않게 이동시켜서, 테스트 도구의 죠오(50)들이 떨어져 움직일 수 있다. 이러한 구성에서, 테스트 도구 죠오(50)들은 검사될 수 있고, 필요하면 세정될 수 있다.
제2 구성
테스트 도구(40)를 테스트될 접합부 위에서 아래로 이동시키기 전에, 장치는, 죠오 분리가 테스트될 접합부(101)의 지름보다 약간 클 때까지 죠오(50)들이 폐쇄되는 도 3에 도시된 제2 구성을 채택한다. 이러한 것은 기판(100)상의 다른 접합부들과 접촉하지 않고, 테스트 도구 죠오들이 테스트될 접합부의 평면 내로 아래쪽으로 이동되는 것을 허용한다.
제2 구성을 채택할 때 시스템의 핵심적인 힘이 도 3에 도시되어 있다.
제2 구성을 채택하기 위해, 모터(60)가 사전 결정된 회전수만큼 리드 스크루(120)를 회전시켜서, 너트(130)는 사전 결정된 거리만큼 리드 스크루를 아래로 이동시킨다. 이러한 것은 선회 지점(145)을 중심으로 하는 레버(140)의 회전을 유발하여서, 캠 표면(150)은 아래 방향으로 콜릿(160)에 선형 구동력(도 3에서 FD로서 지시됨)을 인가한다. 이러한 구동력은 콜릿 복귀 스프링(170)에 대해 작용하고 콜릿(160)을 테스트 도구 샤프트(180) 아래로 이동시켜서, 콜릿의 모따기된 내부면(210)은 테스트 도구(40)의 모따기된 외부면(195)과 결합한다. 콜릿의 내경이 테스트 도구의 확장된 부분의 지름보다 작음에 따라서, 콜릿과 테스트 도구의 모따기된 표면들은 콜릿의 하향 이동을 테스트 도구 죠오들 상에서 안쪽으로 작용하는 폐쇄력(도 3의 FC로서 지시됨)으로 전환하고, 이러한 것은 서로 죠오들을 강제하도록 작용한다. 그러므로, 리드 스크루의 사전 결정된 수의 회전은 죠요들이 사전 결정된 간격으로 폐쇄하도록 죠오들에 대한 사전 결정된 폐쇄력의 인가를 유발한다.
죠오(50)들이 접합부를 또는 서로 접촉하지 않기 때문에, 제2 구성을 채택할 때, 죠오들은 그 폐쇄에 저항하는 임의의 충분한 힘을 겪지 않는다(콜릿 복귀 스프링의 힘 및 죠오(50)들의 개방 편향이 진행 중인 다른 힘과 비교하여 매우 낮음에 따라서). 그러므로, 모터(60)가 굴곡부(80)들의 제1 단부 상에 정지된 채로 있는 반면에, 리드 스크루(120) 및 너트(130)는 저항없이 그 사전 결정된 거리만큼 진행한다. 굴곡부들이 변위되지 않기 때문에, 자석은 정지 상태로 유지되고, 홀 효과 센서(도시되지 않음)의 출력은 0 볼트인 채로 있다.
제3 구성
테스트 도구(40)의 팁이 테스트될 접합부(101)와 동일한 평면 내에 위치되면, 장치는 테스트 도구 죠오(50)들이 접합부와 접촉하여 파지하는 제3 구성을 채택한다. 제3 구성은 도 4에 개략적으로 도시되고, 전술한 제2 구성과 동일한 방식으로 채택된다.
제3 구성으로 이동하기 위하여, 테스트 도구 죠오(50)들은 너트(130)가 리드 스크루 아래로 진행하도록 리드 스크루(120)를 회전시키기 위해 모터(60)를 제어하는 것에 의해 접합부 주위에서 폐쇄된다. 이러한 것은 선회 지점(145)을 중심으로 레버(140)의 회전을 유발하여서, 캠 표면(150)은 콜릿(160)에 아래 방향으로의 선형 구동력(FD)을 인가한다. 이러한 구동력은 콜릿 복귀 스프링(170)에 거슬러 작용하고, 콜릿(160)을 테스트 도구 샤프트(180) 아래로 더욱 이동시켜서, 콜릿의 모따기된 내부면(210)은 테스트 도구 죠오(50)들의 확장된 부분(190)에 대해 작용한다. 콜릿 및 테스트 도구의 모따기된 표면들은 폐쇄력(FC)으로서 죠오(50)들에 구동력을 전달하여서, 콜릿이 테스트 도구 샤프트(180) 아래로 더욱 이동될수록, 더욱 큰 폐쇄력이 죠오(50)들에 인가된다.
도 5는 너트(130)가 리드 스크루(120) 아래로 진행함에 따라서 홀 효과 센서에 의해 측정된 힘의 예를 도시한다. 리드 스크루 아래로 너트에 의해 이동된 거리가 멀수록, 죠오(50)들의 간격이 더욱 작아져서, 죠오 분리는 도 5에서 오른쪽을 향해 감소한다.
도 5는 죠오들이 접합부를 접촉하는 지점(500)까지 테스트 도구 죠오(50)들과 접합부 사이에 힘이 없고, 그러므로 홀 효과 센서가 굴곡부(80)들 상의 힘을 측정하지 않는다는 것을 도시한다.
테스트 도구 죠오(50)들이 접합부의 지름과 동일한 죠오 분리로 폐쇄되면, 죠오들은 접합부를 접촉하고 파지하기 시작한다. 그러나, 죠오들이 접합부와 접촉하면, 추가의 폐쇄력의 인가는 접합부 자체로부터의 저항을 충족시킨다. 죠오들에 의해 압착되는 것에 대한 이러한 저항은 접합부와 죠오들 사이의 반동력(도 4에서 FR로 지시됨)을 생성하고, 반동력은 폐쇄력에 대한 반대 방향으로 죠오들 상에서 바깥쪽으로 작용한다. 이러한 반동력은 콜릿(160)을 통해 다시 전달되어서, 반동력은 콜릿 복귀 스프링(170)과 동일한 방향으로 작용하고, 캠(150) 및 레버(140)의 추가적인 회전에 저항한다. 이러한 것은 모터(60)가 리드 스크루(120)를 계속 회전시키는 동안, 반동력이 너트(130)의 추가 이동에 저항한다는 것을 의미한다. 그러므로, (실질적으로 고정된) 리드 스크루 아래로 너트를 오직 누르는 대신에, 리드 스크루의 추가 회전은 너트를 통해 리드 스크루를 위쪽으로 변위시키기 시작한다. 리드 스크루의 이러한 상향 이동은 또한 모터(60)를 변위시켜서, 굴곡부(80)들의 제1 단부가 편향된다.
굴곡부(80)의 제1 단부의 편향은 도 4에 나타낸 바와 같이 홀 효과 센서에 대해 자석(110)을 변위시킨다. 이러한 변위는 홀 효과 센서(도시되지 않음)가, 자석이 변위된 거리에 직접 비례하는 자기장의 변화를 감지한다는 것을 의미한다. 자석 변위가 굴곡부들의 제1 단부의 변위와 동일함에 따라서, 홀 효과 센서는 그 제2 단부들에 대한 굴곡부들의 제1 단부의 변위의 측정치를 프로세서(도시되지 않음)에 제공한다.
굴곡부(80)들의 강성이 알려져서, 프로세서는 측정된 변위에 기초하여 굴곡부들 상의 힘(FR)을 계산할 수 있다.
도 5에 도시된 바와 같이, 테스트 도구 죠오(50)들이 접합부(101)와 접촉하면, 반동력(FR)이 콜릿 및 레버를 통해 모터로 전달되어서, 굴곡부(80)들은 위쪽으로 변위된다. 굴곡부(80)들의 변위는 홀 효과 센서에 의해 감지되고, 굴곡부들 상에서의 반동력(FR)은 굴곡부들의 알려진 강성에 기초하여 프로세서에 의해 계산된다. 도 5에 도시된 바와 같이, 굴곡부(80)들 상에서의 반동력(FR)은 죠오들 사이의 거리가 감소함에 따라서 선형으로 증가한다. 굴곡부들에 작용하는 반동력의 크기는 레버 및 콜릿의 힘 증폭 효과로 인해 죠오들에서 겪는 폐쇄력보다 작도록 알려졌다. 그러므로, 테스트 도구에 의해 접합부에 인가된 폐쇄력(FC)은 시스템의 레버 및 마찰력의 영향을 고려하여, 프로세서에 의해 계산될 수 있다. 그러므로, 이러한 장치에서의 굴곡부 및 홀 효과 센서는 죠오(50)들과 테스트되는 접합부 사이에 인가된 폐쇄력을 측정하도록 사용될 수 있다.
도 5에 도시된 바와 같이, 폐쇄력(FC)은 또한 죠오들 사이의 거리가 감소함에 따라서 반동력(FR)과 함께 선형으로 증가한다.
피드백 신호를 프로세서에 제공하는 것에 의해, 홀 효과 센서로부터의 측정치는 장치를 제어하도록, 그러므로 접합부 테스트 동안 접합부에 인가되는 폐쇄력을 제어하도록 사용될 수 있다. 이러한 것은 유익하게 프로세서가 각각의 테스트에서 접합부에 원하는 폐쇄력을 일관되게 인가하거나, 또는 죠오들을 사전 결정된 거리까지 폐쇄하고 그런 다음 결과적인 폐쇄력을 측정하는 것을 가능하게 한다.
홀 효과 센서
도 6a는 본 발명에서 사용하는데 적절한 홀 효과 센서(220) 및 지름을 이루는 디스크 자석(110)의 제1 실시예를 도시한다. 상기의 발명의 개요에 기재된 바와 같이, 홀 효과 센서는 출력 전압을 제공하며, 출력 전압의 크기는 센서가 겪는 자기장에 의존한다. 그러므로, 홀 효과 센서에 대한 자석의 변위는 센서에서 자기장에서의 변화를 생성하고, 이는 홀 효과 센서로부터의 전압 출력 신호의 변화로서 도시된다.
홀 효과 센서는 자석의 이동 평면 밖으로 자석에 인접하여 안치되도록 배열된다. 홀 효과 센서의 감지면(230)은 자석을 향하도록 배열되어서, 센서에 대한 자석의 변위는 감지면(230)이 겪는 자기장에서의 변화를 유발한다. 북극(N) 및 남극(S)은 자석이 축을 따라서 이동할 때 센서가 겪는 자기장의 변화를 최대화하기 위해 자석의 이동축(화살표로 표시됨)과 정렬된다.
도 6b에 도시된 바와 같이, 제2 실시예에서, 2개의 홀 효과 센서(220)가 사용되며, 센서들은 자석(110)의 양측에 서로 대향하여 배열된다. 2개의 센서의 출력을 결합하는 것에 의해, 출력 신호의 크기가 증가되며, 그러므로 장치의 감도를 증가시킨다.
도 6c에 도시된 바와 같이, 도 6a의 단일 센서로부터의 출력 전압 신호(250) 및 도 6b의 듀얼 센서들로부터의 출력 전압 신호(300)는 예를 들어 2 mm(도 6c에서 0 내지 1.8 mm)까지의 짧은 거리에 걸쳐서 자석 변위 거리와의 높은 선형 상관관계(높은 R2 값에 의해 표시된 바와 같이)를 보이며, 작은 변위가 고도의 정확도로 측정되는 것을 가능하게 한다. 심지어 단일 홀 효과 센서의 출력은 밀리미터 당 수 볼트만큼 달라지는 것으로 또한 도시되며, 약한 전압 신호를 증폭할 필요없이 용이한 측정을 허용한다. 출력 신호의 이러한 정확성 및 크기는 홀 효과 센서를 본 발명과 함께 사용하는데 매우 적합하게 만든다.
홀 효과 센서(220)들은 자석(110)과 센서들 사이의 영구 오프셋을 보상하도록 교정될 수 있지만, 도 6a 및 도 6b에 도시된 바람직한 실시예에 따라서, 자석의 중심은 자석이 제로 변위에 있을 때 홀 효과 센서(들)의 중심과 정렬된다. 이러한 구성에서, 제로 변위에서, 홀 효과 센서는 센서에 대한 자석의 대칭으로 인해 자석의 이동축을 따라 제로의 순수 자기장을 경험한다. 어느 방향으로든 축을 따르는 자석의 변위는 이러한 자기장을 변경시킬 것이며, 그래서 홀 효과 센서로부터 넌제로 출력 전압을 생성할 것이다.
장치 예
도 7은 카트리지(11)(도시되지 않음) 내에 수용되도록 구성된 본 발명의 접합부 테스트 장치의 바람직한 실시예(350)를 도시한다. 도 7에 도시된 장치(350)는 당김 도구(400)와 접합부(도시되지 않음) 사이에 가해지는 폐쇄력을 측정하도록 구성된다.
장치(350)는 2개의 접혀진 빔 굴곡부(380)의 공유된 제2 단부(370)가 견고하게 부착되는 일체형 금속 골격(360)을 포함한다. 굴곡부들의 제1 단부(390)는 프레임(410)에 의해 기어드 전동기(405)에 견고하게 부착된다. 프레임과 모터는 서로 결합되고, 골격(360)에 대해 이동 가능하여서, 모터의 임의의 변위는 그 제2 단부(370)에 대한 굴곡부들의 제1 단부(390)의 변위로 이어진다. 서로 인접한 굴곡부(380)의 구성으로 인해, 굴곡부들은 테스트 도구(400)의 축과 정렬되는 단일 축(도 7에서 화살표로 도시된)을 따라 변위될 수 있다. 그 북극 및 남극이 굴곡부(380)들의 이동축과 정렬되도록 지름 방향으로 자화된 디스크 자석(415)이 프레임(410)에 장착된다. 자석(415)이 프레임(410)에 견고하게 부착되어서, 프레임의 임의의 변위가 또한 자석을 변위시킨다.
2개의 홀 효과 센서(425)는 인쇄 회로 기판(435) 상에 장착되어서, 센서의 출력 전압 신호가 결합되어 인쇄 회로 기판에 전달된다. 인쇄 회로 기판은 프레임(410)으로부터 분리되며, 골격(360) 및 굴곡부(380)의 제2 단부(370)에 상대적인 위치에 고정된다. 홀 효과 센서들이 자석(415)의 양쪽 측면 상에 서로 마주하도록 배열되어서, 센서들 사이의 자석의 이동은 홀 효과 센서들에 의해 감지된 자기장에서의 변화를 유발한다. 이러한 것은 센서들의 전압 출력 신호에서의 변경을 유발한다.
모터(405)에 의해 회전 가능한 나사형 리드 스크루(420)는 모터(405)의 외부로 돌출하고, 테스트 도구(400)와 동일한 축을 따라서 배치된다. 너트(430)가 리드 스크루에 장착된다. 너트(430)의 일부가 프레임(410)과 슬라이딩 가능하게 결합되어서, 모터에 의한 리드 스크루의 회전은 리드 스크루의 회전 방향에 의해 결정되는 방향으로 리드 스크루를 따라서 너트를 슬라이드시킨다. 너트(430)는 레버(440)의 제1 단부와 결합되고, 그 제2 단부는 선회 지점(445)과 회전 가능하게 결합된다. 선회 지점(445)은 골격(360)에 대해 고정된다. 레버의 제2 단부는 슬리브(460)의 상부면에 접하도록 배열된 캠 표면(450)을 포함한다.
슬리브(460)는 원통형이며, 테스트 도구(400)를 둘러싼다. 슬리브는 테스트 도구(400) 주위에 배열된 원통형 세라믹 칼라(470)를 포함하고, 전체 슬리브(460)는 테스트 도구에 대해 그리고 그 축을 따라서 슬라이딩 가능하게 이동 가능하다. 슬리브는 굴곡부(380)들에 부착되지 않아서, 슬리브의 이동은 굴곡부들를 직접 편향시키지 않는다.
당김 테스트 도구(400)는 회전 가능하지만, 골격(360)에 대하여 적소에서 고정된다. 테스트 도구의 외부면은 세라믹 칼라(470)와 테스트 도구의 팁 사이에 배치된 확장된 부분을 포함하며, 테스트 도구의 죠오들은 자연적으로 개방 위치로 편향된다. 세라믹 칼라의 지름이 테스트 도구의 확장된 부분의 지름보다 작아서, 테스트 도구의 팁을 향한 슬리브와 칼라의 움직임은 죠오들를 서로 압박하는 폐쇄력을 생성한다.
장치(350)는 당김 테스트 도구(400)의 죠오들에 의해 접합부에 인가된 폐쇄력을 측정하는데 사용될 수 있다. 도 7에 도시된 장치(350)의 작동은 도 2 내지 도 4와 관련하여 설명된 바와 같으며, 슬리브(460) 및 세라믹 칼라(470)는 도 2 내지 도 4와 관련하여 기술된 콜릿을 대신한다.
도 7에 도시된 장치(350)는 더욱 큰 제2 굴곡부의 제1 단부 상에 선택적으로 장착될 수 있다. 골격(360), 그러므로 테스트 도구(400)가 제2 굴곡부에 대해 고정식으로 고정되면, 도구과 접합부 사이에서의 테스트 힘의 인가는 제2 굴곡부의 제1 단부의 변위로 이어질 것이다. 제2 자석은 제2 굴곡부의 이동 가능한 제1 단부에 장착될 수 있고, 제2 홀 효과 센서는 제2 굴곡부의 고정된 제2 단부에 대해 고정될 수 있다. 그러므로, 제2 홀 효과 센서에 의한 제2 자석의 변위의 측정은 테스트 도구와 테스트될 접합부 사이에 인가된 테스트 힘을 측정하도록 사용될 수 있다.
도 7에 도시된 전체 장치는 바람직하게 도 1a 및 도 1f에 도시된 바와 같이 테스트 도구 카트리지(11) 내부에 제공된다.
광 가이드를 이용한 카트리지 기반 조명
본 발명의 실시예에서, 육안 검사 및 비디오 또는 사진 기록을 위한 접합부 테스트의 조명을 개선하기 위하여, 테스트 도구 주위에 위치된 복수의 발광 다이오드(LED)가 카트리지에 제공된다. 도 8a는 도 1b 내지 도 1f를 참조하여 기술된 방식으로 카트리지 장착 플레이트에 고정된 당김 테스트 도구(1110)를 포함하는 본 발명의 한 실시예에 따른 카트리지(1111)를 도시한다. 테스트 도구(1110)는 대체로 원통형이다. 복수의 LED(1122)가 장착되는 인쇄 회로 기판(PCB)(1120)이 카트리지에 고정되고 테스트 도구(1110) 주위로 연장된다. 카트리지의 하우징의 일부는 PCB(1120)를 도시하도록 도 8a에서 제거된다. LED들은 테스트 도구 주위에 링을 형성한다. LED들은 다양한 밝기를 갖도록 제어될 수 있으며, 서로 다른 색상을 가질 수 있다.
LED들로부터의 광을 보다 효율적으로 사용하고 테스트 도구가 테스트 장소에서 그림자를 드리우는 것을 방지하기 위하여, 광 가이드가 테스트 도구 주위에 고정되어, LED에 의해 방출되는 광을 포착하여 테스트 장소, 및 테스트 도구의 팁 주위에서 집중시킨다.
도 8b는 하우징의 저부 플레이트(1124)가 PCB(1120) 위에 고정된 도 8a의 카트리지를 도시한다. 관형 광 가이드(1130)가 카트리지에 장착된다. 광 가이드(1130)는 LED(1122)들에 인접하여 위치된 근위 단부, 및 테스트 도구팁에 근접한 원위 단부를 가진다. 광 가이드(1130)는 베이어닛 피팅을 사용하여 카트리지 하우징의 저부 플레이트(1124)에 고정되어서, 테스트 도구 위에 간단히 배치되어 적소에서 록킹되도록 손으로 회전될 수 있다. 광 가이드는 역작업을 수행하는 것에 의해 카트리지로부터 분리될 수 있다. 도시된 실시예에서, 광 가이드는 그 측벽에 제공되는 한 쌍의 슬롯(1132)을 가지며, 이러한 것은 카트리지로부터 광 가이드를 제거하여야만 함이 없이 도구가 광 가이드 내에서 테스트 도구를 결합하는 것을 가능하게 한다. 이러한 것은 일부 유형의 테스트 도구에는 필요하지만, 다른 유형의 테스트 도구에는 필요하지 않을 수 있다.
LED(1122)로부터 방출된 광은 광 가이드(1130)의 근위 단부로 들어가고, 전체 내부 반사에 의해 광 가이드의 측벽을 통해 출사되는 것이 방지된다. 광 가이드의 측벽은 최소의 광 손실을 보장하도록 고 반사 코팅을 구비할 수 있다. 광 가이드는 그 원위 단부에 광이 빠져 나가는 출사면(1136)을 가진다. 광 가이드는 테스트 도구 팁에서 광을 유도하기 위해 그 원위 단부에서 테이퍼진다.
LED(1122)들은 조절 가능한 밝기를 가질 수 있다. 이러한 것은 테스트중인 샘플들이 서로 다른 밝기 조명을 요구할 수 있음에 따라서 유익하다. 이 실시예에서, LED들의 밝기는 DC 전압의 아날로그 제어를 사용하여 제어된다. 이러한 것은 노이즈를 발생시킬 수 있는 변조가 테스트 도구의 적절한 작동을 방해하기 때문에 LED를 제어하기 위해 전압의 보다 일반적인 디지털 변조와 다르다. LED들은 또한 테스트중인 상이한 샘플들에 적합하도록 사용될 수 있는 상이한 컬러를 방출하는 LED들을 포함할 수 있다.
도 9a 및 도 9b는 테스트 도구로부터 제거된 광 가이드를 더욱 상세히 도시한다. 도 9a는 광 가이드(1130)의 단면도이다. 광 가이드는 대체로 관형이고, 아크릴로 형성된다. 유리 또는 다른 광학 등급 플라스틱과 같은 다른 광학 등급 재료가 사용될 수 있다. 광 가이드는 중간 섹션(1135)에서 약 4 mm의 벽 두께를 가지지만, 카트리지와 결합하는 근위 단부(1137)에서 더욱 넓고, 광이 광 가이드를 빠져 나가는 원위 단부(1139)에서 더욱 좁다. 광 가이드는 광을 테스트 도구 팁을 향해 광을 유도하도록 원위 단부에서 테이퍼진다. 광 가이드는 원거리 단부에서 내부 거울면(1134)을 가지며, 이는 이 예에서 광 가이드의 길이 방향 축에 대하여 13°의 각도이다.
라인(1144)은 근위 표면(1146)을 통한 진입으로부터 광 가이드를 통해, 그리고 광 가이드로부터 출사면(1136)을 통해 테스트 도구(1142)의 팁에 있는 지점으로 빠져나가는 LED로부터의 광의 경로를 추적한다. 라인(1140)은 광 가이드(1130)의 길이 방향 축을 도시한다.
도 9b는 도 9a의 광 가이드의 사시도이고, 베이어닛 피팅 특징부(1150)를 도시한다. 광 가이드의 근위 단부는 광 가이드의 본체로부터 반경 방향으로 연장되는 한 쌍의 날개(1150)를 가진다. 날개(1150)들은 저부 플레이트의 후면과 결합하도록 회전되기 전에 카트리지 하우징의 저부 플레이트(1124)의 대응 슬롯에 수용된다. 표면(1152)은 저부 플레이트의 전면과 결합한다.
한 쌍의 슬롯(1138)이 또한 광 가이드의 측벽에 제공되어, 도구에 의한 광 가이드의 용이한 파지를 허용한다.
기술된 바와 같이, 광 가이드의 준비는 효율적이고 제어 가능한 방식으로 테스트 장소의 더욱 양호한 조명을 유발한다. 조명 시스템은 테스트 도구의 작동 또는 현미경 시야와 같은 접합부 테스트 장치의 임의의 다른 측면을 간섭하지 않는다. 테스트 도구는 테스트 장소에서 그림자를 드리우지 않는다. 마찬가지로, 테스트 장소에 근접한 다른 구성 요소들에 의해 드리워진 그림자는 광 가이드를 사용하여 최소화된다. 광 가이드는 저렴하게 제조될 수 있으며, 필요에 따라 사용자에 의해 용이하게 끼워지고 제거될 수 있다. 광 가이드는 또한 테스트 도구의 일부 보호를 제공한다.
따라서, 본 발명의 카트리지 및 테스트 도구 조립체는 테스트 도구 팁 및 테스트될 접합부의 양호한 조명을 제공하고, 테스트 도구의 죠오들이 원하는 분리로 개방되거나 폐쇄되는 것을 가능하게 한다. 이러한 것은 테스트 전에 접합부들 주위에 테스트 도구를 더욱 정확하게 위치시키는 것이 가능함에 따라서 특히 작은 지름의 접합부들을 테스트할 때 테스트 도구 죠오들의 개선된 제어를 유익하게 가능하게 할 수 있다.

Claims (39)

  1. 접합부 테스트 장치로서,
    접합부 테스트 동안 접합부와 접촉하도록 구성된 테스트 도구를 포함하는 테스트 도구 조립체;
    상기 테스트 도구 조립체에 결합되는 굴곡부; 및
    센서를 포함하며,
    상기 센서는 굴곡부로의 힘의 인가시에 상기 굴곡부의 제2 단부에 대한 상기 굴곡부의 제1 단부의 변위의 측정치를 제공하도록 구성되며; 상기 장치는 상기 센서로부터의 변위 신호를 수신하고 상기 변위 신호를 사용하여 상기 굴곡부 상의 힘을 결정하도록 구성되는 프로세서를 포함하는 접합부 테스트 장치.
  2. 제1항에 있어서, 상기 프로세서는 상기 굴곡부에서의 힘을 결정하도록 상기 굴곡부의 알려진 강성과 함께 상기 변위 신호를 사용하도록 구성되는 접합부 테스트 장치.
  3. 제1항 또는 제2항에 있어서, 상기 센서는 상기 굴곡부의 제1 단부의 변위에 비례하는 출력 신호를 주도록 구성되는 접합부 테스트 장치.
  4. 제1항, 제2항 또는 제3항에 있어서, 검출 가능한 부재를 추가로 포함하며, 상기 검출 가능한 부재 및 상기 센서 중 하나는 상기 굴곡부의 제1 단부에 대해 고정되며, 다른 하나는 상기 굴곡부의 제2 단부에 대해 고정되며, 상기 센서는 상기 센서와 상기 검출 가능한 부재 사이의 변위를 검출하도록 구성되는 접합부 테스트 장치.
  5. 제4항에 있어서, 자석 부분을 추가로 포함하며, 상기 자석 부분과 상기 센서중 하나는 상기 굴곡부의 제1 단부에 대해 고정되며, 상기 센서는 자기장에서의 변화를 감지하도록 구성되어서, 상기 제2 단부에 대한 상기 굴곡부의 제1 단부의 변위는 상기 센서에 대해 상기 자석 부분을 이동시키며, 상기 센서는 자기장에서의 변화를 감지하는 접합부 테스트 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 센서는 홀 효과 센서인 접합부 테스트 장치.
  7. 제1항, 제2항, 제3항 또는 제4항에 있어서, 상기 센서는 광학 변위 센서인 접합부 테스트 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 테스트 도구는 상기 굴곡부의 제1 단부에 고정되어서, 접합부에 의한 상기 테스트 도구 상에서의 테스트 힘의 인가는 사전 결정된 방향으로 상기 굴곡부의 제1 단부의 상대 변위를 유발하는 접합부 테스트 장치.
  9. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 테스트 도구는 개방 구성으로 편향되는 대향 죠오들을 포함하며, 상기 테스트 도구 조립체는 폐쇄 부재, 및 상기 폐쇄 부재에 구동력을 인가하여, 상기 폐쇄 부재가 상기 죠오들에 폐쇄력을 인가하도록 구성되는 구동 메커니즘을 포함하는 접합부 테스트 장치.
  10. 제9항에 있어서, 상기 구동 메커니즘은 상기 폐쇄 부재에 구동력을 인가하는 동안 상기 구동 메커니즘에 의해 움직인 거리를 측정하도록 구성된 구동 메커니즘 거리 센서를 포함하는 접합부 테스트 장치.
  11. 제9항 또는 제10항에 있어서, 상기 구동 메커니즘은, 상기 테스트 도구의 죠오들이 접합부를 파지할 때, 상기 구동력의 인가가 상기 제2 단부에 대해 상기 굴곡부의 제1 단부를 변위시키도록 구성되는 접합부 테스트 장치.
  12. 제9항, 제10항, 또는 제11항에 있어서, 상기 구동 메커니즘은 상기 굴곡부의 제1 단부 상에 장착되며, 상기 굴곡부의 제1 단부는 상기 테스트 도구에 대해 이동 가능하고, 상기 구동 메커니즘은, 상기 테스트 도구의 죠오들이 테스트 접합부를 파지할 때, 상기 구동력의 인가가 상기 제2 단부에 대해 상기 굴곡부의 제1 단부를 변위시키는 반동력을 상기 폐쇄 부재와 상기 구동 메커니즘 사이에 생성하도록 구성되는 접합부 테스트 장치.
  13. 제9항 내지 제12항 중 어느 한 항에 있어서, 상기 폐쇄 부재는 상기 죠오들의 적어도 일부를 둘러싸도록 배열된 슬리브를 포함하며, 상기 슬리브는 상기 죠오들에 대해 축 방향으로 이동 가능하며, 상기 죠오들에 대한 상기 슬리브의 이동이 상기 죠오들에 폐쇄력을 인가하도록 상기 죠오들과 결합되도록 구성되는 접합부 테스트 장치.
  14. 제13항에 있어서, 상기 죠오들의 외부면은 상기 죠오들의 팁 단부를 향해 확장되고, 상기 슬리브의 지름은 개방 구성에서 상기 죠오들의 지름보다 작아서, 상기 죠오들의 팁 단부를 향한 상기 슬리브의 상대 이동은 상기 죠오들을 함께 편향시키는 접합부 테스트 장치.
  15. 제13항 또는 제14항에 있어서, 상기 슬리브는 저 마찰 재료로 형성되어서, 사용시에 상기 슬리브와 상기 죠오들 사이의 마찰력은 상기 죠오들에서의 폐쇄력보다 적어도 10배 작은 접합부 테스트 장치.
  16. 제13항 내지 제15항 중 어느 한 항에 있어서, 상기 슬리브는 상기 테스트 도구 주위에서 동심으로 배열된 세라믹 칼라를 포함하여서, 상기 세라믹 칼라는 사용시에 상기 죠오들을 접촉하여 상기 죠오들을 함께 편향시키는 접합부 테스트 장치.
  17. 제13항 내지 제16항 중 어느 한 항에 있어서, 상기 슬리브는 상기 죠오들로부터 멀어지는 방향으로 편향되며, 상기 구동 메커니즘은 상기 죠오들을 향해 상기 슬리브를 이동시키는 방향으로 상기 구동력을 인가하도록 구성되는 접합부 테스트 장치.
  18. 제9항 내지 제17항 중 어느 한 항에 있어서, 상기 구동 메커니즘은,
    모터;
    리드 스크루; 및
    너트를 포함하며;
    상기 너트는 상기 리드 스크루 상에 장착되고, 상기 모터는 상기 리드 스크루를 회전시키도록 구성되어서, 상기 너트는 상기 모터에 의한 상기 리드 스크루의 회전시에 상기 리드 스크루에 대해 이동 가능하고, 상기 구동 메커니즘은 상기 리드 스크루에 대한 상기 너트의 이동이 상기 폐쇄 부재에 구동력으로 인가하도록 구성되는 접합부 테스트 장치.
  19. 제18항에 있어서, 상기 구동 메커니즘은 레버를 추가로 포함하며, 상기 너트는 상기 레버의 제1 단부와 가동 가능하게 결합되고, 상기 레버가 상기 제1 단부 반대편의 제2 단부를 중심으로 선회 가능하여서, 사용시에 상기 리드 스크루를 따르는 상기 너트의 이동은 상기 레버의 제1 단부를 이동시켜서, 상기 레버는 상기 레버의 제2 단부를 중심으로 선회하는 접합부 테스트 장치.
  20. 제19항에 있어서, 상기 레버는 상기 폐쇄 부재를 접하도록 배열된 캠 메커니즘을 포함하며, 상기 캠 메커니즘은 사용시에 상기 레버의 제2 단부를 중심으로 하는 상기 레버의 선회가 상기 캠으로 하여금 상기 폐쇄 부재에 구동력을 인가하도록 구성되는 접합부 테스트 장치.
  21. 제1항 내지 제20항 중 어느 한 항에 있어서, 상기 굴곡부는 접혀진 빔 굴곡부인 접합부 테스트 장치.
  22. 제1항 내지 제21항 중 어느 한 항에 있어서, 상기 테스트 도구 조립체, 제1 센서, 및 제1 굴곡부가 제2 굴곡부의 제1 단부에 장착되며, 상기 제2 굴곡부의 제1 단부는 상기 제2 굴곡부의 제2 단부에 대해 이동 가능하고, 상기 장치는 제2 센서를 추가로 포함하며, 상기 제2 센서는 상기 테스트 도구에 의한 접합부로의 테스트 힘의 인가시에 상기 제2 굴곡부의 제2 단부에 대해 상기 제2 굴곡부의 제1 단부의 변위를 측정하도록 구성되는 접합부 테스트 장치.
  23. 제22항에 있어서, 상기 테스트 도구 조립체, 제1 굴곡부 및 제1 센서는 상기 테스트 도구 죠오들 상의 폐쇄력을 측정하도록 구성되는 접합부 테스트 장치.
  24. 제1항 내지 제23항 중 어느 한 항에 있어서, 상기 테스트 도구는 접합부 테스트 동안 상기 접합부를 접촉하도록 구성되는 테스트 도구 팁을 가지며, 상기 장치는 하나 이상의 광원으로부터 상기 테스트 도구 팁으로 광을 유도하도록 구성된, 상기 테스트 도구에 대해 고정된 상기 하나 이상의 광원을 포함하는 접합부 테스트 장치.
  25. 제24항에 있어서, 상기 테스트 도구 팁에 광을 집중시키도록 구성되는 광 가이드를 추가로 포함하는 접합부 테스트 장치.
  26. 제25항에 있어서, 상기 광 가이드는 상기 테스트 도구 주위에 끼워지도록 구성된 관형체를 포함하며, 상기 광 가이드는 상기 광 가이드의 근위 단부로부터 상기 광 가이드의 원위 단부로 광을 유도하도록 구성되는 접합부 테스트 장치.
  27. 제25항 또는 제26항에 있어서, 상기 접합부 테스트 장치는 상기 광 가이드의 근위 단부 상의 대응 구조물과 기계적으로 상호 록킹되도록 구성된 인터록 구조물을 포함하는 접합부 테스트 장치.
  28. 접합부 테스트 장치를 위한 카트리지로서,
    접합부 테스트 동안 접합부를 접촉하도록 구성되는 테스트 도구;
    굴곡부; 및
    변위 센서를 포함하며,
    상기 변위 센서는 상기 굴곡부로의 힘의 인가시에 상기 굴곡부의 제2 단부에 대한 상기 굴곡부의 제1 단부의 변위의 측정치를 제공하도록 구성되는 카트리지.
  29. 제28항에 있어서, 상기 테스트 도구는 접합부 테스트 동안 상기 접합부를 접촉하도록 구성된 테스트 도구 팁을 가지며, 상기 카트리지는 상기 테스트 도구에 대해 고정된 하나 이상의 광원, 및 상기 테스트 도구에 대해 고정되고 상기 하나 이상의 광원으로부터 상기 테스트 도구 팁으로 유도하도록 구성되는 광 가이드를 포함하는 카트리지.
  30. 접합부 테스트 장치에서 힘을 측정하는 방법으로서,
    제2 단부에 대해 이동 가능한 제1 단부를 가지는 굴곡부를 제공하는 단계;
    변위 센서를 제공하는 단계;
    상기 굴곡부의 제1 단부에 힘을 인가하는 단계;
    상기 변위 센서를 사용하여 상기 굴곡부의 제2 단부에 대한 상기 굴곡부의 제1 단부의 변위를 측정하는 단계; 및
    측정된 변위를 사용하여 상기 굴곡부 상의 힘을 결정하는 단계를 포함하는 방법.
  31. 제30항에 있어서, 상기 결정 단계는 상기 측정된 변위 및 상기 굴곡부의 알려진 강성에 기초하여 상기 굴곡부 상의 힘을 계산하는 단계를 포함하는 방법.
  32. 접합부 테스트 도구의 죠오들에서 폐쇄력을 측정하는 방법으로서,
    제2 단부에 대해 이동 가능한 제1 단부를 가지는 굴곡부를 제공하는 단계;
    변위 센서를 제공하는 단계;
    상기 굴곡부의 제1 단부에 장착된 구동 메커니즘을 제공하는 단계;
    접합부 주위에 상기 접합부 테스트 도구의 죠오들을 위치시키는 단계;
    상기 접합부가 상기 죠오들을 통해 상기 구동 메커니즘에 반동력을 인가하도록 상기 구동 메커니즘을 사용하여 테스트 도구의 죠오들에 폐쇄력을 인가하는 단계로서, 상기 반동력은 상기 굴곡부의 제2 단부에 대한 상기 굴곡부의 제1 단부의 변위를 유발하는, 상기 단계;
    상기 변위 센서를 사용하여 상기 굴곡부의 제2 단부에 대한 상기 굴곡부의 제1 단부의 변위를 측정하는 단계; 및
    상기 측정된 변위를 사용하여 상기 굴곡부 상의 힘을 계산하는 단계를 포함하는 방법.
  33. 제32항에 있어서, 상기 구동 메커니즘을 사용하여 테스트 도구의 죠오들에 폐쇄력을 인가하는 단계는 상기 죠오들이 상기 접합부를 접촉하도록 폐쇄력을 인가하는 단계; 및 상기 접합부가 상기 죠오들을 통해 상기 구동 메커니즘에 반동력을 인가하도록 상기 구동 메커니즘을 사용하여 상기 죠오들에 추가의 폐쇄력을 인가하는 단계를 포함하는 방법.
  34. 제32항 또는 제33항에 있어서, 상기 계산 단계는 상기 측정된 변위 및 상기 굴곡부의 알려진 강성에 기초하여 상기 굴곡부 상의 힘을 계산하는 단계를 포함하는 방법.
  35. 제32항, 제33항, 또는 제33항에 있어서, 구동 메커니즘 거리 센서를 사용하여 상기 죠오들의 분리를 측정하는 단계를 포함하는 방법.
  36. 제34항에 있어서, 상기 굴곡부 상의 힘이 사전 결정된 값에 도달할 때까지 폐쇄력을 인가한 다음 상기 죠오들의 분리를 측정하는 단계를 포함하는 방법.
  37. 제35항에 있어서, 상기 죠오들이 사전 결정된 간격에 도달할 때까지 폐쇄력을 인가하고, 그런 다음 상기 굴곡부 상의 힘을 측정하는 단계를 포함하는 방법.
  38. 제32항 내지 제37항 중 어느 한 항에 있어서, 상기 테스트 도구 팁으로 광을 유도하도록 상기 테스트 도구에 대해 고정된 광원을 사용하는 단계를 포함하는 방법.
  39. 제32항 내지 제38항 중 어느 한 항에 있어서, 테스트를 위해 상기 접합부 주위에 접합부 테스트 도구의 죠오들을 위치시키는 동안 상기 테스트 도구 팁으로 광을 유도하는 단계를 포함하는 방법.
KR1020180091248A 2017-08-16 2018-08-06 접합부 테스트 장치 및 방법 KR102382146B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB1713169.9A GB201713169D0 (en) 2017-08-16 2017-08-16 Bond test apparatus and method
GB1713169.9 2017-08-16
EP18176878.9 2018-06-08
EP18176878.9A EP3444588B1 (en) 2017-08-16 2018-06-08 Bond test apparatus, cartridge for a bond test apparatus and method of measuring a force in a bond test apparatus

Publications (2)

Publication Number Publication Date
KR20190019017A true KR20190019017A (ko) 2019-02-26
KR102382146B1 KR102382146B1 (ko) 2022-04-05

Family

ID=59896105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180091248A KR102382146B1 (ko) 2017-08-16 2018-08-06 접합부 테스트 장치 및 방법

Country Status (6)

Country Link
US (1) US11002662B2 (ko)
EP (2) EP3444588B1 (ko)
JP (1) JP7013345B2 (ko)
KR (1) KR102382146B1 (ko)
CN (1) CN109632458B (ko)
GB (1) GB201713169D0 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220007015A (ko) * 2020-07-09 2022-01-18 에이에스엠 테크놀러지 싱가포르 피티이 엘티디 상호연결 접합부에 시험을 수행하기 위한 장치 및 방법
KR20230028000A (ko) 2021-08-20 2023-02-28 에이티아이 주식회사 시료 표면의 범프 결합 강도 측정 장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10585025B2 (en) * 2017-11-07 2020-03-10 The Boeing Company System and method for testing mechanical properties
CN108318417B (zh) * 2018-03-01 2023-12-01 河南省计量测试科学研究院 一种用于粘结强度检测仪检定的检定设备
CN109916581B (zh) * 2019-03-27 2024-06-07 一汽-大众汽车有限公司 一种便携式刚度测定装置及方法
EP4037838A4 (en) 2019-09-30 2023-11-01 Illumina Singapore Pte Ltd TEST CARTRIDGE FOR ANALYTICAL INSTRUMENTS
CN111007386B (zh) * 2019-12-04 2022-05-24 珠海格力智能装备有限公司 测试设备
CN114789465A (zh) * 2021-01-26 2022-07-26 北京沃华慧通测控技术有限公司 一种检测系统和检测方法
CN113049383A (zh) * 2021-03-17 2021-06-29 北京理工大学 一种胶接试件的测试装置及测试方法
CN116067261A (zh) * 2021-10-29 2023-05-05 先进科技新加坡有限公司 用于校准剪切测试工具的设备和方法
CN115078130B (zh) * 2022-08-23 2022-11-11 江苏华恬节能科技有限公司 一种塑料制品抗剪切强度测试装置
GB202406591D0 (en) 2024-05-10 2024-06-26 Nordson Corp Bond test apparatus and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078387A (en) * 1997-11-20 2000-06-20 Dage Precision Industries, Ltd. Test apparatus
US6301971B1 (en) * 1997-11-20 2001-10-16 Dage Precision Industries, Inc. Apparatus for testing the integrity of a bond
US6310971B1 (en) * 1995-07-03 2001-10-30 Canon Kabushiki Kaisha Information processing method and apparatus, and storage medium storing medium storing program for practicing this method
JP2005337796A (ja) * 2004-05-25 2005-12-08 Fuji Electric Holdings Co Ltd はんだの機械的特性試験方法
WO2007104929A1 (en) * 2006-03-10 2007-09-20 Dage Precision Industries Ltd. Pull test calibration device and method
KR20090035485A (ko) * 2006-07-03 2009-04-09 데이지 프리시전 인더스트리스 리미티드 전자 기판 상의 증착물을 시험하기 위한 인장 시험 장치 및방법
US9170189B2 (en) * 2010-03-05 2015-10-27 Nordson Corporation Bond strength tester with switchable backlash control

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1185024A (en) * 1966-05-13 1970-03-18 Wool Ind Res Association Apparatus for Testing Strenght
US4453414A (en) * 1982-06-03 1984-06-12 At&T Technologies, Inc. Pull testing electrical device leads
US4652820A (en) * 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
CN1031017C (zh) * 1993-04-16 1996-02-14 冶金工业部钢铁研究总院 材料表面薄膜与基体结合力的测量方法及装置
DE19716461A1 (de) 1997-04-21 1998-10-22 Matthias Holst Pulltester mit kapazitivem Meßprinzip
US6237422B1 (en) * 1997-12-13 2001-05-29 Dage Precision Industries Ltd. Apparatus and method for testing strength of electrical bond sites on semiconductor devices
US20020170360A1 (en) * 2001-05-15 2002-11-21 Lallit Anand Apparatus for characterizing material properties and method
JP4350537B2 (ja) 2004-01-26 2009-10-21 アイパルス株式会社 部品挿着装置、表面実装機および部品試験装置
GB0411057D0 (en) * 2004-05-18 2004-06-23 Dage Prec Ind Ltd Test apparatus
GB0604700D0 (en) * 2006-03-08 2006-04-19 Dage Prec Ind Ltd Shear testing of metallic balls of electrical components
KR100827745B1 (ko) 2007-04-27 2008-05-07 (주)커팅에치쎄미테크 와이어 본딩 테스트 장치
EP2363701B1 (en) * 2010-03-05 2015-11-04 Nordson Corporation Improved clamping mechanism for shear testing apparatus
EP2386845B1 (en) 2010-05-14 2024-03-13 Nordson Corporation Apparatus and method for testing of bonds of a semiconductor assembly
US9689934B2 (en) * 2013-02-26 2017-06-27 Mir Behrad KHAMESEE Method for providing force information in a magnetic field environment using remote measurement of flux
US9708135B2 (en) * 2015-10-02 2017-07-18 University Of Macau Compliant gripper with integrated position and grasping/interaction force sensing for microassembly
NL2015919B1 (en) 2015-12-07 2017-06-28 Xyztec B V A method for determining a strength of a bond and/or a material as well as a bond tester apparatus.
MX2019007883A (es) * 2016-12-30 2019-08-29 Perimetrics Llc Sistema y metodo para determinar las caracteristicas estructurales de un objeto.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310971B1 (en) * 1995-07-03 2001-10-30 Canon Kabushiki Kaisha Information processing method and apparatus, and storage medium storing medium storing program for practicing this method
US6078387A (en) * 1997-11-20 2000-06-20 Dage Precision Industries, Ltd. Test apparatus
US6301971B1 (en) * 1997-11-20 2001-10-16 Dage Precision Industries, Inc. Apparatus for testing the integrity of a bond
JP2005337796A (ja) * 2004-05-25 2005-12-08 Fuji Electric Holdings Co Ltd はんだの機械的特性試験方法
WO2007104929A1 (en) * 2006-03-10 2007-09-20 Dage Precision Industries Ltd. Pull test calibration device and method
KR20090035485A (ko) * 2006-07-03 2009-04-09 데이지 프리시전 인더스트리스 리미티드 전자 기판 상의 증착물을 시험하기 위한 인장 시험 장치 및방법
US9170189B2 (en) * 2010-03-05 2015-10-27 Nordson Corporation Bond strength tester with switchable backlash control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220007015A (ko) * 2020-07-09 2022-01-18 에이에스엠 테크놀러지 싱가포르 피티이 엘티디 상호연결 접합부에 시험을 수행하기 위한 장치 및 방법
KR20230028000A (ko) 2021-08-20 2023-02-28 에이티아이 주식회사 시료 표면의 범프 결합 강도 측정 장치

Also Published As

Publication number Publication date
EP3444588A1 (en) 2019-02-20
JP2019035751A (ja) 2019-03-07
CN109632458A (zh) 2019-04-16
EP3444588B1 (en) 2023-11-08
JP7013345B2 (ja) 2022-02-15
US11002662B2 (en) 2021-05-11
EP4280259A3 (en) 2024-02-28
KR102382146B1 (ko) 2022-04-05
EP4280259A2 (en) 2023-11-22
US20190056307A1 (en) 2019-02-21
GB201713169D0 (en) 2017-09-27
CN109632458B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
KR102382146B1 (ko) 접합부 테스트 장치 및 방법
EP2363701B1 (en) Improved clamping mechanism for shear testing apparatus
US8132447B2 (en) Universal testing machine
US11867666B2 (en) Measuring system, measuring arrangement and method for determining measuring signals during a penetration movement of a penetration body into a surface of a test body
CN104297065B (zh) 一种压电驱动微拉伸测试装置
JP6326676B2 (ja) ボンド試験機及び複数の試験ツールを含むボンド試験機のためのカートリッジ
TWI806791B (zh) 用於確定物件的結構特性的系統和方法
JP2019035751A5 (ko)
US20200008890A1 (en) Coupling for a robotic surgical instrument
JP2003254894A (ja) 塗膜付着強度・せん断強度測定装置
US20110214507A1 (en) Bond strength tester with switchable backlash control
EP3361233B1 (en) Bond test apparatus and bond test cartridge with integrated illumination system
JP2012500406A (ja) 位置決めシステム
US6927399B2 (en) Devices and methods for detecting the position of a beam
CN113203639A (zh) 一种微尺度材料扭转测试装置
CN219284878U (zh) 一种试样加载及磁场检测装置
CN112362476A (zh) 柔性器件测量系统
CN117990511A (zh) 一种试样加载及检测装置
Schubert et al. Electromechanical Actuation for Gripper Integrated Angle Adjustment
JPH10253516A (ja) 試験機

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant