KR20190006561A - 저비행 무인항공기 및 객체 추적 레이더 시스템 - Google Patents

저비행 무인항공기 및 객체 추적 레이더 시스템 Download PDF

Info

Publication number
KR20190006561A
KR20190006561A KR1020187036739A KR20187036739A KR20190006561A KR 20190006561 A KR20190006561 A KR 20190006561A KR 1020187036739 A KR1020187036739 A KR 1020187036739A KR 20187036739 A KR20187036739 A KR 20187036739A KR 20190006561 A KR20190006561 A KR 20190006561A
Authority
KR
South Korea
Prior art keywords
signal
radar
antenna
receive
transmitter
Prior art date
Application number
KR1020187036739A
Other languages
English (en)
Other versions
KR102244863B1 (ko
Inventor
얼렌드 올슨
Original Assignee
롬버스 시스템즈 그룹 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롬버스 시스템즈 그룹 인코포레이티드 filed Critical 롬버스 시스템즈 그룹 인코포레이티드
Publication of KR20190006561A publication Critical patent/KR20190006561A/ko
Application granted granted Critical
Publication of KR102244863B1 publication Critical patent/KR102244863B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/9303
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

본 발명은 무선 네트워킹 장비를 이용하여 무인항공기들 및 다른 저비행 객체를 추적하기 위한 레이서 시스템에 관한 것이다. 이 시스템은 송신안테나들이 무선 네트워킹 장치와 결합되어 상공 방향으로 신호를 방출하는 분산형 저고도 레이더 시스템으로 구현된다. 수신안테나 또는 어레이는 송신안테나로부터 방사된 신호, 특히 상공 검출 영역에서 객체로부터 반사된 신호 또는 에코를 수신한다. 하나 이상의 프로세싱 컴포넌트는 무선 네트워킹 장치 및 수신안테나와 전자적으로 결합되어 신호 정보를 수신 및 조작하여 저고도 비행 객체 및 그 영역 내에서의 이동을 인식하고 추적한다. 이 시스템은 네트워킹 지역 노드들에 의해 다수의 영역들에 걸쳐 객체들의 탐지를 제공하고, 무인항공기들 및 다른 저비행 객체들이 검출영역 내에서 이동할 때 이를 검출하고 추적하는 정보를 수집할 수 있다.

