KR20190003950A - 2차 변환 인덱스 이진화 - Google Patents

2차 변환 인덱스 이진화 Download PDF

Info

Publication number
KR20190003950A
KR20190003950A KR1020187031268A KR20187031268A KR20190003950A KR 20190003950 A KR20190003950 A KR 20190003950A KR 1020187031268 A KR1020187031268 A KR 1020187031268A KR 20187031268 A KR20187031268 A KR 20187031268A KR 20190003950 A KR20190003950 A KR 20190003950A
Authority
KR
South Korea
Prior art keywords
block
syntax element
value
decoding
video
Prior art date
Application number
KR1020187031268A
Other languages
English (en)
Other versions
KR102575798B1 (ko
Inventor
바딤 세레긴
신 자오
지안레 천
아미르 사이드
마르타 카르체비츠
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20190003950A publication Critical patent/KR20190003950A/ko
Application granted granted Critical
Publication of KR102575798B1 publication Critical patent/KR102575798B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/40Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/16Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter for a given display mode, e.g. for interlaced or progressive display mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • H04N19/426Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements using memory downsizing methods
    • H04N19/428Recompression, e.g. by spatial or temporal decimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission

Abstract

비디오 데이터를 디코딩하기 위한 예시적인 디바이스는 비디오 데이터를 저장하도록 구성된 메모리 및 회로 내에 구현된 하나 이상의 프로세서들을 포함하고, 그 하나 이상의 프로세서들은 비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하고, 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 블록의 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하고, 그 블록을 위한 2차 변환을 결정하기 위해 최대 가능 값에 관계 없이 공통 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 역 이진화하고, 그 결정된 2차 변환을 사용하여 블록의 변환 계수들을 역 변환하도록 구성된다.

Description

2차 변환 인덱스 이진화
본원은 다음의 각각에 대한 혜택을 주장한다:
2016년 5월 3일자로 출원된 U.S. 가출원 No. 62/331,290;
2016년 5월 5일자로 출원된 U.S. 가출원 No. 62/332,425;
2016년 5월 16일자로 출원된 U.S. 가출원 No. 62/337,310;
2016년 5월 24일자로 출원된 U.S. 가출원 No. 62/340,949; 및
2016년 7월 22일자로 출원된 U.S. 가출원 No. 62/365,853,
이들 각각의 전체 내용은 이로써 참조에 의해 원용된다.
기술 분야
본 개시는 비디오 코딩에 관한 것이다.
디지털 비디오 능력들은 디지털 텔레비전들, 디지털 다이렉트 브로드캐스트 시스템들, 무선 브로드캐스트 시스템들, 개인 휴대정보 단말기 (PDA) 들, 랩탑 또는 데스크탑 컴퓨터들, 태블릿 컴퓨터들, 전자책 단말기, 디지털 카메라들, 디지털 레코딩 디바이스들, 디지털 미디어 플레이어들, 비디오 게이밍 디바이스들, 비디오 게임 콘솔들, 셀룰러 또는 위성 무선 전화기들, 소위 "스마트 폰", 원격 화상회의 디바이스들, 비디오 스트리밍 디바이스들 등을 포함한, 광범위한 디바이스들에 포함될 수 있다. 디지털 비디오 디바이스들은, MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, AVC (Advanced Video Coding) 에 의해 정의되는 표준들, HEVC (High Efficiency Video Coding) 표준, 및 그러한 표준들의 확장들에 설명된 것들과 같은 비디오 코딩 기법들을 구현한다. 비디오 디바이스들은, 그러한 비디오 코딩기법들을 구현함으로써 보다 효율적으로 디지털 비디오 정보를 송신, 수신, 인코딩, 디코딩, 및/또는 저장할 수도 있다.
비디오 코딩 기법들은, 비디오 시퀀스들에 내재하는 중복성 (redundancy) 을 감소시키거나 또는 제거하기 위해 공간 (인트라-화상) 예측 및/또는 시간 (인터-화상) 예측을 포함한다. 블록 기반 비디오 코딩을 위해, 비디오 슬라이스 (예를 들어, 비디오 화상, 또는 비디오 화상의 일부) 는 비디오 블록들로 파티셔닝될 수도 있고, 이 비디오 블록들은 코딩 트리 유닛 (CTU), 코딩 유닛 (CU) 들, 및/또는 코딩 노드들로도 지칭될 수도 있다. 화상의 인트라-코딩된 (I) 슬라이스 내의 비디오 블록들은 동일한 화상 내의 이웃 블록들에 있는 참조 샘플들에 대한 공간 예측을 이용하여 인코딩된다. 화상의 인터-코딩된 (P 또는 B) 슬라이스내의 비디오블록들은 동일한 화상내의 이웃 블록들에 있는 참조 샘플들에 대한 공간 예측, 또는 다른 참조 화상들 내의 참조 샘플들에 대한 시간 예측을 이용할 수도 있다. 화상들은 프레임들로 지칭될 수도 있고, 참조 화상들은 참조 프레임들로 지칭될 수도 있다.
공간 또는 시간 예측은 코딩될 블록을 위한 예측 블록을 낳는다. 잔차 데이터는 코딩될 원래 블록과 예측 블록 사이의 픽셀 차이들을 나타낸다. 인터-코딩된 블록은 예측 블록을 형성하는 참조 샘플들의 블록을 가리키는 모션 벡터와, 코딩된 블록과 예측 블록 사이의 차이를 표시하는 잔차 데이터에 따라 인코딩된다. 인트라-코딩된 블록은 인트라-코딩 모드 및 잔차 데이터에 따라 인코딩된다. 추가의 압축을 위하여, 잔차 데이터는 픽셀 도메인으로부터 변환 도메인으로 변환되어 잔차 변환 계수들을 낳을 수도 있고, 그 후 이들은 양자화될 수도 있다. 초기에 2 차원 어레이로 배열된 양자화된 변환 계수들은 변환 계수들의 1 차원 벡터를 생성하기 위하여 스캔될 수도 있고, 엔트로피 코딩이 훨씬 더 많은 압축을 달성하기 위하여 적용될 수도 있다.
개요
일반적으로, 본 개시는 비디오 데이터의 블록의 2차 변환 신택스 엘리먼트 (secondary transform syntax element) 를 엔트로피 코딩 (인코딩 또는 디코딩) 하는 것과 관련된 기술을 설명한다. 2차 변환 신택스 엘리먼트들은 예를 들어, 비 분리 가능 2차 변환 (NSST) 신택스 엘리먼트들, 회전 변환 신택스 엘리먼트 등을 포함할 수도 있다. 일반적으로, 이들 신택스 엘리먼트들의 엔트로피 코딩은 이진화 또는 역 이진화를 포함할 수도 있다. 이진화 또는 역 이진화 스킴은 2차 변환 신택스 엘리먼트들에 대한 최대 가능 값에 관계 없이 동일한 이진화 또는 역 이진화 스킴이 적용되도록 단일화 (unify) 될 수도 있다. 본 개시의 기술들은 시그널링 유닛 신택스 엘리먼트들을 코딩 (인코딩 또는 디코딩) 하는 것을 더 포함할 수도 있으며, 시그널링 유닛은 2 이상의 이웃하는 블록들을 포함할 수도 있다. 시그널링 유닛 신택스 엘리먼트들은 각각의 블록에 선행할 수도 있거나, 시그널링 유닛 신택스 엘리먼트들이 적용되는 블록 (코딩 순서에서) 바로 전에 위치될 수도 있다.
하나의 예에서는, 비디오 데이터를 디코딩하는 방법은 비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하는 단계, 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 블록의 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하는 단계, 블록을 위한 2차 변환을 결정하기 위해 최대 가능 값에 관계 없이 공통 역 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 역 이진화하는 단계, 및 결정된 2차 변환을 사용하여 블록의 변환 계수들을 역변환하는 단계를 포함한다.
또 다른 예에서, 비디오 데이터를 디코딩하기 위한 디바이스는, 비디오 데이터를 저장하도록 구성된 메모리 및 회로에 구현된 하나 이상의 프로세서들을 포함하고, 그 하나 이상의 프로세서들은 비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하고, 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 블록의 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하고, 블록을 위한 2차 변환을 결정하기 위해 최대 가능 값에 관계 없이 공통 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 역 이진화하고, 그리고 결정된 2차 변환을 사용하여 블록의 변환 계수들을 역 변환하도록 구성된다.
또 다른 예에서, 비디오 데이터를 디코딩하기 위한 디바이스는, 비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하는 수단, 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 블록의 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하는 수단, 블록을 위한 2차 변환을 결정하기 위해 최대 가능 값에 관계 없이 공통 역 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 역 이진화하는 수단, 및 결정된 2차 변환을 사용하여 블록의 변환 계수들을 역 변환하는 수단을 포함한다.
또 다른 예에서, 컴퓨터 판독가능 저장 매체 (예를 들어, 비일시적 컴퓨터 판독가능 저장 매체) 는, 실행될 때 하나 이상의 프로세서들로 하여금, 비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하고, 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 블록의 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하고, 블록을 위한 2차 변환을 결정하기 위해 최대 가능 값에 관계 없이 공통 역 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 역 이진화하고, 그리고 결정된 2차 변환을 사용하여 블록의 변환 계수들을 역 변환하게 하는 명령들을 저장한다.
또 다른 예에서는, 비디오 데이터를 인코딩하는 방법은 2차 변환을 사용하여 비디오 데이터의 블록의 중간 변환 계수들을 변환하는 단계, 상기 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하는 단계로서, 상기 2차 변환 신택스 엘리먼트의 값은 2차 변환을 나타내는, 상기 최대 가능 값을 결정하는 단계, 최대 가능 값에 관계 없이 공통 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 이진화하는 단계, 및 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 블록의 2차 변환 신택스 엘리먼트에 대한 이진화된 값을 엔트로피 인코딩하는 단계를 포함한다.
또 다른 예에서, 비디오 데이터를 인코딩하기 위한 디바이스는, 비디오 데이터를 저장하도록 구성된 메모리 및 회로에 구현된 하나 이상의 프로세서들을 포함하고, 그 하나 이상의 프로세서들은 2차 변환을 사용하여 비디오 데이터의 블록의 중간 변환 계수들을 변환하고, 상기 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하는 것으로서, 상기 2차 변환 신택스 엘리먼트의 값은 2차 변환을 나타내는, 상기 최대 가능 값을 결정하고, 최대 가능 값에 관계 없이 공통 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 이진화하고, 그리고 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 블록의 2차 변환 신택스 엘리먼트에 대한 이진화된 값을 엔트로피 인코딩하게 하도록 구성된다.
하나 이상의 예들의 상세는 첨부 도면 및 아래의 설명에 제시되어 있다. 다른 특징, 목적 및 이점들은 상세한 설명 및 도면, 그리고 청구항들로부터 분명해질 것이다.
도 1은 2차 변환 인덱스를 이진화하기 위한 기법들을 이용할 수도 있는 예시적인 비디오 인코딩 및 디코딩 시스템을 나타내는 블록도이다.
도 2는 2차 변환 인덱스를 이진화하기 위한 기법들을 구현할 수도 있는 비디오 인코더의 예를 나타내는 블록도이다.
도 3은 본 개시의 기술에 따라 CABAC 를 수행하도록 구성될 수도 있는 예시적인 엔트로피 인코딩 유닛의 블록도이다.
도 4는 2차 변환 인덱스를 이진화하기 위한 기법들을 구현할 수도 있는 비디오 디코더의 예를 나타내는 블록도이다.
도 5는 본 개시의 기술에 따라 CABAC 를 수행하도록 구성될 수도 있는 예시적인 엔트로피 인코딩 유닛의 블록도이다.
도 6은 본 개시의 기법들에 따른 비디오 데이터를 인코딩하는 예시적인 방법을 나타내는 플로우차트이다.
도 7은 본 개시의 기법들에 따른 비디오 데이터를 디코딩하는 방법의 예를 나타내는 플로우차트이다.
상세한 설명
비디오 코딩 표준들은 ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 또는 ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual, ITU-T H.264 (ISO/IEC MPEG-4 AVC (Advanced Video Coding) 으로도 알려짐), ITU-T H.265 (HEVC 또는 “High Efficiency Video Coding” 으로도 알려짐) 을 포함하며, SVC (Scalable Video Coding), MVC (Multi-view Video Coding) 및 SCC (Screen content coding) 와 같은 확장들을 포함한다. 본 개시의 기술은 HEVC 를 넘어 개발 활동을 진행하고 있는 JVET (Joint Video Exploration Team) 테스트 모델 (이는 또한 Joint Exploration Model - JEM 으로도 지칭될 수도 있음) 과 같은 이들 또는 미래의 비디오 코딩 표준에 적용될 수도 있다. 비디오 코딩 표준에는 Google VP8, VP9, VP10과 같은 독자적인 비디오 코덱 및 다른 조직에 의해 개발된 비디오 코덱, 예를 들어, Alliance for Open Media 도 포함된다.
JVET 테스트 모델에는, 위치 의존 인트라 예측 조합 (position dependent intra prediction combination; PDPC) 로 불리는 인트라 예측 방법이 있다. JVET 테스트 모델에는, 비 분리 가능 2차 변환 (NSST) 툴도 포함된다. PDPC 및 NSST 툴들 양자 모두는 신택스 엘리먼트 (예를 들어, 인덱스) 를 사용하여 대응하는 툴이 적용되는지 여부와 어느 변형 (variation) 이 사용되는지를 나타낸다. 예를 들어, 인덱스 0 은 툴이 사용되지 않음을 의미할 수도 있다.
비디오 데이터의 블록의 NSST 인덱스들의 최대 수는 블록의 인트라 예측 모드 또는 파티션 크기에 의존할 수도 있다. 일 예에서, 인트라 예측 모드가 PLANAR 또는 DC 이고 파티션 크기가 2N × 2N 인 경우, NSST 인덱스들의 최대 수는 3이고, 그렇지 않은 경우 NSST 인덱스들의 최대 수는 4이다. JVET 테스트 모델 하에서, NSST 인덱스를 나타내는데 2가지 유형의 이진화가 사용된다. JVET 테스트 모델에서, 최대 값이 3이면, 절단 단항 이진화 (truncated unary binarization) 를 사용하고, 그렇지 않으면 고정 이항 이진화 (fixed binary binarization) 가 적용된다. JVET 테스트 모델에서, PDPC 인덱스가 0 과 같지 않으면 NSST 는 적용되지 않으며 NSST 인덱스가 시그널링되지 않는다.
본 개시는 NSST 인덱스 및/또는 NSST 플래그와 같은 NSST 신택스 엘리먼트(들) 의 코딩을 향상시키기 위해 단독으로 또는 임의의 조합으로 적용될 수도 있는 다양한 기술을 설명한다. 예를 들어, 이들 기술은 비디오 인코더/비디오 디코더의 기능을 향상시킬 수도 있고, 이에 의해, 이들 기술이 현재 JVET 테스트 모델에 비해 비트스트림의 비트레이트를 감소시킬 수도 있다는 점에서 비트스트림 효율을 향상시킬 수도 있다.
도 1은 2차 변환 인덱스를 이진화하기 위한 기법들을 이용할 수도 있는 예시적인 비디오 인코딩 및 디코딩 시스템 (10) 을 나타내는 블록도이다. 도 1에 도시된 바처럼, 시스템 (10) 은, 목적지 디바이스 (14) 에 의해 나중에 디코딩될 인코딩된 비디오 데이터를 제공하는 소스 디바이스 (12) 를 포함한다. 특히, 소스 디바이스 (12) 는, 컴퓨터 판독 가능 매체 (16) 를 통해 목적지 디바이스 (14) 로 비디오 데이터를 제공한다. 소스 디바이스 (12) 및 목적지 디바이스 (14) 는, 데스크탑 컴퓨터들, 노트북 (즉, 랩탑) 컴퓨터들, 태블릿 컴퓨터들, 셋탑 박스들, 전화기 핸드셋 이를테면 소위 "스마트" 폰들, 소위 "스마트" 패드, 텔레비전들, 카메라들, 디스플레이 디바이스들, 디지털 미디어 재생기들, 비디오 게이밍 콘솔들, 비디오 스트리밍 디바이스 등을 포함한, 광범위한 디바이스들 중 어느 것을 포함할 수도 있다. 일부 경우에, 소스 디바이스 (12) 및 목적지 디바이스 (14) 는 무선 통신을 위해 갖추어질 수도 있다.
목적지 디바이스 (14) 는, 컴퓨터 판독 가능 매체 (16) 를 통해 디코딩될 인코딩된 비디오 데이터를 수신할 수도 있다. 컴퓨터 판독 가능 매체 (16) 는, 인코딩된 비디오 데이터를 소스 디바이스 (12) 로부터 목적지 디바이스 (14) 로 이동시킬 수 있는 임의의 유형의 매체 또는 디바이스를 포함할 수도 있다. 일례에서, 컴퓨터 판독 가능 매체 (16) 는, 소스 디바이스 (12) 로 하여금 실시간으로 목적지 디바이스 (14) 로 직접, 인코딩된 비디오 데이터를 송신할 수 있게 하기 위한 통신 매체를 포함할 수도 있다. 인코딩된 비디오 데이터는, 무선 통신 프로토콜 등의 통신 표준에 따라 변조되고, 목적지 디바이스 (14) 로 송신될 수도 있다. 통신 매체는 임의의 무선 또는 유선 통신 매체, 이를테면, 무선 주파수 (RF) 스펙트럼 또는 하나 이상의 물리적 송신 라인들을 포함할 수도 있다. 통신 매체는, 로컬 영역 네트워크, 와이드 영역 네트워크, 또는 인터넷과 같은 글로벌 네트워크 등의 패킷 기반 네트워크의 부분을 형성할 수도 있다. 통신 매체는 라우터, 스위치, 기지국, 또는 소스 디바이스 (12) 로부터 목적지 디바이스 (14) 로 통신을 가능하게 하는데 유용할 수도 있는 임의의 다른 장비를 포함할 수도 있다.
일부 예들에서, 인코딩된 데이터는 출력 인터페이스 (22) 로부터 저장 디바이스로 출력될 수도 있다. 유사하게, 인코딩된 데이터는 입력 인터페이스에 의해 저장 디바이스로부터 액세스될 수도 있다. 저장 디바이스는, 하드 드라이브, 블루레이 디스크, DVD, CD-ROM, 플래시 메모리, 휘발성 또는 비휘발성 메모리, 또는 인코딩된 비디오 데이터를 저장하기 위한 임의의 다른 적합한 디지털 저장 매체 등의 다양한 분산형 또는 로컬적으로 액세스되는 데이터 저장 매체 중 어느 것도 포함할 수도 있다. 다른 예에서, 저장 디바이스는, 소스 디바이스 (12) 에 의해 생성되는 인코딩된 비디오를 저장할 수도 있는, 파일 서버 또는 또 다른 중간 저장 디바이스에 대응할 수도 있다. 목적지 디바이스 (14) 는, 스트리밍 또는 다운로드를 통해 저장 디바이스로부터 저장된 비디오 데이터에 액세스할 수도 있다. 파일 서버는, 인코딩된 비디오 데이터를 저장하고 그 인코딩된 비디오 데이터를 목적지 디바이스 (14) 로 송신할 수 있는 임의의 유형의 서버일 수도 있다. 예시적인 파일 서버들은, (예를 들어, 웹사이트용) 웹 서버, FTP 서버, NAS (network attached storage) 디바이스, 또는 로컬 디스크 드라이브를 포함한다. 목적지 디바이스 (14) 는, 인터넷 접속을 포함한, 임의의 표준 데이터 접속을 통해 인코딩된 비디오 데이터에 액세스할 수도 있다. 이것은, 파일 서버 상에 저장된 인코딩된 비디오 데이터를 액세스하는데 적합한 무선 채널 (예컨대, Wi-Fi 접속), 유선 접속 (예컨대, DSL, 케이블 모뎀 등), 또는 양자의 조합을 포함할 수도 있다. 저장 디바이스로부터의 인코딩된 비디오 데이터의 송신은 스트리밍 송신, 다운로드 송신, 또는 이들의 조합일 수도 있다.
본 개시의 기법들은 무선 애플리케이션들 또는 세팅들에 반드시 한정되는 것은 아니다. 그 기법들은, OTA (over-the-air) 텔레비전 브로드캐스트, 케이블 텔레비전 송신, 위성 텔레비전 송신, DASH (dynamic adaptive streaming over HTTP) 와 같은 인터넷 스트리밍 비디오 송신, 데이터 저장 매체 상에 인코딩되는 디지털 비디오, 데이터 저장 매체 상에 저장된 디지털 비디오의 디코딩, 또는 다른 애플리케이션 등의 다양한 멀티미디어 애플리케이션들 중 어느 것을 지원하는 비디오 코딩에 적용될 수도 있다. 일부 예들에서, 시스템 (10) 은, 비디오 스트리밍, 비디오 플레이백, 비디오 브로드캐스팅 및/또는 화상 통화 등의 애플리케이션들을 지원하기 위하여 일방향 또는 양방향 비디오 송신을 지원하도록 구성될 수도 있다.
도 1의 예에서, 소스 디바이스 (12) 는 비디오 소스 (18), 비디오 인코더 (20), 및 출력 인터페이스 (22) 를 포함한다. 목적지 디바이스 (14) 는, 입력 인터페이스 (28), 비디오 디코더 (30), 및 디스플레이 디바이스 (32) 를 포함한다. 본 개시에 따르면, 소스 디바이스 (12) 의 비디오 인코더 (20) 는, 2차 변환 인덱스를 이진화하기 위한 기법들을 적용하도록 구성될 수도 있다. 다른 예들에서, 소스 디바이스 및 목적지 디바이스는 다른 컴포넌트들 또는 배열 (arrangement) 들을 포함할 수도 있다. 예를 들어, 소스 디바이스 (12) 는 외부 카메라와 같은 외부 비디오 소스 (18) 로부터 비디오 데이터를 수신할 수도 있다. 마찬가지로, 목적지 디바이스 (14) 는 통합된 디스플레이 디바이스를 포함하기 보다는, 외부 디스플레이 디바이스와 인터페이스 접속할 수도 있다.
도 1의 나타낸 시스템 (10) 은 하나의 예일 뿐이다. 2차 변환 인덱스를 이진화하기 위한 기법들 은 임의의 디지털 비디오 인코딩 및/또는 디코딩 디바이스에 의해 수행될 수도 있다. 일반적으로 본 개시의 기법들은 비디오 인코딩 디바이스에 의해 수행되지만, 그 기법들은 또한 "코덱 (CODEC)" 으로서 통상적으로 지칭되는, 비디오 인코더/디코더에 의해 수행될 수도 있다. 더욱이, 본 개시의 기법들은 또한 비디오 프리프로세서에 의해 수행될 수도 있다. 소스 디바이스 (12) 및 목적지 디바이스 (14) 는, 소스 디바이스 (12) 가 목적지 디바이스 (14) 로의 송신을 위해 코딩된 비디오 데이터를 생성하는 그러한 코딩 디바이스들의 예들일 뿐이다. 일부 예에서, 디바이스들 (12, 14) 은, 디바이스들 (12, 14) 의 각각이 비디오 인코딩 및 디코딩 컴포넌트들을 포함하도록 실질적으로 대칭적인 방식으로 동작할 수도 있다. 그러므로, 시스템 (10) 은 예를 들면, 비디오 스트리밍, 비디오 플레이백, 비디오 브로드캐스팅 또는 화상 통화를 위해, 비디오 디바이스들 (12, 14) 간의 일방향 또는 양방향 비디오 송신을 지원할 수도 있다.
소스 디바이스 (12) 의 비디오 소스 (18) 는 비디오 카메라와 같은 비디오 캡처 디바이스, 이전에 캡처된 비디오를 포함하는 비디오 아카이브 (video archive), 및/또는 비디오 콘텐츠 제공자로부터 비디오를 수신하기 위한 비디오 피드 인터페이스 (video feed interface) 를 포함할 수도 있다. 다른 대안으로서, 비디오 소스 (18) 는 라이브 비디오, 아카이빙된 비디오 및 컴퓨터 생성된 비디오의 조합, 또는 소스 비디오로서 컴퓨터 그래픽스 기반 데이터를 생성할 수도 있다. 일부 경우들에서, 비디오 소스 (18) 가 비디오 카메라이면, 소스 디바이스 (12) 및 목적지 디바이스 (14) 는 소위 카메라 폰들 또는 비디오 폰들을 형성할 수도 있다. 하지만, 위에서 언급된 바처럼, 본 개시에 설명된 기법들은, 일반적으로 비디오 코딩에 적용가능할 수도 있고, 무선 및/또는 유선 애플리케이션들에 적용될 수도 있다. 각 경우에서, 캡처되거나, 미리 캡처되거나, 또는 컴퓨터 생성된 비디오는 비디오 인코더 (20) 에 의해 인코딩될 수도 있다. 다음으로, 인딩된 비디오 정보는 컴퓨터 판독 가능 매체 (16) 상으로 출력 인터페이스 (22) 에 의해 출력될 수도 있다.
컴퓨터 판독 가능 매체 (16) 는, 무선 브로드캐스트 또는 유선 네트워크 송신 등의 일시적 매체, 또는 하드 디스크, 플래시 드라이브, 컴팩트 디스크, 디지털 비디오 디스크, 블루레이 디스크 또는 다른 컴퓨터 판독 가능 매체 등의 저장 매체 (즉, 비일시적 저장 매체) 를 포함할 수도 있다. 일부 예들에서, 네트워크 서버 (미도시) 는 소스 디바이스 (12) 로부터 인코딩된 비디오 데이터를 수신하고 그 인코딩된 비디오 데이터를 목적지 디바이스 (14) 로, 예를 들어, 네트워크 송신을 통해 제공할 수도 있다. 유사하게, 디스크 스탬핑 설비 등의 매체 제조 설비의 컴퓨팅 디바이스는, 소스 디바이스 (12) 로부터 인코딩된 비디오 데이터를 수신하고 그 인코딩된 비디오 데이터를 포함하는 디스크를 제조할 수도 있다. 그러므로, 컴퓨터 판독 가능 매체 (16) 는, 다양한 예들에서, 다양한 형태들의 하나 이상의 컴퓨터 판독 가능 매체를 포함하는 것으로 이해될 수도 있다.
목적지 디바이스 (14) 의 입력 인터페이스 (28) 는 컴퓨터 판독 가능 매체 (16) 로부터 정보를 수신한다. 컴퓨터 판독 가능 매체 (16) 의 정보는 비디오 인코더 (20) 에 의해 정의된 신택스 정보를 포함할 수도 있고, 이는 또한 비디오 디코더 (30) 에 의해 사용되고, 블록들 및 다른 코딩된 유닛들의 처리 및/또는 특성들을 기술하는 신택스 엘리먼트들을 포함한다. 디스플레이 디바이스 (32) 는 디코딩된 비디오 데이터를 이용자에게 디스플레이하고, 음극선관 (CRT), 액정 디스플레이 (LCD), 플라즈마 디스플레이, 유기 발광 다이오드 (OLED) 디스플레이, 또는 다른 유형의 디스플레이 디바이스와 같은 다양한 디스플레이 디바이스들 중 어느 것도 포함할 수 있다.
비디오 인코더 (20) 및 비디오 디코더 (30) 는 ITU-T H.265 로도 지칭되는, 고 효율 비디오 코딩 (HEVC) 표준과 같은 비디오 코딩 표준에 따라 동작될 수도 있다. 대안적으로, 비디오 인코더 (20) 및 비디오 디코더 (30) 는, 대안적으로 MPEG4, Part 10, AVC (Advanced Video Coding) 으로도 지칭되는, ITU-T H.264 표준과 같은 다른 독자적 또는 산업 표준들 또는 그러한 표준들의 확장들에 따라 동작할 수도 있다. 하지만, 본 개시의 기법들은 임의의 특정 코딩 표준에 한정되지 않는다. 비디오 코딩 표준들의 다른 예들은 MPEG-2 및 ITU-T H.263 를 포함한다. 비록 도 1에 도시되지는 않았지만, 몇몇 양태들에서, 비디오 인코더 (20) 및 비디오 디코더 (30) 는 각각 오디오 인코더 및 디코더와 통합될 수도 있고, 공통 데이터 스트림 또는 분리된 데이터 스트림들에서 오디오 및 비디오 양자 모두의 인코딩을 핸들링 (handling) 하기 위하여 적절한 MUX-DEMUX 유닛들 또는 다른 하드웨어 및 소프트웨어를 포함할 수도 있다. 적용가능하다면, MUX-DEMUX 유닛들은 ITU H.223 멀티플렉서 프로토콜 또는 다른 프로토콜들 이를테면 사용자 데이터그램 프로토콜 (UDP) 을 따를 수도 있다.
비디오 인코더 (20) 및 비디오 디코더 (30) 각각은 하나 이상의 마이크로프로세서들, 디지털 신호 프로세서 (DSP) 들, 주문형 반도체 (ASIC), 필드 프로그램가능 게이트 어레이 (FPGA), 이산 로직, 소프트웨어, 하드웨어, 펌웨어 또는 이들의 임의의 조합과 같은 다양한 적합한 인코더 회로 중 어느 것으로도 구현될 수 있다. 그 기법들이 부분적으로 소프트웨어로 구현될 때, 디바이스는 적합한 비일시적 컴퓨터 판독가능 매체에 그 소프트웨어를 위한 명령들을 저장하고 본 개시의 기법들을 수행하기 위하여 하나 이상의 프로세서들을 이용하여 하드웨어에서 그 명령들을 실행할 수도 있다. 비디오 인코더 (20) 및 비디오 디코더 (30) 의 각각은 하나 이상의 인코더들 또는 디코더들에 포함될 수도 있는데, 이들 중 어느 일방은 각각의 디바이스에서 결합된 인코더/디코더 (CODEC) 의 부분으로서 통합될 수도 있다.
일반적으로, ITU-T H.265 에 따르면, 비디오 화상은, 루마 및 크로마 샘플들 양자 모두를 포함할 수도 있는 코딩 트리 유닛들 (CTU) (또는 최대 코딩 유닛들 (LCU)) 의 시퀀스로 분할될 수도 있다. 대안적으로, CTU 들은 단색 데이터 (즉, 루마 샘플들만) 를 포함할 수도 있다. 비트스트림 내의 신택스 데이터는 CTU 를 위한 크기를 정의할 수도 있으며, 이는 픽셀들의 수의 측면에서 최대 코딩 유닛이다. 슬라이스는, 코딩 순서에서 다수의 연속적인 CTU 들을 포함한다. 비디오 화상은, 하나 이상의 슬라이스들로 파티셔닝될 수도 있다. 각각의 CTU 는 쿼드트리에 따라 코딩 유닛 (CU) 들로 스플리팅될 수도 있다. 일반적으로,쿼드트리 데이터 구조는, CTU 에 대응하는 루트 노드와, CU 당 하나의 노드를 포함한다. CU 가 4 개의 서브 CU 들로 스플리팅되는 경우, 그 CU 에 대응하는 노드는 4 개의 리프 노드들을 포함하고, 이들의 각각은 서브 CU 들 중 하나에 대응한다.
쿼드트리 데이터 구조의 각각의 노드는, 대응하는 CU 를 위한 신택스 데이터를 제공할 수도 있다. 예를 들어, 쿼드트리에서의 노드는, 그 노드에 대응하는 CU 가 서브 CU 들로 스플리팅되는지 여부를 표시하는, 스플릿 플래그 (split flag) 를 포함할 수도 있다. CU 를 위한 신택스 엘리먼트들은 회귀적으로 정의될 수도 있고, CU 가 서브 CU 들로 스플리팅되는지 여부에 의존할 수도 있다. CU가 더 스플리팅되지 않으면, 그것은 리프-CU (leaf-CU) 로 지칭된다. 본 개시에서, 리프-CU의 4개 서브 CU 들은 또한, 원래 리프-CU 의 명시적 스플리팅 (explicit splitting) 이 없더라도, 리프-CU들로 지칭될 것이다. 예를 들어, 16x16 크기의 CU 가 더 스플리팅되지 않으면, 16x16 CU 가 스플리팅되지 않았지만 4개의 8x8 서브 CU들이 또한 리프-CU 들로 지칭될 것이다.
CU 가 크기 구분 (size distinction) 을 가지지 않는다는 것을 제외하고는, CU 는 H.264 표준의 매크로블록 (macroblock) 과 유사한 목적을 가진다. 예를 들어, CTU 는 4 개의 자식 노드 (child node) 들 (또한,서브-CU 들로서 지칭됨) 로 스플리팅될 수도 있고, 각각의 자식 노드는 차례로 부모 노드 (parent node) 일 수도 있고, 또 다른 4 개의 자식 노드들로 스플리팅될 수도 있다. 쿼드트리의 리프 노드로 지칭되는, 최종, 스플리팅되지 않은 자식 노드는, 리프 CU 로도 지칭되는, 코딩 노드를 포함한다. 코딩된 비트스트림과 연관된 신택스 데이터는, 최대 CU 깊이로도 지칭되는, CTU 가 스플리팅될 수도 있는 최대 횟수를 정의할 수도 있고, 또한 코딩 노드들의 최소 크기를 정의할 수도 있다. 따라서, 비트스트림은 또한 최소 코딩 유닛 (smallest coding unit; SCU) 을 정의할 수도 있다. 본 개시는, 용어 "블록" 을 사용하여, HEVC 의 콘텍스트에서, CU, 예측 유닛 (PU), 또는 변환 유닛 (TU) 중 어느 것을 지칭하거나, 또는 다른 표준들의 콘텍스트에서 유사한 데이터 구조들 (예를 들어, H.264/AVC 에서 매크로블록들 및 이들의 서브 블록들) 을 지칭한다.
CU 는 코딩 노드 그리고 그 코딩 노드와 연관된 예측 유닛 (PU) 들 및 변환 유닛 (TU) 들을 포함한다. CU 의 크기는 코딩 노드의 크기에 대응하고 형상이 대체로 정사각형이다. CU 의 크기는 8x8 픽셀들로부터, 최대 크기, 예를 들어, 64x64 픽셀들 이상인 CTU 의 크기에 이르기까지의 범위일 수도 있다. 각각의 CU 는 하나 이상의 PU 들 및 하나 이상의 TU 들을 포함할 수도 있다. CU 와 연관된 신택스 데이터는, 예를 들어, CU 를 하나 이상의 PU 들로 파티셔닝하는 것을 기술할 수도 있다. 파티셔닝 모드들은, CU 가 스킵 또는 직접 모드 인코딩되는지, 인트라-예측 모드 인코딩되는지, 또는 인터-예측 모드 인코딩되는지 간에 달라질 수도 있다. PU 들은 형상이 비정사각형으로 파티셔닝될 수도 있다. CU 와 연관된 신택스 데이터는 또한, 예를 들어, 쿼드트리에 따라 CU 를 하나 이상의 TU 들로 파티셔닝하는 것을 기술할 수도 있다. TU 는 형상이 정사각형 또는 비정사각형 (예를 들어, 직사각형) 일 수 있다.
HEVC 표준은, TU들에 따른 변환을 허용하고, 이는 상이한 CU들에 대해서 상이할 수도 있다. TU 들은 통상적으로, 파티셔닝된 CTU에 대해 정의된 주어진 CU 내에 PU 들의 크기에 기초하여 사이징되지만, 이는 항상 그렇지 않을 수도 있다. TU 들은 통상적으로 동일한 크기이거나 또는 PU 들보다 더 작다. 일부 예들에서, CU 에 대응하는 잔차 샘플들은 "잔차 쿼드트리 (residual quad tree)" (RQT) 로 알려진, 쿼드트리 구조를 이용하여 더 작은 유닛들로 세분될 수도 있다. RQT 의 리프 노드들은 변환 유닛 (TU) 들로 지칭될 수도 있다. TU 들과 연관된 픽셀 차이 값들이 변환되어 변환 계수들을 생성하고, 이들은 양자화될 수도 있다.
리프-CU 는 하나 이상의 예측 유닛 (PU) 들을 포함할 수도 있다. 일반적으로, PU 는, 대응하는 CU 의 전부 또는 일부에 대응하는 공간 영역을 나타내고, PU 를 위해 참조 샘플을 취출 및/또는 생성하기 위한 데이터를 포함할 수도 있다. 더욱이, PU 는 예측에 관한 데이터를 포함한다. 예를 들어, PU 가 인트라-모드 인코딩될 때, PU 를 위한 데이터는 잔차 쿼드트리 (RQT) 에 포함될 수도 있고, 이는, PU에 대응하는 TU 를 위한 인트라-예측 모드를 기술하는 데이터를 포함할 수도 있다. RQT 는 또한, 변환 트리로 지칭될 수도 있다. 일부 예들에서, 인트라-예측 모드는 RQT 대신에 리프-CU 신택스에서 시그널링될 수도 있다. 또 다른 예로서, PU 가 인터-모드 인코딩될 때, PU 는 PU 를 위한 하나 이상의 모션 벡터들과 같은 모션 정보를 정의하는 데이터를 포함할 수도 있다. PU 를 위한 모션 벡터를 정의하는 데이터는, 예를 들어, 모션 벡터의 수평 성분, 모션 벡터의 수직 성분, 모션 벡터를 위한 해상도 (예를 들어, 1/4 픽셀 정밀도 또는 1/8 픽셀 정밀도), 모션 벡터가 가리키는 참조 화상, 및/또는 모션 벡터를 위한 참조 화상 리스트 (예를 들어, 리스트 0, 리스트 1, 또는 리스트 C) 를 기술할 수도 있다.
하나 이상의 PU 들을 갖는 리프-CU 는 하나 이상의 변환 유닛 (TU) 들을 또한 포함할 수도 있다. 변환 유닛들은, 위에서 논의된 바처럼, (TU 쿼드트리 구조로도 지칭되는) RQT를 사용하여 명시될 수도 있다. 예를 들어, 스플리팅된 플래그는 리프-CU 가 4개의 변환 유닛들로 스플리팅되는지 여부를 나타낼 수도 있다. 다음으로, 각 변환 유닛은, 추가 서브-TU들로 더 스플리팅될 수도 있다. TU가 더 스플리팅되지 않을 때, 그것은 리프-TU 로 지칭될 수도 있다. 일반적으로, 인트라 코딩을 위해, 리프-CU 에 속하는 모든 리프-TU 들은 동일한 인트라 예측 모드를 공유한다. 즉, 동일한 인트라-예측 모드가 일반적으로, 리프-CU 의 모든 TU들을 위한 예측된 값들을 계산하기 위해 적용된다. 인트라 코딩을 위해, 비디오 인코더는, TU 에 대응하는 CU 의 부분과 원래 블록간의 차이로서, 인트라 예측 모드를 사용하여 각 리프-TU 를 위해 잔차 값을 계산할 수도 있다. TU 는 반드시 PU 의 크기로 제한되는 것은 아니다. 따라서, TU 는 PU 보다 더 크거나 더 작을 수도 있다. 인트라 코딩을 위해, PU 는 동일한 CU 에 대해 대응하는 리프-TU 와 함께 위치될 수도 있다. 일부 예들에서, 리프-TU 의 최대 크기는, 대응하는 리프-CU 의 크기에 대응할 수도 있다.
또한, 리프-CU 들의 TU 들은 또한, 잔차 쿼드트리 (RQT) 들로 지칭되는, 각각의 쿼드트리 데이터 구조들과 연관될 수도 있다. 즉, 리프-CU 는, 리프-CU가 TU 들로 어떻게 파티셔닝되는지를 나타내는 쿼드트리를 포함할 수도 있다. TU 쿼드트리의 루트 노드는 일반적으로 리프-CU 에 대응하는 한편, CU 쿼드트리의 루트 노드는 일반적으로 CTU (또는 LCU) 에 대응한다. 스플리팅되지 않는 RQT의 TU들은 리프-TU들로 지칭된다. 일반적으로, 본 개시는, 다르게 언급되지 않는 한, 리프-CU 및 리프-TU 를 지칭하기 위하여 용어 CU 및 TU 를 각각 사용한다.
비디오 시퀀스는 일반적으로 랜덤 액세스 포인트 (RAP) 화상으로 시작하는 일련의 비디오 프레임 또는 화상들을 포함한다. 비디오 시퀀스는 비디오 시퀀스의 특성인 시퀀스 파라미터 세트 (SPS) 에 신택스 데이터를 포함할 수도 있다. 화상의 각 슬라이스는, 각각의 슬라이스를 위한 인코딩 모드를 기술하는 슬라이스 신택스 데이터를 포함할 수도 있다. 비디오 인코더 (20) 는 통상적으로 비디오 데이터를 인코딩하기 위하여 개개의 비디오 슬라이스들 내의 비디오 블록들에 대해 동작한다. 비디오 블록은 CU 내의 코딩 노드에 대응할 수도 있다. 비디오 블록들은 고정되거나 또는 변화하는 크기를 가질 수도 있고, 명시된 코딩 표준에 따라 크기가 다를 수도 있다.
예로서, 다양한 크기의 PU 에 대해 예측이 수행될 수도 있다. 특정 CU 의 크기가 2Nx2N 이라고 가정하면, 인트라-예측은 2Nx2N 또는 NxN 의 PU 크기들 상에서 수행될 수도 있고, 인터-예측은 2Nx2N, 2NxN, Nx2N, 또는 NxN 의 대칭적 PU 크기들 상에서 수행될 수도 있다. 인터-예측을 위한 비대칭적 파티셔닝은 또한, 2NxnU, 2NxnD, nLx2N, 및 nRx2N 의 PU 크기에 대해서 수행될 수도 있다. 비대칭적 파티셔닝에서, CU 의 일 방향은 파티셔닝되지 않는 반면, 타 방향은 25% 및 75% 으로 파티셔닝된다. 25% 파티션에 대응하는 CU 의 부분은 “n” 다음에 “상 (Up)”, “하 (Down)”, “좌 (Left)”, 또는 “우 (Right)” 의 표시에 의해 표시된다. 따라서, 예를 들어, 2NxnU” 는, 상단의 2Nx0.5N PU 및 하단의 2Nx1.5N PU 로 수평적으로 파티셔닝되는 2Nx2N CU 를 지칭한다.
본 개시에서, “NxN” 그리고 “N 바이 N” 은, 수직 및 수평 차원 (dimension) 들의 면에서 비디오 블록의 픽셀 차원들, 예를 들면, 16x16 픽셀들 또는 16 바이 16 픽셀들을 지칭하는데 상호교환가능하게 사용될 수도 있다. 일반적으로, 16x16 블록은, 수직 방향에서 16 픽셀들 (y = 16) 그리고 수평 방향에서 16 픽셀들 (x = 16) 을 가질 것이다. 마찬가지로, NxN 블록은 일반적으로 수직 방향에서 N 픽셀들 그리고 수평 방향에서 N 픽셀들을 갖고, 여기서 N 은 음이 아닌 정수 값을 나타낸다. 블록에서 픽셀들은 행과 열들로 배열될 수도 있다. 더욱이, 블록들은 수직 방향과 동일한 수의 수평 방향 픽셀들을 반드시 가질 필요는 없다. 예를 들면, 블록들은 NxM 픽셀들을 포함할 수도 있고, 여기서 M은 N과 반드시 동일한 것은 아니다.
CU 의 PU 들을 이용한 인트라-예측 또는 인터-예측 코딩 다음에, 비디오 인코더 (20) 는 CU 의 TU 들을 위한 잔차 데이터를 계산할 수도 있다. PU 들은, (픽셀 도메인으로도 지칭되는) 공간 도메인에서 예측 픽셀 데이터를 생성하는 방법 또는 모드를 기술하는 신택스 데이터를 포함할 수도 있고, TU들은 잔차 비디오 데이터에 대한, 변환, 예를 들어, 이산 코사인 변환 (DCT), 정수 변환, 웨이블릿 변환, 또는 개념적으로 유사한 변환의 적용 후에 변환 도메인에서의 계수들을 포함할 수도 있다. 잔차 데이터는, PU 들에 대응하는 예측 값들 및 인코딩되지 않은 화상의 픽셀들간의 픽셀 차이들에 대응할 수도 있다. 비디오 인코더 (20) 는 CU에 대한 잔차 데이터를 나타내는 양자화된 변환 계수를 포함하도록 TU 를 형성할 수도 있다. 즉, 비디오 인코더 (20)는 (잔차 블록의 형태로) 잔차 데이터를 계산하고, 잔차 블록을 변환하여 변환 계수의 블록을 생성한 다음, 변환 계수를 양자화하여 양자화된 변환 계수를 형성할 수도 있다. 비디오 인코더 (20) 는 양자화된 변환 계수 및 다른 신택스 정보 (예를 들어, TU에 대한 스플리팅 정보) 를 포함하는 TU를 형성할 수도 있다.
위에 언급된 바처럼, 변환 계수들을 생성하기 위한 임의의 변환 후에, 비디오 인코더 (20) 는 변환 계수들의 양자화를 수행할 수도 있다. 일반적으로 양자화는, 변환 계수들이 양자화되어 그 계수들을 나타내는데 사용된 데이터의 양을 감소시킬 수 있으며, 추가 압축을 제공하는 프로세스를 지칭한다. 양자화 프로세스는 계수들의 일부 또는 전부와 연관된 비트 깊이를 감소시킬 수도 있다. 예를 들면, n-비트 값은 양자화 동안 m-비트 값으로 반내림 (round down) 될 수도 있고, 여기서 n은 m보다 더 크다.
양자화 후에, 비디오 인코더는 변환 계수들을 스캔하여, 양자화된 변환 계수들을 포함하는 2차원 매트릭스로부터 1차원 벡터를 생성할 수도 있다. 그 스캔은 더 높은 에너지 (그리고 따라서 더 낮은 주파수) 계수들을 어레이의 전방에 두고 더 낮은 에너지 (그리고 따라서 더 높은 주파수) 계수들을 어레이의 후방에 두도록 설계될 수도 있다. 일부 예들에서, 비디오 인코더 (20) 는, 미리정의된 스캔 순서를 이용하여 양자화된 변환 계수들을 스캔함으로써 엔트로피 인코딩될 수 있는 직렬화된 벡터를 생성할 수도 있다. 다른 예들에서, 비디오 인코더 (20) 는 적응적 스캔을 수행할 수도 있다. 양자화된 변환 계수들을 스캔하여 1차원 벡터를 형성한 후에, 비디오 인코더 (20) 는 1차원 벡터를, 예를 들어, CAVLC (context-adaptive variable length coding), CABAC (context-adaptive binary arithmetic coding), SBAC (syntax-based context-adaptive binary arithmetic coding), PIPE (Probability Interval Partitioning Entropy) 코딩 또는 또 다른 엔트로피 인코딩 방법론에 따라, 엔트로피 인코딩할 수도 있다. 비디오 인코더 (20) 는 또한, 비디오 데이터를 디코딩함에 있어서 비디오 디코더 (30) 에 의한 사용을 위해 인코딩된 비디오 데이터와 연관된 신택스 엘리먼트들을 엔트로피 인코딩할 수도 있다.
CABAC 을 수행하기 위하여, 비디오 인코더 (20) 는, 송신될 심볼에 콘텍스트 모델 내의 콘텍스트를 배정할 수도 있다. 콘텍스트는, 예를 들어, 심볼의 이웃하는 값들이 비-제로 (non-zero) 인지 여부에 관한 것일 수도 있다. CAVLC 을 수행하기 위하여, 비디오 인코더 (20) 는, 송신될 심볼을 위해 가변 길이 코드를 선택할 수도 있다. VLC 에서의 코드워드들은, 상대적으로 더 짧은 코드들이 더 높은 확률 심볼들에 대응하는 한편, 더 긴 코드들이 더 적은 확률 심볼들에 대응하도록 구성될 수도 있다. 이런 식으로, VLC 의 사용은, 예를 들어, 송신될 각 심볼에 동일 길이 코드워드들을 이용하는 것에 비해, 비트 절약 (bit savings) 을 달성할 수도 있다. 확률 결정은, 심볼에 할당된 콘텍스트에 기초할 수도 있다.
일반적으로, 비디오 디코더 (30) 는 인코딩된 데이터를 디코딩하기 위해 비디오 인코더 (20) 에 의해 수행되는 프로세스와 실질적으로 유사하지만, 상반되는 프로세스를 수행한다. 예를 들어, 비디오 디코더 (30) 는 잔차 블록을 재생하기 위해 수신된 TU 의 계수를 역 양자화 및 역 변환한다. 비디오 디코더 (30) 는 시그널링된 예측 모드 (인트라- 또는 인터-예측) 를 사용하여 예측된 블록을 형성한다. 그 후, 비디오 디코더 (30) 는 예측된 블록과 잔차 블록을 (픽셀 바이 픽셀에 기반해) 결합하여 원래 블록을 재생한다. 블록 경계를 따라 시각적 아티팩트들을 줄이기 위해 디블록킹 프로세스를 수행하는 것과 같은 추가적인 처리가 수행될 수도 있다. 또한, 비디오 디코더 (30) 는 비디오 인코더 (20) 의 CABAC 인코딩 프로세스와는 실질적으로 유사하지만, 상반되는, 방식으로 CABAC 을 사용하여 신택스 엘리먼트를 디코딩할 수도 있다.
이 개시물의 기법들에 따르면, 비디오 인코더 (20) 또는 비디오 디코더 (30) 와 같은 비디오 코더는 NSST 신택스 엘리먼트의 이진화를 단일화할 수도 있다. 예를 들어, 비디오 코더는 단지 하나의 이진화 (예를 들어, 절단 또는 절단 단항 이진화) 만을 사용하도록 구성될 수도 있다. NSST 신택스 엘리먼트에 대한 최대 값은, NSST 신택스 엘리먼트가 코딩되는 블록에 대해, 인트라 모드, 및 선택적으로 블록 크기 조건(들) 에 따라 정의될 수도 있다 (그리고 따라서 비디오 코더에 의해 결정될 수도 있다). 예를 들어, 비디오 코더는 NSST 인덱스에 대해 절단 단항 이진화를 적용할 수도 있고, 여기서 현재 인트라 모드가 비-각도 (non-angular) (예를 들어, PLANAR 또는 DC, 또는 선택적으로 크로마 컴포넌트들에 대한 LM 모드) 이면, 최대 값은 3과 같고, 그렇지 않으면 최대 값은 4와 같다. 또한, 비디오 코더는 블록 크기 조건 (block size condition) 을 적용할 수도 있다. 예를 들어, 비디오 코더는 현재 블록이 정사각형이거나 너비 * 높이가 특정 임계 값, 예를 들어 64 보다 작으면, 최대 값은 3과 같다고 결정할 수도 있다.
일 예에서, 비디오 코더는 이진화 코드워드로부터 모든 빈 또는 오직 특정의 미리 결정된 빈들 (예를 들어, 순서를 나타내는 제 1 수 (ordinal first number) 의 빈들) 만을 콘텍스트 엔트로피 코딩할 수도 있다. 비디오 코더는 (예를 들어, 바이패스 모드에서) 콘텍스트 모델링 없이 미리 결정된 빈들외의 빈들을 엔트로피 코딩할 수도 있다. NSST 가 루마와 크로마에 대해 따로따로 적용되면, 콘텍스트 모델링은 루마와 크로마에 대해 분리될 수 있다. 대안적으로, 이진화 코드워드로부터의 빈들은 루마 및 크로마에 대한 콘텍스트를 공유할 수 있으며, 예를 들어 NSST 인덱스가 0 (NSST가 적용되지 않음을 의미함) 인지 여부를 나타내는 제 1 빈에 대한 콘텍스트가 루마와 크로마 컴포넌트들 사이에 공유될 수 있고, 다른 빈들은 루마와 크로마에 대한 분리된 콘텍스트들을 가질 수도 있다.
또 다른 예에서, NSST 인덱스에 대한 콘텍스트 모델링은 NSST 인덱스가 가질 수 있는 최대 값에 따라 달라질 수 있다. 예를 들어, 최대 값이 3 또는 4 일 수 있는 경우, 하나의 콘텍스트 세트를 사용하여 최대 값 3에 대한 NSST 인덱스를 시그널링할 수도 있고, 또 다른 콘텍스트 세트를 사용하여 최대 값 4 에 대한 NSST 인덱스를 시그널링한다. NSST 인덱스가 가질 수 있는 다른 최대 값들에 대해 유사한 콘텍스트 세트들이 정의될 수 있고, 2개보다 많은 최대 값들이 사용될 수 있다.
선택적으로, NSST 인덱스가 0 과 같거나 또는 그렇지 않음을 나타내는 제 1 빈에 대한 콘텍스트는 모든 콘텍스트 세트들에 걸쳐 공유될 수 있거나, 또는 루마, 크로마, 또는 양자 모두 크로마 컴포넌트들에 대한 것과 같은 동일한 색상 컴포넌트, 또는 모든 색상 컴포넌트들에 대응하는 콘텍스트 세트들에 걸쳐 공유될 수 있다.
현재 JVET 테스트 모델에서, PDPC 인덱스가 0 과 같지 않으면 NSST는 적용되지 않으며 NSST 인덱스가 시그널링되지 않는다. NSST를 회피하고 NSST 인덱스를 시그널링하지 않는 이러한 프로세스는 코딩 복잡성을 낮출 수도 있다. 그러나, 본 개시는 JVET 테스트 모델에서 현재 구현된 프로세스가 반드시 최상의 코딩 결과를 달성하는 것이 아니고 코더 복잡성과 비트레이트 사이에서 원하는 트레이드오프를 달성하지 못할 수 있음을 인식한다.
본 개시의 기술에 따르면, 비디오 코더 (예를 들어, 비디오 인코더 (20) 또는 비디오 디코더 (30)) 는 블록의 NSST 인덱스가 비-제로 값을 가질 때, 즉 환언하면 NSST 방법이 현재 블록에 적용될 때, 블록을 위한 PDPC (position dependent intra prediction combination) 신택스 엘리먼트를 적용 및/또는 코딩 (예를 들어, 시그널링) 할 필요가 없다. 이것은 유사한 코더 복잡성을 초래할 수도 있지만, NSST 방법은 보통 PDPC에 비해 더 나은 효율을 가지기 때문에 결과적인 압축 효율은 더 높을 수도 있다. 이 경우, PDPC 인덱스는 비트스트림에서 NSST 인덱스 다음의 위치에 시그널링될 수도 있다.
추가적으로 또는 대안적으로, NSST 인덱스 콘텍스트는 PDPC 인덱스에 기초할 수 있다. 예를 들어, PDPC 인덱스가 0 이면 하나의 콘텍스트가 NSST 인덱스를 엔트로피 코딩하는데 사용될 수도 있고, PDPC 인덱스가 0이 아닌 경우 또 다른 콘텍스트가 NSST 인덱스를 엔트로피 코딩하는데 사용될 수도 있다. 또 다른 예에서, 각각의 PDPC 인덱스는 NSST 인덱스를 엔트로피 코딩하는데 사용될 자신의 콘텍스트를 가질 수도 있다. 추가적으로 또는 대안적으로, NSST 인덱스의 콘텍스트는 PDPC 인덱스 및 예측 모드, 블록 크기 등과 같은 현재 블록의 다른 엘리먼트들에 공동으로 의존할 수 있다. 유사하게, PDPC 인덱스의 콘텍스트는 NSST 인덱스 및 예측 모드, 블록 크기 등과 같은 현재 블록의 다른 엘리먼트들에 공동으로 의존할 수 있다.
대안적으로, NSST 인덱스가 비트스트림에서 PDPC 인덱스 전에 코딩되는 경우 동일한 방법이 적용될 수 있다. 이 경우, 위의 방법에서, 설명 중 NSST와 PDPC가 교환된다. 예를 들어, NSST 인덱스가 0 이면 하나의 콘텍스트가 PDPC 인덱스를 엔트로피 코딩하는데 사용될 수도 있고, NSST 인덱스가 0이 아닌 경우 또 다른 콘텍스트가 PDPC 인덱스를 엔트로피 코딩하는데 사용될 수도 있다. 또 다른 예에서, 각각의 NSST 인덱스는 PDPC 인덱스를 엔트로피 코딩하는데 사용될 자신의 콘텍스트를 가질 수도 있다. 추가적으로 또는 대안적으로, PDPC 인덱스의 콘텍스트는 NSST 인덱스 및 예측 모드, 블록 크기 등과 같은 현재 블록의 다른 엘리먼트들에 공동으로 의존할 수 있다. 유사하게, NSST 인덱스의 콘텍스트는 PDPC 인덱스 및 예측 모드, 블록 크기 등과 같은 현재 블록의 다른 엘리먼트들에 공동으로 의존할 수 있다.
여기에 언급된 PDPC 기술은 인트라/인터 예측 기술과 관련된 임의의 다른 기술로 확장될 수 있거나 및/또는 여기에서 언급된 NSST 기술은 변환 기술과 관련된 임의의 기술로 확장될 수 있다. 예측 기술의 신택스 엘리먼트 (인덱스/플래그/모드) 시그널링은 변환 기술의 신택스 엘리먼트 (인덱스/플래그/모드) 시그널링과 상호 작용할 수도 있다. 상호 작용은 예측 기법 신택스의 콘텍스트가 변환 기술 신택스의 콘텍스트에 의존하거나 또는 그 반대일 수도 있지만, 이에 한정되지는 않는다.
또한, 비디오 코더는 PDPC 또는 MPI (motion parameter inheritance) 모드를 포함하지만 이에 한정되지 않는 다른 코딩 모드들에 위에서 논의된 기술을 적용하도록 구성될 수도 있다.
NSST 인덱스는 다수의 컴포넌트들에 대해 시그널링되고 공유될 수도 있다. 예를 들어, 루미넌스 (Y), 청색 색조 크로미넌스 (Cb) 및 적색 색조 크로미넌스 (Cr) 컴포넌트들에 대해 하나의 NSST 인덱스가 시그널링 및 공유될 수도 있다. 대안적으로, 하나의 NSST 인덱스가 Cb 및 Cr 컴포넌트들에 대해 시그널링 및 공유될 수도 있다 (별도의 NSST 인덱스가 Y 컴포넌트에 대해 시그널링될 수도 있다). 일부 예에서, 하나의 NSST 인덱스가 다수의 컴포넌트들에 대해 공유될 때, NSST 인덱스 시그널링은 일부 조건들에 의존하고, 이들 조건이 각각의 포함된 성분들에 대해 충족될 때, 또는 이들 조건이 여러 (전부는 아님) 포함된 컴포넌트들에 대해 충족되거나, 이들 조건이 임의의 포함된 컴포넌트들에 대해 충족될 때, NSST 인덱스는 시그널링되는 것이 아니라, 디폴트 값, 예를 들어, 0 으로서 도출된다.
이들 조건은 블록이 특정 코딩 모드들에 의해 코딩되지 않을 때 비-제로 계수들의 수 (또는 비-제로 계수들의 절대 값의 합) 를 포함 할 수 있지만 이에 한정되지 않고, 이러한 특정 코딩 모드들은 변환 스킵 모드 및/또는 LM 모드 및/또는 교차-컴포넌트 예측 모드들을 포함하지만 이에 한정되지 않는다.
위의 예에서 블록은 독립적으로 고려되는 각 컴포넌트에 대한 블록일 수 있거나 또는 일부 색상 컴포넌트들의 관련 블록들, 예를 들어 Cb 및 Cr의 관련 블록들일 수 있거나, 또는 모든 이용 가능한 컴포넌트들의 블록, 예를 들어, Y, Cb, 및 Cr 인 경우 블록들일 수 있다. 하나의 예에서 조건들이 그러한 블록들에 함께 공동으로 적용될 수도 있다.
예를 들어, 조건이 다수의 컴포넌트들, 예를 들어, Cb 및 Cr 에 적용될 때, 조건은 각각의 포함된 컴포넌트 블록의 비-제로 계수들의 수의 합 (또는 비-제로 계수들의 절대 값의 합) 이 특정 코딩 모드들에 의해 코딩되지 않는 것을 포함할 수도 있지만 이에 한정되지 않고, 이러한 특정 코딩 모드들은 변환 스킵 모드 및/또는 LM 모드 및/또는 교차-컴포넌트 예측 모드 등을 포함하지만 이에 한정되지 않는다.
일부 예에서, 다수의 NSST 인덱스들이 시그널링되고, 각각의 NSST 인덱스가 하나 이상의 컴포넌트들에 대해 시그널링될 때, 다수의 NSST 인덱스들은 하나의 신택스 엘리먼트로서 공동으로 이진화될 수도 있고, 하나의 이진화 및/또는 콘텍스트 모델링이 이 공동으로 코딩된 하나의 신택스 엘리먼트에 대해 적용될 수도 있다. 예를 들어, (NSST가 적어도 하나의 컴포넌트에 적용됨을 의미하는) 적어도 하나의 비-제로 NSST 인덱스가 있는지 여부를 나타내기 위해 플래그가 먼저 코딩될 수도 있다. 그 플래그 후에, 다수의 NSST 인덱스들이 하나의 신택스 엘리먼트들로서 이진화되고 코딩된다. 이 예에서 시그널링에 있어서의 일부 리던던시가 제거될 수 있다. 예를 들어, 플래그가 적어도 하나의 비-제로 NSST 인덱스가 있음을 나타내는 경우, 모든 선행 인덱스가 0과 동일한 값을 갖는 경우 마지막으로 시그널링된 NSST 인덱스는 비-제로인 것으로 추론될 수 있다.
위의 예들에서, 조인트 NSST 인덱스 시그널링 기술은 블록들의 그룹에 대한 NSST 인덱스를 시그널링하기 위해 적용될 수 있다. 플래그는 비-제로 NSST 인덱스를 사용하는 적어도 하나의 블록이 있는지 (이 경우에 플래그는 1과 같음), 또는 모든 블록들이 제로 NSST 인덱스를 갖는지 (이 경우에 플래그는 0 과 같음) 를 나타내기 위해 그룹에 대해 시그널링될 수 있다. 시그널링에 있어서의 중복성은 그룹에서 최종 NSST 인덱스에 대해서도, 그 최종 NSST 인덱스가 0과 같을 수 없음을 고려하여, 제거될 수 있다. 또 다른 예에서, 2개의 NSST 인덱스들 (0 또는 1) 만이 가능하면, 모든 선행 인덱스들이 0 과 같은 경우 최종 인덱스가 시그널링되지 않을 수도 있으며, 최종 NSST 인덱스는 1과 같은 것으로 추론될 수 있다. 또 다른 예에서, 2개보다 많은 NSST 인덱스 값들이 가능하면, 모든 선행 인덱스가 0 과 같은 경우 최종 인덱스는 1 만큼 감소될 수 있다.
위에 설명된 기술들은 임의의 조합으로 사용될 수 있다.
NSST 인덱스가 일례로 사용되었다. 동일한 기술들이 임의의 변환 또는 2차 변환 인덱스, 플래그 또는 신택스 엘리먼트 시그널링에 적용될 수 있다. 예를 들어, 이러한 기술들은 회전 변환 (ROT) 인덱스를 시그널링하기 위해 적용될 수 있다.
마찬가지로, PDPC 인덱스도 일례로서 사용되었다. 동일한 기술들이 임의의 인트라 또는 인터 예측 인덱스, 플래그 또는 신택스 엘리먼트 시그널링에 적용될 수 있다. 예를 들어, 이러한 기술들은 MPI (motion parameter inheritance) 인덱스를 시그널링하기 위해 적용될 수 있다.
일부 예에서, 비디오 인코더 (20) 및/또는 비디오 디코더 (30) 는 시그널링 유닛 (SU) 으로 지칭될 수도 있는 특수 구조 유닛에서 변환 관련 신택스 코딩 (예를 들어, 인코딩/시그널링 또는 디코딩/해석) 을 수행할 수도 있다. 일반적으로, 시그널링 유닛은 복수의 블록들을 포함한다. 예를 들어, 시그널링 유닛은 QTBT (quadtree-binary tree) 프레임워크의 단일 QTBT 에 대응할 수도 있다. 대안적으로, 시그널링 유닛은 블록들의 그룹에 대응할 수도 있으며, 블록들의 각각은 상이한 각각의 QTBT에 대응한다.
QTBT 프레임워크에서, 시그널링 유닛은 쿼드트리에 따라 파티셔닝된 제 1 부분을 포함하는 멀티타입 트리에 따라 파티셔닝될 수 있고 (여기서 각 노드가 제로 또는 4개의 자식 노드들로 파티셔닝됨), 이것의 각 리프 노드는 이진 트리 파티셔닝을 사용하여 더 파티셔닝될 수도 있다 (여기서 각 노드는 제로 또는 2개의 자식 노드로 파티셔닝됨). 제로 자식 노드들로 파티셔닝된 각 노드는 대응하는 트리의 리프 노드로 간주된다.
전술한 바와 같이, NSST 인덱스, PDPC 인덱스, 예측 모드, 블록 크기 등과 같은 다양한 신택스 엘리먼트들이 블록들의 그룹에 대해 공동으로 시그널링될 수도 있다. 이러한 공동 시그널링은 일반적으로 "시그널링 유닛 레벨에서 데이터를 시그널링하는 것" 으로서 기재될 수도 있고, 여기서 시그널링 유닛은 복수의 블록들을 포함하며 이 블록들로 데이터가 시그널링 데이터 레벨에서 시그널링되고 그러한 데이터가 시그널링 유닛에 포함되는 각 블록에 적용된다.
시그널링 유닛이 P 또는 B 슬라이스와 같이 비-I 슬라이스의 일부를 형성할 때 문제가 발생할 수도 있다. 이들 또는 다른 비-I 슬라이스에서, 슬라이스는 인트라-모드를 사용하여 예측되는 일부 블록 및 인터-모드를 사용하여 예측되는 다른 블록들을 포함할 수도 있다. 그러나, 일부 툴들은 인트라- 또는 인터-모드 중 둘 다가 아니라 하나에만 적용될 수도 있다. 따라서, 혼합된 블록들 (인트라 및 인터) 에 대한 시그널링 유닛 수준에서 일부 신택스를 시그널링하는 것은 비효율적일 수도 있는데, 특히 툴이 특정 예측 모드에 대해 적용되지 않은 경우에 그러하다.
따라서, 본 개시는 단독으로 또는 서로 조합하여 및/또는 전술한 기술들과 조합하여 사용될 수도 있는 다양한 기술을 설명한다. 본 개시의 특정 기술들은 비-I 슬라이스들에서 인터- 및 인트라-예측된 블록들의 혼합을 해결하기 위해 적용될 수도 있지만, 그런데도 여전히 시그널링 유닛 블록에 대한 시그널링을 갖는다. 비디오 코더는 시그널링 유닛이 시그널링 유닛 레벨에서 수행되는 시그널링에 의해 영향을 받는 블록들만을 포함하는 방식으로 시그널링 유닛에 배열된 블록들을 사용할 수도 있다.
예를 들어, 변환은 제 1 (또는 1차) 변환과 2차 변환의 두 가지 유형일 수도 있다. JVET 모델에 대한 제 1 변환은 DCT (discrete cosine transform) 또는 EMT (enhanced multiple transform) 일 수 있으며, 2차 변환은 예를 들어 NSST 및 ROT 일 수 있다. DCT, EMT, NSST 및 ROT 는 단지 예일 뿐이며, 본 개시의 기술은 이러한 변환에 한정되지 않고 다른 변환이 또한 (추가적으로 또는 대안적으로) 사용될 수 있음을 이해해야 한다.
예의 목적으로, EMT 플래그 또는 EMT 인덱스가 시그널링 유닛 레벨에서 시그널링된다고 가정하면, 이그러한 신택스 엘리먼트들은 시그널링 유닛에 포함된 블록에 대해 어느 특정 변환이 사용되는지를 식별하는 값들을 갖는다. 블록은 인트라, 인터 또는 스킵 모드 예측될 수 있다. 시그널링된 EMT 플래그 또는 EMT 인덱스는 인트라 예측된 블록들에 대해 효율적일 수 있지만, 인터 예측된 블록들에 대해서는 덜 효율적이거나 또는 비효율적일 수도 있다. 이 경우, 시그널링 유닛은 다음 유형의 블록들 중 어느 하나 또는 양자 모두를 더 포함할 수도 있다: 1) 인트라-예측된 블록들 및 스킵 예측된 블록들; 및/또는 2) 인터-예측된 블록들 및 스킵 예측된 블록들.
이 예에 따르면, 시그널링 유닛 레벨에서 시그널링된 변환 관련 신택스는 인트라 코딩된 블록들에 대해 효율적이지만, 스킵 모드는 잔차가 0 이고 변환이 필요없다는 가정에 기초하므로, 시그널링된 변환은 스킵-예측된 블록들에 영향을 주지 않을 것이고, 이 시그널링 유닛 블록에 존재하는 인터 코딩된 블록들이 없을 것이다. 유사하게, 인터-예측된 블록들에 대한 시그널링 유닛 레벨에서 시그널링된 변환 관련 신택스는 인터-예측된 블록들에 대해 효율적이지만, 그것은 스킵 모드에 영향을 미치지 않으며, 시그널링 유닛 컴포지션 (signaling unit composition) 에 따라, 이 시그널링 유닛 블록에 존재하는 인트라 코딩된 블록들이 없을 것이다.
본 개시의 기술에 따라 시그널링 유닛을 배열하는 것에 의해, 특정 신택스 엘리먼트들이 중복 (redundant) 될 수도 있다. 위의 예에서, 시그널링 유닛 레벨에서의 변환 신택스 엘리먼트들에 추가하여 시그널링 유닛 유형 (# 1 또는 # 2) 이 시그널링되면, 예측 모드가 필요하지 않다는 것이 명백하다. 이 경우, 예측 모드는 시그널링 유닛에 포함된 각 블록에 대해 시그널링될 필요가 없고, 예측 모드는 시그널링 유닛 유형에 따라 추론될 수 있다. 일례에서, 시그널링 유닛 유형은 그 신택스 엘리먼트에 특유한 콘텍스트를 갖는 분리된 신택스 엘리먼트로서 시그널링될 수 있거나, 또는 시그널링 유닛 유형을 나타내기 위해 예측 모드 신택스 엘리먼트가 재사용 및 시그널링될 수 있다.
또 다른 예로서, 시그널링 유닛은 다음의 배열들 중 어느 하나 또는 양자 모두에 따라 배열된 블록들을 포함할 수도 있다: 1) 인트라-예측된 블록들, 스킵-예측된 블록들, 및 잔차가 0 (제로 블록) 인 인터-예측된 블록들; 및/또는 2) 인터-예측된 블록들, 스킵-예측된 블록들, 및 제로 잔차를 갖는 인트라-예측된 블록들.
위에서 논의된 제 1 예에서, (블록이 제로 잔차를 포함하는지, 즉 그 블록이 하나 이상의 비-제로 잔차 값을 포함하는지, 즉 그 블록이 "코딩" 되는지를 나타내는) 코딩된 블록 플래그 (CBF) 신택스 엘리먼트들은 시그널링 유닛 유형 1에 대한 인터-예측된 블록에 대하여 시그널링될 필요가 없으며, 시그널링 유닛 유형 2에 대한 인트라-예측된 블록에 대해 시그널링될 필요가 없는데, 왜냐하면 제로 블록들만이 가능하기 때문이다.
또 다른 예에서, 시그널링 유닛은 다음과 같이 구성될 수 있다: (1) 인트라-예측된 블록들, 스킵 예측된 블록들, 및 잔차가 0 (제로 블록) 인 인터 코딩된 블록들, 및 변환 스킵으로 코딩된 블록들; 및/또는 (2) 인터-예측된 블록들, 스킵 예측된 블록들, 및 제로 잔차를 갖는 인트라-예측된 블록들, 및 변환 스킵으로 코딩된 블록들.
유사하게, 위의 예에서처럼, CBF 신택스 엘리먼트들은 시그널링 유닛에 포함된 블록 마다 시그널링될 필요가 없다.
위의 예에서, 시그널링 유닛 블록은 2 가지 유형의 "인트라 관련" 및 "인터 관련" 유형들로 분류되었다. 그러나, 인트라- 및 인터-블록들의 혼합이 유사한 툴 결정을 공유할 수도 있다는 것, 예를 들어 변환 유형들이 양자 모두의 유형들의 예측된 블록들에 대해 동일할 수도 있다는 것이 여전히 가능할 수도 있다. 다음으로, 시그널링 유닛 유형들은 또한, 3가지로 확장될 수 있다: (1) 인트라-예측된 블록들, 및 제로 잔차를 갖는 인터-에측된 블록들 (스킵, 제로 잔차를 갖는 인터 또는 변환 스킵된 인터 블록들), (2) 인터-예측된 블록들, 및 제로 잔차를 갖는 인트라 블록들 또는 변환 스킵된 인트라 블록들, 및 (3) 인터 및 인트라 혼합이 제한 없이 허용된다.
이 예에서, 일부 중복 신택스 엘리먼트들은 예측 모드 또는 CBF 신택스와 같은 시그널링 유닛 유형 1 및 2 에 대한 블록 마다 (즉, 시그널링 유닛에 포함된 각각의 블록 내에서) 시그널링될 필요가 없을 수도 있다. 그 대신, 시그널링 유닛 레벨에서 그러한 신택스 엘리먼트들을 한번씩 비디오 인코더 (20) 가 인코딩할 수도 있고 비디오 디코더 (30) 가 디코딩할 수도 있고, 코딩된 값들은 시그널링 유닛에 포함된 각각의 블록에 적용될 수도 있다.
위의 예에서, EMT 또는 제 1 변환이 예로서 사용되었다. 유사한 방식으로, NSST 나 ROT 와 같은 2차 변환은 시그널링 유닛 레벨에서 시그널링될 수 있고, 예측 모드 또는 CBF 신택스와 같은 중복 신택스 엘리먼트들은 시그널링 유닛 레벨에서 시그널링될 수 있고, 블록 레벨에서 그러한 엘리먼트들은 시그널링될 필요가 없다.
비디오 인코더 (20) 및 비디오 디코더 (30) 는 변환 결정 관련 신택스 엘리먼트를 (예를 들어, CABAC 를 사용하여) 콘텍스트 코딩하기 위해 콘텍스트 모델링을 사용할 수도 있다. 변환 세트로부터의 플래그들 또는 인덱스들, 예를 들어, 비한정적으로, EMT 플래그, NSST 플래그, EMT 인덱스, NSST 인덱스 등과 같은 변환 관련 신택스 엘리먼트들이 콘텍스트 코딩될 수 있다. 콘텍스트는 블록에서의 비-제로 변환 계수들의 수, 비-제로 변환 계수의 절대 합 및/또는 TU 내부의 비-제로 변환 계수들의 위치 (예를 들어, 하나의 비-제로 DC 계수만이 존재하는지 여부) 에 따라 정의될 수 있다.
또한, 비-제로 계수들의 수는 몇 개의 서브 그룹들로 분류될 수 있다; 예를 들어 특정 범위 내의 비-제로 계수들의 수는 하나의 서브 그룹이고, 값들의 다른 범위는 다른 서브 그룹인 것 등이다. 콘텍스트는 서브 그룹 마다 정의될 수 있다.
또한, 콘텍스트는 블록에서의 최종 비-제로 계수의 위치에 기초하여 정의될 수 있거나, 콘텍스트는 또한 블록들에서의 제 1 비-제로 계수에 기초하여 정의될 수 있거나, 및/또는 콘텍스트는 블록들에서 최종 및/또는 제 1 계수의 값들 또는 추가로 그들의 부호 (네가티브 또는 포지티브) 에 기초하여 정의될 수 있다.
이하는 비-제로 계수 시그널링의 수를 설명한다. 현재, HEVC 또는 JVET에서, 유의도 (significance) 맵 및 최종 비-제로 계수의 위치 (예를 들어, 0-계수는 제로, 1-계수는 비-제로이거나 또는 그 반대) 는 최종 비-제로 계수까지 어느 계수들이 비-제로인지를 나타내기 위해, 변환 계수들에 대해 시그널링된다.
그러나, 블록이 단지 소수의 계수들을 갖는다면, JVET 및 HEVC의 현재 시그널링은 효율적이지 않을 수도 있다. 예를 들어, 변환 블록에 비-제로 계수가 하나만 있고 그 계수가 블록의 시작에 없는 경우, 최종 위치는 이미 그 계수의 위치를 나타낸다; 그러나 모든 제로들을 포함하는 유의도 맵은 여전히 시그널링된다.
본 개시는 또한 변환 블록에서 비-제로 계수들의 수를 나타내는 값을 갖는 추가 신택스 엘리먼트를 시그널링하는 것과 관련된 기술을 설명한다. 비디오 인코더 (20) 는 이 신택스 엘리먼트에 대한 값을 시그널링할 수도 있고, 비디오 디코더 (30) 는 이 신택스 엘리먼트에 대한 값을 디코딩하여 변환 블록에서 비-제로 변환 계수들의 수를 결정할 수도 있다. 이 신택스 엘리먼트 값은 단항, 절단 단항, Golomb, 지수 Golomb, Rice, 고정 길이 이항, 절단 이항 코드 등과 같은 임의의 이진화를 사용하여 시그널링될 수 있다. 절단 이진화에 대해, 최대 엘리먼트는 최종 위치 계수까지 가능한 계수들의 수일 수 있다.
일례에서, 이 새로운 신택스 엘리먼트는 변환 블록을 위한 최종 비-제로 계수 위치 후에 시그널링될 수 있다. 또 다른 예에서, 이 새로운 신택스 엘리먼트는 최종 비-제로 계수 전에 시그널링될 수 있다. 후자의 경우, 플래그는 블록이 단 하나의 DC 계수만을 갖는지 여부를 나타낼 수 있다.
최종 비-제로 계수 및 비-제로 계수들의 수가 시그널링되기 때문에, 본 개시의 기술은 비트스트림의 일부를 형성하는 코딩된 유의도 맵의 크기를 감소시킬 수도 있다. 예를 들어, 유의도 맵에 시그널링하는 동안, 이미 시그널링된 비-제로 계수들의 수가 카운트될 수 있다; 시그널링된 비-제로 계수들의 수 마이너스 1과 같은 비-제로 계수들의 수가 이미 시그널링되었을 때, 블록을 위한 유의도 맵을 계속 시그널링할 필요가 없는데, 왜냐하면 유일하게 가능한 다음의 비-제로 계수는 블록에서 최종 계수이기 때문이다.
일례에서, 전술한 신택스 엘리먼트는 변환 블록이 단 하나의 비-제로 계수를 갖는지 여부를 나타내는 플래그 (하나의 계수 플래그) 일 수 있다. 이 플래그는 최종 비-제로 계수의 위치 후에 시그널링될 수 있고 또한 그것을 조건으로 할 수 있다. 예를 들어, 최종 비-제로 계수가 블록에서 제 1 계수 (DC) 라면, 단지 하나의 계수만이 가능하다는 것이 이미 알려져 있고, 하나의 계수 플래그는 필요하지 않다. 유사하게, 플래그는 최종 비-제로 계수의 위치가 특정 임계치보다 큰 경우들에 대해서만 시그널링될 수 있다. 예를 들어, 최종 비-제로 계수 위치가 블록의 시작으로부터 특정 거리인 경우, 하나의 계수 플래그가 시그널링된다.
하나의 계수 플래그에 대한 콘텍스트 모델 선택은 블록 내의 최종 비-제로 계수의 위치, 그 최종 위치의 블록의 시작으로부터의 거리, 최종 비-제로 계수 값, 및/또는 그 값의 부호에, 단독 또는 임의의 조합으로, 의존할 수도 있다.
하나의 계수 플래그는 최종 비-제로 계수의 위치 후에, 또 다른 대안으로는 최종 비-제로 계수의 위치 및 그의 값 후에, 또 다른 대안에서 최종 비-제로 계수의 위치, 그의 값 및 부호 후에 시그널링될 수 있다. 이는 어느 콘텍스트 모델링이 적용되는지에 따라 의존할 수 있다 (위 참조).
또 다른 예에서, 하나의 계수 플래그는 최종 비-제로 계수 위치 전에 시그널링될 수도 있고, 블록이 단 하나의 DC (제 1 변환 계수) 계수를 갖는지 여부를 나타낼 수도 있다. 그러한 예에서, 최종 비-제로 계수 위치는 그 플래그를 조건으로 할 수 있고, 하나보다 많은 비-제로 계수가 있거나 또는 하나의 계수가 DC 계수가 아님을 의미하는, "디스에이블"을 나타내는 값을 플래그가 갖는 경우에 시그널링될 수 있다. 또한, 최종 위치 시그널링은 위치 좌표들로부터 1 을 감산함으로써 수정될 수 있는데, 그 이유는 하나의 계수 플래그가 디스에이블되면 DC 계수와 동일한 최종 위치가 시그널링될 수 없기 때문이고; 그렇지 않으면 그 플래그는 인에이블된다.
그러한 하나의 계수 플래그가 시그널링되고 "인에이블됨" 을 나타내는 값을 가질 때 (즉, 블록이 단 하나의 비-제로 계수를 갖는 경우), 유의도 맵이 필요하지 않을 수도 있으며, 최종 계수의 위치와 부호와 함께 그 값만이 시그널링될 수도 있다. 따라서, 비디오 인코더 (20) 는 최종 계수의 위치만을 시그널링할 수도 있고, 비디오 디코더 (30) 는 최종 계수의 위치를 나타내는 데이터만을 수신하고 비트스트림의 후속 데이터가 (예를 들어, 동일한 블록이지만 변환 계수 데이터는 관련 없는, 또는 후속 블록의 신택스 엘리먼트들의) 상이한 신택스 엘리먼트 세트에 적용되는 것을 결정할 수도 있다.
하나의 계수 플래그는 어느 변환 유형, 예를 들어 DCT 또는 EMT 가 사용되는지를 조건으로 하여 시그널링될 수도 있고, EMT 플래그 또는 EMT 인덱스에 의존할 수도 있다. 또한, 하나의 계수 플래그 시그널링은 NSST 또는 ROT와 같은 2차 변환이 블록에서 사용되는지 여부; NSST 플래그, NSST 인덱스, ROT 플래그 또는 ROT 인덱스와 같은 2차 변환 신택스 등에 의존할 수 있다. 예를 들어, 2차 변환이 사용되면, 플래그가 시그널링되지 않을 수도 있다.
하나의 비-제로 계수 플래그에 대해 설명된 보다 상세한 예들은 하나보다 많은 비-제로 계수 값이 블록에서 시그널링되는 경우들에 적용될 수 있다.
비디오 인코더 (20) 및 비디오 디코더 (30) 는 비-제로 계수들에 기초하여 상이한 변환 유형들간에 스위칭할 수도 있다. 두 개의 상이한 유형의 변환들이 사용될 수도 있는데, 예를 들어, 하나는 분리 가능 변환이고 다른 하나는 비 분리 가능 변환이다. 각각의 유형의 변환의 사용을 위해, 비-제로 계수들이 변환 유닛 내의 특정 위치에 대해서만 존재할 수 있다는 일부 제한들이 추가될 수도 있다. 이러한 방식으로, 선택된 유형의 변환이 시그널링되는 것이 아니라, 비디오 디코더 (30) 는 변환 유닛 내부의 비-제로 계수들의 위치에 따라, 계수들을 디코딩한 후에, 선택된 유형의 변환을 도출할 수 있다. 명시적인 시그널링을 수신하는 대신에 변환 유형을 도출함으로써, 인코딩된 비디오 비트스트림 크기가 감소될 수 있고, 이에 의해, 과도한 복합성을 비디오 디코더 (30) 에 도입함이 없이 그리고 결과적인 디코딩된 비디오 데이터에서 품질의 손실 없이 비트스트림 효율을 향상시킬 수도 있다. 또한, 이러한 방식으로 다수의 유형의 변환들을 제공하는 것은, 결과적인 변환 유형들이 평균적으로 잔차 데이터를 더 잘 압축할 수 있다는 점에서, 비트스트림 효율을 더욱 더 향상시킬 수도 있다.
일례에서, 적어도 하나의 비-제로 계수가 스캔 순서에서 N번째 계수 후에 존재하면 (여기서 N 은 몇몇 조건들에 기초하여 사전 정의되거나 또는 도출될 수 있음), 분리 가능 변환이 적용된다; 그렇지 않으면 (모든 비-제로 계수들이 스캔 순서에서 제 1 N 계수들에만 존재하는 경우), 비 분리 가능 변환이 적용된다.
또 다른 예에서, 변환 유형은 여전히 플래그/인덱스에 의해 시그널링되지만, 상이한 위치들에서 계수를 엔트로피 코딩 (엔트로피 인코딩 또는 엔트로피 디코딩) 하기 위한 콘텍스트 모델은 시그널링된 플래그/인덱스의 값에 의존할 수도 있다.
또 다른 예에서, 전술한 변환 선택을 나타내는 플래그 또는 인덱스는 N번째 계수 또는 모든 계수들 후에 시그널링된다. 플래그 또는 인덱스는 콘텍스트 코딩될 수 있으며, 여기서 콘텍스트는 최종 비-제로 계수의 위치에 의존한다. 예를 들어, 콘텍스트는 최종 비-제로 계수가 N번째 계수 전에 또는 그 후에 발생하는지에 의존할 수도 있다. 최종 비-제로 계수가 바로 N번째 계수에서 멈추면, 콘텍스트 모델은 앞에서 언급한 N 번째 계수 전 또는 후의 어느 일방의 그룹과 연관될 수 있거나, 또는 별도의 콘텍스트가 할당될 수도 있다.
비디오 인코더 (20) 는 시그널링 유닛에 대한 신택스 엘리먼트들을 인코딩/시그널링할 수도 있는 반면, 비디오 디코더 (30) 는 시그널링 유닛의 신택스 엘리먼트들에 대한 값들을 디코딩 및 해석할 수도 있다. 전술한 바와 같이, 신택스 엘리먼트들은 시그널링 유닛 레벨에서 시그널링될 수 있다. 그러나, 일부 신택스 엘리먼트들은 시그널링 유닛에 포함된 모든 블록에 적용가능한 것은 아닐 수도 있다.
예를 들어, NSST와 같은 2차 변환은 비-제로 계수들을 갖는 인트라 예측된 블록에만 적용될 수도 있다. 그것은 2차 변환이 적용될 시그널링 유닛에 블록이 없는 경우일 수 있다. 그러한 경우들에 대해, 그러한 시그널링 유닛에 대해, NSST 정보, 예를 들어, NSST 인덱스 또는 NSST 플래그를 시그널링하는 것은 필요하지 않으며 그저 비트들을 낭비할 수도 있다. 또 다른 예에서, EMT와 같은 제 1 변환은 비-제로 잔차 블록들에 적용된다. 그것은 또한, 시그널링 유닛에 포함된 모든 블록이 제로 잔차를 갖고, EMT 정보, 예를 들어 EMT 플래그 또는 EMT 인덱스를 시그널링하는 것이 그러한 시그널링 유닛에 대해 필요하지 않고 그저 비트들을 낭비할 수도 있는 경우일 수도 있다.
일부 예에서, 비디오 인코더 (20) 는 그러한 시그널링이 적용 가능한 시그널링 유닛에 포함된 제 1 블록까지 시그널링 유닛 신택스 시그널링을 연기할 수도 있다. 즉, 시그널링 유닛 신택스는, 그러한 시그널링이 적용가능하지 않은, 스캔 순서에서 시그널링 유닛의 시작에 있는 블록들에 대해서는, 시그널링되지 않는다. 마찬가지로, 비디오 디코더 (30) 는 시그널링 유닛 신택스 엘리먼트들의 값들을 시그널링 유닛에서의 그 시그널링 유닛 신택스 엘리먼트들을 뒤따르는 블록들에만 적용한다.
예를 들어, 비디오 인코더 (20) 는 시그널링 유닛 내에 모든 블록들에 적용가능한 일부 유형의 정보를, 그 정보가 적용 가능한 시그널링 유닛에서의 블록이 있을 때까지, 시그널링하지 않을 수도 있다. 유사하게, 비디오 디코더 (30) 는 시그널링 유닛 내에 모든 블록들에 적용가능한 일부 유형의 정보를, 그 정보가 적용되는 시그널링 유닛에서의 블록이 있을 때까지, 파싱하지 않을 수도 있다. 그 정보는 특정 코딩 툴, 신택스 엘리먼트들 등을 식별하는 정보일 수도 있다.
일례로서, 비디오 인코더 (20) 는 시그널링 유닛에서 비-제로 잔차를 갖는 제 1 인트라 블록에서의 NSST 정보 (인덱스, 플래그 등) 를 시그널링하고 비디오 디코더 (30) 가 수신할 수도 있다. 또 다른 예로서, 비디오 인코더 (20) 는 시그널링 유닛에서 제 1 비-제로 블록에서의 EMT 정보 (인덱스, 플래그 등) 를 시그널링하고 비디오 디코더 (30) 가 수신할 수도 있다. 이들 블록은 반드시 대응하는 시그널링 유닛의 시작에 있을 필요는 없다. 일부 예들에서, 신택스 엘리먼트들 (예 : 코딩 툴에 대한 정보 또는 다른 유형의 신택스 엘리먼트들) 이 신택스 엘리먼트를 사용하는 제 1 블록에 대해 시그널링되면, 그 정보는 그 신택스 엘리먼트를 사용하는 블록 스캔 순서에서 그 제 1 블록을 뒤따르는 모든 블록들에 대해 일정할 수도 있다. 그러나 이것은 모든 경우들에 요건으로 간주되어서는 안된다.
시그널링 유닛 신택스 엘리먼트들의 시그널링을 연기함으로써, 신택스 엘리먼트와 관련된 비트들은, 그러한 신택스 엘리먼트들을 필요로 하는 시그널링 유닛에서의 블록들이 있지 않거나 또는 그러한 시그널링이 적용될 수 있는 시그널링 유닛에서의 블록들이 있지 않은 경우에, 시그널링 유닛이 그러한 신택스 엘리먼트들이 적용 가능한 임의의 블록들을 포함하는지 여부에 관계 없이, 신택스 엘리먼트가 시그널링 유닛 레벨에서 항상 시그널링되는 시그널링 및 수신 기법들과 비교하여, 세이브될 수 있다.
비디오 인코더 (20)는 시그널링된 정보 및 그러한 정보가 적용 가능한 시그널링 유닛에 포함된 블록 유형에 따라, 시그널링 유닛 레벨에서 다른 신택스 엘리먼트 (반드시 변환 관련될 필요는 없는) 시그널링을 연기하기 위해 유사한 기술을 이용할 수도 있다. 시그널링 유닛들의 정보의 시그널링 및 파싱을 연기하는 위의 예들은 제한적인 것으로 간주되어서는 안된다.
시그널링 유닛에 특정한 다양한 신택스 엘리먼트들이 고려될 수도 있다. 일부 신택스 엘리먼트들은 시그널링 유닛에 대해서만 도입될 수 있으며 다른 블록들에는 존재하지 않을 수도 있다. 예를 들어, 그러한 신택스 엘리먼트들은 제어 플래그들 및 코딩 모드 관련 파라미터들일 수 있다. 일례에서, 시그널링 유닛 신택스 엘리먼트들은 전술한 바와 같이 제 1 변환 (예를 들어, EMT) 및/또는 2차 변환 신택스 엘리먼트들 (예를 들어, NSST 또는 ROT 플래그 및/또는 인덱스) 중 어느 것 또는 전부를 포함하고, 그러한 신택스 엘리먼트들은 시그널링 유닛에 포함되지않거나 또는 시그널링 유닛보다 큰 블록들에 대해 존재할 필요가 없다.
대안적으로 또는 부가적으로, 시그널링 유닛에 대해 시그널링된 블록의 기존 신택스 엘리먼트들은 시그널링 유닛에 포함되지 않거나 또는 시그널링 유닛보다 큰 블록들에 대해 시그널링된 동일한 신택스 엘리먼트들과는 상이한 범위 값들 또는 상이한 시멘틱스/해석을 가질 수도 있다. 일례에서, 제 1 변환 및 2차 변환 신택스 엘리먼트들을 시그널링하는 시기를 식별하는 비-제로 계수 임계치는 다른 블록 들에 대한 것보다 시그널링 유닛에 대해 상이할 수도 있다. 이러한 임계치들은 다른 블록들에 대한 대응 임계치보다 크거나 작을 수도 있다.
예를 들어, 2차 변환 (이를테면 NSST 또는 ROT) 인덱스 및/또는 플래그가 적어도 하나의 비-제로 변환 계수를 갖는 시그널링 유닛에서의 블록에 대해 시그널링될 수 있고, 2차 변환 인덱스는 시그널링 유닛에 포함되지 않거나 또는 시그널링 유닛보다 큰 블록에 대해, 그 블록이 적어도 2개의 비-제로 계수들을 갖는 경우에, 시그널링될 수 있다. 2차 변환 인덱스가 시그널링되지 않을 때, 비디오 디코더 (30) 는 예를 들어 0과 같은 디폴트 값과 동일한 것으로서 2차 변환 인덱스의 값을 추론한다. 동일한 기술이 제 1 변환이나 또는 임의의 다른 변환에 적용될 수 있다.
이러한 시그널링 유닛 특정 파라미터들은 또한, 시그널링 유닛이 속하는 슬라이스 유형 및/또는 타일에 따라 상이할 수도 있다. 예를 들어, I-, P- 및 B- 슬라이스들은 상이한 시그널링 유닛 파라미터들, 상이한 범위 값들, 또는 상이한 시멘틱스/해석을 가질 수도 있다.
전술한 시그널링 유닛 파라미터들은 변환에 한정되는 것이 아니라, 임의의 코딩 모드와 함께 사용될 수 있거나 또는 임의의 모드로 도입될 수 있다.
비디오 인코더 (20) 는 또한, 신택스 데이터, 이를테면 블록 기반 신택스 데이터, 화상 기반 신택스 데이터, 및 시퀀스 기반 신택스 데이터를, 비디오 디코더 (30) 에, 예를 들어, 화상 헤더, 블록 헤더, 슬라이스 헤더, 또는 다른 신택스 데이터, 이를테면 시퀀스 파라미터 세트 (SPS), 화상 파라미터 세트 (PPS), 또는 비디오 파라미터 세트 (VPS) 에서 전송할 수도 있다.
비디오 인코더 (20) 및 비디오 디코더 (30) 는 각각, 하나 이상의 마이크로프로세서들, 디지털 신호 프로세서 (DSP) 들, 주문형 반도체 (ASIC), 필드 프로그램머블 게이트 어레이 (FPGA), 이산 로직 회로, 소프트웨어, 하드웨어, 펌웨어 또는 이들의 임의의 조합과 같은 임의의 다양한 적합한 인코더 또는 디코더 회로로서, 적용가능한 바에 따라, 구현될 수도 있다. 비디오 인코더 (20) 및 비디오 디코더 (30) 의 각각은 하나 이상의 인코더들 또는 디코더들에 포함될 수도 있는데, 이 중 어느 쪽도 결합된 비디오 인코더/디코더 (CODEC) 의 부분으로서 통합될 수도 있다. 비디오 인코더 (20) 및/또는 비디오 디코더 (30) 를 포함하는 디바이스는 집적 회로, 마이크로프로세서, 및/또는 무선 통신 디바이스, 이를테면 셀룰러 전화기를 포함할 수도 있다.
도 2는 2차 변환 인덱스를 이진화하기 위한 기법들을 구현할 수도 있는 비디오 인코더 (20) 의 일례를 나타내는 블록도이다. 비디오 인코더 (20) 는, 비디오 슬라이스들 내의 비디오 블록들의 인트라-코딩 및 인터-코딩을 수행할 수도 있다. 인트라 코딩은, 주어진 비디오 프레임 또는 화상 내의 비디오에서 공간적 중복성을 감소 또는 제거하기 위하여 공간적 예측에 의거한다. 인터-코딩은 비디오 시퀀스의 인접 프레임들 또는 화상들 내의 비디오에서 시간적 중복성을 감소 또는 제거하기 위하여 시간적 예측에 의거한다. 인트라-모드 (I 모드) 는 여러 공간 기반 코딩 모드들 중 어느 것을 지칭할 수도 있다. 인터-모드들, 이를테면 단방향 예측 (P 모드) 또는 양방향 예측 (B 모드) 는, 여러 시간 기반 코딩 모드들 중 어느 것을 지칭할 수도 있다.
도 2에 도시된 바처럼, 비디오 인코더 (20) 는 인코딩될 비디오 프레임 내의 현재 비디오 블록을 수신한다. 도 2 의 예에서, 비디오 인코더 (20) 는, 모드 선택 유닛 (40), (디코딩된 화상 버퍼 (DPB) 로도 지칭될 수도 있는) 참조 화상 메모리 (64), 합산기 (50), 변환 처리 유닛 (52), 양자화 유닛 (54), 및 엔트로피 인코딩 유닛 (56) 을 포함한다. 모드 선택 유닛 (40) 은, 차례로, 모션 보상 유닛 (44), 모션 추정 유닛 (42), 인트라 예측 유닛 (46), 및 파티션 유닛 (48) 을 포함한다. 비디오 블록 재구성을 위해, 비디오 인코더 (20) 는 또한 역 양자화 유닛 (58), 역 변환 유닛 (60), 및 합산기 (62) 를 포함한다. 디블록킹 필터 (도 2에 미도시) 가 또한 포함되어, 재구성된 비디오로부터 블록키니스 아티팩트 (blockiness artifact) 를 제거하기 위해 블록 경계들을 필터링할 수도 있다. 원하는 경우, 디블록킹 필터는 통상적으로 합산기 (62) 의 출력을 필터링한다. 추가적인 필터들 (인 루프 또는 포스트 루프) 이 또한, 디블록킹 필터에 추가하여 사용될 수도 있다. 그러한 필터들은 간결성을 위해 나타내지는 않았지만, 원한다면, (인루프 필터로서) 합산기 (50) 의 출력을 필터링할 수도 있다.
인코딩 프로세스 동안, 비디오 인코더 (20) 는 코딩될 비디오 프레임 또는 슬라이스를 수신한다. 프레임 또는 슬라이스는 다수의 비디오 블록들로 분할될 수도 있다. 모션 추정 유닛 (42) 및 모션 보상 유닛 (44) 은 하나 이상의 참조 프레임들에서의 하나 이상의 블록들에 대해 수신된 비디오 블록의 인터-예측 인코딩을 수행해 시간적 예측을 제공한다. 인트라 예측 유닛 (46) 은 대안적으로, 코딩될 블록과 동일한 프레임 또는 슬라이스에서의 하나 이상의 이웃 블록들에 상대적으로 수신된 비디오 블록의 인트라 예측 인코딩을 수행하여 공간적 예측을 제공할 수도 있다. 비디오 인코더 (20) 는, 예를 들어, 비디오 데이터의 각 블록을 위한 적절한 코딩 모드를 선택하기 위하여, 다중 코딩 패스들을 수행할 수도 있다.
또한, 파티션 유닛 (48) 은, 이전 코딩 패스들에서 이전 파티셔닝 스킴들의 평가에 기초하여, 비디오 데이터의 블록들을 서브 블록들로 파티셔닝할 수도 있다. 예를 들어, 파티션 유닛 (48) 은, 초기에 프레임 또는 슬라이스를 CTU 들로 파티셔닝할 수도 있고, 레이트 왜곡 분석 (예를 들어, 레이트 왜곡 최적화) 에 기초하여, CTU 들의 각각을 서브 CU들로 파티셔닝할 수도 있다. 모드 선택 유닛 (40) 은 CTU 의 서브 CU들로의 파티셔닝을 나타내는 쿼드트리 데이터 구조를 생성할 수도 있다. 쿼드트리의 리프-노드 CU 들은 하나 이상의 PU 들 및 하나 이상의 TU 들을 포함할 수도 있다.
모드 선택 유닛 (40) 은 예컨대, 에러 결과들에 기초하여 예측 모드들 중의 하나, 인트라 또는 인터를 선택할 수도 있고, 결과적인 예측된 블록을, 잔차 데이터를 생성하기 위하여 합산기 (50) 에, 그리고 참조 프레임으로서의 이용을 위한 인코딩된 블록을 재구성하기 위하여 합산기 (62) 에 제공한다. 모드 선택 유닛 (40) 은 또한, 신택스 엘리먼트들, 이를테면 모션 벡터들, 인트라 모드 표시자, 파티션 정보, 및 다른 그러한 신택스 정보를 엔트로피 인코딩 유닛 (56) 에 제공한다.
모션 추정 유닛 (42) 및 모션 보상 유닛 (44) 은 고도로 통합될 수도 있지만, 개념적인 목적들을 위하여 별도로 예시되어 있다. 모션 추정 유닛 (42) 에 의해 수행된 모션 추정은 비디오 블록들을 위한 모션을 추정하는 모션 벡터들을 생성하는 프로세스이다. 모션 벡터는, 예를 들어, 현재 프레임 (또는 다른 코딩된 유닛) 내의 코딩되는 현재 블록에 관하여 참조 프레임 (또는 다른 코딩된 유닛) 내의 예측 블록에 관한 현재 비디오 프레임 또는 화상 내의 비디오 블록의 PU 의 변위를 나타낼 수도 있다. 예측 블록은, 절대차의 합 (sum of absolute difference; SAD), 제곱차의 합 (sum of square difference; SSD), 또는 다른 차이 메트릭들에 의해 결정될 수도 있는 픽셀 차이의 측면에서, 코딩되어야 할 블록과 근접하게 일치하는 것으로 구해지는 블록이다. 일부 예들에서, 비디오 인코더 (20) 는 참조 화상 메모리 (64) 에 저장된 참조 화상들의 서브 정수 픽셀 위치 (sub-integer pixel position) 들을 위한 값들을 계산할 수도 있다. 예를 들어, 비디오 인코더 (20) 는 참조 화상의 1/4 픽셀 위치들, 1/8 픽셀 위치들, 또는 다른 분수 픽셀 위치들의 값들을 보간할 수도 있다. 그러므로, 모션 추정 유닛 (42) 은 전체 픽셀 위치들 및 분수 픽셀 위치들에 관련하여 모션 검색을 수행할 수도 있고, 분수 픽셀 정밀도를 갖는 모션 벡터를 출력할 수도 있다.
모션 추정 유닛 (42) 은, PU 의 위치와 참조 화상의 예측 블록의 위치를 비교함으로써 인터-코딩된 슬라이스에서 비디오 블록의 PU를 위한 모션 벡터를 계산한다. 참조 화상은 제 1 참조 화상 리스트 (List 0) 또는 제 2 참조 화상 리스트 (List 1) 로부터 선택될 수도 있고, 이들의 각각은 참조 화상 메모리 (64) 내에 저장된 하나 이상의 참조 화상들을 식별한다. 모션 추정 유닛 (42) 은 계산된 모션 벡터를 엔트로피 인코딩 유닛 (56) 및 모션 보상 유닛 (44) 으로 전송한다.
모션 보상 유닛 (44) 에 의해 수행된 모션 보상은, 모션 추정 유닛 (42) 에 의해 결정된 모션 벡터에 기초한 예측 블록의 페칭 (fetching) 또는 생성을 수반할 수도 있다. 또, 일부 예에서, 모션 추정 유닛 (42) 및 모션 보상 유닛 (44) 은 기능적으로 통합될 수도 있다. 현재 비디오 블록의 PU를 위한 모션 벡터의 수신시에, 모션 보상 유닛 (44) 은, 모션 벡터가 참조 화상 리스트들 중 하나에서 가리키는 예측 블록을 로케이팅할 수도 있다. 합산기 (50) 는, 아래에 논의되는 바처럼, 코딩되는 현재 비디오 블록의 픽셀 값들로부터 예측 블록의 픽셀 값들을 감산하여, 픽셀 차이 값들을 형성함으로써 잔차 비디오 블록을 형성한다. 일반적으로, 모션 추정 유닛 (42) 은 루마 컴포넌트들에 대해 모션 추정을 수행하고, 모션 보상 유닛 (44) 은 크로마 컴포넌트들 및 루마 컴포넌트들 양자 모두를 위해 루마 컴포넌트들에 기초하여 계산된 모션 벡터들을 사용한다. 모드 선택 유닛 (40) 은 또한, 비디오 슬라이스의 비디오 블록들을 디코딩함에 있어서 비디오 디코더 (30) 에 의한 사용을 위해 비디오 블록들 및 비디오 슬라이스와 연관된 신택스 엘리먼트들을 생성할 수도 있다.
인트라-예측 유닛 (46) 은, 상술된 바와 같이, 모션 추정 유닛 (42) 및 모션 보상 유닛 (44) 에 의해 수행되는 인터-예측에 대한 대안으로서, 현재 블록을 인트라-예측할 수도 있다 특히, 인트라-예측 유닛 (46) 은 현재 블록을 인코딩하는데 이용할 인트라-예측 모드를 결정할 수도 있다. 일부 예들에서, 인트라-예측 유닛 (46) 은, 예를 들어, 별개의 인코딩 패스들 동안에, 다양한 인트라-예측 모드들을 이용하여 현재 블록을 인코딩할 수도 있고, 인트라-예측 유닛 (46) (또는, 일부 예들에서, 모드 선택 유닛 (40)) 은 테스트된 모드들로부터 이용할 적절한 인트라-예측 모드를 선택할 수도 있다.
예를 들어, 인트라-예측 유닛 (46) 은 다양한 테스트된 인트라-예측 모드들에 대한 레이트 왜곡 분석을 이용하여 레이트 왜곡 값들을 산출하고, 테스트된 모드들 중에서 최상의 레이트 왜곡 특성들을 갖는 인트라-예측 모드를 선택할 수도 있다. 레이트 왜곡 분석은 일반적으로, 인코딩된 블록을 생성하는데 이용된 비트레이트 (즉, 비트들의 수) 뿐만 아니라, 인코딩된 블록을 생성하기 위해 인코딩되었던 원래의, 인코딩되지 않은 블록과 인코딩된 블록 사이의 왜곡 (또는 에러) 의 양을 결정한다. 인트라-예측 유닛 (46) 은 여러 인코딩된 블록들에 대한 레이트 및 왜곡들로부터 비 (ratio) 를 산출하여 어느 인트라-예측 모드가 블록을 위한 최상의 레이트 왜곡 값을 나타내는지를 결정할 수도 있다.
블록을 위한 인트라-예측 모드를 선택한 후에, 인트라-예측 유닛 (46) 은 엔트로피 인코딩 유닛 (56) 에 블록을 위한 선택된 인트라-예측 모드를 나타내는 정보를 제공할 수도 있다. 엔트로피 인코딩 유닛 (56) 은 선택된 인트라 예측 모드를 표시하는 정보를 인코딩할 수도 있다. 비디오 인코더 (20) 는 송신된 비트스트림에서 구성 데이터를 포함할 수도 있고, 이는 복수의 인트라 예측 모드 인덱스 테이블들 및 복수의 수정된 인트라 예측 모드 인덱스 테이블들 (코드워드 맵핑 테이블이라고도 한다), 다양한 블록들을 위한 인코딩 콘텍스트들의 정의들, 그리고 콘텍스트들의 각각을 위해 사용할 최고 확률 인트라 예측 모드, 인트라 예측 모드 인덱스 테이블, 및 수정된 인트라 예측 모드 인덱스 테이블의 표시들을 포함할 수도 있다.
비디오 인코더 (20) 는, 코딩되는 원래 비디오 블록으로부터 모드 선택 유닛 (40) 으로부터의 예측 데이터를 감산함으로써 잔차 비디오 블록을 형성한다. 합산기 (50) 는 이 감산 연산을 수행하는 컴포넌트 또는 컴포넌트들을 나타낸다. 변환 처리 유닛 (52) 은 변환, 이를테면 이산 코사인 변환 (DCT) 또는 개념적으로 유사한 변환을 잔차 블록에 적용하며, 변환 계수 값들을 포함하는 비디오 블록을 생성한다. 웨이블릿 변환, 정수 변환, 서브밴드 변환, DST (Discrete Sine Transform) 또는 다른 유형의 변환을 DCT 대신 사용할 수 있다. 어느 경우든, 변환 처리 유닛 (52) 은 변환을 잔차 블록에 적용하며, 변환 계수들의 블록을 생성한다. 변환은 잔차 정보를 픽셀 도메인으로부터 주파수 도메인과 같은 변환 도메인으로 변환할 수도 있다.
또한, 몇몇 예들에서, 예를 들어, 블록이 인트라-예측될 때, 변환 처리 유닛 (52) 은 제 1 변환으로부터 비롯되는 변환 계수들에 비 분리 가능 2차 변환 (NSST) 과 같은 2차 변환을 적용할 수도 있다. 또한, 변환 처리 유닛 (52) 은, 엔트로피 인코딩될, 블록을 위한 2차 변환 신택스 엘리먼트들에 대한 하나 이상의 값들을 엔트로피 인코딩 유닛 (56) 에 보낼 수도 있다. 엔트로피 인코딩 유닛 (56) 은 본 개시의 기술에 따라, 도 3과 관련하여 이하에서 보다 상세하게 논의되는 바와 같이, 이들 및/또는 다른 신택스 엘리먼트들 (예를 들어, 2차 변환 신택스 엘리먼트들 또는 다른 시그널링 유닛 신택스 엘리먼트들) 을 엔트로피 인코딩할 수도 있다.
변환 처리 유닛 (52) 은 양자화 유닛 (54) 에 결과적인 변환 계수들을 전송할 수도 있다. 양자화 유닛 (54) 은 변환 계수들을 양자화하여 비트레이트를 더 감소시킨다. 양자화 프로세스는 계수들의 일부 또는 전부와 연관된 비트 깊이를 감소시킬 수도 있다. 양자화도 (degree of quantization) 는 양자화 파라미터를 조정함으로써 수정될 수도 있다.
양자화에 이어서, 엔트로피 인코딩 유닛 (56) 은 양자화된 변환 계수들 (및 2차 변환 신택스 엘리먼트들, 시그널링 유닛 신택스 엘리먼트들, 코딩 툴 신택스 엘리먼트들, 향상된 다중 변환 (EMT) 신택스 엘리먼트들 등과 같은 관련 신택스 엘리먼트들에 대한 임의의 대응하는 값들) 을 엔트로피 인코딩한다. 예를 들어, 엔트로피 인코딩 유닛 (56) 은 CAVLC (context adaptive variable length coding), CABAC (context adaptive binary arithmetic coding), SBAC (syntax-based context-adaptive binary arithmetic coding), PIPE (probability interval partitioning entropy) 코딩 또는 또 다른 엔트로피 코딩 기법을 수행할 수도 있다. 콘텍스트-기반 엔트로피 코딩의 경우, 콘텍스트는 이웃하는 블록들에 기초할 수도 있다. 엔트로피 인코딩 유닛 (56) 에 의한 엔트로피 코딩에 후속하여, 인코딩된 비트스트림은 또 다른 디바이스 (예컨대, 비디오 디코더 (30)) 에 송신될 수도 있거나, 나중의 송신 또는 취출을 위해 아카이빙될 수도 있다.
본 개시의 기술에 따라, 비디오 인코더 (20) 는 시그널링 유닛 레벨에서 특정 신택스 엘리먼트들을 인코딩할 수도 있다. 시그널링 유닛은 일반적으로 비디오 데이터의 2개 이상의 블록들 (예를 들어, 코딩 트리 블록 (CTB) 또는 코딩 유닛 (CU) 들) 에 관한 신택스 엘리먼트들을 포함한다. 예를 들어, 블록들은 공통 QTBT 구조의 상이한 브랜치/노드에 또는 구별되는 QTBT 구조들에 대응할 수도 있다.
전술한 바와 같이, 일례에서, 비디오 인코더 (20) 는 시그널링 유닛의 신택스 엘리먼트들을 시그널링하는 것을, 비디오 인코더 (20) 가 그러한 시그널링 유닛 신택스 엘리먼트들이 관련 있는 블록을 만날 때까지, 연기할 수도 있다. 이러한 방식으로, 비디오 인코더 (20) 는, 시그널링 유닛이 궁극적으로 시그널링 유닛 신택스 엘리먼트들이 관련 있는 블록들을 포함하지 않으면, 전적으로 시그널링 유닛 신택스 엘리먼트들을 인코딩하는 것을 피할 수도 있다. 시그널링 유닛이 시그널링 유닛 신택스 엘리먼트들이 관련 있는 블록들을 포함한다면, 비디오 인코더 (20) 는 인코딩/디코딩 순서에서, 시그널링 유닛 신택스 엘리먼트들이 속하지 않는 블록에 후속하여 그리고 시그널링 유닛 신택스 엘리먼트들이 속하는 블록(들) 에 선행하여, 비트스트림의 일부를 형성하기 위해 이들 신택스 엘리먼트를 인코딩할 수도 있다. 시그널링 유닛 신택스 엘리먼트들은 NSST 정보 (NSST 플래그 및/또는 인덱스), EMT 정보 (EMT 플래그 및/또는 인덱스) 등 중 어느 것 또는 전부를 포함할 수도 있다.
예를 들어, 모드 선택 유닛 (40) 은 인트라-예측된 블록이 (합산기 (50) 에 의해 계산되는) 제로 또는 비-제로 잔차를 산출하는지 여부를 결정할 수도 있다. 모드 선택 유닛 (40) 은 비-제로 잔차 (즉, 적어도 하나의 비-제로 계수를 갖는 잔차 블록) 를 갖는 인트라 예측된 블록이 인코딩될 때까지 시그널링 유닛에 대한 시그널링 유닛 신택스 엘리먼트들의 결정을 기다릴 수도 있다. 비-제로 잔차를 갖는 인트라-예측된 블록을 식별한 후에, 모드 선택 유닛 (40) 은 인트라-예측된 블록을 포함하는 시그널링 유닛에 대해 인코딩될 하나 이상의 시그널링 유닛 신택스 엘리먼트들을 결정할 수도 있고, 더욱이, 엔트로피 인코딩 유닛 (56) 은 인코딩/디코딩 순서에서 시그널링 유닛의 다른 블록들에 뒤따르지만 시그널링 유닛의 인트라-예측된 블록에 선행하는 위치에서 시그널링 유닛 신택스 엘리먼트들에 대한 값들을 엔트로피 인코딩할 수도 있다.
역 양자화 유닛 (58) 및 역 변환 유닛 (60) 은 역 양자화 및 역 변환을 각각 적용하여, 픽셀 도메인에서 잔차 블록을 재구성한다. 특히, 합산기 (62) 는 재구성된 잔차 블록을 모션 보상 유닛 (44) 또는 인트라 예측 유닛 (46) 에 의해 더 일찍 생성되는 모션 보상된 예측 블록에 가산하여 참조 화상 메모리 (64) 에 저장하기 위해 재구성된 비디오 블록을 생성한다. 재구성된 비디오 블록은 모션 추정 유닛 (42) 및 모션 보상 유닛 (44) 에 의해 참조 블록으로서 사용되어 후속 비디오 프레임에서 블록을 인터-코딩할 수도 있다.
도 2의 비디오 인코더 (20) 는, 비디오 데이터의 블록을 위한 2차 변환 (예를 들어, 비 분리 가능 2차 변환 (NSST)) 신택스 엘리먼트에 대한 최대 값을 결정하고, 결정된 최대 값에 기초하여 2차 변환 (예 : NSST) 신택스 엘리먼트에 대한 값을 이진화하도록 구성될 수 있는 비디오 인코더의 예를 나타낸다. 비디오 인코더 (20) 는 또한, 2차 변환 (예를 들어, NSST) 신택스 엘리먼트에 대한 값을 엔트로피 인코딩할 수도 있다.
도 3은 본 개시의 기술에 따라 CABAC를 수행하도록 구성될 수도 있는 예시적인 엔트로피 인코딩 유닛 (56) 의 블록도이다. 엔트로피 인코딩 유닛 (56) 은 초기에 신택스 엘리먼트 (118) 를 수신한다. 신택스 엘리먼트 (118) 가 이미 이진 값 신택스 엘리먼트이면, 이진화의 단계는 스킵될 수도 있다. 신택스 엘리먼트 (118) 가 비-이진 값의 신택스 엘리먼트이면, 이진화기 (120) 는 신택스 엘리먼트를 이진화한다.
이진화기 (120) 는 이진 결정 (binary decision) 시퀀스로의 비-이진 값의 매핑을 수행한다. 이러한 이진 결정들은 "빈" (bin) 들로 지칭될 수도 있다. 예를 들어, 변환 계수 레벨들에 대해, 레벨의 값은 연속적인 빈들로 분해될 수도 있으며, 각각의 빈은 계수 레벨의 절대 값이 어떤 값보다 큰지 여부를 나타낸다. 예를 들어, 변환 계수들에 대해, 빈 0 (유의 플래그 (significance flag) 라고도 함) 은 변환 계수 레벨의 절대 값이 0보다 큰지 아닌지를 나타내고; 빈 1은 변환 계수 레벨의 절대 값이 1보다 큰지 여부를 나타내고; 기타 등등이다. 각각의 비-이진 값의 신택스 엘리먼트에 대해 고유한 매핑이 개발될 수도 있다.
이진화기 (120) 는 각각의 빈을 엔트로피 인코딩 유닛 (56) 의 이진 산술 인코딩 측으로 보낸다. 즉, 비-이진 값의 신택스 엘리먼트들의 미리 결정된 세트에 대해, 각각의 빈 유형 (예를 들어, 빈 0) 은 다음 빈 유형 (예를 들어, 빈 1) 전에 인코딩된다. 본 개시의 기술에 따르면, 인트라-예측된 비디오 데이터 블록의 2차 변환 신택스 엘리먼트 (이를테면 비 분리 가능 2차 변환 (NSST) 신택스 엘리먼트) 의 값을 이진화할 때, 이진화기 (120) 는 예를 들어, 블록을 예측하는데 사용된 인트라-예측 모드 및/또는 블록의 크기와 같은 다른 파라미터들에 기초하여, 블록을 위한 2차 변환 (예를 들어, NSST) 신택스 엘리먼트의 최대 가능한 값을 결정할 수도 있다.
일례에서, 이진화기 (120) 는 블록을 위한 인트라-예측 모드가 크로마 성분들에 대해 DC, 평면 또는 LM 모드라면 NSST 인덱스에 대한 최대 가능 값이 3과 동일하고, 그렇지 않으면, NSST 인덱스에 대한 최대 가능 값이 4와 동일하다고 결정한다. 다음으로, 이진화기 (120) 는 결정된 최대 가능 값에 관계 없이 공통 이진화 기법을 사용하여 (예를 들어, NSST 인덱스에 대해 결정된 최대 가능한 값이 3 또는 4 인지에 관계 없이 절단 단항 이진화를 사용하여) 결정된 최대 가능한 값에 기초하여 NSST 인덱스에 대한 실제 값을 이진화한다.
엔트로피 인코딩은 레귤러 모드 (regular mode) 또는 바이패스 모드 (bypass mode) 중 어느 일방에서 수행될 수도 있다. 바이패스 모드에서, 바이패스 인코딩 엔진 (126) 이 고정된 확률 모델을 사용하여, 예를 들어, Golomb-Rice 또는 지수 Golomb 인코딩을 사용하여, 산술 인코딩을 수행한다. 바이패스 모드는 일반적으로 더 예측 가능한 신택스 엘리먼트들에 사용된다.
레귤러 모드 CABAC 에서 엔트로피 인코딩은 콘텍스트 기반 이진 산술 인코딩을 수행하는 것을 수반한다. 레귤러 모드 CABAC 는 통상적으로, 이전에 코딩된 빈들의 값을 고려하여 빈 값의 확률이 예측 가능한 빈 값들을 인코딩하기 위해 수행된다. 콘텍스트 모델러 (122) 는 최소 확률 심볼 (LPS) 인 빈의 확률을 결정한다. 콘텍스트 모델러 (122) 는 빈 값 및 콘텍스트 모델 (예를 들어, 확률 상태 σ) 을 레귤러 인코딩 엔진 (124) 으로 출력한다. 콘텍스트 모델은 일련의 빈들에 대한 초기 콘텍스트 모델일 수도 있거나, 또는 콘텍스트 모델러 (122) 는 이전에 인코딩된 빈들의 코딩된 값들에 기초하여 콘텍스트 모델을 결정할 수도 있다. 콘텍스트 모델러 (122) 는 이전에 코딩된 빈이 MPS 또는 LPS 인지 여부에 기초하여 콘텍스트 상태를 업데이트할 수도 있다.
이 개시의 기술에 따라, 콘텍스트 모델러 (122) 는 위에서 논의된 2차 변환 신택스 엘리먼트에 대해 결정된 최대 가능 값에 기초하여 (NSST 신택스 엘리먼트와 같은) 2차 변환 신택스 엘리먼트를 엔트로피 인코딩하기 위한 콘텍스트 모델을 결정하도록 구성될 수도 있다.
콘텍스트 모델러 (122) 가 콘텍스트 모델 및 확률 상태 σ를 결정한 후에, 레귤러 인코딩 엔진 (124) 은 콘텍스트 모델을 사용하여 빈 값에 대해 BAC 를 수행한다. 대안적으로, 바이패스 모드에서, 바이패스 인코딩 엔진 (126) 은 이진화기 (120) 로부터의 빈 값들을 바이패스 인코딩한다. 어느 경우에도, 엔트로피 인코딩 유닛 (56) 은 엔트로피 인코딩된 데이터를 포함하는 엔트로피 인코딩된 비트스트림을 출력한다.
이러한 방식으로, 도 1 및 2의 비디오 인코더 (20) (및 도 3과 관련하여 설명된 그의 엔트로피 인코딩 유닛 (56)) 는, 비디오 데이터를 저장하도록 구성된 메모리 및 회로 내에 구현된 하나 이상의 프로세서를 포함하는 비디오 인코더의 일례를 나타내는데, 그 하나 이상의 프로세서들은 2차 변환을 사용하여 비디오 데이터 블록의 중간 변환 계수들을 변환하고, 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능한 값을 결정하는 것으로서, 그 2차 변환 신택스 엘리먼트의 값은 2차 변환을 나타내는, 상기 최대 가능한 값을 결정하고, 최대 가능한 값에 관계 없이 공통 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 이진화하고 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위해 블록의 2차 변환 신택스 엘리먼트에 대한 이진화된 값을 엔트로피 인코딩하도록 구성된다.
도 4는 2차 변환 인덱스를 이진화하기 위한 기법들을 구현할 수도 있는 비디오 디코더 (30) 의 일례를 나타내는 블록도이다. 도 4 의 예에서, 비디오 디코더 (30) 는, 엔트로피 디코딩 유닛 (70), 모션 보상 유닛 (72), 인트라 예측 유닛 (74), 역 양자화 유닛 (76), 역 변환 유닛 (78), 참조 화상 메모리 (82) 및 합산기 (80) 를 포함한다. 비디오 디코더 (30) 는, 일부 예들에서, 비디오 인코더 (20) (도 2) 에 대해 설명된 인코딩 패스에 일반적으로 상반되는 디코딩 패스를 수행할 수도 있다.
일부 예들에서, 엔트로피 디코딩 유닛 (70) 은 시그널링 유닛의 특정 신택스 엘리먼트들을 디코딩한다. 예를 들어, 비디오 디코더 (30) 는 비디오 데이터의 2개 이상의 블록들이 공통 시그널링 유닛에 대응한다고 결정할 수도 있다. 엔트로피 디코딩 유닛 (70) 은 본 개시의 기술에 따라 시그널링 유닛에 대한 신택스 엘리먼트를 엔트로피 디코딩할 수도 있다. 예를 들어, 엔트로피 디코딩 유닛 (70) 은 2차 변환 신택스 엘리먼트들 (이를테면, 비 분리 가능 2차 변환 (NSST) 인덱스 및/또는 플래그), 향상된 다중 변환 (EMT) 신택스 엘리먼트 (예를 들어, EMT 인덱스 및/또는 플래그) 등을 엔트로피 디코딩할 수도 있다. 엔트로피 디코딩 유닛 (70) 은 시그널링 유닛의 하나 이상의 블록들에 뒤따르지만 시그널링 유닛의 하나 이상의 다른 블록들에 선행하는 시그널링 유닛 신택스 엘리먼트들을 엔트로피 디코딩할 수도 있고, 시그널링 유닛 신택스 엘리먼트들의 값들을 디코딩 순서에서 신택스 엘리먼트들에 뒤따르는 블록들에만 적용할 수도 있다.
또한, 비디오 디코더 (30) 는 신택스 엘리먼트들의 존재로부터 특정 데이터, 예를 들어, 이들 시그널링 유닛 신택스 엘리먼트들에 바로 뒤따르는 블록이 인터-예측되고 비-제로 잔차를 갖는다는 것을 추론할 수도 있다. 따라서, 비디오 디코더는 관련 블록 레벨 신택스 엘리먼트들 (예를 들어, 블록이 인트라-예측되는 것 그리고 블록이 코딩되는 것, 즉 비-제로 잔차 값들을 갖는 것을 나타냄) 이 비트스트림에 존재하지 않음을 결정할 수도 있고, 이에 의해 비트스트림의 후속 데이터가 다른 신택스 엘리먼트들에 적용되는 것을 결정할 수도 있다.
또한, 엔트로피 디코딩 유닛 (70) 은 도 5와 관련하여 이하에서 보다 상세히 논의되는 바와 같이 데이터를 엔트로피 디코딩할 수도 있다. 예를 들어, 본 개시의 기술에 따라, 엔트로피 디코딩 유닛 (70) 은 2차 변환 신택스 엘리먼트 값들에 대한 최대 가능 값에 관계 없이 공통 이진화 스킴 (예를 들어, 절단 단항 이진화) 를 사용하여 2차 변환 신택스 엘리먼트 값들을 역 이진화할 수도 있다.
모션 보상 유닛 (72) 은, 엔트로피 디코딩 유닛 (70) 으로부터 수신된 모션 벡터들에 기초하여 예측 데이터를 생성할 수도 있는 한편, 인트라-예측 유닛 (74) 은 엔트로피 디코딩 유닛 (70) 으로부터 수신된 인트라-예측 모드 표시자들에 기초하여 예측 데이터를 생성할 수도 있다.
디코딩 프로세스 동안, 비디오 디코더 (30) 는 인코딩된 비디오 슬라이스의 비디오 블록들 및 연관된 신택스 엘리먼트들을 나타내는 인코딩된 비디오 비트스트림을 비디오 인코더 (20) 로부터 수신한다. 비디오 디코더 (30) 의 엔트로피 디코딩 유닛 (70) 은 양자화된 계수들, 모션 벡터들 또는 인트라 예측 모드 표시자들, 및 다른 신텍스 엘리먼트들을 생성하기 위하여 비트스트림을 엔트로피 디코딩한다. 엔트로피 디코딩 유닛 (70) 은 모션 벡터들 및 다른 신택스 엘리먼트들을 모션 보상 유닛 (72) 에 포워딩한다. 비디오 디코더 (30) 는 비디오 슬라이스 레벨 및/또는 비디오 블록 레벨에서 신택스 엘리먼트들을 수신할 수도 있다.
비디오 슬라이스가 인트라-코딩된 (I) 슬라이스로서 코딩될 때, 인트라 예측 유닛 (74) 은, 현재 프레임 또는 화상의 이전에 디코딩된 블록들로부터 시그널링된 인트라 예측 모드 및 데이터에 기초하여 현재 비디오 슬라이스의 비디오 블록을 위한 예측 데이터를 생성할 수도 있다. 비디오 프레임이 인터-코딩된 (즉, B 또는 P) 슬라이스로서 코딩될 때, 모션 보상 유닛 (72) 은 엔트로피 디코딩 유닛 (70) 으로부터 수신된 모션 벡터들 및 다른 신택스 엘리먼트들에 기초하여 현재 비디오 슬라이스의 비디오 블록을 위한 예측 블록들을 생성한다 (비디오 블록이 인터-예측됨을 가정). 인터-예측 블록들은 참조 화상 리스트들 중의 하나의 리스트 내의 참조 화상들 중의 하나의 참조 화상으로부터 생성될 수도 있다. 비디오 디코더 (30) 는 참조 화상 메모리 (82) 에 저장된 참조 화상들에 기초하여 디폴트 (default) 구성 기법들을 이용하여 참조 프레임 리스트들, 리스트 0 및 리스트 1 을 구성할 수도 있다. P 및 B 슬라이스들의 블록은 또한 인트라-예측될 수도 있다.
모션 보상 유닛 (72) 은, 모션 벡터들 및 다른 신택스 엘리먼트들을 파싱 (parsing) 하여 현재 비디오 슬라이스의 비디오 블록을 위한 예측 정보를 결정하고, 그 예측 정보를 사용하여, 디코딩되고 있는 현재 비디오 블록을 위한 예측 블록들을 생성한다. 예를 들어, 모션 보상 유닛 (72) 은 수신된 신택스 엘리먼트들의 일부를 사용하여 비디오 슬라이스의 비디오 블록들을 코딩하는데 사용된 예측 모드 (예를 들어, 인트라- 또는 인터-예측), 인터-예측 슬라이스 유형 (예를 들어, B 슬라이스, 또는 P 슬라이스), 슬라이스를 위한 참조 화상 리스트들의 하나 이상을 위한 구성 정보, 슬라이스의 각 인터-인코딩된 비디오 블록을 위한 모션 벡터들, 슬라이스의 각 인터-코딩된 비디오 블록을 위한 인터-예측 상태, 및 현재 비디오 슬라이스에서 비디오 블록들을 디코딩하기 위한 다른 정보를 결정한다.
모션 보상 유닛 (72) 은 또한, 보간 필터들에 기초하여 보간을 수행할 수도 있다. 모션 보상 유닛 (72) 은 비디오 블록들의 인코딩 동안 비디오 인코더 (20) 에 의해 이용되는 보간 필터들을 이용하여 참조 블록들의 서브 정수 픽셀들을 위한 보간된 값들을 계산할 수도 있다. 이 경우에, 모션 보상 유닛 (72) 은 수신된 신택스 엘리먼트들로부터 비디오 인코더 (20) 에 의해 이용된 보간 필터들을 결정하고, 그 보간 필터들을 이용하여 예측 블록들을 생성할 수도 있다.
역 양자화 유닛 (76) 은 비트스트림에서 제공되고 엔트로피 디코딩 유닛 (70) 에 의해 디코딩된 양자화된 변환 계수들을 역 양자화, 즉 탈양자화한다. 역 양자화 프로세스는, 양자화의 정도, 그리고, 마찬가지로, 적용되어야 하는 역 양자화의 정도를 결정하기 위해, 비디오 슬라이스에서 각 비디오 블록에 대해 비디오 디코더 (30) 에 의해 계산된 양자화 파라미터 QPY 의 이용을 포함할 수도 있다.
역 변환 유닛 (78) 은, 픽셀 도메인에서 잔차 블록들을 생성하기 위해 변환 계수들에, 역 변환, 예를 들어, 역 DCT, 역 정수 변환, 또는 개념적으로 유사한 역 변환 프로세스를 적용한다.
모션 보상 유닛 (72) 이 모션 벡터들 및 다른 신택스 엘리먼트들에 기초하여 현재 비디오 블록을 위한 예측 블록을 생성한 후에,비디오 디코더 (30)는 역 변환 유닛 (78) 으로부터의 잔차 블록들과 모션 보상 유닛 (72) 에 의해 생성된 대응하는 예측 블록들을 합산함으로써 디코딩된 비디오 블록을 형성한다. 합산기 (80) 는 이 합산 연산을 수행하는 컴포넌트 또는 컴포넌트들을 나타낸다. 원하는 경우, 블로키니스 아티팩트 (blockiness artifact) 들을 제거하기 위하여 디코딩된 블록들을 필터링하기 위한 디블록킹 필터가 또한 적용될 수도 있다. (코딩 루프내 또는 코딩 루프 후의) 다른 루프 필터들이 또한 픽셀 천이들을 매끄럽게 하거나 또는 아니면 비디오 품질을 향상시키는데 사용될 수도 있다. 다음으로, 정해진 프레임 또는 화상에서 디코딩된 비디오 블록들은 참조 화상 메모리 (82) 에 저장되고, 이는 후속 모션 보상을 위해 사용된 참조 화상들을 저장한다. 참조 화상 메모리 (82) 는 또한, 도 1의 디스플레이 디바이스 (32) 와 같은 디스플레이 디바이스 상에 나중에 표출하기 위해 디코딩된 비디오를 저장한다.
도 4의 비디오 디코더 (30) 는, 비디오 데이터의 블록을 위한 2차 변환 (예를 들어, 비 분리 가능 2차 변환 (NSST)) 신택스 엘리먼트에 대한 최대 값을 결정하고, 결정된 최대 값에 기초하여 NSST 신택스 엘리먼트에 대한 값을 이진화하도록 구성될 수 있는 비디오 디코더의 예를 나타낸다. 비디오 디코더 (30) 는 또한, NSST 신택스 엘리먼트에 대한 값을 엔트로피 디코딩할 수도 있다.
도 5는 본 개시의 기술에 따라 CABAC를 수행하도록 구성될 수도 있는 예시적인 엔트로피 인코딩 유닛 (70) 의 블록도이다. 도 5의 엔트로피 디코딩 유닛 (70) 은 도 5에서 설명한 엔트로피 인코딩 유닛 (56) 과 역의 방식으로 CABAC 를 수행한다. 엔트로피 디코딩 유닛 (70) 은 비트스트림 (218) 으로부터 엔트로피 인코딩된 비트들을 수신한다. 엔트로피 디코딩된 유닛 (70) 은 엔트로피 인코딩된 비트들이 바이패스 모드 또는 레귤러 모드를 사용하여 엔트로피 인코딩되었는지 여부에 기초하여, 콘텍스트 모델러 (220) 또는 바이패스 디코딩 엔진 (222) 중 어느 하나에 엔트로피 인코딩된 비트들을 제공한다. 엔트로피 인코딩된 비트들이 바이패스 모드에서 엔트로피 인코딩된 경우, 바이패스 디코딩 엔진 (222) 은 예를 들어, Golomb-Rice 또는 지수 Golomb 디코딩과 같은 바이패스 디코딩을 사용하여, 엔트로피 인코딩된 비트들을 엔트로피 디코딩한다.
엔트로피 인코딩된 비트들이 레귤러 모드에서 엔트로피 인코딩된 경우, 콘텍스트 모델러 (220) 는 엔트로피 인코딩된 비트들에 대한 확률 모델을 결정할 수도 있고 레귤러 디코딩 엔진 (224) 은 엔트로피 인코딩된 비트들을 엔트로피 디코딩하여 비-이진 값의 신택스 엘리먼트들의 빈들 (또는 이진 값인 경우 신택스 엘리먼트들 자체) 를 생성할 수도 있다.
콘텍스트 모델러 (220) 는 본 개시의 기술을 사용하여 2차 변환 신택스 엘리먼트들 및/또는 향상된 다중 변환 (EMT) 신택스 엘리먼트들 (예를 들어, NSST 인덱스, NSST 플래그, EMT 인덱스, EMT 플래그 등) 과 같은 특정 신택스 엘리먼트들에 대한 콘텍스트 모델 및 확률 상태를 결정할 수도 있다. 예를 들어, 콘텍스트 모델러 (220) 는 NSST 신택스 엘리먼트의 결정된 최대 가능 값에 기초하여 콘텍스트 모델들을 결정할 수도 있다. 엔트로피 디코딩 유닛 (70) 은 예를 들어, NSST 신택스 엘리먼트가 대응하는 블록을 위한 인트라-예측 모드 및/또는 블록의 크기에 기초하여 NSST 신택스 엘리먼트의 최대 가능 값을 결정할 수도 있다.
콘텍스트 모델러 (220) 가 콘텍스트 모델 및 확률 상태 σ를 결정한 후에, 레귤러 디코딩 엔진 (224) 은 결정된 콘텍스트 모델에 기초하여 빈 값에 대해 이진 산술 디코딩을 수행한다.
레귤러 디코딩 엔진 (224) 또는 바이패스 디코딩 엔진 (222) 이 빈들을 엔트로피 디코딩한 후에, 역 이진화기 (230) 는 빈들을 다시 비-이진 값의 신택스 엘리먼트들의 값들로 변환하기 위해 역 매핑을 수행할 수도 있다. 본 개시의 기술에 따라, 역 이진화기 (230) 는 2차 변환 신택스 엘리먼트 값들에 대한 최대 가능 값에 관계 없이 공통 이진화 스킴 (예를 들어, 절단 단항 이진화) 를 사용하여 2차 변환 신택스 엘리먼트 값들 (이를테면, NSST, ROT 및/또는 EMT 값들) 을 역 이진화할 수도 있다.
예를 들어, 인트라-예측된 비디오 데이터 블록의 2차 변환 신택스 엘리먼트 (이를테면 비 분리 가능 2차 변환 (NSST) 신택스 엘리먼트) 의 값을 역 이진화할 때, 역 이진화기 (230) 는 예를 들어, 블록을 예측하는데 사용된 인트라-예측 모드 및/또는 블록의 크기와 같은 다른 파라미터들에 기초하여, 블록을 위한 2차 변환 (예를 들어, NSST) 신택스 엘리먼트의 최대 가능 값을 결정할 수도 있다.
일례에서, 역 이진화기 (230) 는 블록을 위한 인트라-예측 모드가 크로마 컴포넌트들에 대해 DC, 평면 또는 LM 모드라면 NSST 인덱스에 대한 최대 가능 값이 3과 동일하고, 그렇지 않으면, NSST 인덱스에 대한 최대 가능 값이 4와 동일하다고 결정한다. 다음으로, 역 이진화기 (230) 는 결정된 최대 가능 값에 관계 없이 공통 이진화 기법을 사용하여 (예를 들어, NSST 인덱스에 대해 결정된 최대 가능한 값이 3 또는 4 인지에 관계 없이 절단 단항 이진화를 사용하여) 결정된 최대 가능 값에 기초하여 엔트로피 디코딩된 빈 스트링으로부터 NSST 인덱스에 대한 실제 값을 역 이진화한다.
이러한 방식으로, (도 5 와 관련하여 설명된 엔트로피 디코딩 유닛 (70) 을 포함하는) 도 1 및 도 4의 비디오 디코더 (30) 는 비디오 데이터를 저장하도록 구성된 메모리 및 회로 내에 구현된 하나 이상의 프로세서를 포함하는 비디오 디코더의 예를 나타내는데, 그 하나 이상의 프로세서들은 비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하고, 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 블록의 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하고, 그 블록을 위한 2차 변환을 결정하기 위해 최대 가능 값에 관계 없이 공통 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 역 이진화하고, 그 결정된 2차 변환을 사용하여 블록의 변환 계수들을 역 변환하도록 구성된다.
도 6은 본 개시의 기법들에 따른 비디오 데이터를 인코딩하는 예시적인 방법을 나타내는 플로우차트이다. 도 6의 방법은 예 및 설명의 목적을 위해, 위의 도 1, 도 2 및 도 3과 관련하여 논의된 바와 같은 비디오 인코더 (20) 및 이의 컴포넌트들과 관련하여 설명된다. 그러나, 다른 예들에서, 다른 비디오 인코딩 디바이스들이 본 개시의 기술들과 일치하는 이러한 방법 또는 유사한 방법을 수행할 수도 있다는 것을 이해해야 한다.
초기에, 비디오 인코더 (20) 는 인코딩될 블록을 수신한다 (250). 이 예에서, 비디오 인코더 (20) 의 모드 선택 유닛 (40) 이 블록을 인트라-예측하기로 결정하는 것으로 가정된다 (252). 도 6에 도시되지는 않았지만, 이 결정은 인트라- 또는 인터-예측 모드들을 포함하는 다양한 예측 모드들을 사용하여 블록을 예측하는 것, 및 블록이 특정 인트라-예측 모드 (예를 들어, 각도 모드, 비 각도 모드, 이를테면 DC, 평면 또는 LM 모드) 를 사용하여 인트라-예측될 것이라는 것을 궁극적으로 결정하는 것을 포함할 수도 있다. 다음으로, 비디오 인코더 (20) 의 인트라-예측 유닛 (46) 은 인트라-예측 모드를 사용하여 블록을 인트라-예측하여, 예측된 블록을 생성한다.
그 후, 합산기 (50) 는 잔차 블록을 계산한다 (254). 특히, 합산기 (50) 는 원래 블록과 예측된 블록 사이의 픽셀 단위 (pixel-by-pixel) 차이를 계산하여 잔차 블록을 계산하고, 잔차 블록의 각각의 값 (샘플) 은 대응하는 픽셀 차이를 나타낸다.
다음으로, 변환 처리 유닛 (52) 은 중간 변환 계수를 생성하기 위해 DCT 또는 EMT와 같은 제 1 변환을 사용하여 잔류 블록을 변환한다 (256). 변환 처리 유닛 (52) 은 또한 이 예에서, NSST 또는 ROT 와 같은 2차 변환을 제 1 변환으로부터 비롯되는 중간 변환 계수들에 적용한다 (258). 일부 예에서, 변환 처리 유닛 (52) 은 복수의 이용 가능한 2차 변환들로부터 2차 변환을 선택할 수도 있다. 따라서, 변환 처리 유닛 (52) 은 예를 들어, NSST 플래그, NSST 인덱스, ROT 플래그, ROT 인덱스, EMT 플래그 및/또는 EMT 인덱스와 같은 하나 이상의 2차 변환 신택스 엘리먼트들에 대한 값들을 생성하고, 이들 신택스 엘리먼트 값들을 엔트로피 인코딩 유닛 (56) 에 제공할 수도 있다.
양자화 유닛 (54) 은 2차 (또는 임의의 후속) 변환들에 의해 생성된 궁극적 변환 계수들을 양자화하고, 엔트로피 인코딩 유닛 (56) 은 블록의 다른 신택스 엘리먼트들 (예를 들어, 예측 모드를 나타내는 신택스 엘리먼트들, 블록의 크기를 나타내는 파티션 신택스 엘리먼트들 등) 뿐만 아니라 양자화된 변환 계수를 엔트로피 인코딩한다 (260). 일부 예에서, 엔트로피 인코딩 유닛 (56) 은 또한 블록을 포함하는 시그널링 유닛의 시그널링 유닛 신택스 엘리먼트들을 엔트로피 인코딩한다. 블록이 그러한 시그널링 유닛 신택스 엘리먼트가 적용되는 제 1 블록이면, 엔트로피 인코딩 유닛 (56) 은 위에서 논의된 바와 같이, 시그널링 유닛 신택스 엘리먼트들을 인코딩하고, 블록을 위한 다른 블록 기반 신택스 엘리먼트들을 출력하기 전에 엔트로피 인코딩된 시그널링 유닛 신택스 엘리먼트들을 출력할 수도 있다.
엔트로피 인코딩 유닛 (56) 은 또한 전술한 바와 같이 2차 변환 신택스를 엔트로피 인코딩한다. 특히, 이진화기 (120) 는 이 개시의 기술에 따라 2차 변환 신택스 엘리먼트들을 이진화한다 (264). 예를 들어, 이진화기 (120) 는 2차 변환 신택스 엘리먼트의 최대 가능 값에 관계 없이, 절단 단항 이진화와 같은 특정 이진화 스킴을 수행할 수도 있다.
이진화기 (120) 는 전술한 바와 같이 예를 들어 블록을 인트라-예측하는데 사용되는 인트라-예측 모드에 기초하여 2차 변환 신택스 엘리먼트의 최대 가능 값을 결정할 수도 있다. 예를 들어, 인트라-예측 모드가 비-각도 모드인 경우, 이진화기 (120) 는 2차 변환 신택스 엘리먼트의 최대 가능 값이 3이라고 결정할 수도 있지만, 인트라-예측 모드가 각도 모드인 경우, 이진화기 (120) 는 2차 변환 신택스 엘리먼트의 최대 가능 값은 4라고 결정할 수도 있다. 이 결정이 이진화 동안 사용될 수도 있지만, 일부 예들에서, 이 결정은 이진화기 (120) 가 2차 변환 신택스 엘리먼트 값을 이진화하기 위해 수행하는 실제 이진화 스킴 (예를 들어, 절단 단항 이진화) 에 영향을 미치지 않는다.
이진화 후에, 콘텍스트 모델러 (122) 는 2차 변환 신택스 엘리먼트를 엔트로피 인코딩하는데 사용될 콘텍스트를 결정할 수도 있다 (266). 일부 예에서, 콘텍스트 모델러 (122) 는 전술한 바와 같이 결정된 2차 변환 신택스 엘리먼트의 최대 가능 값에 기초하여 콘텍스트를 선택한다. 그 다음, 레귤러 인코딩 엔진 (124) 은 결정된 콘텍스트를 사용하여 2차 변환 신택스 엘리먼트의 이진화된 값을 엔트로피 인코딩할 수도 있다 (268).
이러한 방식으로, 도 6의 방법은 비디오 데이터를 인코딩하는 방법의 일례를 나타내는데, 그 방법은 2차 변환을 사용하여 비디오 데이터 블록의 중간 변환 계수들을 변환하는 단계, 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하는 단계로서, 그 2차 변환 신택스 엘리먼트의 값은 2차 변환을 나타내는, 상기 최대 가능 값을 결정하는 단계, 최대 가능 값에 관계 없이 공통 이진화 스킴을 사용하여 2차 변환 신택스 엘리먼트에 대한 값을 이진화하는 단계, 및 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위해 블록의 2차 변환 신택스 엘리먼트에 대한 이진화된 값을 엔트로피 인코딩하는 단계를 포함한다.
도 7은 본 개시의 기법들에 따른 비디오 데이터를 디코딩하는 방법의 예를 나타내는 플로우차트이다. 도 7의 방법은 예 및 설명의 목적을 위해, 위의 도 1, 도 4 및 도 5와 관련하여 논의된 바와 같은 비디오 디코더 (30) 및 그의 컴포넌트들과 관련하여 설명된다. 그러나, 다른 예들에서, 다른 비디오 인코딩 디바이스들이 본 개시의 기술들과 일치하는 이러한 방법 또는 유사한 방법을 수행할 수도 있다는 것을 이해해야 한다.
초기에, 엔트로피 디코딩 유닛 (70) 은 비디오 데이터 블록의 예측 정보 및 양자화된 변환 계수들을 엔트로피 디코딩한다 (280). 이 개시의 기술에 따르면, 엔트로피 디코딩 유닛 (70) 은 또한 블록을 위한 2차 변환 신택스 엘리먼트를 엔트로피 디코딩한다. 특히, 콘텍스트 모델러 (220) 는 2차 변환 신택스 엘리먼트를 엔트로피 디코딩하는데 사용될 콘텍스트를 결정한다 (282). 콘텍스트 모델러 (220) 는 2차 변환 신택스 엘리먼트의 최대 가능 값에 기초하여 콘텍스트를 결정할 수도 있다. 예를 들어, 인트라-예측 모드가 DC, 평면 또는 LM 모드와 같은 비-각도 모드인 경우, 콘텍스트 모델러 (220) 는 2차 변환 신택스 엘리먼트에 대한 최대 가능 값이 3이라고 결정할 수도 있지만, 그와 달리, 인트라-예측 모드가 각도 모드인 경우, 콘텍스트 모델러 (220) 는 최대 가능 값이 4라고 결정할 수도 있다. 다음으로, 콘텍스트 모델러 (220) 는 2차 변환 신택스 엘리먼트의 최대 가능 값으로부터 콘텍스트를 결정할 수도 있다. 그 다음, 레귤러 디코딩 엔진 (224) 은 결정된 콘텍스트를 사용하여 2차 변환 신택스 엘리먼트에 대한 데이터를 엔트로피 디코딩할 수도 있다 (284).
다음으로, 역 이진화기 (230) 는, 2차 변환 신택스 엘리먼트에 대한 값을 생성하기 위해, 2차 변환 신택스 엘리먼트에 대한 엔트로피 디코딩된 데이터를 역 이진화할 수도 있다 (286). 이 값은, 예를 들어, 2차 변환이 적용될 것인지 여부 (예를 들어, NSST 플래그 또는 ROT 플래그), 그리고 그렇다면, 복수의 2차 변환들 중 어느 것이 적용될 것인지 (예를 들어, NSST 인덱스 또는 ROT 인덱스) 를 나타낼 수도 있다.
다음으로, 역 양자화 유닛 (76) 은 블록을 위한 엔트로피 디코딩된 계수들을 역 양자화할 수도 있다 (288). 역 변환 유닛 (78) 은 2차 변환을 수행할지 여부, 그리고 그렇다면 복수의 2차 변환들 중 어느 것이 적용될지를 결정하기 위해 2차 변환 신택스 엘리먼트(들) 에 대한 값(들) 을 사용할 수도 있다. 도 7 에서 2차 변환이 적용된다고 가정한다. 따라서, 역 변환 (78) 은 중간 변환 계수들을 생성하기 위해 2차 변환을 사용하여 변환 계수들을 초기에 역변환하고 (290), 다음으로 블록을 위한 잔차 블록을 재생하기 위해 제 1 변환 (이를테면 DCT 또는 EMT) 을 사용하여 중간 변환 계수들을 역변환한다 (292).
인트라 예측 유닛 (74) 은 또한 블록을 위한 예측된 블록을 생성하기 위해 표시된 인트라-예측 모드를 사용하여 블록을 인트라-예측한다 (294). 다음으로, 합산기 (80) 는 예측된 블록 및 잔차 블록을, 픽셀 단위 기반으로, 합성하여 디코딩된 블록을 생성한다 (296). 궁극적으로, 비디오 디코더 (30) 는 디코딩된 블록을 출력한다. 비디오 디코더 (30) 는 또한 예를 들어, 후속하여 디코딩된 블록들을 인트라- 또는 인터-예측하는데 사용하기 위해, 디코딩된 블록을 참조 화상 메모리 (82) 에 저장할 수도 있다.
이러한 방식으로, 도 7의 방법은, 비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하는 단계, 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위해 블록의 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하는 단계, 블록을 위한 2차 변환을 결정하기 위하여 결정된 최대 가능 값에 기초하여 2차 변환 신택스 엘리먼트에 대한 값을 역 이진화하는 단계, 및 결정된 2차 변환을 이용하여 블록의 변환 계수들을 역 변환하는 단계를 포함하는 방법의 일례를 나타낸다.
예에 따라, 여기에 설명된 기술들 중 어느 것의 특정 행위들 또는 이벤트들이 상이한 시퀀스에서 수행될 수 있거나, 추가될 수 있거나, 병합될 수 있거나, 또는 전부 생략될 수 있다 (예를 들어, 모든 설명된 행위들 또는 이벤트들이 그 기술들의 실시를 위해 필요한 것은 아니다) 는 것이 인식되야 한다. 또한, 특정 예들에서, 행위들 또는 이벤트들은, 예를 들어, 순차적이기 보다는 멀티스레드 프로세싱, 인터럽트 프로세싱 또는 다수의 프로세서들을 통해, 동시적으로 수행될 수도 있다.
하나 이상의 예들에서, 설명된 기능들은 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 임의의 조합으로 구현될 수도 있다. 소프트웨어로 구현되면, 그 기능들은 컴퓨터 판독가능 매체 상의 하나 이상의 명령 또는 코드로서 저장되거나 송신될 수도 있고 하드웨어 기반 프로세싱 유닛에 의해 실행될 수도 있다. 컴퓨터 판독가능 매체는, 데이터 저장 매체와 같은 유형의 매체에 대응하는 컴퓨터 판독가능 저장 매체, 또는 예를 들면, 통신 프로토콜에 따라, 일 장소로부터 다른 장소로의 컴퓨터 프로그램의 전송을 가능하게 하는 임의의 매체를 포함하는 통신 매체를 포함할 수도 있다. 이런 방식으로, 컴퓨터 판독가능 매체는 일반적으로, (1) 비일시적인 유형의 컴퓨터 판독가능 저장 매체 또는 (2) 신호 또는 캐리어 파와 같은 통신 매체에 대응할 수도 있다. 데이터 저장 매체는, 본 개시에서 설명된 기법들의 구현을 위해 명령들, 코드 및/또는 데이터 구조들을 취출하기 위하여 하나 이상의 컴퓨터들 또는 하나 이상의 프로세서들에 의해 액세스될 수 있는 임의의 가용 매체일 수도 있다. 컴퓨터 프로그램 제품은 컴퓨터 판독가능 매체를 포함할 수도 있다.
제한이 아닌 예로서, 이러한 컴퓨터-판독가능 저장 매체들은 RAM, ROM, EEPROM, CD-ROM 또는 다른 광학 디스크 저장, 자기 디스크 저장, 또는 다른 자기 저장 디바이스들, 플래시 메모리, 또는 명령들 또는 데이터 구조들의 형태로 희망하는 프로그램 코드를 저장하기 위해 이용될 수 있으며 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다. 또한, 임의의 접속이 컴퓨터 판독가능 매체로 적절히 칭해진다. 예를 들어, 명령들이 동축 케이블, 광섬유 케이블, 연선 (twisted pair), 디지털 가입자 라인 (DSL), 또는 적외선, 전파 (radio), 및 마이크로파와 같은 무선 기술을 사용하여 웹사이트, 서버, 또는 다른 원격 소스로부터 송신되면, 그 동축 케이블, 광섬유 케이블, 연선, DSL, 또는 적외선, 전파, 및 마이크로파와 같은 무선 기술은 매체의 정의 내에 포함된다. 하지만, 컴퓨터 판독가능 저장 매체 및 데이터 저장 매체는 접속, 캐리어 파, 신호 또는 다른 일시적 매체를 포함하는 것이 아니라, 대신에 비일시적, 유형의 저장 매체에 관련된다는 것이 이해되야 한다. 여기에 사용된, 디스크 (disk) 및 디스크 (disc) 는 CD (compact disc), 레이저 디스크 (laser disc), 광 디스크 (optical disc), DVD (digital versatile disc), 플로피 디스크 (floppy disk) 및 블루레이 디스크 (Blu-ray disc) 를 포함하며, 여기서, 디스크 (disk) 는 보통 데이터를 자기적으로 재생하지만, 디스크 (disc) 는 레이저를 이용하여 광학적으로 데이터를 재생한다. 또한, 상기의 조합은 컴퓨터 판독 가능 매체의 범위 내에 포함되어야 한다.
명령들은 하나 이상의 프로세서, 이를테면 하나 이상의 DSP (digital signal processor), 범용 마이크로프로세서, ASIC (application specific integrated circuit), FPGA (field programmable gate array), 또는 다른 등가 집적 또는 이산 로직 회로에 의해 실행될 수도 있다. 따라서, 본원에 사용된 용어 "프로세서" 는 전술한 구조 중 임의의 것 또는 본원에 설명된 기법들의 구현에 적합한 임의의 다른 구조를 지칭할 수도 있다. 추가로, 일부 양태들에서, 여기서 설명된 기능은 인코딩 및 디코딩을 위해 구성된 전용 하드웨어 및/또는 소프트웨어 모듈들 내에 제공되거나 또는 결합된 코덱에 포함될 수도 있다. 또한, 그 기법들은 하나 이상의 회로 또는 로직 엘리먼트들에서 완전히 구현될 수 있다.
본 개시의 기법들은 무선 핸드셋, 집적 회로 (IC) 또는 IC 들의 세트 (예를 들면, 칩 세트) 를 포함하여, 광범위하게 다양한 디바이스들 또는 장치들에서 구현될 수도 있다. 다양한 컴포넌트들, 모듈들 또는 유닛들이, 개시된 기술들을 수행하도록 구성된 디바이스들의 기능적인 양태들을 강조하기 위하여 본 개시에 설명되었지만, 상이한 하드웨어 유닛들에 의한 실현을 반드시 필요로 하는 것은 아니다. 오히려, 상술된 바처럼, 다양한 유닛들이 코덱 하드웨어 유닛에 결합될 수도 있거나, 또는 적합한 소프트웨어 및/또는 펌웨어와 함께, 상술된 하나 이상의 프로세서들을 포함하는 연동적인 (interoperative) 하드웨어 유닛들의 집합에 의해 제공될 수도 있다.
다양한 예들이 설명되었다. 이들 및 다른 예들은 다음의 청구항들의 범위 내에 있다.

Claims (39)

  1. 비디오 데이터를 디코딩하는 방법으로서,
    비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하는 단계;
    상기 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 상기 블록의 상기 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하는 단계;
    상기 블록을 위한 상기 2차 변환을 결정하기 위해 상기 최대 가능 값에 관계 없이 공통 역 이진화 스킴을 사용하여 상기 2차 변환 신택스 엘리먼트에 대한 상기 값을 역 이진화하는 단계; 및
    결정된 상기 2차 변환을 사용하여 상기 블록의 변환 계수들을 역 변환하는 단계
    를 포함하는, 비디오 데이터를 디코딩하는 방법.
  2. 제 1 항에 있어서,
    결정된 상기 최대 가능 값에 기초하여 상기 2차 변환 신택스 엘리먼트에 대한 상기 값을 엔트로피 디코딩하는데 사용되는 콘텍스트 모델을 결정하는 단계를 더 포함하고,
    상기 값을 엔트로피 디코딩하는 것은 결정된 상기 콘텍스트 모델을 사용하여 상기 값을 엔트로피 디코딩하는 것을 포함하는, 비디오 데이터를 디코딩하는 방법.
  3. 제 2 항에 있어서,
    엔트로피 디코딩은 결정된 상기 콘텍스트 모델을 사용하여 상기 2차 변환 신택스 엘리먼트에 대한 상기 값의 미리 결정된 수의 비트들을 콘텍스트 기반 엔트로피 디코딩하는 것, 그리고 바이패스 모드를 사용하여 상기 2차 변환 신택스 엘리먼트에 대한 상기 값의 나머지 비트들을 엔트로피 디코딩하는 것을 포함하는, 비디오 데이터를 디코딩하는 방법.
  4. 제 3 항에 있어서,
    엔트로피 디코딩은 콘텍스트 모델링 없이 상기 미리 결정된 수의 비트들 외의 비트들을 엔트로피 디코딩하는 것을 포함하는, 비디오 데이터를 디코딩하는 방법.
  5. 제 3 항에 있어서,
    상기 콘텍스트 모델을 결정하는 단계는 상기 블록이 루미넌스 블록인지 또는 크로미넌스 블록인지에 기초하여 상기 콘텍스트 모델을 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  6. 제 5 항에 있어서,
    상기 콘텍스트 모델을 결정하는 단계는
    상기 블록이 상기 루미넌스 블록인지 또는 상기 크로미넌스 블록인지 여부에 관계 없이 미리 결정된 비트들 중 순서를 나타내는 제 1 비트에 대한 제 1 콘텍스트 모델을 결정하는 단계;
    상기 블록이 상기 루미넌스 블록인 경우, 상기 방법은 제 1 세트의 콘텍스트들을 사용하여 상기 순서를 나타내는 제 1 비트에 후속하는 상기 미리 결정된 수의 비트들 중 나머지 비트들을 콘텍스트 기반 엔트로피 디코딩하는 단계를 포함하고; 그리고
    상기 블록이 상기 크로미넌스 블록인 경우, 상기 방법은 상기 제 1 세트의 콘텍스트들과는 상이한 제 2 세트의 콘텍스트들을 이용하여 상기 미리 결정된 수의 비트들 중 나머지 비트들을 콘텍스트 기반 엔트로피 디코딩하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  7. 제 2 항에 있어서,
    상기 2차 변환 신택스 엘리먼트를 엔트로피 디코딩하는 것은, 위치 의존 인트라 예측 조합 (PDPC) 신택스 엘리먼트의 값에 적어도 부분적으로 기초하여 상기 2차 변환 신택스 엘리먼트의 비트들을 엔트로피 디코딩하기 위한 하나 이상의 콘텍스트들을 결정하는 것을 포함하는, 비디오 데이터를 디코딩하는 방법.
  8. 제 7 항에 있어서,
    상기 콘텍스트들을 결정하는 것은 상기 블록을 위한 예측 모드 또는 상기 블록의 크기 중 하나 이상에 기초하여 상기 콘텍스트들을 결정하는 것을 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  9. 제 1 항에 있어서,
    상기 2차 변환 신택스 엘리먼트는 비 분리 가능 2차 변환 (NSST) 인덱스 신택스 엘리먼트 또는 회전 변환 (ROT) 인덱스 신택스 엘리먼트를 포함하는, 비디오 데이터를 디코딩하는 방법.
  10. 제 1 항에 있어서,
    상기 역 이진화는 결정된 상기 최대 가능 값에 관계 없이 상기 2차 변환 신택스 엘리먼트에 대한 상기 값을 역 절단 단항 이진화하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  11. 제 1 항에 있어서,
    상기 최대 가능 값을 결정하는 단계는 상기 블록을 위한 예측 모드로부터 상기 최대 가능 값을 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  12. 제 11 항에 있어서,
    상기 최대 가능 값을 결정하는 단계는, 상기 블록을 위한 예측 모드가 평면 인트라-예측 모드, DC 인트라-예측 모드, 또는 LM 모드 중 하나를 포함하는 비-각도 인트라-예측 모드일 때 상기 최대 가능 값이 3과 동일한 것으로 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  13. 제 11 항에 있어서,
    상기 최대 가능 값을 결정하는 단계는 상기 블록을 위한 예측 모드가 각도 인터-예측 모드일 때 상기 최대 가능 값이 4와 동일한 것으로 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  14. 제 1 항에 있어서,
    상기 2차 변환 신택스 엘리먼트는 비 분리 가능 2차 변환 (NSST) 인덱스 신택스 엘리먼트를 포함하고,
    상기 방법은, 상기 NSST 신택스 엘리먼트에 대한 상기 값이 제로와 같지 않을 때, 상기 비디오 데이터의 블록이 위치 의존 인트라 예측 조합 (PDPC) 신택스 엘리먼트를 포함하지 않는 것으로 결정하는 단계를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  15. 제 1 항에 있어서,
    상기 블록을 위한 위치 의존 인트라 예측 조합 (PDPC) 신택스 엘리먼트의 값을 콘텍스트 기반 엔트로피 디코딩하는 단계를 더 포함하고,
    상기 2차 변환 신택스 엘리먼트의 값에 적어도 부분적으로 기초하여 상기 PDPC 신택스 엘리먼트의 값에 대한 하나 이상의 콘텍스트들을 결정하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  16. 제 1 항에 있어서,
    상기 블록은 코딩 유닛의 제 1 컴포넌트를 포함하고, 상기 코딩 유닛은 하나 이상의 추가 컴포넌트들을 포함하고, 상기 방법은 상기 코딩 유닛의 상기 하나 이상의 추가 컴포넌트들 중 적어도 하나에 상기 2차 변환 신택스 엘리먼트의 값을 적용하는 단계를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  17. 제 16 항에 있어서,
    상기 제 1 컴포넌트는 제 1 크로미넌스 컴포넌트를 포함하고, 상기 하나 이상의 추가 컴포넌트들은 제 2 크로미넌스 컴포넌트를 포함하고, 상기 2차 변환 신택스 엘리먼트의 값을 적용하는 단계는 상기 2차 변환 신택스 엘리먼트의 값을 상기 제 2 크로미넌스 컴포넌트에 적용하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  18. 제 17 항에 있어서,
    상기 하나 이상의 추가 컴포넌트들은 루미넌스 컴포넌트를 포함하고, 상기 2차 변환 신택스 엘리먼트의 값을 적용하는 단계는 상기 2차 변환 신택스 엘리먼트의 값을 상기 루미넌스 컴포넌트에 적용하는 단계를 포함하는, 비디오 데이터를 디코딩하는 방법.
  19. 제 16 항에 있어서,
    상기 2차 변환 신택스 엘리먼트가 상기 블록의 비-제로 계수들의 수, 상기 비-제로 계수들에 대한 절대 값들의 합, 또는 상기 블록을 위한 예측 모드 중 하나 이상에 기초하여 미리 결정된 디폴트 값을 갖는 것으로 결정하는 단계를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  20. 제 1 항에 있어서,
    상기 블록은 시그널링 유닛의 제 1 블록을 포함하고, 상기 2차 변환 신택스 엘리먼트는 상기 시그널링 유닛의 신택스 엘리먼트를 포함하고,
    상기 방법은 상기 시그널링 유닛의 제 2 블록에 상기 2차 변환 신택스 엘리먼트의 값을 적용하는 단계를 더 포함하고,
    상기 제 2 블록은 상기 제 1 블록에 이웃하는, 비디오 데이터를 디코딩하는 방법.
  21. 제 20 항에 있어서,
    상기 제 1 블록은 제 1 코딩 트리 블록 (CTB) 의 적어도 일부를 포함하고, 상기 제 2 블록은 상기 제 1 CTB 와는 상이한 제 2 CTB의 적어도 일부를 포함하는, 비디오 데이터를 디코딩하는 방법.
  22. 제 20 항에 있어서,
    상기 제 1 블록 및 상기 제 2 블록의 디코딩 동안 적용될 코딩 툴을 나타내는 상기 시그널링 유닛의 제 2 신택스 엘리먼트를 엔트로피 디코딩하는 단계를 더 포함하며,
    상기 방법은
    상기 코딩 툴을 사용하여 상기 제 1 블록을 디코딩하는 단계; 및
    상기 코딩 툴을 사용하여 상기 제 2 블록을 디코딩하는 단계
    를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  23. 제 20 항에 있어서,
    상기 제 1 블록 및 상기 제 2 블록의 디코딩 동안 적용될 각각의 코딩 툴들을 나타내는 상기 시그널링 유닛의 복수의 신택스 엘리먼트들을 엔트로피 디코딩하는 단계를 더 포함하며,
    상기 방법은
    각각의 상기 코딩 툴들을 사용하여 상기 제 1 블록을 디코딩하는 단계; 및
    각각의 상기 코딩 툴들을 사용하여 상기 제 2 블록을 디코딩하는 단계
    를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  24. 제 1 항에 있어서,
    상기 블록은 시그널링 유닛의 제 1 블록을 포함하고, 상기 2차 변환 신택스 엘리먼트는 상기 시그널링 유닛의 신택스 엘리먼트를 포함하고,
    상기 방법은 상기 시그널링 유닛의 복수의 신택스 엘리먼트들을 엔트로피 디코딩하는 단계를 더 포함하며,
    상기 복수의 신택스 엘리먼트들은 상기 2차 변환 신택스 엘리먼트 그리고 향상된 다중 변환 (EMT) 플래그 또는 EMT 인덱스 중 하나 이상을 포함하고, 상기 2차 변환 신택스 엘리먼트는 비 분리 가능 2차 변환 (NST) 인덱스 또는 NSST 플래그 중 적어도 하나를 포함하는, 비디오 데이터를 디코딩하는 방법.
  25. 제 24 항에 있어서,
    상기 제 1 블록 및 상기 제 2 블록의 각각에서 비-제로 변환 계수들의 수, 상기 제 1 블록 및 상기 제 2 블록에서 상기 비-제로 변환 계수들의 절대 합, 또는 상기 제 1 블록 및 상기 제 2 블록의 변환 유닛들에서 상기 비-제로 변환 계수들의 위치들 중 적어도 하나에 따라 결정된 각각의 콘텍스트들을 이용하여 상기 복수의 신택스 엘리먼트들을 엔트로피 디코딩하는 단계를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  26. 제 24 항에 있어서,
    상기 제 1 및 제 2 블록들의 비-제로 계수들의 수가 가능한 비-제로 계수들의 범위 내에 있음을 결정하는 단계로서, 상기 범위는 콘텍스트에 대응하는 서브 그룹과 관련되는, 상기 가능한 비-제로 계수들의 범위 내에 있음을 결정하는 단계; 및
    상기 콘텍스트를 이용하여 상기 복수의 신택스 엘리먼트들을 엔트로피 디코딩하는 단계를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  27. 제 24 항에 있어서,
    상기 제 1 블록 및 상기 제 2 블록 내의 최종 비-제로 계수들의 위치들, 상기 최종 비-제로 계수들의 값들, 또는 상기 최종 비-제로 계수에 대한 부호 값들 중 적어도 하나에 따라 결정된 각각의 콘텍스트들을 사용하여 상기 복수의 신택스 엘리먼트들을 엔트로피 디코딩하는 단계를 더 포함하는, 비디오 데이터를 디코딩하는 방법.
  28. 제 1 항에 있어서,
    상기 블록은 시그널링 유닛의 후속 블록을 포함하고, 상기 2차 변환 신택스 엘리먼트는 상기 시그널링 유닛의 신택스 엘리먼트를 포함하고, 상기 시그널링 유닛은 상기 후속 블록으로부터 분리되고 스캔 순서에서 상기 후속 블록에 선행하는 하나 이상의 블록들을 더 포함하고,
    상기 방법은
    상기 시그널링 유닛의 신택스 엘리먼트에 대한 값을 디코딩하는 단계를 포함하고,
    상기 신택스 엘리먼트의 상기 값은 디코딩 순서에서 상기 신택스 엘리먼트에 후속하는 블록들에 적용될 코딩 툴을 나타내며,
    상기 신택스 엘리먼트에 대한 상기 값을 디코딩하는 단계는 상기 하나 이상의 블록들의 데이터를 디코딩한 후에 그리고 상기 후속 블록의 데이터를 디코딩하기 전에 상기 신택스 엘리먼트에 대한 값을 디코딩하는 단계를 포함하고,
    상기 후속 블록을 디코딩하는 것은 상기 코딩 툴을 상기 후속 블록에 적용하는 것을 포함하는, 비디오 데이터를 디코딩하는 방법.
  29. 제 28 항에 있어서,
    상기 신택스 엘리먼트는 상기 2차 변환 신택스 엘리먼트 또는 향상된 다중 변환 (EMT) 신택스 엘리먼트 중 적어도 하나를 포함하는, 비디오 데이터를 디코딩하는 방법.
  30. 비디오 데이터를 디코딩하기 위한 디바이스로서,
    비디오 데이터를 저장하도록 구성된 메모리; 및
    회로에 구현된 하나 이상의 프로세서들
    을 포함하고,
    상기 하나 이상의 프로세서들은
    비디오 데이터의 블록을 위한 2차 변환 신택스 엘리먼트에 대한 최대 가능 값을 결정하고;
    상기 블록을 위한 2차 변환을 나타내는 이진화된 값을 형성하기 위하여 상기 블록의 상기 2차 변환 신택스 엘리먼트에 대한 값을 엔트로피 디코딩하고;
    상기 블록을 위한 상기 2차 변환을 결정하기 위해 상기 최대 가능 값에 관계 없이 공통 이진화 스킴을 사용하여 상기 2차 변환 신택스 엘리먼트에 대한 상기 값을 역 이진화하고; 그리고
    결정된 상기 2차 변환을 사용하여 상기 블록의 변환 계수들을 역 변환하도록 구성된, 비디오 데이터를 디코딩하기 위한 디바이스.
  31. 제 30 항에 있어서,
    상기 하나 이상의 프로세서들은 또한, 결정된 상기 최대 가능 값에 기초하여 상기 2차 변환 신택스 엘리먼트에 대한 상기 값을 엔트로피 디코딩하는데 사용되는 콘텍스트 모델을 결정하고, 결정된 상기 콘텍스트 모델을 사용하여 상기 값을 엔트로피 디코딩하도록 구성된, 비디오 데이터를 디코딩하기 위한 디바이스.
  32. 제 30 항에 있어서,
    상기 공통 역 이진화 스킴은 역 절단 단항 이진화를 포함하고, 상기 하나 이상의 프로세서들은 결정된 상기 최대 가능 값에 관계 없이 상기 2차 변환 신택스 엘리먼트에 대한 상기 값을 역 절단 단항 이진화하도록 구성된, 비디오 데이터를 디코딩하기 위한 디바이스.
  33. 제 30 항에 있어서,
    상기 하나 이상의 프로세서들은 상기 블록을 위한 예측 모드로부터 상기 최대 가능 값을 결정하도록 구성된, 비디오 데이터를 디코딩하기 위한 디바이스.
  34. 제 30 항에 있어서,
    상기 블록은 코딩 유닛의 제 1 컴포넌트를 포함하고, 상기 코딩 유닛은 하나 이상의 추가 컴포넌트들을 포함하고, 상기 하나 이상의 프로세서들은 또한 상기 코딩 유닛의 상기 하나 이상의 추가 컴포넌트들 중 적어도 하나에 상기 2차 변환 신택스 엘리먼트의 상기 값을 적용하도록 구성된, 비디오 데이터를 디코딩하기 위한 디바이스.
  35. 제 30 항에 있어서,
    상기 블록은 시그널링 유닛의 제 1 블록을 포함하고, 상기 2차 변환 신택스 엘리먼트는 상기 시그널링 유닛의 신택스 엘리먼트를 포함하고, 하나 이상의 프로세싱 유닛들은 또한 상기 시그널링 유닛의 제 2 블록에 상기 2차 변환 신택스 엘리먼트의 값을 적용하도록 구성되고, 상기 제 2 블록은 상기 제 1 블록에 이웃하는, 비디오 데이터를 디코딩하기 위한 디바이스.
  36. 제 30 항에 있어서,
    상기 블록은 시그널링 유닛의 제 1 블록을 포함하고, 상기 2차 변환 신택스 엘리먼트는 상기 시그널링 유닛의 신택스 엘리먼트를 포함하고, 상기 하나 이상의 프로세서들은 또한 상기 시그널링 유닛의 복수의 신택스 엘리먼트들을 엔트로피 디코딩하도록 구성되며, 상기 복수의 신택스 엘리먼트들은 상기 2차 변환 신택스 엘리먼트 그리고 향상된 다중 변환 (EMT) 플래그 또는 EMT 인덱스 중 하나 이상을 포함하고, 상기 2차 변환 신택스 엘리먼트는 비 분리 가능 2차 변환 (NST) 인덱스 또는 NSST 플래그 중 적어도 하나를 포함하는, 비디오 데이터를 디코딩하기 위한 디바이스.
  37. 제 30 항에 있어서,
    상기 블록은 시그널링 유닛의 후속 블록을 포함하고, 상기 2차 변환 신택스 엘리먼트는 상기 시그널링 유닛의 신택스 엘리먼트를 포함하고, 상기 시그널링 유닛은 상기 후속 블록으로부터 분리되고 스캔 순서에서 상기 후속 블록에 선행하는 하나 이상의 블록들을 더 포함하고,
    상기 하나 이상의 프로세서들은 또한
    상기 시그널링 유닛의 신택스 엘리먼트에 대한 값을 디코딩하는 것으로서, 상기 신택스 엘리먼트의 값은 디코딩 순서에서 상기 신택스 엘리먼트에 후속하는 블록들에 적용될 코딩 툴을 나타내며, 상기 신택스 엘리먼트에 대한 상기 값을 디코딩하기 위해, 상기 하나 이상의 프로세서들은 상기 하나 이상의 블록들의 데이터를 디코딩한 후에 그리고 상기 후속 블록의 데이터를 디코딩하기 전에 상기 신택스 엘리먼트에 대한 상기 값을 디코딩하도록 구성되는, 상기 신택스 엘리먼트에 대한 값을 디코딩하고; 그리고
    상기 코딩 툴을 상기 후속 블록에 적용하도록 구성된, 비디오 데이터를 디코딩하기 위한 디바이스.
  38. 제 30 항에 있어서,
    상기 비디오 데이터를 캡처하도록 구성된 카메라를 더 포함하는, 비디오 데이터를 디코딩하기 위한 디바이스.
  39. 제 30 항에 있어서,
    상기 디바이스는 카메라, 컴퓨터, 모바일 디바이스, 브로드캐스트 수신기 디바이스 또는 셋탑 박스 중 하나 이상을 포함하는, 비디오 데이터를 디코딩하기 위한 디바이스.
KR1020187031268A 2016-05-03 2017-05-03 2차 변환 인덱스 이진화 KR102575798B1 (ko)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201662331290P 2016-05-03 2016-05-03
US62/331,290 2016-05-03
US201662332425P 2016-05-05 2016-05-05
US62/332,425 2016-05-05
US201662337310P 2016-05-16 2016-05-16
US62/337,310 2016-05-16
US201662340949P 2016-05-24 2016-05-24
US62/340,949 2016-05-24
US201662365853P 2016-07-22 2016-07-22
US62/365,853 2016-07-22
US15/584,859 2017-05-02
US15/584,859 US10708164B2 (en) 2016-05-03 2017-05-02 Binarizing secondary transform index
PCT/US2017/030815 WO2017192705A1 (en) 2016-05-03 2017-05-03 Binarizing secondary transform index

Publications (2)

Publication Number Publication Date
KR20190003950A true KR20190003950A (ko) 2019-01-10
KR102575798B1 KR102575798B1 (ko) 2023-09-07

Family

ID=58699315

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187031268A KR102575798B1 (ko) 2016-05-03 2017-05-03 2차 변환 인덱스 이진화

Country Status (9)

Country Link
US (2) US10708164B2 (ko)
EP (1) EP3453176B1 (ko)
JP (1) JP6960943B2 (ko)
KR (1) KR102575798B1 (ko)
CN (2) CN109076230B (ko)
BR (1) BR112018072617A2 (ko)
CA (1) CA3018197A1 (ko)
TW (1) TWI755394B (ko)
WO (1) WO2017192705A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159316A1 (ko) * 2019-02-01 2020-08-06 엘지전자 주식회사 이차 변환에 기반한 영상 코딩 방법 및 그 장치
WO2020231229A1 (ko) * 2019-05-15 2020-11-19 주식회사 엑스리스 영상 신호 부호화/복호화 방법 및 이를 위한 장치
WO2020242183A1 (ko) * 2019-05-27 2020-12-03 엘지전자 주식회사 광각 인트라 예측 및 변환에 기반한 영상 코딩 방법 및 그 장치
WO2020256344A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 영상 코딩에서 변환 커널 세트를 나타내는 정보의 시그널링
WO2020256345A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 영상 코딩 시스템에서 변환 커널 세트에 관한 정보에 대한 컨텍스트 코딩
WO2020256346A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 변환 커널 세트에 관한 정보에 대한 코딩
WO2020262995A1 (ko) * 2019-06-25 2020-12-30 주식회사 윌러스표준기술연구소 2차 변환을 이용하는 비디오 신호 처리 방법 및 장치
KR20210068511A (ko) * 2019-04-04 2021-06-09 텐센트 아메리카 엘엘씨 비디오 코딩을 위한 방법 및 장치
US11973984B2 (en) 2019-05-15 2024-04-30 Xris Corporation Method for encoding/decoding image signal and apparatus therefor

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030418A1 (ko) * 2015-08-19 2017-02-23 엘지전자(주) 다중 그래프 기반 모델에 따라 최적화된 변환을 이용하여 비디오 신호를 인코딩/ 디코딩하는 방법 및 장치
KR20170058837A (ko) * 2015-11-19 2017-05-29 한국전자통신연구원 화면내 예측모드 부호화/복호화 방법 및 장치
US10708164B2 (en) 2016-05-03 2020-07-07 Qualcomm Incorporated Binarizing secondary transform index
US10630974B2 (en) * 2017-05-30 2020-04-21 Google Llc Coding of intra-prediction modes
EP3691266A4 (en) * 2017-09-28 2021-07-28 Sharp Kabushiki Kaisha IMAGE DECODING DEVICE, AND IMAGE ENCODING DEVICE
JP7007485B2 (ja) * 2017-12-15 2022-01-24 エルジー エレクトロニクス インコーポレイティド 非分離二次変換に基づいた画像コーディング方法及びその装置
US11252420B2 (en) * 2017-12-15 2022-02-15 Lg Electronics Inc. Image coding method on basis of secondary transform and device therefor
US10567801B2 (en) * 2018-03-07 2020-02-18 Tencent America LLC Method and apparatus for video coding with primary and secondary transforms
CN111819854B (zh) * 2018-03-07 2022-12-06 华为技术有限公司 用于协调多符号位隐藏和残差符号预测的方法和装置
US10491914B2 (en) * 2018-03-29 2019-11-26 Tencent America LLC Transform information prediction
PL3764649T3 (pl) * 2018-04-01 2024-01-22 Lg Electronics Inc. Przetwarzanie sygnału wideo z wykorzystaniem skróconego przekształcenia wtórnego
KR20240040133A (ko) * 2018-04-01 2024-03-27 엘지전자 주식회사 분할된 블록에 2차 변환을 적용하여 비디오 신호를 처리하는 방법 및 장치
WO2019231206A1 (ko) * 2018-05-30 2019-12-05 디지털인사이트주식회사 영상 부호화/복호화 방법 및 장치
US10645396B2 (en) * 2018-06-04 2020-05-05 Tencent America LLC Method and apparatus for implicit transform splitting
US11356702B2 (en) * 2018-06-06 2022-06-07 Lg Electronics Inc. Method for performing transform index coding on basis of intra prediction mode, and device therefor
US10567752B2 (en) * 2018-07-02 2020-02-18 Tencent America LLC Method and apparatus for intra prediction for non-square blocks in video compression
KR20230061564A (ko) * 2018-07-02 2023-05-08 엘지전자 주식회사 이차 변환을 기반으로 비디오 신호를 처리하는 방법 및 장치
EP4152748A1 (en) 2018-09-02 2023-03-22 LG Electronics, Inc. Method and apparatus for processing image signal
CN114885163B (zh) * 2018-09-02 2024-04-23 Lg电子株式会社 用于对图像信号编码和解码的方法及计算机可读记录介质
CN112753220A (zh) * 2018-09-02 2021-05-04 Lg电子株式会社 基于多重变换选择的图像编码方法及其装置
WO2020050665A1 (ko) * 2018-09-05 2020-03-12 엘지전자 주식회사 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치
CN112840655B (zh) * 2018-10-08 2023-12-01 寰发股份有限公司 图像与视频编解码中最后有效系数的编解码方法及装置
US11128866B2 (en) 2018-10-18 2021-09-21 Qualcomm Incorporated Scans and last coefficient position coding for zero-out transforms
CN113170197B (zh) * 2018-12-06 2023-07-18 Lg电子株式会社 基于二次变换的图像编码方法及其装置
WO2020130581A1 (ko) * 2018-12-19 2020-06-25 엘지전자 주식회사 이차 변환에 기반한 영상 코딩 방법 및 그 장치
CN113287311B (zh) * 2018-12-22 2024-03-12 北京字节跳动网络技术有限公司 两步交叉分量预测模式的指示
US11470329B2 (en) * 2018-12-26 2022-10-11 Tencent America LLC Method and apparatus for video coding
WO2020151753A1 (en) * 2019-01-25 2020-07-30 Mediatek Inc. Method and apparatus of transform coefficient coding with tb-level constraint
US10986339B2 (en) * 2019-02-08 2021-04-20 Tencent America LLC Method and apparatus for harmonization between transform skip mode and multiple transform selection
EP3912343A4 (en) * 2019-03-08 2022-07-20 Beijing Bytedance Network Technology Co., Ltd. LIMITATIONS OF MODEL-BASED TRANSFORMING IN VIDEO PROCESSING
AU2019201649A1 (en) 2019-03-11 2020-10-01 Canon Kabushiki Kaisha Method, apparatus and system for encoding and decoding a tree of blocks of video samples
JP7416450B2 (ja) * 2019-03-11 2024-01-17 テンセント・アメリカ・エルエルシー インターpdpcモードの改善
US11025909B2 (en) * 2019-03-21 2021-06-01 Tencent America LLC Method and apparatus for video coding
KR102408742B1 (ko) * 2019-03-26 2022-06-15 엘지전자 주식회사 변환에 기반한 영상 코딩 방법 및 그 장치
US11943476B2 (en) * 2019-04-16 2024-03-26 Hfi Innovation Inc. Methods and apparatuses for coding video data with adaptive secondary transform signaling
KR20210154151A (ko) 2019-04-23 2021-12-20 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 코딩된 비디오에서 이차 변환의 사용
EP4329309A3 (en) * 2019-05-10 2024-03-27 Beijing Bytedance Network Technology Co., Ltd. Selection of secondary transform matrices for video processing
US11032572B2 (en) 2019-05-17 2021-06-08 Qualcomm Incorporated Low-frequency non-separable transform signaling based on zero-out patterns for video coding
US11218728B2 (en) * 2019-06-04 2022-01-04 Tencent America LLC Method and apparatus for video coding
CN113940070B (zh) * 2019-06-06 2023-11-21 Lg电子株式会社 基于变换的图像解码和编码方法及发送比特流的方法
JP7277616B2 (ja) 2019-06-07 2023-05-19 北京字節跳動網絡技術有限公司 ビデオ・データを処理する方法、装置及び記憶媒体
US11695960B2 (en) 2019-06-14 2023-07-04 Qualcomm Incorporated Transform and last significant coefficient position signaling for low-frequency non-separable transform in video coding
US11303913B2 (en) * 2019-06-19 2022-04-12 Qualcomm Incorporated Decoded picture buffer indexing
CN114128273B (zh) 2019-06-20 2023-11-17 Lg电子株式会社 图像解码和编码方法及用于图像的数据的发送方法
US11949870B2 (en) * 2019-06-21 2024-04-02 Qualcomm Incorporated Context modeling for low-frequency non-separable transformation signaling for video coding
JP6912522B2 (ja) * 2019-06-24 2021-08-04 Kddi株式会社 画像復号装置、画像復号方法及びプログラム
CN112135148B (zh) 2019-06-25 2022-05-10 华为技术有限公司 非可分离变换方法以及设备
CN114208183A (zh) 2019-08-03 2022-03-18 北京字节跳动网络技术有限公司 视频的缩减二次变换中基于位置的模式导出
WO2021032045A1 (en) * 2019-08-17 2021-02-25 Beijing Bytedance Network Technology Co., Ltd. Context modeling of side information for reduced secondary transforms in video
US11677984B2 (en) * 2019-08-20 2023-06-13 Qualcomm Incorporated Low-frequency non-separable transform (LFNST) signaling
JP7402016B2 (ja) * 2019-11-06 2023-12-20 オッポ広東移動通信有限公司 画像復号装置及び画像符号化装置
AU2019275552B2 (en) * 2019-12-03 2022-10-13 Canon Kabushiki Kaisha Method, apparatus and system for encoding and decoding a coding tree unit
CN115088017A (zh) * 2020-01-08 2022-09-20 苹果公司 点云的树内几何量化
KR20220143934A (ko) * 2020-02-25 2022-10-25 에이치에프아이 이노베이션 인크. 비디오 코딩에서 2차 변환 시그널링을 위한 방법들 및 장치들
JP7360984B2 (ja) * 2020-03-31 2023-10-13 Kddi株式会社 画像復号装置、画像復号方法及びプログラム
CN115086657A (zh) * 2021-03-14 2022-09-20 腾讯科技(深圳)有限公司 视频编解码方法、装置、计算机可读介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130002298A (ko) * 2011-06-28 2013-01-07 삼성전자주식회사 엔트로피 부호화/복호화 방법 및 장치
US20130027230A1 (en) * 2010-04-13 2013-01-31 Detlev Marpe Entropy coding
US20130272389A1 (en) * 2012-04-13 2013-10-17 Texas Instruments Incorporated Reducing Context Coded and Bypass Coded Bins to Improve Context Adaptive Binary Arithmetic Coding (CABAC) Throughput
KR20150046774A (ko) * 2011-06-28 2015-04-30 삼성전자주식회사 산술부호화를 수반한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599435B2 (en) * 2004-01-30 2009-10-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Video frame encoding and decoding
US8488668B2 (en) * 2007-06-15 2013-07-16 Qualcomm Incorporated Adaptive coefficient scanning for video coding
US8483285B2 (en) * 2008-10-03 2013-07-09 Qualcomm Incorporated Video coding using transforms bigger than 4×4 and 8×8
FI3435674T3 (fi) * 2010-04-13 2023-09-07 Ge Video Compression Llc Merkitsevyyskarttojen ja muunnoskerroinlohkojen koodaus
US9172968B2 (en) * 2010-07-09 2015-10-27 Qualcomm Incorporated Video coding using directional transforms
US9641846B2 (en) * 2010-10-22 2017-05-02 Qualcomm Incorporated Adaptive scanning of transform coefficients for video coding
US10992958B2 (en) * 2010-12-29 2021-04-27 Qualcomm Incorporated Video coding using mapped transforms and scanning modes
RU2642373C1 (ru) * 2011-06-16 2018-01-24 ДжиИ Видео Компрешн, ЭлЭлСи Инициализация контекста при энтропийном кодировании
US9826238B2 (en) * 2011-06-30 2017-11-21 Qualcomm Incorporated Signaling syntax elements for transform coefficients for sub-sets of a leaf-level coding unit
US20130016789A1 (en) * 2011-07-15 2013-01-17 General Instrument Corporation Context modeling techniques for transform coefficient level coding
US9357185B2 (en) * 2011-11-08 2016-05-31 Qualcomm Incorporated Context optimization for last significant coefficient position coding
US8552890B2 (en) * 2012-01-19 2013-10-08 Sharp Laboratories Of America, Inc. Lossless coding with different parameter selection technique for CABAC in HEVC
US9363510B2 (en) * 2012-03-02 2016-06-07 Qualcomm Incorporated Scan-based sliding window in context derivation for transform coefficient coding
US9538172B2 (en) 2012-04-11 2017-01-03 Qualcomm Incorporated Grouping bypass coded syntax elements in video coding
US9264706B2 (en) * 2012-04-11 2016-02-16 Qualcomm Incorporated Bypass bins for reference index coding in video coding
US11025922B2 (en) * 2012-06-13 2021-06-01 Texas Instruments Incorporated Inverse transformation using pruning for video coding
EP3414906A4 (en) 2016-02-08 2019-10-02 Sharp Kabushiki Kaisha SYSTEMS AND METHOD FOR INTRAPRADICATION CODING
WO2017164297A1 (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 信号依存型適応量子化を用いて動画像を符号化及び復号するための方法及び装置
US10708164B2 (en) 2016-05-03 2020-07-07 Qualcomm Incorporated Binarizing secondary transform index

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027230A1 (en) * 2010-04-13 2013-01-31 Detlev Marpe Entropy coding
KR20130002298A (ko) * 2011-06-28 2013-01-07 삼성전자주식회사 엔트로피 부호화/복호화 방법 및 장치
KR20150046774A (ko) * 2011-06-28 2015-04-30 삼성전자주식회사 산술부호화를 수반한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
US20130272389A1 (en) * 2012-04-13 2013-10-17 Texas Instruments Incorporated Reducing Context Coded and Bypass Coded Bins to Improve Context Adaptive Binary Arithmetic Coding (CABAC) Throughput

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284082B2 (en) 2019-02-01 2022-03-22 Lg Electronics Inc. Image coding method based on secondary transform and apparatus therefor
WO2020159316A1 (ko) * 2019-02-01 2020-08-06 엘지전자 주식회사 이차 변환에 기반한 영상 코딩 방법 및 그 장치
US11632551B2 (en) 2019-02-01 2023-04-18 Lg Electronics Inc. Image coding method based on secondary transform and apparatus therefor
KR20210068511A (ko) * 2019-04-04 2021-06-09 텐센트 아메리카 엘엘씨 비디오 코딩을 위한 방법 및 장치
WO2020231229A1 (ko) * 2019-05-15 2020-11-19 주식회사 엑스리스 영상 신호 부호화/복호화 방법 및 이를 위한 장치
US11973984B2 (en) 2019-05-15 2024-04-30 Xris Corporation Method for encoding/decoding image signal and apparatus therefor
WO2020242183A1 (ko) * 2019-05-27 2020-12-03 엘지전자 주식회사 광각 인트라 예측 및 변환에 기반한 영상 코딩 방법 및 그 장치
US11641471B2 (en) 2019-05-27 2023-05-02 Lg Electronics Inc. Image coding method and device on basis of wide-angle intra prediction and transform
WO2020256346A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 변환 커널 세트에 관한 정보에 대한 코딩
CN114128276A (zh) * 2019-06-19 2022-03-01 Lg 电子株式会社 图像编译中指示变换核集的信息的信令
US11503298B2 (en) 2019-06-19 2022-11-15 Lg Electronics Inc. Signaling of information indicating transform kernel set in image coding
US11570438B2 (en) 2019-06-19 2023-01-31 Lg Electronics Inc. Coding of information about transform kernel set
US11622114B2 (en) 2019-06-19 2023-04-04 Lg Electronics Inc. Context coding for information on transform kernel set in image coding system
WO2020256345A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 영상 코딩 시스템에서 변환 커널 세트에 관한 정보에 대한 컨텍스트 코딩
AU2020297214B2 (en) * 2019-06-19 2023-11-02 Lg Electronics Inc. Coding of information about transform kernel set
US11895300B2 (en) 2019-06-19 2024-02-06 Lg Electronics Inc. Signaling of information indicating transform kernel set in image coding
US11909972B2 (en) 2019-06-19 2024-02-20 Lg Electronics Inc. Coding of information about transform kernel set
WO2020256344A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 영상 코딩에서 변환 커널 세트를 나타내는 정보의 시그널링
US11330302B2 (en) 2019-06-25 2022-05-10 Wilus Institute Of Standards And Technology Inc. Video signal processing method and apparatus using secondary transform
WO2020262995A1 (ko) * 2019-06-25 2020-12-30 주식회사 윌러스표준기술연구소 2차 변환을 이용하는 비디오 신호 처리 방법 및 장치
US11736729B2 (en) 2019-06-25 2023-08-22 Samsung Electronics Co., Ltd. Video signal processing method and apparatus using secondary transform

Also Published As

Publication number Publication date
JP6960943B2 (ja) 2021-11-05
US10708164B2 (en) 2020-07-07
WO2017192705A1 (en) 2017-11-09
US11496385B2 (en) 2022-11-08
CN109076230A (zh) 2018-12-21
CA3018197A1 (en) 2017-11-09
CN113453019A (zh) 2021-09-28
US20170324643A1 (en) 2017-11-09
EP3453176A1 (en) 2019-03-13
US20200236030A1 (en) 2020-07-23
CN109076230B (zh) 2021-07-23
BR112018072617A2 (pt) 2019-02-19
TWI755394B (zh) 2022-02-21
JP2019515561A (ja) 2019-06-06
TW201742458A (zh) 2017-12-01
KR102575798B1 (ko) 2023-09-07
EP3453176B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US11496385B2 (en) Binarizing secondary transform index
KR101651759B1 (ko) 메모리 효율적인 컨텍스트 모델링
KR101774737B1 (ko) 비디오 코딩을 위한 잔여 쿼드 트리 (rqt) 코딩
EP3013051B1 (en) Transforms in video coding
KR101807913B1 (ko) 비디오 코딩에서 코드북을 사용한 루프 필터 파라미터들의 코딩
JP2018507616A (ja) 予測ユニットの柔軟な区分化
KR102031468B1 (ko) 팔레트 모드 코딩을 위한 이스케이프 픽셀들 코딩
KR20150003327A (ko) 변환 계수 코딩
WO2015038928A1 (en) Partial intra block copying for video coding
KR101699600B1 (ko) 비디오 코딩을 위해 최종 포지션 코딩을 위한 콘텍스트의 도출
KR20160135756A (ko) 레지듀 차분 펄스 코드 변조을 위한 양자화 프로세스들
WO2013078313A1 (en) Transforms in video coding

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant