WO2014076983A1 - Method for manufacturing mold for antireflective structures, and method of use as mold for antireflective structures - Google Patents

Method for manufacturing mold for antireflective structures, and method of use as mold for antireflective structures Download PDF

Info

Publication number
WO2014076983A1
WO2014076983A1 PCT/JP2013/061889 JP2013061889W WO2014076983A1 WO 2014076983 A1 WO2014076983 A1 WO 2014076983A1 JP 2013061889 W JP2013061889 W JP 2013061889W WO 2014076983 A1 WO2014076983 A1 WO 2014076983A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
antireflection
etching
substrate
sulfur hexafluoride
Prior art date
Application number
PCT/JP2013/061889
Other languages
French (fr)
Japanese (ja)
Inventor
山本 和也
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to JP2014514650A priority Critical patent/JP5584907B1/en
Priority to DE112013005487.6T priority patent/DE112013005487B4/en
Publication of WO2014076983A1 publication Critical patent/WO2014076983A1/en
Priority to US14/663,746 priority patent/US20150192702A1/en
Priority to US15/808,321 priority patent/US10353119B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention provides an antireflection structural mold manufacturing method capable of manufacturing a high performance antireflection structural mold without requiring patterning, and uses the method manufactured by the method as an antireflection structural mold. Related to how to use.
  • the antireflection structural mold is used for molding including injection molding of an optical element.
  • An antireflection structure formed of a lattice shape arranged at a pitch (period) smaller than the wavelength of light is used for the optical element.
  • a method of manufacturing a mold for such an antireflection structure a method is known in which a resist is patterned using interference exposure or an electron beam drawing apparatus, and etching or electroforming is performed.
  • a pattern with a fine pitch can be formed, and drawing on a curved surface, that is, pattern formation is also possible.
  • the area for forming the pattern increases, a very long processing time is required. Therefore, from a realistic viewpoint, the maximum area where a pattern can be formed is at most 10 mm square.
  • the method using interference exposure has the merit that a large area can be processed in a lump, but the resolution is limited. Therefore, the pitch cannot be made very fine. Moreover, when processing into a curved surface, there is little freedom of design. Therefore, there is a problem that the reflection characteristics deteriorate on the short wavelength side in the visible light region.
  • Patent Document 1 an antireflection structural mold manufacturing method that does not require patterning has also been developed.
  • Patent Document 1 has a problem in producing a high-performance anti-reflection structural mold. This point will be described later in comparison with the present invention.
  • black silicon for solar cells has been developed.
  • the technical field of black silicon and the technical field of optical element molds are completely different and are irrelevant, and there is nothing to suggest the relationship between the two.
  • the antireflection structural mold manufacturing method is an antireflection structural mold manufacturing method for manufacturing an antireflection structural mold using a reactive ion etching apparatus.
  • a mixed gas of sulfur hexafluoride and oxygen is introduced into the apparatus, a base material made of a semiconductor or metal material that reacts with sulfur hexafluoride is disposed, and the mixed gas is converted into plasma.
  • oxygen ions in the plasma and semiconductor or metal ions reacted with sulfur hexafluoride are combined to generate oxides at random positions on the surface of the base material, and the oxides are used as etching prevention masks.
  • the pitch on the surface of the base material is in the range of 0.05 to 0.35 micrometers and the depth is 0.2.
  • a fine lattice structure having an aspect ratio of 0.8 or more is formed in the range of 1 micrometer to 1 micrometer.
  • the manufacturing method according to the present embodiment does not require patterning for the etching prevention mask, and thus does not take time.
  • the method of Patent Document 1 uses a polymer as an etching prevention mask, whereas the manufacturing method according to the present invention uses a semiconductor or metal oxide as an etching prevention mask. Since the etching selectivity of a semiconductor or metal oxide is much higher than that of a polymer, a fine lattice structure with a higher aspect ratio can be formed.
  • the base material is silicon
  • the gas pressure of the mixed gas is 1 to 5 Pascals, and the proportion of oxygen in the mixed gas is 30 to 70%. .
  • the temperature of the base material is set to 30 ° C. or lower.
  • the base material is a layer coated on the surface of the metal core.
  • an antireflection fine lattice structure can be formed on the surface of an arbitrary shape.
  • the metal is titanium, tungsten, tantalum, a titanium alloy in which other elements are added to titanium, or tungsten in which other elements are added to tungsten. It is an alloy.
  • the method for manufacturing a diffraction grating mold having an antireflection fine grating structure includes the step of forming an antireflection fine grating structure on the surface of a substrate by the above-described antireflection structure mold manufacturing method.
  • the method further includes the step of further etching by the above-described antireflection structural mold manufacturing method.
  • a mixed gas of sulfur hexafluoride and oxygen is introduced into a reactive ion etching apparatus, and a substrate made of a semiconductor or metal material that reacts with sulfur hexafluoride is prepared.
  • the mixed gas is plasmatized, and oxygen ions in the plasma are combined with semiconductor or metal ions reacted with sulfur hexafluoride to generate oxides at random positions on the surface of the substrate.
  • oxide as an anti-etching mask, etching proceeds to the surface of the base material with sulfur hexafluoride so that the pitch on the surface of the base material is in the range of 0.05 micrometers to 0.35 micrometers.
  • a mold having a fine lattice structure having a depth in the range of 0.2 to 1 micrometer and an aspect ratio of 0.8 or more is used as an antireflection structure mold. It is a method to use.
  • an antireflection structure mold having a fine lattice structure formed on the surface by the above-described manufacturing method can be used.
  • the present invention is based on the inventor's completely new knowledge that a fine lattice structure formed on the surface by the above manufacturing method is used as a mold for an antireflection structure of an optical element.
  • the inventor has studied the above manufacturing method in detail based on the above-mentioned new knowledge, and has established a technique for using as a reflection preventing structure a fine lattice structure formed on the surface by the above manufacturing method. .
  • FIG. 1 is a diagram showing a configuration of a reactive ion etching apparatus 200 used in a method for manufacturing a mold for an antireflection structure according to the present invention.
  • the reactive ion etching apparatus 200 has an etching chamber 201.
  • a gas is supplied from the gas supply port 207 to the evacuated etching chamber 201.
  • the etching chamber 201 is provided with a gas exhaust port 209, and a valve 217 is attached to the gas exhaust port 209.
  • the gas pressure in the etching chamber 201 can be set to a desired pressure value by causing the control device 215 to operate the valve 217 in accordance with the measured value of the gas pressure gauge 213 attached to the etching chamber 201.
  • the etching chamber 201 is provided with an upper electrode 203 and a lower electrode 205, and plasma can be generated by applying a high frequency voltage by a high frequency power source 211 between both electrodes.
  • the lower electrode 205 is provided with a base material 101 which is a base material of an antireflection structural mold.
  • the lower electrode 205 can be cooled to a desired temperature by the cooling device 219.
  • the cooling device 219 uses, for example, a water-cooled chiller for cooling. The reason why the lower electrode 205 is cooled is to manage the etching reaction by setting the temperature of the substrate 101 to a desired temperature. The relationship between the temperature of the substrate 101 and the etching reaction will be described later.
  • the gas supplied to the etching chamber 201 is a mixed gas of sulfur hexafluoride and oxygen.
  • the base material is a semiconductor or metal that reacts with the above-described sulfur hexafluoride.
  • FIG. 2 is a flowchart for explaining the principle of the method of manufacturing a mold for an antireflection structure according to the present invention.
  • step S1010 of FIG. 2 the mixed gas is turned into plasma by applying a high frequency voltage.
  • step S1020 of FIG. 2 the oxygen ions in the plasma and the metal or semiconductor ions of the base material reacted with the fluorine-based gas (sulfur hexafluoride) are combined and attached as oxides at random positions on the surface of the base material. To do.
  • the above oxide is hardly etched with sulfur hexafluoride and functions as an etching prevention mask.
  • step S1030 of FIG. 2 the etching of the portion not covered with the oxide on the surface of the base material by sulfur hexafluoride proceeds using the oxide attached to the surface of the base material as a mask. As a result, a lattice shape is formed on the substrate surface.
  • the gas to be used is a mixed gas of sulfur hexafluoride (SF 6 ) and oxygen as described above.
  • the base material is a semiconductor or metal that reacts with sulfur hexafluoride.
  • Specific examples include silicon, titanium, tungsten, tantalum, a titanium alloy in which other elements are added to titanium, and a tungsten alloy in which other elements are added to tungsten.
  • Table 1 is a table
  • Table 2 is a table
  • the frequency of the high frequency power is 13.56 MHz, and the voltage is 200V.
  • the pitch of the fine lattice structure of the antireflection structure mold manufactured according to the above manufacturing conditions is about 0.2 micrometers, and the depth is about 0.3 micrometers.
  • the aspect ratio is about 1.5.
  • FIG. 3 is a flowchart showing a method for determining the processing conditions of the method for manufacturing an antireflection structure mold according to the present invention.
  • step S2010 of FIG. 3 initial values of the processing conditions are set. Specifically, for example, the values in Table 2 are set.
  • step S2020 of FIG. 3 the substrate is processed using a reactive ion etching apparatus in accordance with the set processing conditions.
  • step S2030 of FIG. 3 the reflectance of the manufactured mold is evaluated.
  • step S2040 of FIG. 3 the shape of the manufactured mold is evaluated.
  • the shape is evaluated using, for example, a scanning electron microscope.
  • step S2050 of FIG. 3 it is determined whether or not the manufactured mold is appropriate as an antireflection structure mold. If appropriate, terminate the process. If not appropriate, the process proceeds to step S2060.
  • step S2060 of FIG. 3 the machining conditions are corrected.
  • the method for modifying the machining conditions is as follows.
  • the aspect ratio of the grating needs to be 0.8 or more.
  • the gas partial pressure ratio, the substrate cooling temperature, and the etching time are mainly adjusted.
  • the partial pressure ratio of the mixed gas SF 6 gas is increased, the etching rate is increased, and when the substrate cooling temperature is lowered, the formation reaction of the silicon oxide (SiO) is promoted and the formation of the anti-etching film (mask) is promoted. Therefore, if the etching time (reaction time) is increased under these conditions, the aspect ratio increases.
  • the pitch of the grating needs to be 0.35 micrometers or less so as to be smaller than the wavelength of visible light.
  • the gas partial pressure ratio and the cooling temperature of the substrate are adjusted. If the oxygen partial pressure ratio is increased and the substrate cooling temperature is lowered, the pitch of the lattice becomes smaller.
  • Table 3 is a table showing adjustment ranges of various parameters in the above case (when the base material is silicon and the mixed gas is composed of sulfur hexafluoride (SF 6 ) and oxygen).
  • Table 4 shows titanium, tungsten, tantalum, a titanium alloy in which other elements are added to titanium, and a tungsten alloy in which other elements are added to tungsten.
  • the mixed gas is sulfur hexafluoride (SF 6 ). It is a table
  • the advantage of using silicon as the base material is that processing is easy, and the advantage of using metal as the base material is that the mold has excellent durability.
  • a mixed gas of sulfur hexafluoride and oxygen is used.
  • fluorine-based gases carbon tetrafluoride, trifluoromethane, etc.
  • FIG. 4 is a view for explaining a method of manufacturing a mold for antireflection structure on a plane.
  • FIG. 4A is a diagram showing a cross section of the base material 101 before the etching process.
  • FIG. 4B is a view showing a cross section of the surface of the substrate 101 obtained by etching the shape of the antireflection structure using a reactive ion etching apparatus.
  • FIG. 5 is a diagram for explaining a method of manufacturing an antireflection structural mold on a curved surface.
  • FIG. 5 (a) is a view showing a cross section of a mold core 110 having a curved surface processed by cutting or the like.
  • FIG. 5B is a view showing a cross section of the base 110 formed on the surface of the mold core 110.
  • the thin film 111 of the base material is formed by sputtering or vapor deposition.
  • FIG.5 (c) is a figure which shows the cross section of what processed the shape of the reflection preventing structure into the surface of the thin film 111 of the base material shown in FIG.5 (b) using the reactive ion etching apparatus.
  • the antireflection structure mold can be manufactured on an arbitrary curved surface.
  • FIG. 6 is a flowchart for explaining a method of manufacturing a mold for a diffraction grating having a fine structure for preventing reflection.
  • FIG. 7 is a view for explaining a method of manufacturing a mold for a diffraction grating having a fine structure for preventing reflection.
  • the shape of the antireflection structure is processed by etching the surface of the base 121 using a reactive ion etching apparatus.
  • FIG. 7A is a view showing a cross section of the base material 121 after the etching process.
  • step S3020 of FIG. 6 the surface of the base material 121 is subjected to etching processing of the shape of the antireflection structure using a reactive ion etching apparatus, and the surface of the antireflection mask corresponding to the diffraction grating is patterned.
  • FIG. 7B is a view showing a cross section of the surface of the base material 121 after the etching process, in which the etching prevention mask 125 corresponding to the diffraction grating is patterned.
  • the patterning of the etching prevention mask 125 will be described later.
  • step S3030 in FIG. 6 the surface of the substrate 121 after the etching process is subjected to etching using a reactive ion etching apparatus after the patterning of the etching prevention mask 125 corresponding to the diffraction grating is performed.
  • step S3040 of FIG. 6 the etching prevention mask 125 is removed.
  • the removal of the etching prevention mask 125 will be described later.
  • FIG. 7C is a diagram showing a cross section of a diffraction grating mold having an antireflection microstructure manufactured by the method shown in the flowchart of FIG.
  • FIG. 8 is a diagram for explaining the patterning of the etching prevention mask.
  • FIG. 8A is a view showing a cross section of the substrate 121 obtained by patterning the resist 123 corresponding to the diffraction grating on the surface of the substrate 121.
  • a metal 125 such as chromium or nickel that hardly reacts to a fluorine-based gas is vapor-deposited on the surface of the base material 121 on which the resist 123 corresponding to the diffraction grating is patterned. It is a figure which shows the cross section of a thing.
  • FIG. 8C shows the surface of the substrate 121 patterned with the resist 123 corresponding to the diffraction grating, as shown in FIG. It is a figure which shows the cross section of what peeled the resist 123 from what vapor-deposited metals 125, such as nickel.
  • the metal 125 such as chromium or nickel in FIG. 8C functions as an etching prevention mask.
  • the resist 123 shown in FIG. 8A can also be used as an etching prevention mask.
  • the etching selection ratio (difference in etching rate) between the resist and the base material is smaller than the etching selection ratio between a metal such as chromium or nickel and the base material, the processable depth becomes shallow.
  • FIG. 9 is a scanning electron micrograph of an antireflection structural mold produced by the method of the present invention.
  • the pitch of the grating of the antireflection structure is about 0.2 micrometers.
  • FIG. 10 is a scanning electron micrograph of a mold for a diffraction grating having an antireflection microstructure manufactured by the method of the present invention.
  • the pitch of the diffraction grating is about 2 micrometers, and the pitch of the grating of the antireflection structure is about 0.2 micrometers.
  • FIG. 11 shows a surface provided with an antireflection structure manufactured by the method of the present invention, a surface provided with an antireflection structure manufactured by a conventional method (method using an electron beam drawing apparatus), and an antireflection structure. It is a figure which shows the relationship between the reflectance of the surface which is not, and a wavelength.
  • the horizontal axis in FIG. 9 indicates the wavelength, and the vertical axis in FIG. 9 indicates the reflectance.
  • the reflectivity of the surface with the antireflection structure manufactured by the method of the present invention is smaller than the reflectivity of the surface with the antireflection structure manufactured by the method of the prior art in the entire wavelength range. It can be seen that an antireflection structure having high antireflection performance can be manufactured.
  • an antireflection structure having high antireflection performance can be manufactured without using patterning. According to this method, it is possible to manufacture a large-area antireflection structure mold without any restrictions other than the size of the reactive ion etching apparatus. Further, according to the present method, an antireflection structure mold for forming an antireflection microstructure on an arbitrary curved surface and an antireflection structure for forming a diffraction grating having an antireflection microstructure A metal mold can be manufactured.

Abstract

Provided is a method which enables the manufacture of a high-performance mold for antireflective structures without requiring patterning. A mixed gas composed of sulfur hexafluoride and oxygen is introduced into a reactive ion etching apparatus; a base composed of a semiconductor or metal material capable of reacting with sulfur hexafluoride is placed in the apparatus; plasma is generated from the mixed gas; oxygen ions in the plasma are allowed to bond to ions in the semiconductor or metal material which has been reacted with the sulfur hexafluoride, thereby forming oxides at random positions on the surface of the base; and the etching with sulfur hexafluoride is allowed to proceed on the surface of the base using the oxides as etching-prevention masks. In this manner, a fine lattice structure having a pitch ranging from 0.05 to 0.35 micrometer, a depth of 0.2 to 1 micrometer and an aspect ratio of 0.8 or more can be formed on the surface of the base.

Description

反射防止構造用金型製造方法、及び反射防止構造用金型としての使用方法Anti-reflection structural mold manufacturing method and method of use as anti-reflection structural mold
 本発明は、パターニングを必要としないで高性能の反射防止構造用金型を製造することのできる反射防止構造用金型製造方法、及び該方法によって製造したものを反射防止構造用金型として使用する使用方法に関する。ここで、反射防止構造用金型は、光学素子の射出成型を含む成形に使用されるものである。 INDUSTRIAL APPLICABILITY The present invention provides an antireflection structural mold manufacturing method capable of manufacturing a high performance antireflection structural mold without requiring patterning, and uses the method manufactured by the method as an antireflection structural mold. Related to how to use. Here, the antireflection structural mold is used for molding including injection molding of an optical element.
 光の波長よりも小さなピッチ(周期)で配列された格子形状から形成される反射防止構造が光学素子に使用されている。このような反射防止構造用の金型の製造方法として、干渉露光や電子ビーム描画装置を使用してレジストをパターニングし、エッチングまたは電鋳を行う方法が知られている。 An antireflection structure formed of a lattice shape arranged at a pitch (period) smaller than the wavelength of light is used for the optical element. As a method of manufacturing a mold for such an antireflection structure, a method is known in which a resist is patterned using interference exposure or an electron beam drawing apparatus, and etching or electroforming is performed.
 電子ビーム描画装置を使用する方法では、微細なピッチのパターンも形成することができ、また曲面上への描画、すなわちパターン形成も可能である。しかし、パターンを形成する面積が大きくなると非常に多くの加工時間が必要となる。したがって、現実的な視点から、パターンを形成することのできる最大面積は、せいぜい10mm平方である。 In the method using an electron beam drawing apparatus, a pattern with a fine pitch can be formed, and drawing on a curved surface, that is, pattern formation is also possible. However, as the area for forming the pattern increases, a very long processing time is required. Therefore, from a realistic viewpoint, the maximum area where a pattern can be formed is at most 10 mm square.
 干渉露光を使用する方法は、一括で大きな面積を加工できるメリットがあるが、解像度に限界がある。したがって、ピッチはあまり微細に出来ない。また、曲面へ加工する場合、設計の自由度が少ない。したがって、可視光領域の短波長側において反射特性が劣化する問題があった。 The method using interference exposure has the merit that a large area can be processed in a lump, but the resolution is limited. Therefore, the pitch cannot be made very fine. Moreover, when processing into a curved surface, there is little freedom of design. Therefore, there is a problem that the reflection characteristics deteriorate on the short wavelength side in the visible light region.
 このように、パターニングを使用する方法は、プロセスが複雑で手間がかかる。 As described above, the method using patterning is complicated and time-consuming.
 これに対して、パターニングを必要としない反射防止構造用金型製造方法も開発されている(たとえば、特許文献1)。 On the other hand, an antireflection structural mold manufacturing method that does not require patterning has also been developed (for example, Patent Document 1).
 しかし、特許文献1に記載された方法は、高性能の反射防止構造用金型を製造するには問題があった。この点に関しては、本発明と比較して後で説明する。 However, the method described in Patent Document 1 has a problem in producing a high-performance anti-reflection structural mold. This point will be described later in comparison with the present invention.
 また、従来、太陽電池用のブラックシリコンが開発されている。しかし、ブラックシリコンの技術分野と光学素子の金型の技術分野とは全く異なり、両者は無関係であり、両者の関係を示唆するものは何もない。 Also, conventionally, black silicon for solar cells has been developed. However, the technical field of black silicon and the technical field of optical element molds are completely different and are irrelevant, and there is nothing to suggest the relationship between the two.
US8187481B1US8187481B1
 したがって、パターニングを必要としないで高性能の反射防止構造用金型を製造することのできる反射防止構造用金型製造方法に対するニーズがある。 Therefore, there is a need for an antireflection structural mold manufacturing method capable of manufacturing a high performance antireflection structural mold without requiring patterning.
 本発明の第1の態様による反射防止構造用金型製造方法は、反応性イオンエッチング装置を使用して反射防止構造用金型を製造する反射防止構造用金型製造方法である。本製造方法においては、該装置内に、六フッ化硫黄と酸素との混合ガスを導入し、六フッ化硫黄と反応する半導体または金属の材料からなる基材を配置し、該混合ガスをプラズマ化し、該プラズマ中の酸素イオンと六フッ化硫黄に反応した半導体または金属のイオンとを結合させて、該基材の表面のランダムな位置に酸化物を生成させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、ピッチが0.05マイクロメータから0.35マイクロメータの範囲であり、深さが0.2マイクロメータから1マイクロメータの範囲であり、アスペクト比が0.8以上である微細格子構造を形成する。 The antireflection structural mold manufacturing method according to the first aspect of the present invention is an antireflection structural mold manufacturing method for manufacturing an antireflection structural mold using a reactive ion etching apparatus. In this production method, a mixed gas of sulfur hexafluoride and oxygen is introduced into the apparatus, a base material made of a semiconductor or metal material that reacts with sulfur hexafluoride is disposed, and the mixed gas is converted into plasma. And oxygen ions in the plasma and semiconductor or metal ions reacted with sulfur hexafluoride are combined to generate oxides at random positions on the surface of the base material, and the oxides are used as etching prevention masks. As the etching progresses to the surface of the base material with sulfur hexafluoride, the pitch on the surface of the base material is in the range of 0.05 to 0.35 micrometers and the depth is 0.2. A fine lattice structure having an aspect ratio of 0.8 or more is formed in the range of 1 micrometer to 1 micrometer.
 本態様による製造方法は、エッチング防止マスクのためのパターニングを必要としないので手間がかからない。また、特許文献1の方法は、エッチング防止マスクとしてポリマーを使用するのに対し、本発明による製造方法は、エッチング防止マスクとして半導体または金属の酸化物を使用する。半導体または金属の酸化物のエッチング選択比は、ポリマーの選択比よりはるかに高いので、よりアスペクト比の高い微細格子構造を形成することができる。 The manufacturing method according to the present embodiment does not require patterning for the etching prevention mask, and thus does not take time. The method of Patent Document 1 uses a polymer as an etching prevention mask, whereas the manufacturing method according to the present invention uses a semiconductor or metal oxide as an etching prevention mask. Since the etching selectivity of a semiconductor or metal oxide is much higher than that of a polymer, a fine lattice structure with a higher aspect ratio can be formed.
 本発明の第1の実施形態による反射防止構造用金型製造方法においては、前記基材の材料がシリコンである。 In the mold for manufacturing an antireflection structure according to the first embodiment of the present invention, the base material is silicon.
 本発明の第2の実施形態による反射防止構造用金型製造方法においては、前記混合ガスのガス圧が1乃至5パスカルであり、前記混合ガス中の酸素の割居合が30乃至70%である。 In the antireflection structure mold manufacturing method according to the second embodiment of the present invention, the gas pressure of the mixed gas is 1 to 5 Pascals, and the proportion of oxygen in the mixed gas is 30 to 70%. .
 本発明の第3の実施形態による反射防止構造用金型製造方法においては、前記基材の温度を30℃以下とする。 In the antireflection structural mold manufacturing method according to the third embodiment of the present invention, the temperature of the base material is set to 30 ° C. or lower.
 本発明の第4の実施形態による反射防止構造用金型製造方法においては、前記基材が、金属コアの表面にコーティングされた層である。 In the antireflection structural mold manufacturing method according to the fourth embodiment of the present invention, the base material is a layer coated on the surface of the metal core.
 本実施形態によれば、曲面を含む任意の形状に加工した金属コアの表面に基材の層をコーティングすることにより、任意の形状の表面に反射防止用の微細格子構造を形成することができる。 According to this embodiment, by coating the surface of a metal core processed into an arbitrary shape including a curved surface with a base material layer, an antireflection fine lattice structure can be formed on the surface of an arbitrary shape. .
 本発明の第5の実施形態による反射防止構造用金型製造方法においては、前記金属が、チタン、タングステン、タンタル、チタンに他の元素を添加したチタン合金、タングステンに他の元素を添加したタングステン合金である。 In the antireflection structural mold manufacturing method according to the fifth embodiment of the present invention, the metal is titanium, tungsten, tantalum, a titanium alloy in which other elements are added to titanium, or tungsten in which other elements are added to tungsten. It is an alloy.
 本発明による反射防止用の微細格子構造を備えた回折格子用金型製造方法は、上記の反射防止構造用金型製造方法によって、基材の表面に反射防止用の微細格子構造を形成するステップと、反射防止用の微細格子構造を形成した該基材の表面に、回折格子のパターンに対応したエッチング防止マスクを形成するステップと、該エッチング防止マスクを形成した基材のマスクされていない部分に対して、上記の反射防止構造用金型製造方法によってさらにエッチングを進めるステップと、を含む。 The method for manufacturing a diffraction grating mold having an antireflection fine grating structure according to the present invention includes the step of forming an antireflection fine grating structure on the surface of a substrate by the above-described antireflection structure mold manufacturing method. A step of forming an etching prevention mask corresponding to the pattern of the diffraction grating on the surface of the base material on which the antireflection fine grating structure is formed, and an unmasked portion of the base material on which the etching prevention mask is formed In contrast, the method further includes the step of further etching by the above-described antireflection structural mold manufacturing method.
 本方法によれば、反射防止構造用のパターニングを必要とせずに、反射防止用の微細格子構造を備えた回折格子用金型を製造することができる。 According to this method, it is possible to manufacture a diffraction grating mold having an antireflection fine grating structure without requiring patterning for the antireflection structure.
 本発明の第2の態様による方法は、反応性イオンエッチング装置内に、六フッ化硫黄と酸素との混合ガスを導入し、六フッ化硫黄と反応する半導体または金属の材料からなる基材を配置し、該混合ガスをプラズマ化し、該プラズマ中の酸素イオンと六フッ化硫黄に反応した半導体または金属のイオンとを結合させて、該基材の表面のランダムな位置に酸化物を生成させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、ピッチが0.05マイクロメータから0.35マイクロメータの範囲であり、深さが0.2マイクロメータから1マイクロメータの範囲であり、アスペクト比が0.8以上である微細格子構造を形成したものを反射防止構造用金型として使用する方法である。 In the method according to the second aspect of the present invention, a mixed gas of sulfur hexafluoride and oxygen is introduced into a reactive ion etching apparatus, and a substrate made of a semiconductor or metal material that reacts with sulfur hexafluoride is prepared. The mixed gas is plasmatized, and oxygen ions in the plasma are combined with semiconductor or metal ions reacted with sulfur hexafluoride to generate oxides at random positions on the surface of the substrate. Using the oxide as an anti-etching mask, etching proceeds to the surface of the base material with sulfur hexafluoride so that the pitch on the surface of the base material is in the range of 0.05 micrometers to 0.35 micrometers. A mold having a fine lattice structure having a depth in the range of 0.2 to 1 micrometer and an aspect ratio of 0.8 or more is used as an antireflection structure mold. It is a method to use.
 本態様による方法によれば、手間がかからない上記の製造方法によって表面に微細格子構造を形成したものを反射防止構造用金型として使用することができる。 According to the method according to the present aspect, an antireflection structure mold having a fine lattice structure formed on the surface by the above-described manufacturing method can be used.
 本発明は、上記の製造方法によって表面に微細格子構造を形成したものを、光学素子の反射防止構造用金型として使用するという発明者の全く新たな知見に基づくものである。発明者は上記の新たな知見に基づいて、上記の製造方法を詳細に検討し、上記の製造方法によって表面に微細格子構造を形成したものを反射防止構造として使用する技術を確立したものである。 The present invention is based on the inventor's completely new knowledge that a fine lattice structure formed on the surface by the above manufacturing method is used as a mold for an antireflection structure of an optical element. The inventor has studied the above manufacturing method in detail based on the above-mentioned new knowledge, and has established a technique for using as a reflection preventing structure a fine lattice structure formed on the surface by the above manufacturing method. .
本発明による反射防止構造用金型製造方法に使用される反応性イオンエッチング装置の構成を示す図である。It is a figure which shows the structure of the reactive ion etching apparatus used for the metal mold | die manufacturing method for antireflection structures by this invention. 本発明による反射防止構造用金型製造方法の原理を説明するための流れ図である。It is a flowchart for demonstrating the principle of the metal mold | die manufacturing method for antireflection structures by this invention. 本発明による反射防止構造用金型製造方法の加工条件を決定する方法を示す流れ図である。It is a flowchart which shows the method of determining the processing conditions of the metal mold | die manufacturing method for antireflection structures by this invention. 平面に反射防止構造用金型を製造する方法を説明するための図である。It is a figure for demonstrating the method to manufacture the metal mold | die for antireflection structure on a plane. 曲面に反射防止構造用金型を製造する方法を説明するための図である。It is a figure for demonstrating the method to manufacture the metal mold | die for antireflection structure on a curved surface. 反射防止用の微細構造を備えた回折格子用の金型の製造方法を説明するための流れ図である。It is a flowchart for demonstrating the manufacturing method of the metal mold | die for diffraction grating provided with the fine structure for reflection prevention. 反射防止用の微細構造を備えた回折格子用の金型の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the metal mold | die for diffraction grating provided with the fine structure for reflection prevention. エッチング防止マスクのパターニングを説明するための図である。It is a figure for demonstrating the patterning of an etching prevention mask. 本発明の方法によって製造した反射防止構造用金型の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the metal mold | die for antireflection structure manufactured by the method of this invention. 本発明の方法によって製造した、反射防止用の微細構造を備えた回折格子用の金型の走査型電子顕微鏡写真である。It is the scanning electron micrograph of the metal mold | die for diffraction grating provided with the microstructure for antireflection manufactured by the method of this invention. 本発明の方法によって製造した反射防止構造を備えた面、従来技術の方法によって製造した反射防止構造を備えた面、及び反射防止構造を備えていない面の反射率と波長との関係を示す図である。The figure which shows the relationship between the reflectance and wavelength of the surface provided with the antireflection structure manufactured by the method of the present invention, the surface provided with the antireflection structure manufactured by the method of the prior art, and the surface not provided with the antireflection structure. It is.
 図1は、本発明による反射防止構造用金型製造方法に使用される反応性イオンエッチング装置200の構成を示す図である。反応性イオンエッチング装置200は、エッチング室201を有する。真空排気されたエッチング室201には、ガス供給口207からガスが供給される。さらに、エッチング室201には、ガス排気口209が設けられ、ガス排気口209には、バルブ217が取り付けられている。エッチング室201に取り付けられたガス圧力計213の測定値にしたがって、制御装置215にバルブ217を操作させることにより、エッチング室201内のガス圧力を所望の圧力値とすることができる。エッチング室201には、上部電極203及び下部電極205が備わり、両電極間に高周波電源211により高周波電圧をかけてプラズマを発生させることができる。下部電極205には、反射防止構造用金型の母材である基材101が配置される。下部電極205は、冷却装置219によって所望の温度に冷却することができる。冷却装置219は、たとえば、冷却に水冷式チラーを使用するものである。下部電極205を冷却するのは、基材101の温度を所望の温度とすることによりエッチング反応を管理するためである。基材101の温度とエッチング反応との関係については後で説明する。 FIG. 1 is a diagram showing a configuration of a reactive ion etching apparatus 200 used in a method for manufacturing a mold for an antireflection structure according to the present invention. The reactive ion etching apparatus 200 has an etching chamber 201. A gas is supplied from the gas supply port 207 to the evacuated etching chamber 201. Further, the etching chamber 201 is provided with a gas exhaust port 209, and a valve 217 is attached to the gas exhaust port 209. The gas pressure in the etching chamber 201 can be set to a desired pressure value by causing the control device 215 to operate the valve 217 in accordance with the measured value of the gas pressure gauge 213 attached to the etching chamber 201. The etching chamber 201 is provided with an upper electrode 203 and a lower electrode 205, and plasma can be generated by applying a high frequency voltage by a high frequency power source 211 between both electrodes. The lower electrode 205 is provided with a base material 101 which is a base material of an antireflection structural mold. The lower electrode 205 can be cooled to a desired temperature by the cooling device 219. The cooling device 219 uses, for example, a water-cooled chiller for cooling. The reason why the lower electrode 205 is cooled is to manage the etching reaction by setting the temperature of the substrate 101 to a desired temperature. The relationship between the temperature of the substrate 101 and the etching reaction will be described later.
 ここで、エッチング室201に供給されるガスは、六フッ化硫黄と酸素との混合ガスである。また、基材の材料は、上記の六フッ化硫黄と反応する半導体または金属である。 Here, the gas supplied to the etching chamber 201 is a mixed gas of sulfur hexafluoride and oxygen. The base material is a semiconductor or metal that reacts with the above-described sulfur hexafluoride.
 図2は、本発明による反射防止構造用金型製造方法の原理を説明するための流れ図である。 FIG. 2 is a flowchart for explaining the principle of the method of manufacturing a mold for an antireflection structure according to the present invention.
 図2のステップS1010において、高周波電圧をかけることにより、混合ガスがプラズマ化される。 In step S1010 of FIG. 2, the mixed gas is turned into plasma by applying a high frequency voltage.
 図2のステップS1020において、プラズマ中の酸素イオンと、フッ素系ガス(六フッ化硫黄)に反応した基材の金属または半導体イオンとが結合し、酸化物として基材表面のランダムな位置に付着する。上記の酸化物は、六フッ化硫黄でほとんどエッチングされず、エッチング防止マスクとして機能する。 In step S1020 of FIG. 2, the oxygen ions in the plasma and the metal or semiconductor ions of the base material reacted with the fluorine-based gas (sulfur hexafluoride) are combined and attached as oxides at random positions on the surface of the base material. To do. The above oxide is hardly etched with sulfur hexafluoride and functions as an etching prevention mask.
 図2のステップS1030において、基材表面に付着した上記の酸化物をマスクとして六フッ化硫黄によって基材表面の酸化物に覆われていない部分のエッチングが進行する。この結果、基材表面に格子状形状が形成される。 In step S1030 of FIG. 2, the etching of the portion not covered with the oxide on the surface of the base material by sulfur hexafluoride proceeds using the oxide attached to the surface of the base material as a mask. As a result, a lattice shape is formed on the substrate surface.
 使用するガスは、上述のように、六フッ化硫黄(SF)と酸素との混合ガスである。 The gas to be used is a mixed gas of sulfur hexafluoride (SF 6 ) and oxygen as described above.
 基材の材料は、六フッ化硫黄と反応する、半導体、金属である。具体的には、シリコン、チタン、タングステン、タンタル、チタンに他の元素を添加したチタン合金、タングステンに他の元素を添加したタングステン合金などである。 The base material is a semiconductor or metal that reacts with sulfur hexafluoride. Specific examples include silicon, titanium, tungsten, tantalum, a titanium alloy in which other elements are added to titanium, and a tungsten alloy in which other elements are added to tungsten.
 本発明による反射防止構造用金型製造方法について実施例に基づいて説明する。ここで、基材として、シリコンウエハを使用する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing an antireflection structure mold according to the present invention will be described based on examples. Here, a silicon wafer is used as the substrate.
 表1は、実施例において使用するシリコンウエハの特性を示す表である。
Figure JPOXMLDOC01-appb-T000001
Table 1 is a table | surface which shows the characteristic of the silicon wafer used in an Example.
Figure JPOXMLDOC01-appb-T000001
 表2は、実施例における加工条件を示す表である。
Figure JPOXMLDOC01-appb-T000002
ここで、高周波電力の周波数は、13.56MHzであり、電圧は、200Vである。
Table 2 is a table | surface which shows the processing conditions in an Example.
Figure JPOXMLDOC01-appb-T000002
Here, the frequency of the high frequency power is 13.56 MHz, and the voltage is 200V.
 上記の製造条件によって製造した反射防止構造用金型の微細格子構造のピッチは、約0.2マイクロメータであり、深さは、約0.3マイクロメータである。また、アスペクト比は、約1.5である。 The pitch of the fine lattice structure of the antireflection structure mold manufactured according to the above manufacturing conditions is about 0.2 micrometers, and the depth is about 0.3 micrometers. The aspect ratio is about 1.5.
 図3は、本発明による反射防止構造用金型製造方法の加工条件を決定する方法を示す流れ図である。 FIG. 3 is a flowchart showing a method for determining the processing conditions of the method for manufacturing an antireflection structure mold according to the present invention.
 図3のステップS2010において、加工条件の初期値を設定する。具体的には、たとえば、表2の値を設定する。 In step S2010 of FIG. 3, initial values of the processing conditions are set. Specifically, for example, the values in Table 2 are set.
 図3のステップS2020において、設定した加工条件にしたがって反応性イオンエッチング装置を使用して基材を加工する。 In step S2020 of FIG. 3, the substrate is processed using a reactive ion etching apparatus in accordance with the set processing conditions.
 図3のステップS2030において、製造した金型の反射率を評価する。 In step S2030 of FIG. 3, the reflectance of the manufactured mold is evaluated.
 図3のステップS2040において、製造した金型の形状を評価する。形状の評価は、たとえば、走査型電子顕微鏡を使用して行う。 In step S2040 of FIG. 3, the shape of the manufactured mold is evaluated. The shape is evaluated using, for example, a scanning electron microscope.
 図3のステップS2050において、製造した金型が反射防止構造用金型として適切かどうか判断する。適切であれば処理を終了する。適切でなければステップS2060に進む。 In step S2050 of FIG. 3, it is determined whether or not the manufactured mold is appropriate as an antireflection structure mold. If appropriate, terminate the process. If not appropriate, the process proceeds to step S2060.
 図3のステップS2060において、加工条件を修正する。加工条件の修正の方法は以下のとおりである。 In step S2060 of FIG. 3, the machining conditions are corrected. The method for modifying the machining conditions is as follows.
 格子のアスペクト比は0.8以上とする必要がある。アスペクト比を変えるには、主にガスの分圧比、基材の冷却温度、及びエッチング時間を調整する。混合ガスのSFガスの分圧比を高くすると、エッチングレイトが高くなり、基材の冷却温度を下げると酸化ケイ素(SiO)の生成反応が促進されエッチング防止膜(マスク)の形成が促進されるので、この条件下で、エッチング時間(反応時間)を長くすればアスペクト比は高くなる。 The aspect ratio of the grating needs to be 0.8 or more. In order to change the aspect ratio, the gas partial pressure ratio, the substrate cooling temperature, and the etching time are mainly adjusted. When the partial pressure ratio of the mixed gas SF 6 gas is increased, the etching rate is increased, and when the substrate cooling temperature is lowered, the formation reaction of the silicon oxide (SiO) is promoted and the formation of the anti-etching film (mask) is promoted. Therefore, if the etching time (reaction time) is increased under these conditions, the aspect ratio increases.
 格子のピッチは、可視光の波長よりも小さくなるように、0.35マイクロメータ以下とする必要がある。格子のピッチを変えるには、ガス分圧比と基材の冷却温度を調整する。酸素の分圧比を高くし、基材の冷却温度を低くすれば、格子のピッチは小さくなる。 The pitch of the grating needs to be 0.35 micrometers or less so as to be smaller than the wavelength of visible light. In order to change the pitch of the lattice, the gas partial pressure ratio and the cooling temperature of the substrate are adjusted. If the oxygen partial pressure ratio is increased and the substrate cooling temperature is lowered, the pitch of the lattice becomes smaller.
 種々のパラメータの機能は、以下のように要約することができる。 The functions of various parameters can be summarized as follows.
 混合ガスの六フッ化硫黄(SF)の分圧比を高くすると、エッチングレイトが高くなる。 When the partial pressure ratio of the mixed gas, sulfur hexafluoride (SF 6 ) is increased, the etching rate is increased.
 基材の冷却温度を下げると酸化ケイ素(SiO)の生成反応が促進されエッチング防止膜(マスク)の形成が促進される。 When the cooling temperature of the substrate is lowered, the formation reaction of silicon oxide (SiO) is promoted and the formation of an etching preventing film (mask) is promoted.
 反応時間を長くするとエッチングが進行する。 Etching progresses when reaction time is lengthened.
 混合ガスのガス圧を高くすると、エッチングレイトが高くなる。 ) When the gas pressure of the mixed gas is increased, the etching rate increases.
 高周波電源の電力を高くすると、エッチングレイトが高くなる。 When the power of the high frequency power source is increased, the etching rate increases.
 ただし、混合ガスの六フッ化硫黄(SF)の分圧比が高すぎると、酸化ケイ素(SiO)が生成されず、エッチング防止膜(マスク)が形成されない。このため、格子状構造は形成されない。また、混合ガスの酸素の分圧比が高すぎるか、または、基材の冷却温度が低すぎると、基材の表面にエッチング防止膜(マスク)が過剰に生成されエッチングが行われない。このため、格子状構造は形成されない。 However, if the partial pressure ratio of sulfur hexafluoride (SF 6 ) in the mixed gas is too high, silicon oxide (SiO) is not generated and an etching prevention film (mask) is not formed. For this reason, a lattice structure is not formed. On the other hand, if the partial pressure ratio of oxygen in the mixed gas is too high, or if the cooling temperature of the substrate is too low, an etching preventive film (mask) is excessively formed on the surface of the substrate and etching is not performed. For this reason, a lattice structure is not formed.
 したがって、上記の種々のパラメータの調整は所定の範囲で行う必要がある。 Therefore, it is necessary to adjust the above various parameters within a predetermined range.
 表3は、上記場合(基材の材料がシリコンであり、混合ガスが六フッ化硫黄(SF)と酸素からなる場合)の種々のパラメータの調整範囲を示す表である。
Figure JPOXMLDOC01-appb-T000003
Table 3 is a table showing adjustment ranges of various parameters in the above case (when the base material is silicon and the mixed gas is composed of sulfur hexafluoride (SF 6 ) and oxygen).
Figure JPOXMLDOC01-appb-T000003
 表4は、基材の材料がチタン、タングステン、タンタル、チタンに他の元素を添加したチタン合金、タングステンに他の元素を添加したタングステン合金であり、混合ガスが六フッ化硫黄(SF)と酸素からなる場合に種々のパラメータの調整範囲を示す表である。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows titanium, tungsten, tantalum, a titanium alloy in which other elements are added to titanium, and a tungsten alloy in which other elements are added to tungsten. The mixed gas is sulfur hexafluoride (SF 6 ). It is a table | surface which shows the adjustment range of various parameters when it consists of and oxygen.
Figure JPOXMLDOC01-appb-T000004
 基材の材料にシリコンを使用した場合の利点は、加工が容易であることであり、基材の材料に金属を使用した場合の利点は、金型の耐久性が優れていることである。 The advantage of using silicon as the base material is that processing is easy, and the advantage of using metal as the base material is that the mold has excellent durability.
 なお、上記の実施形態において六フッ化硫黄と酸素との混合ガスを使用したが、六フッ化硫黄の代わりにその他のフッ素系ガス(四フッ化炭素、トリフルオロメタン等)を使用することもできる。 In the above embodiment, a mixed gas of sulfur hexafluoride and oxygen is used. However, other fluorine-based gases (carbon tetrafluoride, trifluoromethane, etc.) can be used instead of sulfur hexafluoride. .
 図4は、平面に反射防止構造用金型を製造する方法を説明するための図である。 FIG. 4 is a view for explaining a method of manufacturing a mold for antireflection structure on a plane.
 図4(a)は、エッチング加工前の基材101の断面を示す図である。 FIG. 4A is a diagram showing a cross section of the base material 101 before the etching process.
 図4(b)は、基材101の表面に反応性イオンエッチング装置を使用して反射防止構造の形状をエッチング加工したものの断面を示す図である。 FIG. 4B is a view showing a cross section of the surface of the substrate 101 obtained by etching the shape of the antireflection structure using a reactive ion etching apparatus.
 図5は、曲面に反射防止構造用金型を製造する方法を説明するための図である。 FIG. 5 is a diagram for explaining a method of manufacturing an antireflection structural mold on a curved surface.
 図5(a)は、切削加工などにより曲面を加工した金型のコア110の断面を示す図である。 FIG. 5 (a) is a view showing a cross section of a mold core 110 having a curved surface processed by cutting or the like.
 図5(b)は、金型のコア110の表面に基材の薄膜111を形成したものの断面を示す図である。基材の薄膜111は、スパッタリングや蒸着などによって形成する。 FIG. 5B is a view showing a cross section of the base 110 formed on the surface of the mold core 110. The thin film 111 of the base material is formed by sputtering or vapor deposition.
 図5(c)は、図5(b)に示すものの基材の薄膜111の表面に反応性イオンエッチング装置を使用して反射防止構造の形状をエッチング加工したものの断面を示す図である。図5によって説明した方法によれば、任意の曲面に反射防止構造用金型を製造することができる。 FIG.5 (c) is a figure which shows the cross section of what processed the shape of the reflection preventing structure into the surface of the thin film 111 of the base material shown in FIG.5 (b) using the reactive ion etching apparatus. According to the method described with reference to FIG. 5, the antireflection structure mold can be manufactured on an arbitrary curved surface.
 図6は、反射防止用の微細構造を備えた回折格子用の金型の製造方法を説明するための流れ図である。 FIG. 6 is a flowchart for explaining a method of manufacturing a mold for a diffraction grating having a fine structure for preventing reflection.
 図7は、反射防止用の微細構造を備えた回折格子用の金型の製造方法を説明するための図である。 FIG. 7 is a view for explaining a method of manufacturing a mold for a diffraction grating having a fine structure for preventing reflection.
 図6のステップS3010において、反応性イオンエッチング装置を使用して基材121の表面にエッチングにより反射防止構造の形状を加工する。 6, the shape of the antireflection structure is processed by etching the surface of the base 121 using a reactive ion etching apparatus.
 図7(a)は、エッチング加工後の基材121の断面を示す図である。 FIG. 7A is a view showing a cross section of the base material 121 after the etching process.
 図6のステップS3020において、基材121の表面に反応性イオンエッチング装置を使用して反射防止構造の形状をエッチング加工したものの表面に回折格子に対応するエッチング防止マスクのパターニングを行う。 In step S3020 of FIG. 6, the surface of the base material 121 is subjected to etching processing of the shape of the antireflection structure using a reactive ion etching apparatus, and the surface of the antireflection mask corresponding to the diffraction grating is patterned.
 図7(b)は、エッチング加工後の基材121の表面に回折格子に対応するエッチング防止マスク125のパターニングを行ったものの断面を示す図である。エッチング防止マスク125のパターニングについては後で説明する。 FIG. 7B is a view showing a cross section of the surface of the base material 121 after the etching process, in which the etching prevention mask 125 corresponding to the diffraction grating is patterned. The patterning of the etching prevention mask 125 will be described later.
 図6のステップS3030において、エッチング加工後の基材121の表面に回折格子に対応するエッチング防止マスク125のパターニングを行ったものに、さらに反応性イオンエッチング装置を使用してエッチング加工を行う。 In step S3030 in FIG. 6, the surface of the substrate 121 after the etching process is subjected to etching using a reactive ion etching apparatus after the patterning of the etching prevention mask 125 corresponding to the diffraction grating is performed.
 図6のステップS3040において、エッチング防止マスク125を除去する。エッチング防止マスク125の除去については後で説明する。 In step S3040 of FIG. 6, the etching prevention mask 125 is removed. The removal of the etching prevention mask 125 will be described later.
 図7(c)は、図6の流れ図に示す方法によって製造された、反射防止用の微細構造を備えた回折格子用の金型の断面を示す図である。 FIG. 7C is a diagram showing a cross section of a diffraction grating mold having an antireflection microstructure manufactured by the method shown in the flowchart of FIG.
 図8は、エッチング防止マスクのパターニングを説明するための図である。 FIG. 8 is a diagram for explaining the patterning of the etching prevention mask.
 図8(a)は、基材121の表面に回折格子に対応するレジスト123のパターニングをおこなったものの断面を示す図である。 FIG. 8A is a view showing a cross section of the substrate 121 obtained by patterning the resist 123 corresponding to the diffraction grating on the surface of the substrate 121.
 図8(b)は、基材121の表面に回折格子に対応するレジスト123のパターニングをおこなったものの表面に、フッ素系のガスに対して反応しにくいクロムやニッケルなどの金属125を蒸着させたものの断面を示す図である。 In FIG. 8B, a metal 125 such as chromium or nickel that hardly reacts to a fluorine-based gas is vapor-deposited on the surface of the base material 121 on which the resist 123 corresponding to the diffraction grating is patterned. It is a figure which shows the cross section of a thing.
 図8(c)は、図8(b)に示した、基材121の表面に回折格子に対応するレジスト123のパターニングをおこなったものの表面に、フッ素系のガスに対して反応しにくいクロムやニッケルなどの金属125を蒸着させたものからレジスト123を剥離させたものの断面を示す図である。図8(c)におけるクロムやニッケルなどの金属125が、エッチング防止マスクとして機能する。 FIG. 8C shows the surface of the substrate 121 patterned with the resist 123 corresponding to the diffraction grating, as shown in FIG. It is a figure which shows the cross section of what peeled the resist 123 from what vapor-deposited metals 125, such as nickel. The metal 125 such as chromium or nickel in FIG. 8C functions as an etching prevention mask.
 図8(a)に示したレジスト123も、エッチング防止マスクとして使用することができる。ただし、レジストと基材とのエッチング選択比(エッチングレイトの差)は、クロムやニッケルなどの金属と基材とのエッチング選択比よりも小さいので、加工できる深さは浅くなる。 The resist 123 shown in FIG. 8A can also be used as an etching prevention mask. However, since the etching selection ratio (difference in etching rate) between the resist and the base material is smaller than the etching selection ratio between a metal such as chromium or nickel and the base material, the processable depth becomes shallow.
 図9は、本発明の方法によって製造した反射防止構造用金型の走査型電子顕微鏡写真である。反射防止構造の格子のピッチは約0.2マイクロメータである。 FIG. 9 is a scanning electron micrograph of an antireflection structural mold produced by the method of the present invention. The pitch of the grating of the antireflection structure is about 0.2 micrometers.
 図10は、本発明の方法によって製造した、反射防止用の微細構造を備えた回折格子用の金型の走査型電子顕微鏡写真である。回折格子のピッチは約2マイクロメータであり、反射防止構造の格子のピッチは約0.2マイクロメータである。 FIG. 10 is a scanning electron micrograph of a mold for a diffraction grating having an antireflection microstructure manufactured by the method of the present invention. The pitch of the diffraction grating is about 2 micrometers, and the pitch of the grating of the antireflection structure is about 0.2 micrometers.
 図11は、本発明の方法によって製造した反射防止構造を備えた面、従来技術の方法(電子ビーム描画装置を使用する方法)によって製造した反射防止構造を備えた面、及び反射防止構造を備えていない面の反射率と波長との関係を示す図である。図9の横軸は、波長を示し、図9の縦軸は、反射率を示す。本発明の方法によって製造した反射防止構造を備えた面の反射率は、波長の全領域で従来技術の方法によって製造した反射防止構造を備えた面の反射率よりも小さく、本発明の方法によって高い反射防止性能を備えた反射防止構造を製造できることがわかる。 FIG. 11 shows a surface provided with an antireflection structure manufactured by the method of the present invention, a surface provided with an antireflection structure manufactured by a conventional method (method using an electron beam drawing apparatus), and an antireflection structure. It is a figure which shows the relationship between the reflectance of the surface which is not, and a wavelength. The horizontal axis in FIG. 9 indicates the wavelength, and the vertical axis in FIG. 9 indicates the reflectance. The reflectivity of the surface with the antireflection structure manufactured by the method of the present invention is smaller than the reflectivity of the surface with the antireflection structure manufactured by the method of the prior art in the entire wavelength range. It can be seen that an antireflection structure having high antireflection performance can be manufactured.
 本発明の反射防止構造用金型製造方法によれば、パターニングを使用しないで、高い反射防止性能を備えた反射防止構造を製造できる。本方法によれば、反応性イオンエッチング装置の広さ以外の制約を受けることなく、大面積の反射防止構造用金型を製造することができる。また、本方法によれば、任意の曲面上の反射防止用の微細構造を成形するための反射防止構造用金型や反射防止用の微細構造を備えた回折格子を成形するための反射防止構造用金型を製造することができる。 According to the mold manufacturing method for an antireflection structure of the present invention, an antireflection structure having high antireflection performance can be manufactured without using patterning. According to this method, it is possible to manufacture a large-area antireflection structure mold without any restrictions other than the size of the reactive ion etching apparatus. Further, according to the present method, an antireflection structure mold for forming an antireflection microstructure on an arbitrary curved surface and an antireflection structure for forming a diffraction grating having an antireflection microstructure A metal mold can be manufactured.

Claims (8)

  1.  反応性イオンエッチング装置を使用して反射防止構造用金型を製造する反射防止構造用金型製造方法であって、該装置内に、六フッ化硫黄と酸素との混合ガスを導入し、六フッ化硫黄と反応する半導体または金属の材料からなる基材を配置し、該混合ガスをプラズマ化し、該プラズマ中の酸素イオンと六フッ化硫黄に反応した半導体または金属のイオンとを結合させて、該基材の表面のランダムな位置に酸化物を生成させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、ピッチが0.05マイクロメータから0.35マイクロメータの範囲であり、深さが0.2マイクロメータから1マイクロメータの範囲であり、アスペクト比が0.8以上である微細格子構造を形成する、反射防止構造用金型製造方法。 An antireflection structural mold manufacturing method for manufacturing an antireflection structural mold using a reactive ion etching apparatus, wherein a mixed gas of sulfur hexafluoride and oxygen is introduced into the apparatus. A substrate made of a semiconductor or metal material that reacts with sulfur fluoride is placed, the mixed gas is turned into plasma, and oxygen ions in the plasma are combined with semiconductor or metal ions that react with sulfur hexafluoride. The oxide is generated at random positions on the surface of the substrate, and the oxide is used as an etching prevention mask, and etching is performed on the surface of the substrate with sulfur hexafluoride on the surface of the substrate. Fine pitch with a pitch in the range of 0.05 micrometers to 0.35 micrometers, a depth in the range of 0.2 micrometers to 1 micrometers, and an aspect ratio of 0.8 or more Forming a child structure, the anti-reflection structure mold manufacturing method.
  2.  前記基材の材料がシリコンである請求項1に記載の反射防止構造用金型製造方法。 The method for manufacturing a mold for an antireflection structure according to claim 1, wherein the material of the base material is silicon.
  3.  前記混合ガスのガス圧が1乃至5パスカルであり、前記混合ガス中の酸素の割居合が30乃至70%である請求項2に記載の反射防止構造用金型製造方法。 The method for producing a mold for an antireflection structure according to claim 2, wherein the gas pressure of the mixed gas is 1 to 5 Pascals, and the oxygen ratio in the mixed gas is 30 to 70%.
  4.  前記基材の温度を30℃以下とする請求項3に記載の反射防止構造用金型製造方法。 The method for producing a mold for an antireflection structure according to claim 3, wherein the temperature of the base material is 30 ° C or lower.
  5.  前記基材が、金属コアの表面にコーティングされた層である請求項1に記載の反射防止構造用金型製造方法。 The method for producing a mold for an antireflection structure according to claim 1, wherein the base material is a layer coated on the surface of a metal core.
  6.  前記金属が、チタン、タングステン、タンタル、チタンに他の元素を添加したチタン合金、タングステンに他の元素を添加したタングステン合金である請求項1に記載の反射防止構造用金型製造方法。 The method for producing a mold for an antireflection structure according to claim 1, wherein the metal is titanium, tungsten, tantalum, a titanium alloy in which another element is added to titanium, or a tungsten alloy in which another element is added to tungsten.
  7.  請求項1に記載の方法によって、基材の表面に反射防止用の微細格子構造を形成するステップと、
     反射防止用の微細格子構造を形成した該基材の表面に、回折格子のパターンに対応したエッチング防止マスクを形成するステップと、
     該エッチング防止マスクを形成した基材のマスクされていない部分に対して、請求項1に記載の方法によってさらにエッチングを進めるステップと、を含む、反射防止用の微細格子構造を備えた回折格子用金型製造方法。
    Forming the anti-reflective fine lattice structure on the surface of the substrate by the method according to claim 1;
    Forming an anti-etching mask corresponding to the pattern of the diffraction grating on the surface of the base material on which the antireflection fine grating structure is formed;
    And a step of further etching the unmasked portion of the base material on which the anti-etching mask is formed by the method according to claim 1 for a diffraction grating having an anti-reflection fine grating structure. Mold manufacturing method.
  8.  反応性イオンエッチング装置内に、六フッ化硫黄と酸素との混合ガスを導入し、六フッ化硫黄と反応する半導体または金属の材料からなる基材を配置し、該混合ガスをプラズマ化し、該プラズマ中の酸素イオンと六フッ化硫黄に反応した半導体または金属のイオンとを結合させて、該基材の表面のランダムな位置に酸化物を生成させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、ピッチが0.05マイクロメータから0.35マイクロメータの範囲であり、深さが0.2マイクロメータから1マイクロメータの範囲であり、アスペクト比が0.8以上である微細格子構造を形成したものを反射防止構造用金型として使用する方法。 In a reactive ion etching apparatus, a mixed gas of sulfur hexafluoride and oxygen is introduced, a base material made of a semiconductor or metal material that reacts with sulfur hexafluoride is disposed, the mixed gas is turned into plasma, Oxygen ions in plasma and semiconductor or metal ions reacted with sulfur hexafluoride are combined to generate oxides at random positions on the surface of the substrate. By etching the surface of the substrate with sulfur fluoride, the pitch of the substrate is 0.05 μm to 0.35 μm and the depth is 0.2 μm. A method in which a fine lattice structure having an aspect ratio of 0.8 or more in the range of 1 micrometer is used as a mold for an antireflection structure.
PCT/JP2013/061889 2012-11-16 2013-04-23 Method for manufacturing mold for antireflective structures, and method of use as mold for antireflective structures WO2014076983A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014514650A JP5584907B1 (en) 2012-11-16 2013-04-23 Anti-reflection structural mold manufacturing method and method of use as anti-reflection structural mold
DE112013005487.6T DE112013005487B4 (en) 2012-11-16 2013-04-23 Method of making a mold for an antireflection structure and a mold for an optical grating
US14/663,746 US20150192702A1 (en) 2012-11-16 2015-03-20 Mold, optical element and method for manufacturing the same
US15/808,321 US10353119B2 (en) 2012-11-16 2017-11-09 Method for manufacturing mold or optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261727284P 2012-11-16 2012-11-16
US61/727,284 2012-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/663,746 Continuation-In-Part US20150192702A1 (en) 2012-11-16 2015-03-20 Mold, optical element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2014076983A1 true WO2014076983A1 (en) 2014-05-22

Family

ID=50730910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061889 WO2014076983A1 (en) 2012-11-16 2013-04-23 Method for manufacturing mold for antireflective structures, and method of use as mold for antireflective structures

Country Status (3)

Country Link
JP (1) JP5584907B1 (en)
DE (1) DE112013005487B4 (en)
WO (1) WO2014076983A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159180A1 (en) * 2015-03-31 2016-10-06 デクセリアルズ株式会社 Method for manufacturing master, master, and optical body
WO2016158933A1 (en) * 2015-03-31 2016-10-06 デクセリアルズ株式会社 Method for manufacturing master, optical body, optical member, and display device
CN107848151A (en) * 2015-09-03 2018-03-27 纳卢克斯株式会社 The manufacture method of mould, the manufacture method of mould and duplicate
WO2019163630A1 (en) * 2018-02-21 2019-08-29 ナルックス株式会社 Method for producing mold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10278785B2 (en) 2015-12-18 2019-05-07 Novartis Ag Method of making diverging-light fiber optics illumination delivery system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112036A (en) * 2006-10-31 2008-05-15 Osaka Prefecture Manufacturing method of microstructure
JP2010013337A (en) * 2007-12-05 2010-01-21 Hitachi Maxell Ltd Surface processing method, method of manufacturing mold for imprint, optical device, and imprint method
JP2012078831A (en) * 2011-09-29 2012-04-19 Oji Paper Co Ltd Manufacturing method of single-particle film on non-planar surface, manufacturing method of microstructure using single-particle film etching mask, and microstructure acquired by manufacturing method
JP2012162450A (en) * 2012-03-23 2012-08-30 National Institute Of Advanced Industrial Science & Technology Silicon carbide mold having fine periodic structure and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187481B1 (en) 2005-05-05 2012-05-29 Coho Holdings, Llc Random texture anti-reflection optical surface treatment
WO2006129514A1 (en) * 2005-06-03 2006-12-07 Nalux Co., Ltd. Fine mesh and mold therefor
JP2007036170A (en) * 2005-06-23 2007-02-08 Shinryo Corp Low-reflectance processing method of silicon substrate for solar cells and silicon substrate for solar cell
US8350209B2 (en) 2005-10-10 2013-01-08 X-Fab Semiconductor Foundries Ag Production of self-organized pin-type nanostructures, and the rather extensive applications thereof
DE102006013670A1 (en) 2006-03-24 2007-09-27 X-Fab Semiconductor Foundries Ag Optical component for optoelectronic integrated circuit, has surface for wide band anti-reflection coating with needle-like structures with nanometer dimensions with larger aspect ratio, and developed by reactive ion etching process
WO2012032162A1 (en) 2010-09-09 2012-03-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for reducing boundary surface reflection on a glass surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112036A (en) * 2006-10-31 2008-05-15 Osaka Prefecture Manufacturing method of microstructure
JP2010013337A (en) * 2007-12-05 2010-01-21 Hitachi Maxell Ltd Surface processing method, method of manufacturing mold for imprint, optical device, and imprint method
JP2012078831A (en) * 2011-09-29 2012-04-19 Oji Paper Co Ltd Manufacturing method of single-particle film on non-planar surface, manufacturing method of microstructure using single-particle film etching mask, and microstructure acquired by manufacturing method
JP2012162450A (en) * 2012-03-23 2012-08-30 National Institute Of Advanced Industrial Science & Technology Silicon carbide mold having fine periodic structure and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350791B2 (en) 2015-03-31 2019-07-16 Dexerials Corporation Master manufacturing method, master, and optical body
WO2016159180A1 (en) * 2015-03-31 2016-10-06 デクセリアルズ株式会社 Method for manufacturing master, master, and optical body
JP2016190418A (en) * 2015-03-31 2016-11-10 デクセリアルズ株式会社 Method for manufacturing original plate, optical body, optical member, and display device
JP2016190416A (en) * 2015-03-31 2016-11-10 デクセリアルズ株式会社 Method for manufacturing original plate, original plate, and optical body
US11524426B2 (en) 2015-03-31 2022-12-13 Dexerials Corporation Master manufacturing method, master, and optical body
US10974419B2 (en) 2015-03-31 2021-04-13 Dexerials Corporation Master manufacturing method, master, and optical body
WO2016158933A1 (en) * 2015-03-31 2016-10-06 デクセリアルズ株式会社 Method for manufacturing master, optical body, optical member, and display device
CN107848151B (en) * 2015-09-03 2020-03-03 纳卢克斯株式会社 Molding die, method for manufacturing molding die, and method for manufacturing replica
US10363687B2 (en) 2015-09-03 2019-07-30 Nalux Co., Ltd. Mold and method for manufacturing the same
DE112015006873T5 (en) 2015-09-03 2018-05-17 Nalux Co., Ltd. Mold and method of making the same
CN107848151A (en) * 2015-09-03 2018-03-27 纳卢克斯株式会社 The manufacture method of mould, the manufacture method of mould and duplicate
WO2019163630A1 (en) * 2018-02-21 2019-08-29 ナルックス株式会社 Method for producing mold
JPWO2019163630A1 (en) * 2018-02-21 2020-02-27 ナルックス株式会社 Mold manufacturing method
CN111741839A (en) * 2018-02-21 2020-10-02 纳卢克斯株式会社 Method for manufacturing mold
CN111741839B (en) * 2018-02-21 2022-08-19 纳卢克斯株式会社 Method for manufacturing mold

Also Published As

Publication number Publication date
DE112013005487B4 (en) 2022-07-07
JP5584907B1 (en) 2014-09-10
DE112013005487T5 (en) 2015-08-13
JPWO2014076983A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5584907B1 (en) Anti-reflection structural mold manufacturing method and method of use as anti-reflection structural mold
JP6539813B2 (en) Method of manufacturing optical element and method of manufacturing mold for optical element
US10353119B2 (en) Method for manufacturing mold or optical element
JP2001272505A (en) Surface treating method
KR102606559B1 (en) Methods of forming optical grating components and augmented reality/virtual reality devices
JP5264237B2 (en) Nanostructure and method for producing nanostructure
JP5948691B1 (en) Mold, mold manufacturing method and replica manufacturing method
KR102606558B1 (en) How to Create Optical Grating Components
JP6611113B1 (en) Method for manufacturing plastic element having fine uneven structure on surface
US11385387B2 (en) Diffractive optical element and method of producing same
JP2009161405A (en) Silicon carbide mold having fine periodical structure and method for manufacturing the same
CN115494568B (en) Preparation method of micro-lens array, micro-lens array and application thereof
JP2010272801A (en) Surface working method, and mold for imprint manufactured by the same
JP5573306B2 (en) Photomask blank manufacturing method
CN109782383B (en) Device manufacturing method suitable for low-heat-conductivity and electric-conductivity material substrate
JP2661390B2 (en) SiC etching method
JP5548997B2 (en) Silicon carbide mold having fine periodic structure and manufacturing method thereof
JP6794308B2 (en) Method for manufacturing molds for manufacturing microlens arrays
KR20010013402A (en) Method of forming a silicon layer on a surface
WO2019211920A1 (en) Production method for plastic molded article comprising fine uneven structure on surface thereof
JP2006000978A5 (en)
CN115524774A (en) Processing SIO 2 Method for blazed grating
JP2019072885A (en) Production method of molding tool by dry etching method
Leng et al. Study on fabrication of the diamond film gear in micro-system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014514650

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855935

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013005487

Country of ref document: DE

Ref document number: 1120130054876

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855935

Country of ref document: EP

Kind code of ref document: A1