Description

저비행 무인항공기 및 객체 추적 레이더 시스템
본 발명은 무인항공기(UAV; unmanned aerial vehicles) 분야에 관한 것으로, 특히 저비행 객체와 무인항공기를 추적하기 위한 방법, 장치 및 시스템에 관한 것이다.
오늘날 비가시권(beyond line of sight)에서의 무인항공기의 위치를 확인하는데 어려움이 있다. 무인항공기가 비가시권으로 진입한 경우 또는 무인항공기가 자율주행 또는 자율 항공 교통 관제 시스템의 통제하에 있는 경우에 무인항공기는 기존의 항공 교통 통제 레이더가 그들을 볼 수 있는 고도 아래에서 작동한다. 레이더(radar)는 무선 탐지(radio detection)과 거리 측정(ranging)의 약자이다. 또한, 무인항공기가 통신 네트워크를 통해 자신의 위치를 자체적으로 보고할 수 있으나, 무인항공기가 자신의 위치를 보고하는 것이 부정확하거나 일시적으로 불가능한 상황들이 여전히 존재한다. 또한, 저고도의 무인항공기는 서로 가깝게 위치하고, 조류, 풍선 또는 다른 유인 항공기와 같은 영공에 있을 수 있기 때문에 UAV영공 교통 관제 시스템에서 자신의 위치를 자체 보고하지 않는 경우, 저고도 비행에서 객체를 독립적으로 매핑하는 방법이 필요하다.
이러한 기능은 일반적으로 레이더 시스템에 의해 수행되었으나, 기존의 레이더와 차별화된 저고도용 UAV영공을 매핑하기 위한 저고도 레이더를 특별히 고려한 사항이었다. 가장 먼저, 저고도를 다루는 레이더는 본질적으로 장거리를 다룰 수 없다. 지면 클러터(Ground clutter)는 일반적으로 항공 교통 통제 레이더와 관련된 거리에서 저고도를 시도하려는 레이더의 중요한 문제다. 또한, 무인항공기와 조류 등과 같이 다른 저고도 항공에 존재하는 객체의 크기는 레이더 단면이 너무 작아서 일반적으로 항공 교통 관제 레이더와 관련된 장거리의 관측이 불가능하다. 그러므로, 작은 레이더의 단면 타겟을 "볼(see)" 수 있고 지면 클러터를 피할 수 있는 단거리 레이더 시스템이 필요하다.
이러한 문제점을 해결하기 위한 본 발명의 다양한 실시 예들은 저고도 항공에 존재하는 객체를 확인할 수 있고, 지면 클러터를 피할 수 있는 저비행 무인항공기 및 객체 추적 레이더 시스템을 제공하는 것이다.
무인항공기(UAV) 및 다른 저비행 객체를 추적하기 위한 레이더 시스템을 제공한다. 바람직한 실시예에 따르면, 상기 시스템은 저고도 레이더 시스템으로 구현된다. 상기 시스템은 RF신호를 생성하기 위해 무선 네트워킹 장치를 이용하여 객체를 추적하도록 설계된다. 송신안테나 바람직하게는 복수의 송신안테나는 상공방향으로 신호를 방사하기 위해 무선 네트워킹 장치와 결합된다. 상기 시스템의 송신안테나는 셀룰러 신호의 통신을 위해 제공되는 예컨대, 셀 타워 상의 셀룰러 안테나인 것이 바람직하다. 수신안테나는 송신안테나로부터 방사되는 신호 특히, 무인항공기 및 기타 객체(예컨대, 조류, 풍선 등) 등과 같은 저비행 객체로부터 반사된 신호를 수신한다. 바람직한 실시 예에 따른 수신안테나는 객체로부터 반사되는 송신 또는 에코를 수신하기 위한 별도의 안테나이다. 복수의 송신안테나는 단일 위치에 제공될 수 있고, 하나 이상의 수신안테나가 송신안테나의 위치 또는 그 근방에 제공될 수 있다. 객체의 존재, 방향 및 속도는 예컨대, 안테나 방송 범위 내에서 동작하는 무인항공기와 같은 상공 객체에 통신을 전달하도록 구성된 송신안테나로부터 방송된 RF송신을 이용함으로써 결정될 수 있다. RF전송은 무선 네트워크 통신 컴포넌트에 의해 생성된 데이터그램, 음성 또는 다른 정보를 상공 방향으로 중계하기 위한 통신 전송인 것이 바람직하다. 연관된 레이더 안테나는 전송 영역 내에서 객체를 기반으로 RF전송의 에코를 수신한다. 레이더 안테나는 레이더 프로세서로 신호를 제공하기 위해 레이더 안테나로부터 정보를 처리하기 위한 명령이 저장된 소프트웨어가 포함된 컴퓨터와 같은 컴퓨팅 컴포넌트와 연결된다. 시스템의 실시 예들은 또한 레이더 프로세서로 제공되어 상공으로 방송된 전송 신호의 복사본을 갖도록 구성된다. 따라서 레이더 프로세서는 송신기로부터 신호를 수신하고, 상공으로 방송되는 (그리고 잠재적으로 객체로부터 반사되는) 결과로서의 에코들을 수신한다. 레이더 프로세서는 인근의 산 또는 다른 객체로부터 전송의 결과일 수 있는 강한 신호에 대한 가능성을 최소화하도록 구성될 수 있다.
시스템의 실시 예는 바람직하게는 상공 방향 송신기의 위치 또는 그 부근에 배치된 복수의 레이더 수신 안테나로 구현된다. 레이더 수신 안테나는 레이더 수신 응답을 수집하는 컴퓨터와 같은 컴퓨팅 컴포넌트에 레이더 검출 정보를 제공하도록 배치되는 것이 바람직하다. 일부 실시 예에 따르면, 레이더 프로세서와 관련된 레이더 안테나는 상공 방향 신호를 방송하는 복수의 송신기에 근접하고, 레이더 프로세서는 각각의 송신기로부터 신호 복사본을 수신할 수 있다.
시스템의 실시 예는 바람직하게는 송신 송수신기들 사이의 상공 방향 통신 전송으로부터 코드들을 사용하도록 구성된다. 송신안테나로부터의 RF송신은 RF통신 전송으로부터의 코드를 포함할 수 있고, 무인항공기(무인항공기로 방송되는 데이터그램과 같은)와 RF통신의 일부인 이들 코드는 상공 객체를 검출하기 위해 레이더 프로세서에 의해 이용될 수 있다. 코드는 상공방향으로 전송될 수 있으며, 또한, 전송의 복사본의 일부로 관련된 레이더 프로세서로 전송될 수 있다. 일부 실시 예에 따르면, 어그리게이터는 복수의 송신기 방송 범위 내에 있을 수 있는 객체의 검출을 제공하기 위해 복수의 레이더 프로세서로부터 레이더 검출 정보를 추가로 처리할 수 있다. 일부 실시 예에 따르면, 어그리게이터는 복수의 레이더 프로세서로부터 레이더 정보를 수신하고 레이더 정보를 처리하여 객체가 상공 방향의 영역 전체로 이동함에 의한 객체의 검출을 제공하는 컴퓨터일 수 있다.
시스템은 분산 네크워크로서 구현될 수 있고, 시스템의 노드는 노드에 의해 커버되는 영역(region) 또는 존(zone) 내의 객체로부터 생성된 신호들을 검출하도록 구성된다. 바람직한 실시예에 따르면, 레이더 프로세서는 신호를 수신하기 위해 무선 네트워킹 장치와 전자적으로 결합된다. 무인항공기, 조류, 또는 상공의 다른 객체와 같은 저비행 객체로부터 반사되는 RF송신신호를 포함하는 송신신호를 수신하기 위해 수신안테나가 제공된다(예컨대, 검출을 위해 모니터링되는 영역 또는 상승된 레벨 내). 레이더 프로세서는 수신안테나로부터 신호를 수신하기 위해 수신안테나와 전자적으로 결합되는 것이 바람직하다. 레이더 프로세서는 신호 형성뿐 아니라 빔 형성 조작을 포함하는 다양한 신호 처리 어플리케이션을 통해 신호를 조작할 수 있다. 검출 신호는 처리되고, 바람직하게는 시스템이 네트워크 노드들로부터 검출 신호를 수집하고 신호 정보를 조작한다. 네트워크 또는 네트워크 영역의 레이더 프로세서로부터 정보를 수신하도록 결합된 컴퓨팅 컴포넌트는 네트워크의 상공 영역에서 이동하는 객체를 추적하고 정보를 수집한다. 객체는 신호에 의해 식별될 수 있고, 레이더 프로세서는 객체 유형을 결정하기 위해 객체 프로파일 데이터와의 비교를 통해 객체 패턴의 인식을 위한 비교를 수행할 수 있다. 신호정보의 처리는 또한 객체 이동, 속도, 크기 및 비행 경로와 같은 객체 속성을 결정할 수 있다. 객체의 움직임이 상공의 검출 영역을 통과할 때 객체의 움직임은 추적될 수 있다. 컴퓨팅 컴포넌트는 네트워크를 통해 분산된 레이더 프로세서로부터 정보를 수신하고, 커버리지 영역 상의 저비행 객체를 검출하기 위해 정보를 수집하도록 구성된다.
개시된 레이더 시스템의 주요한 특징은 분산되었다는 것이고, 지상 기반 통신 송신기의 분산 네트워크에 의존한다는 점이다. 예를 들면, 셀룰러 타입의 무인항공기 명령 및 제어 시스템은 본 출원인이 2015.09.03.에 출원한 미국특허 62/214,053와 2016.04.18.에 출원한 미국특허 62/323,957에 개시되어 있으며, 이의 완전한 내용은 본 명세서에 참고로 포함된다. 이러한 분산형 네트워크는 개시된 레이더 시스템이 개시된 레이더 시스템의 신호 소스 부분을 포함함으로써 검출 및 추적하고자 하는 타겟과 비교적 근접할 수 있게 한다.
개시된 레이더 시스템의 다른 특징은 검출을 위해 사용된 신호가 수평적으로 전파되기 보다 상공의 작은 영역에서 상향 방향으로 우선 전파됨으로써 빌딩, 나무 및 다른 지면 클리터와 관련된 항목들로부터의 반사를 상당부분 피할 수 있게 한다. 따라서, 검출 신호는 모니터되는 특정 영역 내에서 상공 방향으로 향할 수 있다.
게시된 레이더 시스템의 다른 특징은 비행기 또는 무인항공기와의 통신의 본래 목적을 위해 송신된 통신 신호에 의존하기 때문에 시스템의 양호한 구현에 따라 새로운 스펙트럼 및 새로운 송신 장치는 요구되지 않는다. 검출시스템의 실시 예는 무인항공기 통신 시스템과 관련하여 구현될 수 있고, 그 시스템의 네트워킹 컴포넌트의 전부 또는 일부를 사용할 수 있다.
또한, 통신 신호는 일반적인 레이더와 관련된 종래의 처프 사운드(chirps)보다 종종 지속시간이 길기 때문에 보다 긴 수집 시간이 검출 및 범위(ranging) 알고리즘에 사용될 수 있고, 종래의 레이더 시스템에 비해 개시된 시스템의 성능이 향상된다. 레이더 과학에서 실행되는 잘 알려진 방법으로는 의사 난수 부호 연속파 양방향 정적 레이더 시스템(pseudo-random coded continuous wave bi-static radar systems)을 이용하여 범위 모호성 감소 및 검출 향상 효과를 향상시킬 수 있다. 의사 난수 부호를 자연스럽게 에뮬레이트할 수 있는 규칙적인 통신 신호를 채택함으로써, 완전한 의사 난수 부호 코딩된 양방향 정적 레이더 시스템이 공개된 시스템과 유사한 이득이 실현된다.
본 발명의 이들 및 다른 이점은 본 명세서에 설명되고 예시적인 실시예와 관련하여 설명된다.
상술한 바와 같이 본 발명의 저비행 무인항공기 및 객체 추적 레이더 시스템은, 저고도 항공에 존재하는 객체를 확인할 수 있고, 지면 클러터를 피할 수 있는 효과가 있다.
도 1은 본 발명에 따른 저비행 객체를 추적하는 시스템을 도시한 도면이다.
도 2는 본 발명의 실시 예에 따른 도 1에 도시된 시스템의 노드를 도시한 도면이다.
도 3은 본 발명의 실시 예에 따른 시스템과 관련하여 이용할 수 있는 수동 레이더 프로세서 시스템을 도시한 도면이다.
도 1 내지 3을 참조하면, 저비행 객체를 추적하기 위한 시스템 및 저비행 무인항공기(UAV; unmanned aerial vehicles)과 다른 객체를 추적하기 위한 시스템의 실시 예가 도시된다. 시스템은 본 명세서에 개시된 방법들에 따라 구현될 수 있으며, 시스템 및 방법을 구현하기 위한 장치가 제공되고 구성될 수 있다. 바람직한 실시 예에 따르면, 시스템은 현존하는 셀 타워와 함께 구현될 수 있다. 대안적으로, 시스템은 현존하는 셀 타워들과 몇몇 부가적인 컴포넌트 또는 몇몇 다른 대안적인 실시 예에 따라 구현될 수 있고, 다른 대안적인 실시 예들에 따라 송신기 및 UAV/RPV 통신 전용의 다른 컴포넌트와 분리되어 제공된 타워들을 이용하여 구현될 수 있다. 다른 실시 예에 따르면, 시스템은 지상 기반 통신송신기의 개별 분산된 네트워크를 이용하여 구현될 수 있다.
본 발명에 따른 시스템의 구현은 예시적인 실시 예에 따라 설명되며, 여기서 컴포넌트는 예컨대, 무인항공기 및 다른 객체와 같은 저비행 객체를 추적하도록 배치된다. 도 1을 참조하면, 조류(1060) 또는 무인항공기(1051)이 통신 데이터 그램 트렌시버의 '셀 타입'그리드에 의해 커버되는 영역을 통과할 때, 시스템에 의해 추적될 수 있다. 네트워크는 노드들(
Figure pct00001
)로 구성된다. 그리고, 도시되지 않은 추가 노드를 포함할 수 있다. 각각의 노드(
Figure pct00002
)는 커버리지 영역 내에서 객체로부터 반사를 수신하기 위한 관련 통신 장비 및 그 자신의 로컬 안테나 어레이 또는 위상 어레이 안테나를 포함하고, 다른 노드들과 네트워크로 연결되고, 중앙 수집 추적 컴퓨터(280)로 데이터를 반송하는 레이더 처리 능력을 가지며, 영역 상에 배치된 복수의 노드들에 의해 걸쳐 객체의 지역 추적을 제공한다.
도 1에 도시된 바와 같이, 셀 타워(120, 130, 140)의 배치는 무인항공기 및 다른 저비행 객체의 추적을 수행하기 위해 분산된 네트워크의 세그먼트를 나타내기 위해 제공된다. 이 예시적인 실시 예에서, 네트워크 통신 시스템(1000)이 도시되고, 3개의 노드(
Figure pct00003
)가 도시된다. 아울러, 분산 네트워크를 구성하기 위해 검출 영역 전체에 제공되는 다른 유사한 노드가 있다. 각각의 노드(
Figure pct00004
)는 각각의 타워(120, 130, 140), 관련된 무선 네트워킹 통신 장치(WNE)(261, 271, 291) 및 레이더 검출 컴포넌트를 나타내도록 도시된다. WNE(261, 271, 281)는 바람직하게는 하나 이상의 안테나(121, 131, 141)와 결합된 송수신기를 포함할 수 있는 송수신 장치를 포함한다. 타워(120, 130, 140)는 바람직하게는 하나 이상의 관련 안테나(121, 131, 141)를 구비하고, 그 위에 지지되는 안테나 어레이를 포함할 수 있다. 시스템은 본 명세서에 참조된 본원의 미국 특허출원에 개시된 통신 시스템을 이용하여 구현될 수 있고, 이들 상공(skyward)의 무인항공기 통신 시스템의 송수신기 및 송신 안테나는 레이더 검출 시스템과 함께 바람직하게는 레이더 검출 컴포넌트와 함께 이용될 수 있다.
타워(120, 130, 140)는 바람직하게는 송수신기, 안테나, 전원공급장치 및 셀룰러 통신을 생성하고 수신하기 위한 다른 장치와 같은 각각의 통신 장치를 구비하거나 관련될 수 있다. 도 1에 도시된 예시적인 도면에서 각각의 타워(120, 130, 140)는 무선 네트워크 데이터 그램 RF송수신장치(WNE)(261, 271, 281)와 관련된 각각의 안테나(또는 안테나 어레이)(121, 131, 141)과 같은 RF생성 장치로 구성된다. 무선 네트워크 데이터그램 RF송수신장치(WN)는 바람직하게 통신 네트워크(예컨대, 도 1의 네트워크(1000), 및 도 2의 그 일부(
Figure pct00005
))를 통해 신호를 생성 및 수신하기 위한 구성요소를 포함한다. 그리고 데이터그램 및 신호의 수신 및 송신을 할 수 있게 하는 자체 송수신 장비로 구성된 무인항공기(1051)와 같이 네트워크를 통해 통신하는 장치를 포함한다. 무선 네트워크 데이터그램 RF송수신기 장치(WNE(261, 271, 281)는 바람직하게는 신호처리와 생성 컴포넌트를 포함하고, 무인항공기(1051)와 통신하기 위해 상공 방향인 상향으로 신호를 방사하는 복수의 안테나(121, 131, 141)를 향해 신호를 제공한다. 신호는 바람직하게는 상공을 향해 원추 패턴으로 방사되고, 상공 방향의 방사 원추(220, 230, 240)는 신호 범위의 영역을 나타내기 위해 도시된다. 방사신호는 지면 위의 연속적인 커버리지 영역(2000)의 상승된 영역을 제공하기 위해 생성된다. 이는 원하는 커버리지 영역을 생성하기 위해 안테나를 배치하거나 튜닝함으로써 달성될 수 있다. 도 1에서 화살표 A와 B사이의 영역은 지면에 대해 상승된 레벨로 제공되는 연속적인 레이더 커버리지 영역(2000)을 나타내며, 방사 원추(220, 230, 240) 특히 이들 원추의 상승된 영역에 의해 형성되는 예시적인 실시 예에서 도시된다. 상승 영역(2000)은 바람직하게는 저비행 객체의 존재가 검출될 수 있는 레이더 커버리지 영역을 나타내는 범위(도시된 화살표 A와 B사이)에 제공된다.
도 1 및 도 2에 도시된 바와 같이, RF신호는 상공을 향해 상향 방향을 향한다. 도시된 예에서 방사된 신호(220, 230, 240)는 각각 연관된 안테나(또는 안테나 그룹)(121, 131, 141)으로부터 전파되고, 이는 각각의 셀 타워(120, 130, 140)를 포함하는 셀 타워 시스템으로부터 도시된다. 신호는 상향으로 방사되고, 바람직하게는 영역(2000)내의 디바이스 또는 디바이스로부터의 반사와 통신을 위해 적합한 신호 세기를 제공하도록 제어될 수 있다.
레이더 검출 메커니즘은 셀룰러 네트워크 통신 시스템과 결합하여 도시된다. 도시된 셀룰러 통신 시스템은 무인항공기와 통신을 위해 구성되며, 바람직하게는 상공에 투영되는 셀룰러 시스템을 포함한다. 상공 셀룰러 통신 시스템은 무인항공기의 명령, 제어 및/또는 네비게이션 기능의 통신을 위해 별도의 주파수 또는 대역(및 무인항공기 통신의 다른 타입 예컨대, 카메라 동작 및 피드 등을 위한 다른 주파수 또는 주파수 대역)을 제공할 수 있다. 도 1에는 셀룰러 통신 배치(arrangement)과 함께 제공된 레이더 검출 메커니즘이 도시되어 있다. 레이더 검출 메커니즘은 바람직하게는 신호를 수신하기 위한 안테나 어레이 또는 안테나와 신호 처리를 위한 레이더 프로세서로 구성된다. 도 1에는 무인항공기 및 다른 객체와 같은 상공객체 검출을 위한 레이더 검출 메커니즘(210)을 포함하는 시스템이 도시되어 있다. 레이더 검출 메커니즘(210)은 셀 타워(120)와 같은 제1 통신 타워와 관련되어 도시되어 있고, 신호검출 수신 안테나(221) 및 관련 레이더 프로세서(222)가 제공된다. 신호수신안테나(221)는 바람직하게는 신호수신안테나(221)는 WNE(261)에 의해 생성되고 안테나 또는 안테나들(121)로부터 방사된 RF신호를 수신하고, 객체로부터 반사된 신호 또는 에코를 포함하는 RX안테나 또는 안테나 어레이(예컨대, 수신 안테나(221a) 또는 안테나 어레이(221b))를 포함한다. 바람직하게는 안테나(221)는 레이더 검출 기능 전용이다. RX안테나 또는 안테나 어레이(221a, 221b)(레이더 기능 전용)는 WNE안테나 또는 평면 위상 어레이 안테나를 위해 채용된 타워(120)와 동일한 구조물에 가까이 또는 구조물에 배치될 수 있다. 안테나(221)는 무선 네트워크(WNE)를 위해 사용되는 타워 근처 또는 타워 상에 위치할 수 있다. 예를 들어, 도 1과 같이 무선 통신 네트워크와 관련되어 이용되는 시스템에서, 타워(120)는 네트워크(예컨대, 네트워크와 통신 디바이스 사이)를 통해 무선 통신을 수행하기 위한 복수의 안테나(121) 또는 안테나 어레이 및 안테나를 갖는 레이더 안테나(221)는 타워(120) 상에 지지된다. 각각의 타워(130) 상의 부가적인 안테나들(231, 241)은 바람직하게는 각각의 WNE(271, 281)와 관련하여 기능하도록 구성된 레이더 프로세서(232, 242)와 함께 도시되어 있다. 레이더 메커니즘은 무인항공기 및 저비행 객체를 감지하도록 구성된다. 바람직한 실시 예에 따르면, 레이더 추적 시스템은 레이더 기능을 제공하기 위해 신호를 통신하기 위한 네트워크(1000)를 이용한다. 레이더 안테나들(221,231,241)은 셀 타워(120, 130, 140)에 지지될 수 있고, 통신 네트워크(1000)(예컨대, 일부 실시 예에 따르면 무인항공기, 명령 및 제어 컴퓨터와 통신을 위한 통신 네트워크)의 송신 컴포넌트 및/또는 수신 컴포넌트 사이에 통신 교환을 위한 신호들을 중계하는 셀룰러 통신 컴포넌트(WNE(261, 271, 281))와 관련되어 동작하도록 구성된다.
레이더 검출 메커니즘은 WNE와 레이더 안테나(221, 231, 241)을 추가하고, 바람직하게는 각각 관련된 레이더 프로세서(222, 232, 242)를 포함한다. 레이더 프로세서는 예컨대, WNE 무선 송수신기와 같은 관련된 WNE로부터 송신된 신호를 모니터링하기 위한 명령으로 구성될 수 있다. 바람직한 구성에 따르면 레이더 프로세서(222, 232, 242)는 셀 타워(120, 130, 140)와 관련되며, 타워 내에서 검출을 제공한다. 예컨대, 타워 안테나 배열(121, 131, 141)에 의해 생성된 각각의 신호 원추(220, 230, 240)에 의해 표현되는 전파영역을 포함한다(도 1 참조). 각각의 레이더 프로세서(222, 232, 242)는 송수신기와 관련된 안테나(예컨대, 도 1에 도시된 타워(120) 상의 안테나의 배열(121))를 통해 전파되는 신호를 모니터하거나 생성하도록 구성된다. 신호는 파선(broken line, 300)에 의해 나타나고, 예컨대, 도시된 바와 같이 무인항공기(1051)과 같은 객체와 마주칠 때 반사된다. 파선(301)으로 표시된 에코로 표현되는 반사파는 안테나(221)에 의해 픽업되고, 수신안테나는 반사된 신호를 수신하도록 제공된다(이것은 무인항공기(1051)에 반사되어 도시되어 있다). 무인항공기(1051)은 레이더 노드로의 복귀를 강조함으로써 반사된 신호를 용이하게 하기 위한 코너 반사기와 같은 반사기로 구성될 수 있다. 레이더 프로세서(222)는 반사된 신호 또는 에코(301)를 수신한다. 레이더 프로세서(222)는 바람직하게는 레이더 메커니즘(저비행 객체와 같은)에 의해 모니터링되는 공역 내에 객체의 검출을 제공하기 위해 데이터 수신, 처리 및 저장을 수행하는 컴퓨팅 컴포넌트로 구성된다.
도 1에서 셀룰러 통신 네트워크(1000)(또는 그 일부)는 상공 시스템을 통해 무인항공기와 같은 저비행 객체를 위한 통신을 제공하도록 구성되고 도시된다. 레이더 시스템은 지상 기반 통신 송신기의 네트워크를 통해 배포되며, 바람직하게는 네트워크(1000)의 컴포넌트를 포함한다. 레이더 시스템의 신호원 컴포넌트는 시스템이 탐지하고자 하는 무인항공기와 다른 저비행 객체와 같은 목표물에 효과적으로 근접하도록 구성될 수 있다. 상공방향 레이더 검출 시스템은 도시된 바와 같이 커버리지 영역(2000)으로 구성된다. 객체는 영역 내에서 추적될 수 있다. 예를 들어 도 1에서, 조류(1060)로 표현된 객체는 연속적인 커버리지 영역(2000)에 도시되고, 타워(130 및 배열된 안테나(131)와 관련된 무선 네트워크 데이터그램 RF송수신 장치(WNE)(271)에 의해 생성된 방사의 신호 원추(230) 내에 위치된다. 관련된 레이더 프로세서(232)가 도시되어 있고, WNE(271)에 의해 바람직하게는 송신된 신호의 복사본을 포함하는 데이터를 수신한다. 시스템은 바람직하게는 송신 영역 내에서 신호를 생성하도록 구성되며, 예를 들면, 원추(230)에 의해 표현되는 영역과 같은 송신 영역 내에서 신호를 생성하도록 구성된다. 근처에 위치된 수신안테나(231)에 의해 픽업되고, 레이더 프로세서(242)와 같은 처리 및/또는 모니터링 컴포넌트로 모니터링되는 간단한 통신 버스트를 포함할 수 있다. 도시된 실시 예에서 신호(302)는 송신기(예컨대, WNE(251)의 송신기)로부터 송신되고, 영역(2000)에서 조류(1060)를 만난다. 신호(302)는 조류(1060)에 도달하고, 신호 또는 에코(303)는 조류(1060)로부터 반사된다. 반사된 신호(303)는 수신안테나(231)에 의해 픽업되어 레이더 프로세서(232)에서 이용 가능하게 된다. 레이더 프로세서는 WNE(251)와 에코 신호(303)로부터 송신된 신호의 복사본을 갖는다.
예시된 바람직한 실시 예에 따르면, 시스템은 바람직하게는 분산 셀룰러 통신 네트워크를 통해 동작하도록 구성된다. 시스템은 바람직하게는 수집 추적 컴퓨터(280)와 같은 수집 컴퓨팅 컴포넌트를 포함한다. 수집 추적 컴퓨터(280)는 바람직하게는 검출된 신호의 전파 및 수신 또는 이들 신호의 부산물과 관련된 신호의 형태일 수 있는 수신 데이터에 전자적으로 접속된다. 수집 추적 컴퓨터(280)는 바람직하게는 네트워크 통신 시스템의 복수의 노드에 대한 중앙 컴퓨팅 리소스로서 기능하도록 구성된다. 예를 들면, 수집 추적 컴퓨터(280)는 무인항공기 및 다른 저비행 객체와 같은 객체의 지역 추적을 제공하기 위해 영역의 복수의 노드와 연관될 수 있다. 수집 추적 컴퓨터(280)는 네트워크(1000)를 통해 검출 정보를 수신 및 관리하고, 도시된 바와 같이 네트워크 노드(
Figure pct00006
)로부터 신호 데이터가 제공된다.
도 2를 참조하면, 상공 존 또는 영역 내에 무인항공기 및 다른 저비행 객체를 검출하고 모니터링하기 위한 레이더 검출 시스템(1000)의 노드(
Figure pct00007
)가 도시된다. 도시된 시스템에는 안테나 시스템으로부터 상향으로 신호를 방사함으로써 무인항공기와 통신을 하기 위한 통신 시스템이 도시된다. 노드(
Figure pct00008
)는 안테나(121)와 무선 네트워크 데이터그램 RF송수신 장치(WNE)(261)을 구비하는 타워(120)를 포함한다. WNE(261)는 바람직하게는 통신네트워크(1000)의 일부이며, 네트워크(1000)를 통해 통신 및 다른 데이터와의 정보교환을 위해 전자적으로 연결된다. 추적 시스템의 부분을 포함하는 노드(
Figure pct00009
)가 도시된다. 도 1에는 제1 노드(
Figure pct00010
), 제2 노드(
Figure pct00011
) 및 제3 노드(
Figure pct00012
)를 포함하는 세 개의 노드가 도시된다. 노드(
Figure pct00013
)는 통신 네트워크(1000)를 포함하고, 바람직하게는 지정된 또는 원하는 존 또는 커버리지 영역에 걸쳐 커버리지를 제공하도록 배치된다. 노드는 바람직하게는 모니터링이 요구되는 영역에서 상공 영역(2000)의 커버리지가 있도록 배열된다. 도 1에서, 3개의 영역은 각각의 원추(220, 230, 240)에 의해 형성되는 것으로 도시되어 있다. 시스템은 바람직하게는 네트워크(도 1에 도시된 세 개의 노드에 의해 커버되는 영역을 제외하고)를 통해 확장을 제공하기 위해 추가적인 타워 및 WNE를 포함하도록 구성될 수 있다. 컴퓨팅 컴포넌트는 바람직하게는 송수신기(WNE(261)의 일부로서 또는 WNE(261)와 관련하여 제공될 수 있음)와 배치되고, 안테나(121)로부터 방출되고, 하늘 방향으로 전파되는 RF통신신호를 생성하도록 구성된다. 이는 셀룰러 통신 네트워크의 일부로서 보다 구체적으로는, 본 명세서에 참조된 이전 출원들에 개시된 상공 방향 통신 시스템들과 함께 수행될 수 있다. 레이더 검출 시스템은 현존하는 셀룰러 시스템(상공 방향의 통신 존을 통해 통신하도록 구성된 셀룰러 시스템뿐 아니라)과 함께 컴포넌트를 제공함으로써 구현될 수 있다.
시스템은 안테나로부터 방출된 신호를 모니터하도록 구성된다. 송신안테나들(121, 131, 141)은 바람직하게는 각각 연관된 WNE(261, 271, 281)로부터 RF신호들이 제공된다. 신호는 상공 방향으로 전달된다. 신호원추는 바람직하게는 구조물 주위를 피하거나 구조물 주위에서 작동하는 상공 방향의 커버리지의 다수의 좁은 영역을 제공하도록 생성된다. 신호는 바람직하게는 확장된 커버리지 영역으로 수집될 수 있도록 다수의 작은 영역의 검출 커버리지를 제공하도록 전파된다. 바람직하게는, 신호는 무인항공기가 작동할 영역에 도달하기에 적합한 강도로 가지면서 생성된다(검출되기 원하는 다른 물체가 존재할 수 있음). 송신신호가 생성되고, 송신신호는 신호를 위쪽으로 방사하도록 안테나(121)로 보내지고, 신호의 복사본은 레이더 프로세서(222)로 보내진다. 따라서, 레이더 프로세서(222)는 신호를 수신하고, 신호가 생성된 시간을 제공받는다. 실제로, 다수의 신호가 생성되고, 생성 시간, 주파수 변조된 데이터(및 다른 특성)들을 포함하는 신호의 복사본이 레이더 프로세서(222)에 의해 모니터링된다. 레이더 프로세서(222)는 바람직하게는 수신안테나(221)로부터 신호를 수신하도록 접속된다. 수신안테나(221)는 무인항공기(1050)(또는 검출 영역 내의 다른 객체)와 같은 객체로부터 반사될 수 있는 신호를 포함하여 수신안테나(121)로부터 생성된 신호를 수신하도록 제공된다. 반사된 신호(301)는 처리되고 생성된 신호 복사와 비교된다(레이더 프로세서(예컨대, WNE(261)으로부터)로 제공된다). 수신안테나에서 수신된 반사된 신호를 다른 신호로 수신될 수 있다. 수신안테나(안테나(211)와 같은)로부터 수신된 신호의 처리는 검출 존 내에서의 비행객체의 존재로부터 기인할 것으로 예측되는 반사된 신호 또는 에코들을 구별하기 위해 수행된다. 예를 들면, 신호의 복사본들은 연속적인 시간 프레임에 걸쳐 레이더 프로세서로 제공되고, 반사된 신호가 수신되지 않는 경우(예컨대, 객체의 존재를 나타내는 신호가 수신되지 않거나), 레이더 프로세서는 특정 시간 기간 내에 또는 신호 주파수에 대해서 모니터링 상태를 계속한다. 그러나, 상공 방향의 객체로부터 신호가 반사되는 경우, 레이더 프로세서는 객체의 검출을 식별하고, 객체의 위치 및 움직임을 나타내기 위해 수신된 다른 신호와 함께 신호를 추가로 처리할 수 있다. 레이더 검출 시스템은 바람직하게는 반사된 신호의 검출 및 검출된 객체의 식별을 처리하는 경우에도 신호의 모니터링을 계속하도록 구성된다. 레이더 프로세서는 그 노드(또는 레이더 프로세서가 커버하도록 지적된 다른 영역)에 의해 커버되는 상공 영역내의 하나 이상의 객체를 식별할 수 있다. 일부 실시 예에 따르면, 시스템은 무인항공기에서 만들어진 통신과 동일한 주파수를 사용하도록 구성될 수 있다. 예를 들면, 통신이 안테나(121)로부터 영역(2000)(예를 들어, 서브 대역을 통해, 페이로드 어플리케이션을 위해, 예컨대, 이미징, 전달 및 이와 같은 또는 명령, 제어 및 내비게이션 기능과 같은 중요한 무인항공기 동작 통신을 위해 예약된 설계된 다른 서브 밴드를 통함) 내에서 동작하는 무인항공기(1051)를 위해 의도된 상공 방향으로 송신되는 경우, 레이더 프로세서는 신호의 복사본을 수신할 수 있다. 신호는 무선 네트워킹 장치(WNE)에 의해 생성되고, 바람직하게는 특정한 주파수와 레이더 프로세서(222)로 제공된 신호의 복사본이 안테나(121)로부터 방사된다. 레이더 프로세서(222)는 바람직하게는 수동 레이더 프로세서이고, 공지된 다수의 방법 중 임의의 하나에 따라 신호 정보를 처리하도록 구성될 수 있다. 레이더 프로세서(222)와 같은 레이더 프로세서의 실시 예는 프로세서, 마이크로 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 칩 또는 다른 프로세싱 회로와 같은 컴퓨팅 컴포넌트와, 플래쉬 메모리, 다른 메모리 칩과 같은 저장 매체를 포함할 수 있으며, 수신안테나에 의해 수신된 신호의 처리를 프로세서에 지시하도록 사용되는 명령을 저장하기 위한 하드 드라이브 등을 포함한다. 레이더 프로세서(222)는 바람직하게는 미가공 신호 정보 또는 처리된 신호 정보를 저장하고, 및/또는 추가 처리 또는 저장을 위해 다른 컴퓨팅 컴포넌트에 그 정보를 전송하도록 구성될 수 있다. 예를 들어, 도 1에서는 상공 방향 네트워크의 노드와 연관된 세 개의 레이더 프로세서(222, 232, 242) 및 노드의 WNE를 도시한다. 레이더 프로세서(222, 232, 242)는 수집 추적 컴퓨터(280)로서 식별되는 컴퓨터와 통신하기 위해 접속되는 것으로 도시되어 있다. 추적 컴퓨터(280)는 레이더 프로세서(222, 232, 242)로부터 미가공 데이터를 수신하거나 또는 일부 실시 예에 따라 처리된 신호 데이터 또는 부분적으로 처리된 신호 데이터를 수신할 수 있다. 수집 추적 컴퓨터(280)는 바람직하게는 모니터링되는 네트워크의 상공 영역 내의 무인항공기 및 저비행 객체와 같은 상공방향 객체를 식별할 수 있다. 수집 컴퓨터(280)는 객체가 서로 가까이 있는 등(예컨대, 무인항공기(1051)가 조류(1061)에 근접한 경우, 도 1 참조)과 같은 잠재적인 위험이 발생할 때 알람을 제공하기 위해 자체 또는 다른 컴퓨팅 컴포넌트와 공역을 관리할 수 있다. 레이더 추적 시스템은 무인항공기 교통 통제 시스템과 연계하여 동작될 수 있고, 자율적으로 동작하는 무인항공기의 동작을 제어 또는 관리하는 자율 항공 교통 통제 시스템과 통합될 수 있다. 레이더 시스템은 무인항공기 동작(예컨대, 비행경로, 방향, 속도 등)의 조작 또는 통제를 포함하는 무인항공기의 알람 또는 관리를 제공하기 위해 레이더 신호를 처리하도록 구성될 수 있고, 잠재적 위협 또는 위험이 결정된다(예컨대, 인근 풍선 또는 조류). 예를 들면, 무인항공기 항공 교통 통제는 무인항공기의 근처에 다른 객체(무인항공기 비행 지역 내에서 움직이거나 정지상태일 수 있음)와 일치하도록 비행경로가 결정되면 호버(hover)할 수 있다.
수신안테나(221, 231, 241)로부터 수신된 신호 정보의 레이더 처리는 공지된 레이더 신호 처리 방법에 따라 수행될 수 있다. 실시 예에 따르면 수동 레이더 프로세서(레이더 프로세서(222, 232, 242) 중 임의의 것)는 안테나(도 1 및 2에 도시된 221a, 221b, 121, 241)로부터 신호를 수신하도록 구성될 수 있다. 그리고, 모니터된 상공 영역 내의 객체의 위치, 크기 및 이동에 대한 정보를 생성하기 위해 정보를 조작할 수 있다. 이 정보는 객체의 검출을 제공하고 또한 영역 내에서 객체가 움직일 때 객체의 추적을 제공한다. 방향과 속도를 포함하는 상공 객체의 움직임은 레이더 검출 시스템에 의해 결정될 수 있다. 검출 시스템은 객체 자체에 대한 정보를 제공하고, 객체의 유형 또는 객체의 유형과 유사한 객체를 구별 및/또는 식별하기 위해 사용될 수 있다. 예를 들면, 하나의 신호 패턴이 무인항공기와 일치할 수 있도록 식별될 수 있고, 다른 신호 패턴은 객체를 조류로 식별할 수 있다. 시스템은 신호 정보를 처리하도록 구성되는 것이 바람직하고, 무인항공기, 조류, 풍선 등과 같은 검출될 예상 객체에 대응하는 패턴이 제공될 수 있다. 하나 이상의 식별 패턴이 특정 대사에 대한 기준으로 저장될 수 있다. 신호 패턴의 데이터베이스는 영역 내의 알려진 객체가 예상되거나 이전의 검출을 기반으로 생성될 수 있다. 데이터베이스는 레이더 시스템이 수신안테나로부터 반사된 신호를 수신할 때 매치를 위해 찾을 수 있다. 바람직하게는, 이는 레이더 프로세서(222, 232, 242) 또는 수집 추적 컴퓨터(280)과 같은 처리 컴포넌트에 의해 수행된다.
도 3은 수신안테나에 의해 수신된 신호의 레이더 처리와 관련하여 구현될 수 있는 방법의 일례를 나타낸다. 도 3에 도시된 바와 같이 안테나 어레이(블록 400)은 복수의 안테나를 나타내는 것으로 도시된다. 복수의 안테나는 예컨대, 수신안테나(221, 231, 241)(그리고 도 2에 도시된 수신안테나 또는 어레이(221a, 221b))과 같이 도 1의 시스템과 관련하여 도시된 안테나일 수 있다. 일부 실시 예에 따르면, 안테나 어레이는 몇몇 안테나 소자 및 소자 레벨 디지털화로 구성된 단순 안테나 어레이일 수 있다. 수신된 신호의 도달 방향의 결정을 수행하기 위해 디지털 빔포밍(블록 401)이 수행된다. 반사된 신호 또는 에코들의 도달 방향은 표준 레이더 빔포밍 기술을 사용하여 계산될 수 있다. 복수의 안테나 소자가 도시되어 있지만, 일부 실시 예에 따르면, 한 쌍의 안테나 소자가 이용될 수 있으며, 도달의 위상 차이가 에코의 도달 방향을 결정하는데 사용될 수 있다. 일부 실시 예에 따르면 안테나의 위상 어레이가 사용될 수 있다. 수신된 신호는 바람직하게는 신호 컨디셔닝을 수행한다(블록 402). 추가적으로 송신된 신호의 복사본(블록 403)은 또한, 조절될 수 있다(블록 404). 신호 컨디셔닝은 교차-상관(cross correlation) 프로세싱(블록 406)이전에 신호의 일부분을 조작하기 위해 수행될 수 있다. 신호 컨디셔닝(블록 402, 404)은 신호 대 간섭비(SIR; signal to interference ratio)를 향상시키기 위해 수행될 수 있다. 빔포머(블록 401)가 개별적으로 도시되어 있지만, 이는 신호 컨디셔닝의 일부를 포함할 수 있다. 레이더 프로세서는 바람직하게는 적응형 필터로 구성된다. 적응형 필터는 신호를 조작하여 직접 신호(direct signal)를 제거하기 위해 사용된다. 적응형 필터는 또한 적응소거(adaptive cancellation)(블록 405)로 지칭될 수 있다. 일부 실시 예에 따르면, 예컨대, 적응형 필터는 채널을 통해 수신된 데이터의 상관 특성을 검사함으로써 수행된다. 이러한 방식으로 안테나 패턴 사이드 로브에 들어가는 재밍(jamming) 및 클러터(clutter)의 존재가 식별될 수 있다. 채널들은 가중치의 세트에 따라 결합되어 안테나에 고이득(high-gain) 메인 로브(mainlobe) 및 일반적으로 낮은 사이드 로브(sidelobe)를 제공할 수 있다. 적응형 필터링은 또한 채널들을 결합할 수 있고, 방해 전파(jammer)의 도달각에서 안테나 패턴에 널(null)을 생성하기 위해 가중을 제공할 수 있다. 도시된 레이더 처리 예에서, 처리는 교차-상관 프로세싱(블록 406)을 포함할 수 있다. 교차-상관 프로세싱(블록 406)는 관련된 다른 것들 중 하나의 레그의 함수로써 두 개의 시리즈의 유사성을 측정하도록 설계된다. 레이더 처리 예에서 교차-상관 프로세싱(블록 406)는 각 타겟 에코의 바이스태틱 레인지(bistatic range)와 바이스태틱 도플러 시프트(bistatic doppler shift)의 추정을 제공한다. 교차-상관은 매치된 필터로써 작용한다. 이는 서로 다른 타겟 도플러 시프트에 매칭된 필터들의 뱅크를 제공함으로써 구현될 수 있다. 셀-평균 상수 거짓 알람 레이트(CFAR; cell averaging constant false alarm rate) 알고리즘 처리(블록 407)가 구현된다. CFAR검출(블록 407)은 타겟을 검출하도록 설계된다. 교차-상관 표면상의 타겟을 검출하기 위해 적응 임계값이 적용된다. 레이더 프로세서는 CFAR 검출을 구현하도록 구성되어 교차-상관 표면 위의 모든 리턴이 검출의 타겟이 되는 것으로 간주할 수 있다. 무인항공기 및 다른 저비행 객체와 같은 타겟은 바람직하게는 시간에 따라 추적되므로 그들의 움직임, 방향 및 속도에 관한 정보가 추적될 수 있다. 예를 들어, 모니터된 상공 영역에서 이동하는 무인항공기, 조류, 풍선 등과 같은 객체의 경우, 이들 움직이는 객체로부터 반사된 에코(예컨대, 도플러 효과)의 주파수 시프트가 관찰되고 검출될 수 있다. 이 정보는 무인항공기, 조류 등과 같은 저비행 객체의 위치뿐 아니라 객체가 이동하는 방향 및 속도를 제공할 수 있다. 바람직하게는 시스템 내의 각각의 송신기 또는 모니터링되는 네트워크 영역 부분에 있는 각각의 송신기는 총체적으로 라인 추적기(블록 408a, 408b, 408c)(각 송신기에 대한 라인 추적기를 나타냄)를 통해 라인 추적을 수행한다. 예를 들어, 도 1을 참조하면, 송신기(261, 271, 281)는 바람직하게는 각각의 라인 추적기(블록 408a, 408b, 408c)와 관련된 신호를 제공한다. 레이더 프로세서는 개별 타겟으로부터 타겟 리턴의 라인 추적을 구현하도록 구성될 수 있다. 이것은 바람직하게 교차-상관 프로세싱(블록 406)에 의해 생성된 범위-도플러(range-doppler) 공간 내에서 시간에 따라 수행된다. 추적 연관성(tracking association) 및 트랙 추정(track estimation)(블록 409)는 무인항공기 또는 다른 저비행 객체의 위치를 결정하기 위해 수행된다. 추적 연관성은 단일 송신기 및 단일 수신기를 사용하여 수행되거나, 또는 일부 실시 예에 따라서, 무인항공기 또는 다른 객체와 같은 객체가 잠재적으로 각각의 수신기에 의해 검출될 수 있는 다수의 수신기를 사용하여 수행될 수 있으며, 하나 이상의 송신기와 관련이 있다. 실시 예에서는 다수의 노드로 도시되어 있지만 도시된 각각의 노드와 관련된 송신기가 참조된다. 시스템은 다수의 수신기가 단일 타워 안테나로부터 송신기에 의해 전파되는 신호를 수신하도록 채택될 수 있다. 반사되고, 수신된 신호는 하나의 송신기로부터의 어느 타겟 리턴이 다른 수신기상의 타겟 리턴과 일치하는지를 결정하기 위해 처리된다. 신호 리턴은 하나 이상의 수신기에 의해 반사된 신호로부터 제공된 신호 정보를 사용하여 객체의 위치를 결정하기 위해 연관된다. 처리된 신호 데이터로부터 타겟 트랙(블록 410)이 생성되고, 무인항공기(또는 다른 객체)의 방향, 속도 및 위치의 표시를 제공한다. 따라서, 이는 레이더 처리의 일례이며, 무인항공기 위치 및 추적을 제공하고, 네트워크 시스템으로부터 생성된 신호 데이터 처리를 위해 다른 레이더 처리 방법이 사용될 수 있다.
도 2에 도시된 바와 같이, 신호광선추적(306)이 도시되어 있다. 송신기(121)로부터의 신호 또는 광선(305)는 커버리지 영역 내의 무인항공기(1051)와 만나게 된다. 도 2에서 무인항공기(1051)는 도 1에 도시된 위치로부터 이동했다. 참고로, 무인항공기는 신호 원추(220)에 의해 표시된 상공 영역 내에 있다. 일례에 따르면 광선 추적은 무인항공기(1051)와 같은 객체의 움직임을 추적하도록 구현될 수 있다. 무인항공기(1051)에 도달하면, 신호 광선(305)의 일부는 흡수되거나 또는 산란될 수 있다. 신호 광선(306)은 수신안테나(221a, 221b)에 의해 수신이 가능한 무인항공기(1051)(반사된 광선(305)의 일부)에 의해 반사된 신호로 나타난다. 레이더 프로세서(222)는 신호 복사(310)의 수신을 통해 신호 광선(305)에 대한 지식을 갖는 것이 바람직하다. 하나의 대표적인 신호 광선(305)과 하나의 반사된 신호 광선(306)이 도시되어 있으나, 다수의 신호 광선이 영역(220) 내에서 전송될 수 있고, 각각의 반사된 신호 광선 추적이 식별되고, 이 과정이 반복되어 무인항공기(1051)의 경로를 도출한다.
바람직한 실시 예에 따르면, 시스템은 상공 통신 시스템을 위한 무선 네트워킹 장치와 함께 구현된다. 예를 들면, 송신기는 객체에서 반사되어 방사되는 경우 레이더 프로세서와 관련된 수신안테나에 의해 검출되는 연속파 신호를 포함할 수 있는 송신신호를 송신할 수 있다. 바람직한 실시 예에 따르면, 송신신호는 셀룰러 통신(예컨대, 상공 방향 송신기/안테나로부터의 무인항공기로의 송신과 같은)을 위해 제공되는 RF신호이다. 바람직한 실시 예에 따르면, 레이더 프로세서는 송신 신호(직접 신호라 칭할 수 있음)의 복사본을 수신하고, 또한, 객체로부터 반사되는 신호를 수신(관련 안테나를 통해)한다. 반사된 신호는 직접적이지 않다(산란된 것으로 간주될 수 있음). 레이더 프로세서는 신호(직접 또는 반사 모두)를 수신하고 신호를 차별화하도록 구성된다. 신호 속성(예컨대, 송신 시간, 수신 시간, 주파수 및 변조된 데이터)은 레이더 프로세서에 의해 획득되고, 분석되어 검출결과를 제공한다. 무인항공기 및 조류와 같은 객체가 송신이 일어나는 검출 영역에 존재할 때, 반사된 신호는 계속해서 레이더 프로세서에 의해 수신되고, 객체의 움직임 및 위치는 감시되고 추적될 수 있다. 검출 영역은 영역 전체에 걸쳐 객체를 추적하기 위한 복수의 검출 영역을 포함할 수 있다. 레이더 프로세서는 네트워크의 일부로 구성되어 레이더 시스템 컴포넌트로 정보를 제공할 수 있고, 이는 레이더 프로세서와 네트워크로 연결된 수집 컴퓨터일 수 있다. 대안적으로, 일부 레이더 프로세서는 노드 상에 제공될 수 있고, 상기 노드는 다른 노드의 레이더 프로세서와 통합될 수 있다.
일부 실시 예에 따르면, 신호 도착 시간은 결정될 수 있고, 레이더 검출 응답을 제공하는데 사용할 수 있다. 실시 예는 신호를 분리하기 위해 신호의 처리를 구현하도록 레이더 프로세서를 구성할 수 있다. 무인항공기 또는 조류와 같은 객체가 움직이는 경우, 객체의 움직임은 무인항공기 또는 조류로부터 반사되거나 산란되는 신호를 유도(induce)할 수 있다. 시프트는 두 개 신호의 주파수 분리를 용이하게 한다. 레이더 처리는 신호를 검출하고 평가하기 위한 처리 방법에 따라 수행될 수 있다. 신호의 차별화는 상공 영역에 존재하는 객체의 존재를 결정하는 방법을 제공한다.
본 시스템의 실시 예에 따르면, 송신은 송신기의 무선 주파수 반송파에 부과된 송신코드를 이용할 수 있다. 코드는 일련의 개별 송신기 위한 레벨로 제공될 수 있다. 코드는 L비트 후에 반복될 수 있기 때문에 의사 랜덤 코드인 랜덤 코드일 수 있다. 전송은 코드 워드(code word) 또는 길이 L비트의 시퀀스를 포함할 수 있고, 시프트 레지스터 스테이지의 수 N에 기초하여 주기적으로 반복한다. 예를 들어, L비트의 경우, N개의 시프트 레지스터 스테이지에 대해 수식 L=2^N로 표현될 수 있다. 일 실시 예에 따르면 클록 펄스 생성기가 제공되며, 코더-시프트 레지스터(code-shift register)에 공급하도록 구성된다. 예를 들면, 클록 펄스가 인가될 때마다 시프트 레지스터의 상태는 한 단계 시프트(예컨대, 선형 표현을 고려하면 오른쪽으로) 될 수 있다. 바람직한 실시 예에 따르면, 의사 랜덤 코드를 포함하는 코드는 WNE의 송수신기로부터 캐리어의 RF송신과 함께 제공되는 코드이다.
레이더 프로세서가 도시되어 있지만, 레이더 프로세서는 별도의 컴포넌트로 제공될 수 있고, 하나 이상의 분산 네트워킹 하드웨어와 관련하여 제공될 수 있다. 도 3에 일 실시 예가 도시되어 있지만, 수동 레이더 프로세서는 도 3에 도시된 것 이외의 방법 중 임의의 하나에 따라 수신된 신호를 조작할 수 있다.
상기 시스템의 실시 예들은 커버리지 영역 내의 무인항공기들과 통신하기 위해 방사되는 통신 송신들을 이용한다. 일부 대안적인 실시 예에 따르면, 예를 들면, 커버리지 영역 내에 무인항공기가 존재하지 않는 경우와 같이 통신 송신이 방사되지 않을 때 정보를 생성하기 위한 대안적인 구현이 제공될 수 있다. 이 대안적으로 구현된 시스템은 무인항공기에 대한 정기적인 통신 송신이 없는 경우 상공방향 통신 시스템이 하늘을 향해 정기적으로 송신할 수 있다. 다른 실시 예에 따르면, 송신기는 주기적 또는 정기적으로 상공으로 송신할 수 있다. 이것은 상공 통신 시스템에 의해 생성될 수 있다. 일부 실시 예에 따르면, 일정 시간 동안 무인항공기 통신 송신이 없는 경우, 정기적인 송신이 전송될 수 있다. 일부 다른 실시 예에 따르면, 정기적인 송신은 미리 결정된 기간 동안 송신기로부터 통신 송신이 존재하지 않을 때 생성될 수 있다. 대안적인 시스템은 예를 들면, 정기적인 송신은 레이더 프로세서가 상공 영역 또는 존 내의 객체를 포지티브하게 검출하게 할 때, 레이더 검출 컴포넌트로부터 신호를 수신하도록 구성될 수 있다. 송신기는 레이더 프로세서 검출로부터의 결과로써 통지 신호를 수신하고, 검출된 객체를 모니터링하기 위해 정기적인 송신을 계속 전송할 수 있다. 정기적인 송신이 전송되거나, 대안적으로, 연속 신호파가 방사될 수 있어 레이더 프로세서는 객체가 검출 영역 내에 존재하거나 검출 영역을 통해 이동함에 따라 검출된 객체로부터 에코를 수신할 수 있다. 따라서, 객체가 존 외부로 이동하고, 비활동 기간이 되면 다른 객체가 감지될 때까지 시스템은 주기적인 송신을 수행할 수 있다. 이러한 다른 구현 예에 따르면, 주기적 송신의 복사본은 관련된 레이더 프로세서로 전송될 수 있다. 레이더 프로세서는 예를 들어 조류(또는 다른 비통신 객체)가 영역 내에 존재하는지의 여부를 결정하기 위해 수신안테나 및 주기적 송신의 복사본으로부터 수신된 신호를 처리한다.
이들 및 다른 이점은 본 발명으로 실현될 수 있다. 본 발명은 특정 실시 예를 참조하여 설명되었으나, 설명은 예시적인 것이며 본 발명의 범위를 제한하는 것으로 해석되어서는 안된다. 당업자는 본원에 기술된 본 발명의 사상 및 범위를 벗어나지 않고 첨부된 청구범위에 의해 정의된 바와 같이 다양한 변형 및 변경이 가능하다.

Claims (29)

  1. a) RF신호를 생성하는 무선 네트워킹 장치;
    b) 상기 무선 네트워킹 장치와 결합되어 상공 방향으로 신호를 방사하는 적어도 하나의 송신안테나;
    c) 저비행 객체로부터 반사된 신호를 수신하는 적어도 하나의 수신안테나;
    d) 상기 무선 네트워킹 장치와 전자적으로 결합되어 신호를 수신하고, 상기 수신안테나와 결합되어 신호를 수신하는 레이더 프로세서;
    e) 상기 레이더 프로세서로부터 정보를 수신하도록 결합된 컴퓨팅 컴포넌트;
    f) 상기 컴퓨팅 컴포넌트는 커버리지 영역에 대해 네트워크 전체에 걸쳐 분포된 복수의 레이더 프로세서로부터 정보를 수신하도록 구성되고, 상기 컴퓨팅 컴포넌트는 커버리지의 영역을 넘는 저비행 객체를 검출 및 추적하기 위해 상기 정보를 수집하는 것을 특징으로 하는 저비행 레이더 시스템.
  2. 제1항에 있어서,
    상기 무선 네트워킹 장치는,
    송수신기;
    전원; 및
    네트워크를 통해 송수신되는 통신을 처리하기 위한 프로세서;
    를 포함하는 것을 특징으로 하는 저비행 레이더 시스템.
  3. 제1항에 있어서,
    상기 적어도 하나의 송신안테나와 상기 적어도 하나의 수신안테나는 안테나 어레이(antenna array)를 포함하는 것을 특징으로 하는 저비행 레이더 시스템.
  4. 제1항에 있어서,
    상기 적어도 하나의 송신안테나 및 상기 적어도 하나의 수신안테나는 페이즈드 어레이(phased array)를 포함하는 것을 특징으로 하는 저비행 레이더 시스템.
  5. 제1항에 있어서,
    상기 시스템은,
    무인항공기(UAV; unmanned aerial vehicle)의 코너 반사기로부터 반사된 RF방사선을 검출하도록 구성된 것을 특징으로 하는 저비행 레이더 시스템.
  6. 제1항에 있어서,
    상기 송수신기는 원형 방향으로 편광된 송수신기 신호를 생성하도록 구성되며, 상기 수신안테나는 상기 통신 송수신기 신호로부터의 직접적인 간섭을 줄이기 위해 상기 통신 송수신기 신호와 반대 방향으로 편광되어 객체에서 반사되는 것을 특징으로 하는 저비행 레이더 시스템.
  7. 제1항에 있어서,
    상기 무선 네트워킹 장치는,
    무인항공기들과 통신하도록 구성된 것을 특징으로 하는 저비행 레이더 시스템.
  8. 제1항에 있어서,
    복수의 무선 네트워킹 장치는,
    복수의 노드들을 형성하는 것을 특징으로 하는 저비행 레이더 시스템.
  9. 제8항에 있어서,
    상기 노드들은 상기 각각의 노드들의 영역들 내의 객체의 존재를 나타내는 신호를 제공하는 것을 특징으로 하는 저비행 레이더 시스템.
  10. 제1항에 있어서,
    상기 송신안테나로부터 상공 방향으로 신호를 방사하기 위해 각각의 복수의 무선 네트워킹 장비에 결합되는 복수의 송신안테나; 상기 복수의 송신안테나는 신호 커버리지의 상공 영역을 제공하도록 구성되고;
    각각의 복수의 수신안테나는 상기 각각의 복수의 송신안테나로부터 생성되어 반사된 신호를 수신하기 위해 제공되며; 각각의 수신안테나는 각각의 관련된 송신안테나에 인접하게 위치되고, 상기 송신안테나와 상기 각각의 수신안테나는 각각의 신호 방사선 및 신호 수신에 의한 검출 영역을 정의하고;
    상기 시스템은 복수의 검출영역을 포함하고; 및 상기 컴퓨팅 컴포넌트는 상기 검출 영역내의 객체를 검출하고 추적하는 것을 특징으로 하는 저비행 레이더 시스템.
  11. 제10항에 있어서,
    각각의 상기 송신안테나는 하나의 원형 방향으로 편광된 신호를 반사하고, 각각의 관련된 수신안테나는 각각의 송신안테나의 반대 원형방향으로 편광되는 것을 특징으로 하는 저비행 레이더 시스템.
  12. 제10항에 있어서,
    정보를 처리하기 위한 적어도 하나의 프로세서를 갖는 무인항공기 항공 교통 통제 시스템을 더 포함하고,
    상기 탐지 영역 내의 저비행 객체에 대한 추적 정보를 수신하고 상기 레이더 프로세서와 전자적으로 결합되어 상기 시스템에 의해 검출된 검출 영역 내 다른 객체와 다른 무인항공기들과의 잠재적인 충돌을 최소화하기 위해 하나 이상의 무인항공기의 동작을 제어하는 것을 특징으로 하는 저비행 레이더 시스템.
  13. 제11항에 있어서,
    정보를 처리하기 위한 적어도 하나의 프로세서를 갖는 무인항공기 항공 교통 통제 시스템을 더 포함하고,
    상기 탐지 영역 내의 저비행 객체에 대한 추적 정보를 수신하고 상기 레이더 프로세서와 전자적으로 결합되어 상기 시스템에 의해 검출된 검출 영역 내 다른 객체와 다른 무인항공기들과의 잠재적인 충돌을 최소화하기 위해 하나 이상의 무인항공기의 동작을 제어하는 것을 특징으로 하는 저비행 레이더 시스템.
  14. 제1항에 있어서,
    상기 송신안테나는 하나 이상의 무인항공기와의 통신을 위한 RF통신을 제공하고, 무선 네트워킹 장치는 적어도 하나의 송신기를 포함하고, 상기 RF통신은 상기 송신기에 의해 생성된 RF신호를 포함하고; 상기 수신안테나는 객체로부터 반사되어 상기 송신된 RF신호들의 에코들을 수신하는 것을 특징으로 하는 저비행 레이더 시스템.
  15. 제14항에 있어서,
    상기 RF신호들을 생성하는 상기 송신기는 상기 신호들의 복사본을 상기 레이더 프로세서로 제공하는 것을 특징으로 하는 저비행 레이더 시스템.
  16. 제15항에 있어서,
    상기 레이더 신호는 상기 적어도 하나의 송신안테나로부터 상기 무인항공기들 중 적어도 하나로 송신된 통신 신호들을 포함하는 것을 특징으로 하는 저비행 레이더 시스템.
  17. 제16항에 있어서,
    상기 RF신호는 코딩된 변조(coded modulation)를 포함하는 것을 특징으로 하는 저비행 레이더 시스템.
  18. 제16항에 있어서,
    상기 코딩된 변조된 RF신호들의 코드들은 상기 적어도 하나의 송신안테나와 무인항공기 사이의 신호 통신들로부터의 코드를 포함하는 것을 특징으로 하는 저비행 레이더 시스템.
  19. 제18항에 있어서,
    상기 코드는 상기 송신기로부터 상기 (i)상기 적어도 하나의 송신안테나 및 (ii)상기 레이더 프로세서 모두에 제공되는 것을 특징으로 하는 저비행 레이더 시스템.
  20. 제18항에 있어서,
    상기 송신기는 상기 코드를 상기 레이더 프로세서에 제공하도록 링크된 것을 특징으로 하는 저비행 레이더 시스템.
  21. 제18항에 있어서,
    상기 송신기는 상기 송신기의 송신 및 에코 범위 내에서 복수의 레이더 프로세서에 상기 코드를 제공하도록 링크된 것을 특징으로 하는 저비행 레이더 시스템.
  22. 제1항에 있어서,
    복수의 송신기들 및 상기 각각의 복수의 송신기들로부터의 RF신호들을 방사하는 각각의 복수의 관련 안테나들로부터 RF통신을 위한 상공 통신 시스템을 포함하고; 관련된 수신 안테나를 갖는 복수의 레이더 프로세서는 상공 객체로부터 반사되는 각각의 복수의 송신기로부터 수신된 신호를 제공하는 것을 특징으로 하는 저비행 레이더 시스템.
  23. 제22항에 있어서,
    상기 복수의 레이더 프로세서는 상기 송신기로부터 송신된 RF신호의 복사본을 수신하는 것을 특징으로 하는 저비행 레이더 시스템.
  24. 제23항에 있어서,
    상기 레이더 프로세서는 상기 레이더 프로세서와 관련된 안테나에 의해 검출된 반사신호와 상기 송신기로부터 수신된 신호 복사본 사이의 위상차를 처리하는 것을 특징으로 하는 저비행 레이더 시스템.
  25. 제1항에 있어서,
    코드들은 상기 송신기 주파수 캐리어에 부과되는 것을 특징으로 하는 저비행 레이더 시스템.
  26. 제1항에 있어서,
    코드들은 의사 랜덤 코드(pseudo random code)들을 포함하는 상기 송신기 주파수 캐리어에 부과되는 것을 특징으로 하는 저비행 레이더 시스템.
  27. 제26항에 있어서,
    상기 의사 랜덤 코드는 시프트 레지스터 스테이지(shift register stages)의 수 N에 기초하여 주기적으로 반복하는 L비트의 코드 길이에 대해 생성되고, 상기 시프트 레지스터 스테이지의 수 N에 대해 L비트는 수식 L= 2^N - 1인 것을 특징으로 하는 저비행 레이더 시스템.
  28. 제1항에 있어서,
    상기 무선 네트워킹 장치는 상기 송신안테나로부터 방송되는 RF송신을 송신하기 위한 송신기를 포함하고, 상기 무선 네트워킹 장치는 상기 RF송신의 복사본을 상기 레이더 프로세서로 제공하는 것을 특징으로 하는 저비행 레이더 시스템.
  29. 제28항에 있어서,
    코드들은 의사 랜덤 코드(pseudo random code)들을 포함하는 상기 송신기 주파수 캐리어에 부과되는 것을 특징으로 하는 저비행 레이더 시스템.
KR1020187036739A 2016-05-27 2017-05-30 저비행 무인항공기 및 객체 추적 레이더 시스템 KR102244863B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662342585P 2016-05-27 2016-05-27
US62/342,585 2016-05-27
PCT/US2017/035036 WO2017205874A1 (en) 2016-05-27 2017-05-30 Radar system to track low flying unmanned aerial vehicles and objects

Publications (2)

Publication Number Publication Date
KR20190006561A true KR20190006561A (ko) 2019-01-18
KR102244863B1 KR102244863B1 (ko) 2021-04-27

Family

ID=60411949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187036739A KR102244863B1 (ko) 2016-05-27 2017-05-30 저비행 무인항공기 및 객체 추적 레이더 시스템

Country Status (13)

Country Link
US (3) US11294048B2 (ko)
EP (1) EP3465660A4 (ko)
JP (1) JP7036744B2 (ko)
KR (1) KR102244863B1 (ko)
CN (2) CN109478375B (ko)
AU (2) AU2017270593B2 (ko)
BR (1) BR112018074384A2 (ko)
CA (1) CA3025355A1 (ko)
IL (2) IL295502B2 (ko)
MX (1) MX2018014569A (ko)
RU (1) RU2737058C2 (ko)
SG (1) SG11201810483QA (ko)
WO (1) WO2017205874A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298950B1 (ko) * 2020-07-23 2021-09-08 한국항공우주산업 주식회사 복수의 무인기 레이다를 이용한 동시적 위치 추적 방법
KR20210111092A (ko) * 2020-03-02 2021-09-10 국방과학연구소 소형 무인기 탐지 장치 및 탐지 방법

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200453844Y1 (ko) 2011-04-01 2011-05-30 김영달 팝콘 조리 장치
US10277306B2 (en) * 2013-02-27 2019-04-30 Spatial Digital Systems, Inc. Systems for surveillance using airborne platforms as receiving platforms for bistatic radars
US10083614B2 (en) 2015-10-22 2018-09-25 Drone Traffic, Llc Drone alerting and reporting system
IT201700112400A1 (it) * 2017-10-06 2019-04-06 Inxpect S P A Metodo e sistema di rilevamento radar per identificare oggetti mobili
US10746512B2 (en) * 2017-12-20 2020-08-18 Garmin Switzerland Gmbh Shot tracking and feedback system
US10699583B2 (en) * 2018-07-05 2020-06-30 Shu-Hui Kao Method for flight path planning of unmanned aerial vehicles using flying routes of birds
SE542976C2 (en) * 2018-10-18 2020-09-22 Saab Ab Unmanned aerial vehicle compatible with a traffic management system
WO2020142879A1 (zh) * 2019-01-07 2020-07-16 深圳市大疆创新科技有限公司 数据处理方法、探测装置、数据处理装置、可移动平台
CN109727453B (zh) * 2019-01-18 2020-08-04 电子科技大学 一种用于高速公路交通监测的无源雷达系统及其监测方法
KR20210148161A (ko) * 2019-04-03 2021-12-07 폴 웨스트메이어 고급 근거리 통신 아키텍처들의 보안
US20220260697A1 (en) * 2019-06-11 2022-08-18 Gpm 3 S.R.L. Multistatic Radar System and Method of Operation Thereof for Detecting and Tracking Moving Targets, in Particular Unmanned Aerial Vehicles
US11828836B1 (en) 2019-08-30 2023-11-28 Rockwell Collins, Inc. Radar detection and discrimination of quadcopters using measured Doppler signatures system and method
US20210088629A1 (en) * 2019-09-25 2021-03-25 Raytheon Company Detecting an unmanned aerial vehicle using passive radar
US11422226B2 (en) * 2019-12-10 2022-08-23 Raytheon Company Systems and methods for multipath beam nulling
WO2021161502A1 (ja) * 2020-02-14 2021-08-19 日本電気株式会社 学習装置、学習方法、記録媒体、及び、レーダ装置
US12047935B2 (en) * 2020-09-21 2024-07-23 Qualcomm Incorporated Cellular communications under radar interference
CN114488124A (zh) * 2020-10-23 2022-05-13 华为技术有限公司 一种探测与通信系统、控制装置及探测系统
US11650308B2 (en) * 2021-02-08 2023-05-16 Src, Inc. System and method for detecting ballistic targets
RU2758808C1 (ru) * 2021-03-29 2021-11-02 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия радиационной, химической и биологической защиты имени Маршала Советского Союза С.К. Тимошенко" Министерства обороны Российской Федерации Способ дистанционного отбора проб грунта, снега с использованием беспилотного летательного аппарата коптерного типа
CN113204014B (zh) * 2021-03-31 2024-06-18 江苏恒斌运通电子科技有限公司 基于多无人飞行器分布式雷达的三维雷达模拟方法
KR102593557B1 (ko) 2021-05-04 2023-10-24 한국전자통신연구원 드론 식별을 위한 안테나 장치 및 그 동작 방법
WO2023129094A1 (en) * 2021-12-31 2023-07-06 Orta Dogu Teknik Universitesi Doppler shift based distributed drone detection system
CN114374425B (zh) * 2022-01-14 2022-09-16 中国科学院上海微系统与信息技术研究所 一种通信网络中的终端计算业务资源请求方法
CN115840223B (zh) * 2023-02-15 2023-05-09 成都熵泱科技有限公司 一种可识别目标属性的无人机探测系统及方法
CN117269951B (zh) * 2023-08-21 2024-03-26 中国电子科技集团公司第五十四研究所 空地多视角信息增强的目标跟踪方法
CN117310714B (zh) * 2023-09-27 2024-10-18 立方数科股份有限公司 机场低空探测相控阵雷达的高fov一维波束合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088508A1 (en) * 1999-03-05 2008-04-17 Smith Alexander E Enhanced Passive Coherent Location Techniques to Track and Identify UAVs, UCAVs, MAVs, and Other Objects
US20130285848A1 (en) * 2009-09-16 2013-10-31 Broadcom Corporation Integrated and Configurable Radar System
US20180024236A1 (en) * 2015-02-09 2018-01-25 Artsys360 Ltd. Aerial traffic monitoring radar

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042925A (en) * 1975-11-24 1977-08-16 International Telephone And Telegraph Corporation Pseudo-random code (PRC) surveilance radar
DE3880439D1 (de) * 1987-11-18 1993-05-27 Siemens Ag Albis Impulsradarsystem.
US5276449A (en) * 1992-09-16 1994-01-04 The Boeing Company Radar retroreflector with polarization control
JPH1130659A (ja) * 1997-07-10 1999-02-02 Hitachi Ltd 移動体の位置決定および追跡装置
US6177903B1 (en) * 1999-06-14 2001-01-23 Time Domain Corporation System and method for intrusion detection using a time domain radar array
US6453934B1 (en) 2001-02-07 2002-09-24 Delphi Technologies, Inc. Shaft brush for preventing coking in a gas management valve
EP1384094A2 (en) * 2001-05-04 2004-01-28 Lockheed Martin Corporation Altitude estimations system and method cross reference to related applications
DE10213987A1 (de) 2002-03-27 2003-10-16 Bosch Gmbh Robert Einrichtung für insbesondere bistatische Anwendungen
JP2004163218A (ja) * 2002-11-12 2004-06-10 Toshiba Corp 空港監視システム
JP4096867B2 (ja) * 2003-11-25 2008-06-04 三菱電機株式会社 目標識別用レーダ装置
US6867727B1 (en) * 2004-03-01 2005-03-15 The United States Of America As Represented By The Secretary Of The Air Force Multiplatform multifunction avionics architecture
US7269513B2 (en) * 2005-05-03 2007-09-11 Herwitz Stanley R Ground-based sense-and-avoid display system (SAVDS) for unmanned aerial vehicles
US7876258B2 (en) 2006-03-13 2011-01-25 The Boeing Company Aircraft collision sense and avoidance system and method
US20100121574A1 (en) * 2006-09-05 2010-05-13 Honeywell International Inc. Method for collision avoidance of unmanned aerial vehicle with other aircraft
CN101173985A (zh) * 2006-11-01 2008-05-07 中国科学院国家天文台 利用卫星信号探测低空目标的被动雷达探测方法
CN100466014C (zh) * 2006-11-08 2009-03-04 北京航空航天大学 机场场面移动目标监视系统
CN101192350B (zh) * 2006-11-30 2012-07-04 黄金富 主动发射三维立体飞行信息的飞机防撞及导航系统和方法
GB0710209D0 (en) * 2007-05-29 2007-07-04 Cambridge Consultants Radar system
JP2008304329A (ja) * 2007-06-07 2008-12-18 Mitsubishi Electric Corp 測定装置
JP4664948B2 (ja) * 2007-07-30 2011-04-06 株式会社東芝 送受信モジュール
CN101482609B (zh) * 2008-03-05 2013-11-20 中国科学院嘉兴无线传感网工程中心 基于无线传感网的超低空低速平面微带雷达探测器
US8996225B2 (en) 2008-10-02 2015-03-31 Lockheed Martin Corporation System for and method of controlling an unmanned vehicle
US7889115B2 (en) * 2009-01-30 2011-02-15 The Boeing Company System and method for tracking and identifying aircraft and ground equipment
IT1398983B1 (it) * 2010-03-22 2013-03-28 Selex Sistemi Integrati Spa Sistema radar secondario per il controllo del traffico aereo con funzionalita' di sorveglianza primaria.
CN101986169B (zh) * 2010-08-10 2015-04-08 重庆九洲星熠导航设备有限公司 基于蜂窝移动通信基站及其网络的分布式无源探测系统
RU113022U1 (ru) * 2010-12-29 2012-01-27 Открытое Акционерное Общество "Межгосударственная Акционерная Корпорация "Вымпел" Наземно-космическая радиолокационная система
CN102680979B (zh) * 2011-03-15 2014-04-30 深圳光启高等理工研究院 一种雷达抗干扰的方法
WO2012149035A2 (en) * 2011-04-25 2012-11-01 University Of Denver Radar-based detection and identification for miniature air vehicles
US9100085B2 (en) * 2011-09-21 2015-08-04 Spatial Digital Systems, Inc. High speed multi-mode fiber transmissions via orthogonal wavefronts
RU125723U1 (ru) * 2012-05-04 2013-03-10 Закрытое акционерное общество "Научно-производственный центр "Аквамарин" Береговая пространственно распределенная многопозиционная радиолокационная станция с автономными радиолокационными терминалами для мониторинга акваторий
WO2014125447A1 (en) * 2013-02-18 2014-08-21 University Of Cape Town Symbiotic radar and communication system
US9476962B2 (en) * 2013-05-02 2016-10-25 The Boeing Company Device, system and methods using angle of arrival measurements for ADS-B authentication and navigation
RU2534217C1 (ru) * 2013-08-28 2014-11-27 Общество с ограниченной ответственностью "Смоленский научно-инновационный центр радиоэлектронных систем "Завант" Радиолокационный способ обнаружения малозаметных беспилотных летательных аппаратов
US9057785B1 (en) * 2014-05-29 2015-06-16 Robert W. Lee Radar operation with increased doppler capability
EP2993545B1 (en) * 2014-09-05 2019-12-04 Airbus Defence and Space GmbH Follow-me system for unmanned aircraft vehicles
US9754496B2 (en) * 2014-09-30 2017-09-05 Elwha Llc System and method for management of airspace for unmanned aircraft
US10310066B1 (en) * 2015-05-26 2019-06-04 Saze Technologies, Llc Indirect passive radar detection method and system
CN105070105B (zh) * 2015-07-29 2018-05-04 重庆赛乐威航空科技有限公司 一种低空飞行器动态监视系统
US10568063B2 (en) 2016-11-30 2020-02-18 Cisco Technology, Inc. Precise UAV tracking in 3-D space

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088508A1 (en) * 1999-03-05 2008-04-17 Smith Alexander E Enhanced Passive Coherent Location Techniques to Track and Identify UAVs, UCAVs, MAVs, and Other Objects
US20130285848A1 (en) * 2009-09-16 2013-10-31 Broadcom Corporation Integrated and Configurable Radar System
US20180024236A1 (en) * 2015-02-09 2018-01-25 Artsys360 Ltd. Aerial traffic monitoring radar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210111092A (ko) * 2020-03-02 2021-09-10 국방과학연구소 소형 무인기 탐지 장치 및 탐지 방법
KR102298950B1 (ko) * 2020-07-23 2021-09-08 한국항공우주산업 주식회사 복수의 무인기 레이다를 이용한 동시적 위치 추적 방법

Also Published As

Publication number Publication date
IL263313A (en) 2018-12-31
US11656354B2 (en) 2023-05-23
BR112018074384A2 (pt) 2019-03-12
AU2017270593B2 (en) 2023-05-04
CN115825948A (zh) 2023-03-21
JP2019519768A (ja) 2019-07-11
AU2023210584A1 (en) 2023-08-24
US20220404487A1 (en) 2022-12-22
CA3025355A1 (en) 2017-11-30
IL295502B1 (en) 2023-11-01
RU2018143511A (ru) 2020-06-29
MX2018014569A (es) 2019-03-11
RU2737058C2 (ru) 2020-11-24
KR102244863B1 (ko) 2021-04-27
EP3465660A4 (en) 2020-01-01
AU2017270593A1 (en) 2019-01-03
US20240103158A1 (en) 2024-03-28
EP3465660A1 (en) 2019-04-10
CN109478375A (zh) 2019-03-15
US11294048B2 (en) 2022-04-05
US20180003816A1 (en) 2018-01-04
IL295502B2 (en) 2024-03-01
CN109478375B (zh) 2022-09-16
RU2018143511A3 (ko) 2020-09-15
IL263313B (en) 2022-09-01
WO2017205874A1 (en) 2017-11-30
SG11201810483QA (en) 2018-12-28
IL295502A (en) 2022-10-01
US12000926B2 (en) 2024-06-04
JP7036744B2 (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
KR102244863B1 (ko) 저비행 무인항공기 및 객체 추적 레이더 시스템
US20170045613A1 (en) 360-degree electronic scan radar for collision avoidance in unmanned aerial vehicles
US7782256B2 (en) Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
CN102227647B (zh) 用于利用以准动态或动态方式对要监控的空间进行分区化来接收二次雷达信号的设备及用于此的方法
US8279109B1 (en) Aircraft bird strike avoidance method and apparatus using transponder
US20220260697A1 (en) Multistatic Radar System and Method of Operation Thereof for Detecting and Tracking Moving Targets, in Particular Unmanned Aerial Vehicles
RU2444755C1 (ru) Способ обнаружения и пространственной локализации воздушных объектов
RU2444754C1 (ru) Способ обнаружения и пространственной локализации воздушных объектов
Samczyński et al. Trial results on bistatic passive radar using non-cooperative pulse radar as illuminator of opportunity
KR102053881B1 (ko) 지상배열안테나 시스템 및 지상배열안테나 시스템에서 상공의 탐지 영역의 이미지를 획득하는 방법
RU2444756C1 (ru) Способ обнаружения и локализации воздушных объектов
RU2444753C1 (ru) Способ радиоконтроля воздушных объектов
Fabrizio High frequency over-the-horizon radar
Navrátil et al. Utilization of terrestrial navigation signals for passive radar
RU2608338C1 (ru) Устройство обработки сигналов в наземно-космической просветной радиолокационной системе
EP3548922B1 (en) Hand-held radar
Abratkiewicz et al. Passive Radar Using a Non-Cooperative Over-the-Horizon Radar as an Illuminator-First Results
Nijsure Cognitive radar network design and applications
Balajti Performance of Civilian Air Traffic Control augmented by twin radars
Azarian et al. RETRAM: A network of passive radars to detect and track meteors
Martelli Advanced signal processing techniques for WiFi-based Passive Radar for short-range surveillance

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant