KR20180135272A - Antireflective lens fabricating method having nanohole structures of enhanced mechanical stability - Google Patents

Antireflective lens fabricating method having nanohole structures of enhanced mechanical stability Download PDF

Info

Publication number
KR20180135272A
KR20180135272A KR1020170073186A KR20170073186A KR20180135272A KR 20180135272 A KR20180135272 A KR 20180135272A KR 1020170073186 A KR1020170073186 A KR 1020170073186A KR 20170073186 A KR20170073186 A KR 20170073186A KR 20180135272 A KR20180135272 A KR 20180135272A
Authority
KR
South Korea
Prior art keywords
metal
nano
metal layer
hole structure
coating layer
Prior art date
Application number
KR1020170073186A
Other languages
Korean (ko)
Other versions
KR101966826B1 (en
Inventor
엄재현
김봉기
장지상
서호철
정기훈
배상인
이영섭
Original Assignee
세종공업 주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종공업 주식회사, 한국과학기술원 filed Critical 세종공업 주식회사
Priority to KR1020170073186A priority Critical patent/KR101966826B1/en
Publication of KR20180135272A publication Critical patent/KR20180135272A/en
Application granted granted Critical
Publication of KR101966826B1 publication Critical patent/KR101966826B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3607Coatings of the type glass/inorganic compound/metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/153Deposition methods from the vapour phase by cvd by plasma-enhanced cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention relates to a manufacturing method for a nonreflecting lens including a nanohole structure. According to the present invention, the manufacturing method for a nonreflecting lens includes: a step of preparing a glass substrate having a curved surface or a flat surface; a step of forming a coating layer and a metal layer on the glass substrate in order; a step of forming a metal mask pattern having a nanohole structure smaller than optical wavelength on the coating layer by a dewetting phenomenon due to a surface energy difference between the coating layer and the metal layer by performing heat treatment on the metal layer at a temperature equal to or less than the melting point of the metal forming the metal layer; a step of forming the nanohole structure having the nanohole structure smaller than the optical wavelength by performing an anisotropic etching process on the coating layer by using the metal mask pattern as an etching mask; and a step of removing the metal mask pattern.

Description

기계적 강도가 증대된 나노구멍구조를 가지는 무반사 렌즈의 제조방법{Antireflective lens fabricating method having nanohole structures of enhanced mechanical stability}TECHNICAL FIELD [0001] The present invention relates to an antireflective lens fabricating method using a nano-hole structure having enhanced mechanical strength,

본 발명은 기계적 강도가 증대된 나노구멍구조를 가지는 무반사 렌즈의 제조방법에 관한 것으로, 보다 구체적으로는 식각이 불가능하거나 식각이 어려운 유리기판에 기계적 강도가 증대된 나노구멍 구조에 의해 무반사 특성을 가지도록 할 수 있는 무반사 렌즈의 제조방법에 관한 것이다. The present invention relates to a method of manufacturing an anti-reflection lens having a nano-hole structure with increased mechanical strength, and more particularly, to a method of manufacturing an anti-reflection lens having a nano- And more particularly, to a method of manufacturing an anti-reflection lens which can be used for an anti-reflection lens.

빛의 반사를 줄이기 위해 일반적으로 사용되는 방법은 무반사 코팅(Antireflection Coating)으로서, 기판의 상부에 유전체나 고분자물질 등 기판보다 굴절률이 적은 물질을 증착함으로써 반사를 줄이는 방식이다.Antireflection coating is a commonly used method to reduce reflection of light. It is a method of reducing reflection by depositing a material having a lower refractive index than a substrate such as a dielectric material or a polymer material on the substrate.

이러한 무반사 코팅은 굴절률 및 광학적 두께(Optical Thickness)를 적당히 조절함으로써 특정 파장대에서 최소의 반사특성을 낼 수 있는 장점이 있으나, 다양한 기판의 종류에 대응되는 코팅물질에 제한이 있어 맞는 적당한 물질을 찾기 어렵고, 전기 및 열적 특성을 고려하기 어려우며, 넓은 스펙트럼에서 반사를 줄이기 어렵고, 빛의 입사각에 따른 반사율을 차이가 매우 큰 단점이 있다.This anti-reflective coating has the advantage of providing the minimum reflection characteristic at a specific wavelength band by appropriately adjusting the refractive index and the optical thickness (Optical Thickness). However, it is difficult to find an appropriate material that is limited by the coating material corresponding to various substrate types , It is difficult to consider the electrical and thermal characteristics, and it is difficult to reduce the reflection in a wide spectrum, and there is a disadvantage that the reflectance varies greatly depending on the incident angle of light.

빛의 반사를 줄이기 위한 다른 방법으로 사용되는 표면 텍스처링은 기판에 물리적 식각 방법이나 화학적 식각 방법을 이용하여 규칙적이거나 불규칙적인 구조 또는 굴곡을 만들어 기판 표면에서 일어나는 빛의 반사를 줄이는 방식이다.Surface texturing, which is used to reduce light reflections, is a method of reducing the reflection of light on the substrate surface by creating a regular or irregular structure or curvature on a substrate by physical etching or chemical etching.

이러한 표면 텍스처링을 위해 사용되는 물리적 식각 방법에는 예컨대, 플라즈마 식각(Plasma Etching), 포토리소그라피(Photolithography), 기계적 스크라이빙(Mechanical Scribing) 등이 있다. 이러한 방법들은 낮은 반사율을 얻을 수 있다는 장점이 있지만, 공정이 복잡하고 공정시간이 길며 대량 생산이 어려울 뿐만 아니라, 고가의 진공 장비와 추가 설비를 필요로 하는 등의 단점 때문에 상업적으로 이용하기에 적합하지 않다는 한계를 가지고 있다. 또한, 식각이 불가능하거나 식각이 어려운 기판의 경우에는 적용하기 어렵다는 문제점을 가진다. Physical etching methods used for such surface texturing include, for example, plasma etching, photolithography, and mechanical scribing. These methods have advantages of obtaining low reflectance, but they are suitable for commercial use because of the complicated process, long process time, difficulty in mass production, and disadvantages such as requiring expensive vacuum equipment and additional equipment It has limitations. In addition, it has a problem that it is difficult to apply it to a substrate which can not be etched or is difficult to etch.

대한민국 공개특허공보 제10-2014-0084860호(2014.07.07.)Korean Patent Publication No. 10-2014-0084860 (Jul.

따라서, 본 발명의 목적은 상기한 종래의 문제점을 극복할 수 있는 기계적 강도가 증대된 나노구멍구조를 가지는 무반사 렌즈의 제조방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a method of manufacturing an anti-reflection lens having a nano-hole structure in which the mechanical strength is increased, which can overcome the above-mentioned problems of the related art.

본 발명의 다른 목적은 식각이 불가능하거나 어려운 유리기판에서 기계적 강도가 증대된 무반사구조를 구현할 수 있는 나노구멍구조를 가지는 무반사 렌즈의 제조방법을 제공하는 데 있다. It is another object of the present invention to provide a method of manufacturing an anti-reflection lens having a nano-hole structure capable of realizing an anti-reflection structure having increased mechanical strength in a glass substrate which is difficult to etch.

상기한 기술적 과제들의 일부를 달성하기 위한 본 발명의 구체화에 따라, 본 발명에 따른 무반사 렌즈의 제조방법은, 곡면 또는 평면을 가지는 유리기판을 준비하는 단계와; 상기 유리기판 상에 코팅층 및 금속층을 순차적으로 형성하는 단계와; 상기 금속층을 구성하는 금속의 녹는점 이하의 온도에서 상기 금속층에 대한 열처리를 수행하여, 상기 코팅층과 상기 금속층 사이의 표면에너지 차이에 따른 비젖음(dewetting) 현상에 의해, 상기 코팅층 상에 광파장보다 작은 사이즈의 나노구멍 구조를 가지는 금속 마스크패턴을 형성하는 단계와; 상기 금속 마스크 패턴을 식각마스크로 하여 상기 코팅층에 대한 비등방성 식각공정을 수행함에 의해, 상기 유리기판 상에 광파장보다 작은 사이즈의 나노구멍 구조를 가지는 나노구멍 구조체를 형성하는 단계와; 상기 금속 마스크패턴을 제거하는 단계;를 구비한다.According to an embodiment of the present invention, there is provided a method of manufacturing an anti-reflection lens according to the present invention, comprising: preparing a glass substrate having a curved surface or a flat surface; Sequentially forming a coating layer and a metal layer on the glass substrate; A heat treatment is performed on the metal layer at a temperature equal to or lower than a melting point of the metal constituting the metal layer so that a dewetting phenomenon corresponding to a difference in surface energy between the coating layer and the metal layer Forming a metal mask pattern having a nano-hole structure of a size; Forming a nano-hole structure having a nano-hole structure smaller than a light wavelength on the glass substrate by performing an anisotropic etching process on the coating layer using the metal mask pattern as an etching mask; And removing the metal mask pattern.

상기 유리기판은 크라운(crown) 계열, 붕규산(borosilicate) 계열, 플린트(flints) 계열 중에서 선택된 적어도 하나의 재질을 가지는 광학유리(Optical Glass)일 수 있다.The glass substrate may be an optical glass having at least one material selected from a crown series, a borosilicate series, and a flint series.

상기 코팅층은 OXIDE, NITRIDE, PHOTORESIST, POLYMER 중에서 선택된 적어도 하나의 물질을, 화학적 기상증착법(CVD), 물리적 기상증착법(PVD), 플라즈마를 이용한 화학기상 증착법(PECVD), 스핀코팅법 중에서 선택된 적어도 하나의 증착방법을 이용하여 형성될 수 있다.The coating layer may be formed of at least one material selected from OXIDE, NITRIDE, PHOTORESIST, and POLYMER by at least one of chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma chemical vapor deposition (PECVD) May be formed using a deposition method.

상기 금속층은 금, 은, 백금, 알루미늄, 구리, 팔라듐, 니켈, 아연, 철, 주석, 청동, 황동 중에서 선택된 적어도 하나의 금속 또는 이들 금속을 포함하는 합금을 재질로 하고, 상기 금속층은 열증착, 전자빔증착, 스퍼터링, 스핀코팅 중에서 선택된 적어도 하나의 증착방법을 이용하여 형성될 수 있다.Wherein the metal layer is made of at least one metal selected from the group consisting of gold, silver, platinum, aluminum, copper, palladium, nickel, zinc, iron, tin, bronze and brass, Electron beam evaporation, electron beam evaporation, sputtering, and spin coating.

상기 코팅층은 10~500nm의 두께로 증착되고, 상기 금속층은 15~100nm의 두께로 증착될 수 있다.The coating layer may be deposited to a thickness of 10 to 500 nm, and the metal layer may be deposited to a thickness of 15 to 100 nm.

상기 금속층의 두께를 조절하거나 상기 열처리의 온도 조절을 통해 상기 나노구멍 구조체를 구성하는 나노구멍의 사이즈를 조절할 수 있다.The size of the nano-holes constituting the nano-hole structure can be controlled by controlling the thickness of the metal layer or adjusting the temperature of the heat treatment.

본 발명에 따르면, 광파장 이하의 사이즈(폭이나 주기)를 가지는 나노구멍 구조에 의해 렌즈의 반사율을 감소시킬 수 있고, 투과율을 증대시킬 수 있으며, 무반사 효과에 의해 기계적 강도가 높은 고효율의 렌즈 제작이 가능하다. 또한 렌즈를 간단하게 제작할 수 있어 렌즈의 대량생산이 가능하다. According to the present invention, it is possible to reduce the reflectance of the lens by a nano-hole structure having a size (width or period) smaller than the wavelength of light and to increase the transmittance and to manufacture a lens with high efficiency with high mechanical strength by anti- It is possible. Also, since the lens can be manufactured easily, it is possible to mass-produce the lens.

도 1은 본 발명의 일 실시예에 따른 나노 구멍 구조를 구비하는 무반사 렌즈의 제조과정을 공정순서대로 나타낸 공정 단면도이고,
도 2는 도 1의 공정에서 형성되는 금속마스크 패턴의 구조를 도시한 것이고,
도 3은 나노구멍구조와 나노기둥구조의 기계적 강도를 비교한 그래프이고,
도 4는 도 1에 의해 형성되는 나노구멍 구조를 가지는 무반사 렌즈의 평면도 및 측면도를 나타낸 것이고,
도 5는 본 발명의 나노구멍 구조를 가지는 무반사 렌즈의 투과율 향상을 나타낸 그래프이다.
FIG. 1 is a cross-sectional view illustrating a process of manufacturing an anti-reflection lens having a nano-hole structure according to an embodiment of the present invention,
Fig. 2 shows the structure of a metal mask pattern formed in the process of Fig. 1,
3 is a graph comparing the mechanical strengths of the nanopore structure and the nanopillar structure,
FIG. 4 is a plan view and a side view of an anti-reflection lens having a nano-hole structure formed by FIG. 1,
5 is a graph showing an improvement in transmittance of an anti-reflection lens having a nano-hole structure according to the present invention.

이하에서는 본 발명의 바람직한 실시예가, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 철저한 이해를 제공할 의도 외에는 다른 의도 없이, 첨부한 도면들을 참조로 하여 상세히 설명될 것이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings without intending to intend to provide a thorough understanding of the present invention to a person having ordinary skill in the art to which the present invention belongs.

도 1은 본 발명의 일 실시예에 따른 나노구멍(nanohole)구조를 가지는 무반사 렌즈의 제조과정을 공정순서대로 나타낸 공정 단면도이다.FIG. 1 is a process sectional view showing a process of manufacturing an anti-reflection lens having a nanohole structure according to an embodiment of the present invention in a process order.

이하 도 1을 바탕으로 본 발명의 일 실시예에 따른 나노구멍구조를 가지는 무반사 렌즈의 제조과정을 설명하기로 한다. Hereinafter, a process for fabricating an anti-reflection lens having a nano-hole structure according to an embodiment of the present invention will be described with reference to FIG.

도 1의 (a)에 도시된 바와 같이, 본 발명의 일 실시예에 따른 나노구멍구조를 구비하는 무반사 렌즈의 제조를 위해서, 우선적으로, 유리기판(110)을 준비한다. As shown in FIG. 1 (a), in order to manufacture an anti-reflection lens having a nano-hole structure according to an embodiment of the present invention, a glass substrate 110 is first prepared.

상기 유리기판(110)은 곡면 또는 평면을 가지는 것으로, 크라운(crown) 계열, 붕규산(borosilicate) 계열, 플린트(flints) 계열 중에서 선택된 적어도 하나의 재질을 가지는 광학유리(Optical Glass)일 수 있다. 좀 더 구체적으로, SiOx, BaxOy, TaxOy, TixOy 중 적어도 하나의 화합물로 구성될 수 있으며, 대체적으로 식각이 어렵거나 불가능한 재질을 포함할 수 있다. The glass substrate 110 may have a curved surface or a flat surface and may be an optical glass having at least one material selected from a crown series, a borosilicate series, and a flint series. More specifically, it may be composed of at least one compound of SiO x , Ba x O y , Ta x O y , and Ti x O y , and may include materials which are generally difficult or impossible to etch.

다음으로 도 1의 (b) 및 도 1의 (c)에 도시된 바와 같이, 상기 유리기판(110) 상에 코팅층(120) 및 금속층(130)을 순차적으로 형성한다.Next, a coating layer 120 and a metal layer 130 are sequentially formed on the glass substrate 110, as shown in FIGS. 1 (b) and 1 (c).

상기 코팅층(120)은 OXIDE, NITRIDE, PHOTORESIST, POLYMER 중에서 선택된 적어도 하나의 물질을 증착하여 형성될 수 있다. 상기 코팅층(120)은 화학적 기상증착법(CVD), 물리적 기상증착법(PVD), 플라즈마를 이용한 화학기상 증착법(PECVD), 스핀코팅법 중에서 선택된 적어도 하나의 증착방법을 이용하여 형성될 수 있다. 상기 코팅층(120)은 후속공정을 통하여 나노구멍 구조체가 형성되는 부분이므로, 필요에 따라 다양한 두께를 가질 수 있으며, 10~500nm의 두께로 형성될 수 있다. The coating layer 120 may be formed by depositing at least one material selected from OXIDE, NITRIDE, PHOTORESIST, and POLYMER. The coating layer 120 may be formed using at least one deposition method selected from chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced chemical vapor deposition (PECVD), and spin coating. Since the coating layer 120 is a portion where the nano-hole structure is formed through a subsequent process, the coating layer 120 may have various thicknesses, and may be formed to a thickness of 10 to 500 nm.

상기 금속층(130)은, 금, 은, 백금, 알루미늄, 구리, 팔라듐, 니켈, 아연, 철, 주석, 청동, 황동 중에서 선택된 적어도 하나의 금속 또는 이들 금속을 포함하는 합금을 재질로 할 수 있다. 상기 금속층(130)은 열증착, 전자빔증착, 스퍼터링, 스핀코팅 중에서 선택된 적어도 하나의 증착방법을 이용하여 15~100nm의 두께로 증착될 수 있다.The metal layer 130 may be made of at least one metal selected from the group consisting of gold, silver, platinum, aluminum, copper, palladium, nickel, zinc, iron, tin, bronze and brass or an alloy including these metals. The metal layer 130 may be deposited to a thickness of 15 to 100 nm using at least one deposition method selected from thermal deposition, electron beam deposition, sputtering, and spin coating.

상기 금속층(130)의 두께는 상기 코팅층(120)을 이용하여 나노구멍 구조체(125)로 형성하는 후속공정을 위해 필요에 따라 적절히 그 두께가 조절될 수 있다.The thickness of the metal layer 130 may be appropriately adjusted as necessary for a subsequent process of forming the nano-hole structure 125 using the coating layer 120.

이후 도 1의 (d)에 도시된 바와 같이, 상기 금속층(130)을 구성하는 금속의 녹는점 이하의 온도에서 상기 금속층(130)에 대한 열처리를 수행하여, 상기 코팅층(120)상에 광파장보다 작은 사이즈(폭 또는 주기)의 나노구멍 구조를 가지는 금속 마스크패턴(135)을 형성한다.1 (d), the metal layer 130 is heat-treated at a temperature lower than the melting point of the metal constituting the metal layer 130, A metal mask pattern 135 having a nano-hole structure of small size (width or period) is formed.

상기 열처리는 RTA(Rapid Thermal Annealing, RTA) 방법, 또는 오븐이나 핫플레이트를 이용하는 방법이 있고, 이외에 레이저 또는 전자기파 조사 등을 이용한 방법 등이 이용될 수 있다. 상기 열처리는 대략 100 ~ 1300 ℃의 범위에서 상기 금속층(130)을 구성하는 금속의 녹는점 이하의 온도가 적절히 선택되어 수행될 수 있다.The heat treatment may be a RTA (Rapid Thermal Annealing) method or an oven or a hot plate. In addition, a laser or an electromagnetic wave irradiation method may be used. The heat treatment may be performed at a temperature within a range of approximately 100 to 1300 ° C, and a temperature below the melting point of the metal constituting the metal layer 130 is suitably selected.

상기 금속층(130)에 대한 열처리를 수행하게 되면, 상기 코팅층(120)과 상기 금속층(130) 사이의 표면에너지 차이에 따른 비젖음(dewetting) 현상에 의해, 상기 금속층(130)이 나노 사이즈의 금속입자로 변형되게 된다. 이에 따라 나노사이즈의 금속입자들로 이루어진 나노구멍구조의 금속마스크 패턴(135)이 형성되게 된다.The metal layer 130 is subjected to a heat treatment to cause a dewetting phenomenon in accordance with a difference in surface energy between the coating layer 120 and the metal layer 130, So that it is deformed into particles. Accordingly, a metal mask pattern 135 having a nano-hole structure made of nano-sized metal particles is formed.

나노구멍 구조의 상기 금속마스크 패턴(135)은 도 2에 도시된다.The metal mask pattern 135 of the nano-hole structure is shown in Fig.

상기 금속 마스크 패턴(135)은 상기 코팅층(120)의 재질에 따라 금속 마스크 패턴(135)을 구성하는 금속입자의 사이즈나 형상이 달라질 수 있으며, 상기 금속층(130)의 두께 및 열처리 온도 조절을 통해 나노구멍의 사이즈나 형상이 달라질 수 있다. The size and shape of the metal particles constituting the metal mask pattern 135 may be varied depending on the material of the coating layer 120. The thickness of the metal layer 130 and the temperature of the heat treatment The size and shape of the nano-holes may vary.

다음으로, 도 1의 (e)에 도시된 바와 같이, 상기 금속마스크 패턴(135)을 식각마스크로 하여 상기 코팅층(120)에 대한 비등방성 건식식각을 수행함에 의해 나노구멍구조의 나노구멍 구조체(125)를 형성한다. 상기 식각공정은 상기 코팅층(120)에 대해서만 수행되게 된다. 상기 유리기판(110)은 식각이 어렵거나 불가능한 재질이기 때문에 식각정지막으로 기능하게 된다. Next, as shown in FIG. 1E, anisotropic dry etching is performed on the coating layer 120 using the metal mask pattern 135 as an etching mask to form a nano-hole structure having a nano-hole structure 125 are formed. The etching process is performed only on the coating layer 120. The glass substrate 110 functions as an etch stop film because the material is difficult or impossible to etch.

상기 비등방성 건식식각은 예컨대, 플라즈마 건식 식각법(Plasma Dry Etching), RF 전력(Power)에 의해 플라즈마가 생성되는 RIE(Reactive Ion Etching) 식각법 또는 ICP(Inductively Coupled Plasma) 식각법 등이 이용될 수 있다. 또한 상기 건식식각시에, 가스의 종류, 가스 구성비, 가스양, 온도, 압력, 구동전압 및 시간 중 적어도 하나를 조절하여 식각률을 조절하는 것이 가능하고, 이의 조절을 통해, 상기 나노구멍 구조체(125)의 원하는 사이즈나 종횡비(aspect ratio)를 용이하게 얻을 수 있다.The anisotropic dry etching may be performed by, for example, plasma dry etching, reactive ion etching (RIE) etching or inductively coupled plasma (ICP) etching in which plasma is generated by RF power . In addition, it is possible to control at least one of gas type, gas composition ratio, gas atmosphere, temperature, pressure, driving voltage and time to control the etching rate during the dry etching. By controlling the nano structure, It is possible to easily obtain the desired size and aspect ratio of the image.

상기 건식식각을 수행하게 되면, 광파장보다 작은 사이즈(폭 또는 주기)의 나노구멍(nanoholes) 구조를 가지는 나노구멍 구조체(125)가 형성된다.When the dry etching is performed, a nano-hole structure 125 having a nanoholes structure having a size (width or period) smaller than the light wavelength is formed.

여기서 상기 금속층(130)의 두께를 조절하거나 상기 열처리의 온도 조절을 통해 금속마스크 패턴(135)의 나노구멍 사이즈를 조절함에 의해 상기 나노 구멍 구조체(125)를 구성하는 나노구멍의 사이즈(폭 또는 주기)를 조절하는 것이 가능하다.The size (width or cycle) of the nano-holes constituting the nano-hole structure 125 may be controlled by adjusting the thickness of the metal layer 130 or adjusting the nano-hole size of the metal mask pattern 135 by controlling the temperature of the heat- Can be adjusted.

본 발명에서는 상기 코팅층(120)을 이용하여 나노구멍 구조를 가지는 나노구멍 구조체(125)를 형성하고 있다. 유리기판(110) 상에 무반사 효과를 위해 나노구조체를 형성하는 경우에, 기계적 강도가 뒷받침되지 않으면, 사용시 쉽게 손상되므로 내구성 문제가 대두되게 된다. 이러한 내구성 및 기계적 강도의 향상을 위해 본 발명에서는 나노구조체가 나노구멍 구조를 가지도록 구성하고 있다.In the present invention, a nano-hole structure 125 having a nano-hole structure is formed using the coating layer 120. In the case of forming the nanostructure on the glass substrate 110 for the anti-reflection effect, if it is not supported by the mechanical strength, the nanostructure is easily damaged when it is used, resulting in a durability problem. In order to improve the durability and the mechanical strength, the nanostructure of the present invention has a nano-hole structure.

나노구멍(nanohole)구조는 나노기둥(nanopillar)구조에 비해 기계적 강도가 우수하므로, 식각이 어렵거나 불가능한 유리기판을 이용하여 렌즈를 형성하는 경우에, 무반사 특성을 가지는 나노구멍 구조체(125)를 유리기판 표면에 형성하게 되면, 기계적 강도가 우수하기 때문에, 수명이 길고 내구성이 우수한 렌즈의 제조가 가능한 장점이 있다.Since the nanohole structure is superior in mechanical strength to a nanopillar structure, when a lens is formed using a glass substrate which is difficult or impossible to etch, the nano-hole structure 125 having anti- When formed on the surface of the substrate, it is advantageous in that it can manufacture a lens having a long life and excellent durability because of its excellent mechanical strength.

도 3은 나노구멍 구조와 나노기둥 구조의 기계적 강도(hardness)를 비교한 그래프이다.3 is a graph comparing the hardness of the nano-hole structure and the nanopillar structure.

도 3에 도시된 바와 같이, 나노구조가 형성되지 않은 일반 유리기판(bare glass)의 강도보다는 약하지만, 나노기둥(nanopillar)구조에 비해 나노구멍(nanohole) 구조가 2.5배 더 단단함을 알 수 있다. 이에 따라, 상기 나노구멍 구조체(125)를 유리기판 표면에 형성하게 되면, 기계적 강도가 우수한 무반사 렌즈의 제조가 가능해지게 된다.As shown in FIG. 3, it can be seen that the nanohole structure is 2.5 times harder than the nanopillar structure, although it is weaker than the strength of a bare glass having no nanostructure . Accordingly, when the nano-hole structure 125 is formed on the surface of the glass substrate, it is possible to manufacture an anti-reflection lens having excellent mechanical strength.

상기 나노구멍 구조체(125)의 형성 이후 도 1의 (f)에 도시된 바와 같이, 등방성 습식식각을 통해 상기 금속 마스크 패턴(135)을 제거하면, 나노구멍 구조체(125)를 가지는 무반사 렌즈가 완성되게 된다.After the formation of the nano-hole structure 125, as shown in FIG. 1F, the metal mask pattern 135 is removed through isotropic wet etching to complete the non-reflective lens having the nano-hole structure 125 .

도 4는 상기 나노구멍 구조체(125)를 가지는 무반사 렌즈의 평면도 및 측면도를 나타낸 것으로, 도 4의 (a)는 금속마스크 패턴을 이용하여 형성된 나노구멍 구조체(125)를 가지는 무반사 렌즈의 평면도(a)이고 도 4의 (b)는 측면도(b)이다. 4A and 4B are a plan view and a side view of an anti-reflection lens having the nano-hole structure 125. FIG. 4A is a plan view of an anti-reflection lens having a nano-hole structure 125 formed using a metal mask pattern And Fig. 4 (b) is a side view (b).

도 4에 도시된 바와 같이, 유리기판(110)의 표면에 나노구멍(nanoholes) 구조체(125)를 형성하게 되면, 나노구조체(125)가 유효굴절율 층으로 작용하여 매질 경계에서 일어나는 반사를 상쇄간섭을 통해 방지하게 되어 투과율이 향상되게 된다. 이에 따라 무반사 코팅 대비 저렴하고 대면적의 공정이 가능하고, 기계적 특성 및 내구성이 향상되고 다양한 재료의 사용이 가능한 장점이 있다. 4, when the nanoholes structure 125 is formed on the surface of the glass substrate 110, the nanostructure 125 acts as an effective refractive index layer, So that the transmittance is improved. As a result, it is possible to process at a relatively low cost compared with the non-reflective coating, to have improved mechanical properties and durability, and to use various materials.

도 5는 본 발명의 상기 나노구멍 구조(125)를 가지는 무반사 렌즈의 투과율 향상을 나타낸 그래프이다.5 is a graph showing the transmittance improvement of an anti-reflection lens having the nano structure 125 of the present invention.

도 5에 도시된 바와 같이, 나노구멍 구조체가 없는 TAF 렌즈(b)에 비해 본 발명의 상기 나노구멍 구조체(125)를 가지는 무반사 렌즈(a)의 투과율이 향상됨을 알 수 있다.As shown in FIG. 5, the transmittance of the non-reflective lens (a) having the nano-hole structure 125 of the present invention is improved as compared with the TAF lens (b) having no nano-hole structure.

결과적으로, 도 3 및 도 5의 그래프를 통해 판단해보면, 본 발명에 따른 나노구멍 구조체가 형성된 무반사 렌즈는, 우수한 기계적 강도를 가지면서, 투과율을 증대시킬 수 있고, 외부 스크래치에 대한 저항력이 우수함을 알 수 있다. 3 and 5, the non-reflective lens having the nano-hole structure according to the present invention has excellent mechanical strength, can increase the transmittance, and has excellent resistance to external scratches Able to know.

상술한 바와 같이, 본 발명에 따르면, 광파장 이하의 사이즈(폭이나 주기)를 가지는 나노구멍 구조에 의해 렌즈의 반사율을 감소시킬 수 있고, 투과율을 증대시킬 수 있으며, 무반사 효과에 의해 고효율의 렌즈 제작이 가능하다. 또한 렌즈를 간단하게 제작할 수 있어 렌즈의 대량생산이 가능하다.INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to reduce the reflectance of the lens by a nano-hole structure having a size (width or period) smaller than the wavelength of light and to increase the transmittance, This is possible. Also, since the lens can be manufactured easily, it is possible to mass-produce the lens.

상기한 실시예의 설명은 본 발명의 더욱 철저한 이해를 위하여 도면을 참조로 예를 든 것에 불과하므로, 본 발명을 한정하는 의미로 해석되어서는 안될 것이다. 또한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기본적 원리를 벗어나지 않는 범위 내에서 다양한 변화와 변경이 가능함은 명백하다 할 것이다. The foregoing description of the embodiments is merely illustrative of the present invention with reference to the drawings for a more thorough understanding of the present invention, and thus should not be construed as limiting the present invention. It will be apparent to those skilled in the art that various changes and modifications may be made without departing from the basic principles of the present invention.

110 ; 유리기판 120 : 코팅층
130 : 금속층 125 : 나노구멍 구조체
135 : 금속마스크 패턴
110; Glass substrate 120: coating layer
130: metal layer 125: nano-hole structure
135: Metal mask pattern

Claims (6)

곡면 또는 평면을 가지는 유리기판을 준비하는 단계와;
상기 유리기판 상에 코팅층 및 금속층을 순차적으로 형성하는 단계와;
상기 금속층을 구성하는 금속의 녹는점 이하의 온도에서 상기 금속층에 대한 열처리를 수행하여, 상기 코팅층과 상기 금속층 사이의 표면에너지 차이에 따른 비젖음(dewetting) 현상에 의해, 상기 코팅층 상에 광파장보다 작은 사이즈의 나노구멍 구조를 가지는 금속 마스크패턴을 형성하는 단계와;
상기 금속 마스크 패턴을 식각마스크로 하여 상기 코팅층에 대한 비등방성 식각공정을 수행함에 의해, 상기 유리기판 상에 광파장보다 작은 사이즈의 나노구멍 구조를 가지는 나노구멍 구조체를 형성하는 단계와;
상기 금속 마스크패턴을 제거하는 단계;를 구비함을 특징으로 하는 무반사 렌즈의 제조방법.
Preparing a glass substrate having a curved surface or a flat surface;
Sequentially forming a coating layer and a metal layer on the glass substrate;
A heat treatment is performed on the metal layer at a temperature equal to or lower than a melting point of the metal constituting the metal layer so that a dewetting phenomenon corresponding to a difference in surface energy between the coating layer and the metal layer Forming a metal mask pattern having a nano-hole structure of a size;
Forming a nano-hole structure having a nano-hole structure smaller than a light wavelength on the glass substrate by performing an anisotropic etching process on the coating layer using the metal mask pattern as an etching mask;
And removing the metal mask pattern from the metal mask pattern.
청구항 1에 있어서,
상기 유리기판은 크라운(crown) 계열, 붕규산(borosilicate) 계열, 플린트(flints) 계열 중에서 선택된 적어도 하나의 재질을 가지는 광학유리(Optical Glass)임을 특징으로 하는 무반사 렌즈의 제조방법.
The method according to claim 1,
Wherein the glass substrate is an optical glass having at least one material selected from the group consisting of a crown series, a borosilicate series, and a flint series.
청구항 1에 있어서,
상기 코팅층은 OXIDE, NITRIDE, PHOTORESIST, POLYMER 중에서 선택된 적어도 하나의 물질을, 화학적 기상증착법(CVD), 물리적 기상증착법(PVD), 플라즈마를 이용한 화학기상 증착법(PECVD), 스핀코팅법 중에서 선택된 적어도 하나의 증착방법을 이용하여 형성됨을 특징으로 하는 무반사 렌즈의 제조방법.
The method according to claim 1,
The coating layer may be formed of at least one material selected from OXIDE, NITRIDE, PHOTORESIST, and POLYMER by at least one of chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma chemical vapor deposition (PECVD) Wherein the first electrode is formed using a deposition method.
청구항 1에 있어서,
상기 금속층은 금, 은, 백금, 알루미늄, 구리, 팔라듐, 니켈, 아연, 철, 주석, 청동, 황동 중에서 선택된 적어도 하나의 금속 또는 이들 금속을 포함하는 합금을 재질로 하고,
상기 금속층은 열증착, 전자빔증착, 스퍼터링, 스핀코팅 중에서 선택된 적어도 하나의 증착방법을 이용하여 형성됨을 특징으로 하는 무반사 렌즈의 제조방법.
The method according to claim 1,
Wherein the metal layer is made of at least one metal selected from gold, silver, platinum, aluminum, copper, palladium, nickel, zinc, iron, tin, bronze, and brass,
Wherein the metal layer is formed using at least one deposition method selected from thermal deposition, electron beam deposition, sputtering, and spin coating.
청구항 1에 있어서,
상기 코팅층은 10~500nm의 두께로 증착되고, 상기 금속층은 15~100nm의 두께로 증착됨을 특징으로 하는 무반사 렌즈의 제조방법.
The method according to claim 1,
Wherein the coating layer is deposited to a thickness of 10 to 500 nm, and the metal layer is deposited to a thickness of 15 to 100 nm.
청구항 5에 있어서,
상기 금속층의 두께를 조절하거나 상기 열처리의 온도 조절을 통해 상기 나노구멍 구조체를 구성하는 나노구멍의 사이즈를 조절함을 특징으로 하는 무반사 렌즈의 제조방법.
The method of claim 5,
Wherein the size of the nano-holes constituting the nano-hole structure is controlled by controlling the thickness of the metal layer or adjusting the temperature of the heat treatment.
KR1020170073186A 2017-06-12 2017-06-12 Antireflective lens fabricating method having nanohole structures of enhanced mechanical stability KR101966826B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170073186A KR101966826B1 (en) 2017-06-12 2017-06-12 Antireflective lens fabricating method having nanohole structures of enhanced mechanical stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170073186A KR101966826B1 (en) 2017-06-12 2017-06-12 Antireflective lens fabricating method having nanohole structures of enhanced mechanical stability

Publications (2)

Publication Number Publication Date
KR20180135272A true KR20180135272A (en) 2018-12-20
KR101966826B1 KR101966826B1 (en) 2019-04-08

Family

ID=64952879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170073186A KR101966826B1 (en) 2017-06-12 2017-06-12 Antireflective lens fabricating method having nanohole structures of enhanced mechanical stability

Country Status (1)

Country Link
KR (1) KR101966826B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100070516A (en) * 2008-12-18 2010-06-28 한국기계연구원 Manufacturing method for anti-reflective surface and super water-repellent surface
KR20120014879A (en) * 2010-08-10 2012-02-20 연세대학교 산학협력단 Method of manufacturing glass substrate and the glass
KR20140084860A (en) 2012-12-27 2014-07-07 한국과학기술원 the manufacturing method of lens having antirefrective nanostructure using nanowire growth and the lens thereby
KR101529528B1 (en) * 2014-01-06 2015-06-18 한국과학기술연구원 Low reflective and superhydrophobic glasses and method of fabricating the same
JP2015227904A (en) * 2014-05-30 2015-12-17 旭硝子株式会社 Anti-reflection structure and manufacturing method therefor
KR20170004221A (en) * 2015-07-01 2017-01-11 동양시약 주식회사 Method of surface treatment for anti-reflection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100070516A (en) * 2008-12-18 2010-06-28 한국기계연구원 Manufacturing method for anti-reflective surface and super water-repellent surface
KR20120014879A (en) * 2010-08-10 2012-02-20 연세대학교 산학협력단 Method of manufacturing glass substrate and the glass
KR20140084860A (en) 2012-12-27 2014-07-07 한국과학기술원 the manufacturing method of lens having antirefrective nanostructure using nanowire growth and the lens thereby
KR101529528B1 (en) * 2014-01-06 2015-06-18 한국과학기술연구원 Low reflective and superhydrophobic glasses and method of fabricating the same
JP2015227904A (en) * 2014-05-30 2015-12-17 旭硝子株式会社 Anti-reflection structure and manufacturing method therefor
KR20170004221A (en) * 2015-07-01 2017-01-11 동양시약 주식회사 Method of surface treatment for anti-reflection

Also Published As

Publication number Publication date
KR101966826B1 (en) 2019-04-08

Similar Documents

Publication Publication Date Title
JP6415549B2 (en) Manufacturing method of antireflection layer
CN108025909B (en) Fabrication of a nanostructured substrate comprising multiple nanostructure gradients on a single substrate
JP2010043348A (en) Nanostructure thin film produced by oblique deposition method, and method for producing the same
JP2006126338A (en) Polarizer and its manufacturing method
JP2019521376A (en) Protected items that contain a protective coating
US11390518B2 (en) Formation of antireflective surfaces
US20100092747A1 (en) Infrared-reflecting films and method for making the same
CN107561611B (en) Surface patterning processing method of sapphire substrate
JP2007193249A (en) Method for producing molded component
Song et al. Antireflective grassy surface on glass substrates with self-masked dry etching
CN113740940A (en) Wide-bandwidth angle anti-reflection composite micro-nano structure surface and preparation method thereof
WO2014076983A1 (en) Method for manufacturing mold for antireflective structures, and method of use as mold for antireflective structures
KR20100097369A (en) Method for manufacturing lithography-free fabrication of subwavelength antireflection structures using thermally dewetted alloy etch mask and substrate manufactured with said method
CN213537738U (en) Colored glass
EP1743048A2 (en) Vacuum deposition method
KR101966826B1 (en) Antireflective lens fabricating method having nanohole structures of enhanced mechanical stability
US20160139302A1 (en) Formation of Antireflective Surfaces
Baryshnikova et al. Nanostructural antireflecting coatings: Classification analysis (A review)
JP2010072484A (en) Optical element, method of manufacturing mold for molding optical element and method of manufacturing optical element
CN113341488A (en) Visible light broadband perfect absorber based on transition metal film layer and preparation method
WO2019225518A1 (en) Method for manufacturing substrate having uneven structure
Wendling et al. Creating Anti‐Reflective Nanostructures on Polymers by Initial Layer Deposition before Plasma Etching
JP2005181990A (en) Thin-film structure and method for producing the same
JP4775024B2 (en) Manufacturing method of molded parts
CN108821229A (en) A kind of preparation method of ZnS infrared window anti-reflection micro-structure surface

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant