KR20180129132A - Hybrid energy generator using quantum dot having perovskite structure - Google Patents

Hybrid energy generator using quantum dot having perovskite structure Download PDF

Info

Publication number
KR20180129132A
KR20180129132A KR1020170064694A KR20170064694A KR20180129132A KR 20180129132 A KR20180129132 A KR 20180129132A KR 1020170064694 A KR1020170064694 A KR 1020170064694A KR 20170064694 A KR20170064694 A KR 20170064694A KR 20180129132 A KR20180129132 A KR 20180129132A
Authority
KR
South Korea
Prior art keywords
perovskite structure
polymer layer
transparent
energy
quantum dot
Prior art date
Application number
KR1020170064694A
Other languages
Korean (ko)
Inventor
김상우
로난힌쳇
손아름
김성균
김태윤
윤홍준
유한준
손영인
김동훈
박혜정
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020170064694A priority Critical patent/KR20180129132A/en
Publication of KR20180129132A publication Critical patent/KR20180129132A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L41/047
    • H01L41/113
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a hybrid energy generator using a quantum dot having a perovskite structure. Through the present invention, a multi-energy generator using a perovskite material having excellent quantum yield and stokes moving property is realized. The hybrid energy generator includes: a transparent polymer layer; a transparent elastic material layer; a transparent electrode; and a solar cell.

Description

페로브스카이트 구조를 갖는 양자점을 이용한 하이브리드 에너지 발전 소자 {HYBRID ENERGY GENERATOR USING QUANTUM DOT HAVING PEROVSKITE STRUCTURE}TECHNICAL FIELD [0001] The present invention relates to a hybrid energy generating device using a quantum dot having a perovskite structure,

본 발명은 페로브스카이트 구조를 갖는 양자점을 이용한 하이브리드 에너지 발전 소자에 관한 것이다. 본 발명을 통해, 우수한 양자수율 및 스토크스 이동특성을 갖는 페로브스카이트 물질을 이용한 멀티에너지 발전소자 구현하고자 한다.The present invention relates to a hybrid energy generating device using a quantum dot having a perovskite structure. Through the present invention, a multi-energy generation device using a perovskite material having excellent quantum yield and Stokes moving property is realized.

기존의 기계적 및 광학적 에너지를 동시에 전기에너지로 전환하는 발전소자는 서로 다른 에너지를 전환가능한 단일한 소자를 단순하게 결합한 형태였다.Power plants that convert existing mechanical and optical energy into electrical energy are simply a combination of a single device capable of converting different energies.

일상 생활에서 발생하는 이종 에너지원인 기계적 에너지(진동)/광학적 에너지(빛) 는 동시에 발생하는 경우가 매우 크며, 대부분 전기에너지로 전환되지 못하고 버려지는 경우가 많았다. 기계적 에너지(진동)를 수집하는 에너지 하베스터는 마찰 대전 및 압전현상을 기반으로 전기 에너지로 전환하는데, 마찰 대전은 표면에서의 내구성 문제가 발생하며, 압전 현상을 기반으로 한 전기에너지 전환은 매우 제한적이었다. 한편, 광학적 에너지(빛)를 수집하는 에너지 하베스터는 태양전기를 기반으로 전기 에너지로 전환하는데, 날씨에 영향을 받으며, 반투명하므로 창문 쪽 설치에 제한이 있다.The mechanical energy (vibration) / optical energy (light), which is a kind of heterogeneous energy generated in everyday life, is very large at the same time. The energy harvester, which collects mechanical energy (vibration), is converted to electrical energy based on friction and piezoelectric phenomena. Friction charging causes durability problems on the surface, and electrical energy conversion based on piezoelectric phenomena is very limited . On the other hand, the energy harvester, which collects optical energy (light), is converted to electric energy based on solar electricity, which is weather-affected and translucent, which limits the installation on the window side.

현재까지 제시되었던 기계적/광학적 에너지 하이브리드 발전소자는 서로 다른 에너지 발전소자를 단순하게 결합한 형태였으며, 본 발명을 통하여 건물 진동, 소음 및 다양한 인체 움직임으로부터 수반되는 다양한 기계적/광학적 에너지를 고효율로 전환가능하다는 기술을 소개하고자 한다.The mechanical / optical energy hybrid power plant that has been presented so far is a simple combination of different energy power plants. The present invention can be applied to the technology of converting various mechanical / optical energy resulting from building vibration, noise and various human movements into high efficiency I want to introduce.

본 발명의 일 실시예에 따른 페로브스카이트 구조를 갖는 양자점을 이용한 하이브리드 에너지 발전 소자는, 페로브스카이트 구조를 갖는 양자점이 포함되어 있는 투명한 폴리머층; 상기 폴리머층의 일면에 설치되며 상기 투명한 폴리머층과 이격되어 있고, 전극이 배치되어 있는 투명한 탄성 물질층; 상기 폴리머층의 반대면에 설치된 투명 전극; 및 상기 투명한 폴리머층의 양 측면에 배치된 태양전지를 포함하고, 상기 양자점은 폴링(poling)에 의해 강유전 특성을 나타내며, 외부 진동에 의해 상기 폴리머층의 이격 공간에서의 진동에 의해 커패시턴스의 변화가 일어나며 이에 의해 전기 에너지가 얻어지고, 상기 양자점에 의해 입사된 광을 굴절시켜 양 측면에 배치된 태양전지로 광을 집합시켜 상기 태양전지에 의해 전기 에너지가 얻어진다.A hybrid energy generating device using a quantum dot having a perovskite structure according to an embodiment of the present invention includes a transparent polymer layer including a quantum dot having a perovskite structure; A transparent elastic material layer disposed on one side of the polymer layer and spaced apart from the transparent polymer layer, the transparent elastic material layer having electrodes disposed thereon; A transparent electrode provided on the opposite side of the polymer layer; And a solar cell disposed on both sides of the transparent polymer layer, wherein the quantum dots exhibit ferroelectric characteristics by poling, and a change in capacitance due to vibration in a spacing space of the polymer layer due to external vibration Whereby electric energy is obtained, light refracted by the quantum dots is collected, and light is collected by the solar cells disposed on both sides, and electric energy is obtained by the solar cell.

상기 투명 전극이 설치된 면에 반사 방지층을 추가로 포함할 수 있다.An anti-reflection layer may be further included on the surface on which the transparent electrode is provided.

이러한 페로브스카이트 구조를 갖는 양자점을 이용한 하이브리드 에너지 발전 소자는 창문 또는 디스플레이에 이용될 수 있다.Such a hybrid energy generating device using a quantum dot having a perovskite structure can be used for a window or a display.

본 발명을 통하여, 다양한 기계적 진동에너지(수직적 운동)를 상시적으로 고효율로 전환가능하며, 일조시간에 국한된 광학적 에너지 전환이 아닌 상시적으로 실내외 광학적 에너지를 전기에너지로 전환할 수 있다는 가능성을 보여줌으로써 커다란 파급력을 가져올 것이라 예상된다.Through the present invention, various mechanical vibration energies (vertical motions) can be constantly switched to high efficiency, and it is possible to always convert indoor and outdoor optical energy into electric energy instead of optical energy conversion limited to the sunshine time It is expected that it will bring great power.

도 1은 본 발명의 일 실시예에 따른 기계적/광학적 에너지 하이브리드 발전소자의 구조의 단면도를 도시한다.
도 2는 본 발명의 추가적인 실시예에 따른 기계적/광학적 에너지 하이브리드 발전소자의 구조의 단면도를 도시한다.
도 3은 본 발명의 일 실시예에 따른 기계적/광학적 에너지 하이브리드 발전소자의 전기발전 메커니즘을 설명하는 도면이다.
다양한 실시예들이 이제 도면을 참조하여 설명되며, 전체 도면에서 걸쳐 유사한 도면번호는 유사한 엘리먼트를 나타내기 위해서 사용된다. 설명을 위해 본 명세서에서, 다양한 설명들이 본 발명의 이해를 제공하기 위해서 제시된다. 그러나 이러한 실시예들은 이러한 특정 설명 없이도 실행될 수 있음이 명백하다. 다른 예들에서, 공지된 구조 및 장치들은 실시예들의 설명을 용이하게 하기 위해서 블록 다이아그램 형태로 제시된다.
1 shows a cross-sectional view of the structure of a mechanical / optical energy hybrid power plant according to an embodiment of the present invention.
Figure 2 shows a cross-sectional view of the structure of a mechanical / optical energy hybrid power plant according to a further embodiment of the present invention.
3 is a diagram illustrating an electric power generation mechanism of a mechanical / optical energy hybrid power plant according to an embodiment of the present invention.
Various embodiments are now described with reference to the drawings, wherein like reference numerals are used throughout the drawings to refer to like elements. For purposes of explanation, various descriptions are set forth herein to provide an understanding of the present invention. It is evident, however, that such embodiments may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the embodiments.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is capable of various modifications and various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. It is to be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but on the contrary, is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Like reference numerals are used for like elements in describing each drawing.

본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the term "comprises" or "having ", etc. is intended to specify that there is a feature, step, operation, element, part or combination thereof described in the specification, , &Quot; an ", " an ", " an "

본 발명은 투과되어 버려지는 광학적 에너지(빛)와 다양한 진동에너지가 발생하는 여러 곳에 설치되어 주변 전자기기의 전원을 지속적으로 충전시키는데 목적을 갖는다.The present invention is aimed at continuously charging the power of peripheral electronic devices by being installed in various places where optical energy (light) and various vibration energies are transmitted and discarded.

단순한 종래의 태양전지를 설치하는 것이 아닌, 디스플레이 및 창문과 같이 컨텐츠 전달과 가시광선 투과가 일정 수준 확보가 되어야 하므로, 투명한 폴리머(PMMA, PDMS, PVA, PVDF, P(VDF-TrFE), Ecoflex, PLMEGD[Poly(lauryl methacrylate-co-ethylene glycol dimethacrylate)]) 내에 강유전/유전/일렉트렛 특성을 띄는 페로브스카이트(Perovskite) 구조를 띄는 양자점(CsPbBrxI1-X 외 다수)을 첨가하여 이를 빛 수집기로 이용한다. 이는 투과된 빛을 굴절시켜 물질의 측면부에 설치된 태양전지 쪽으로 빛을 집합시킴으로서 전기 에너지로 전환이 가능하다.(PMMA, PDMS, PVA, PVDF, P (VDF-TrFE), Ecoflex, and PVDF are required to secure a certain level of transmission of visible light and visible light transmission, A quantum dot (CsPbBrxI1-X and others) having a perovskite structure having ferroelectric / dielectric / electret properties is added to PLMEGD (poly (lauryl methacrylate-co-ethylene glycol dimethacrylate) . This can be converted to electrical energy by refracting the transmitted light and gathering the light toward the solar cell installed on the side of the material.

페로브스카이트 구조를 띄는 양자점(CsPbBrxI1-X)에서 할로겐 원소의 비율(Br, I)을 제어함에 따라 양자수율과 스토크스 이동특성이 달라지며, 이는 광학적 에너지를 전기 에너지로 전환하는데 있어서 매우 중요하다.The quantum yield and the Stokes shift characteristics are changed by controlling the ratio (Br, I) of the halogen element in a quantum dot (CsPbBrxI1-X) having a perovskite structure, which is very important in converting optical energy into electric energy Do.

페로브스카이트 구조를 띄는 양자점은 주어진 환경(습도 및 온도)에 매우 취약하므로, 합성 이후 매트릭스로 옮겨지는 과정에서 부분적으로 에너지 전환특성을 상실할 수도 있다. 그러므로, 위와 같은 폴리머(PLMEGD)와 같이 광학적으로 경화가능한 물질을 이용할 수 있다.Perovskite-structured quantum dots are very vulnerable to the given environment (humidity and temperature), so they may lose their energy conversion characteristics partially during the transfer to the matrix after synthesis. Therefore, an optically curable material such as the above polymer (PLMEGD) can be used.

페로브스카이트 구조를 띄는 양자점은 강유전/유전/일렉트렛 특성을 나타내며, 실내외에서 발생하는 다양한 진동수 및 진폭 특성을 갖는 진동에너지를 전기에너지로 전환가능하다. 페로브스카이트 구조의 양자점이 투명한 폴리머 내부에 임베딩되어 있으며, 이를 전기적으로 폴링하면 강유전 특성에 의해 폴리머 표면의 전하특성이 향상된다. 이에 따라, 수 mm의 이격공간이 주어진 진동에 변화가 생길 때 발생하는 캐패시턴스 변화를 외부 회로를 통하여 특정 저장체에 충전가능하다. Quantum dots with a perovskite structure exhibit ferroelectric / dielectric / electret characteristics and can convert vibrational energy having various frequency and amplitude characteristics generated from indoor and outdoor to electric energy. The quantum dots of the perovskite structure are embedded in the transparent polymer, and when electrically polled, the charge characteristics of the polymer surface are improved by the ferroelectric properties. Thus, capacitance changes occurring when a given space of several millimeters changes in a given vibration can be charged to a specific storage body through an external circuit.

1 m2 이상의 큰 규모의 디스플레이 및 창문에 설치한 경우에, 주어진 광학적 에너지가 페로브스카이트 물질에 의해 반사되는 것을 최소화하기 위하여, 반사층을 추가시킬 수 있다.When installed on large-scale displays and windows over 1 m 2 , a reflective layer can be added to minimize the reflection of a given optical energy by the perovskite material.

본 발명은 기존의 단일한 압전, 마찰 대전 기반 에너지 하베스터의 낮은 한계를 뛰어넘고, 다른 종류의 에너지 하베스터와의(태양전지) 하이브리드의 기술적 어려움을 극복할 수 있다. 단일한 페로브스카이트 물질로 동시에 광학적 에너지(빛)/기계적 에너지(진동)를 높은 효율로 전기에너지를 발생시킬 수 있다.The present invention overcomes the lower limitations of the existing single piezoelectric and triboelectric energy harvesters and overcomes the technical difficulties of (hybrid) solar energy hybrids with other types of energy harvesters. A single perovskite material can simultaneously generate electrical energy with high efficiency of optical energy (light) / mechanical energy (vibration).

본 발명에선 기계적/광학적 에너지 하이브리드 발전소자가 실외에서의 빛뿐만 아니라 실내의 약한 실내조명에서도 에너지 발전이 가능하다. 다양한 광학적 에너지 조건에서 전력 발전이 가능하며 이를 수집할 경우 주변의 전자기기를 구동 및 저장 장치에 충전을 위해 충분한 양의 에너지원이 수집될 수 있다.In the present invention, the mechanical / optical energy hybrid power plant can generate energy not only in the outdoor light but also in the indoor indoor light. Power generation is possible under various optical energy conditions, and when it is collected, a sufficient amount of energy source can be collected to charge the peripheral electronic devices to drive and store.

도 1은 본 발명의 일 실시예에 따른 기계적/광학적 에너지 하이브리드 발전소자의 구조의 단면도를 도시한다. 도 1의 경우 시판되고 있는 디스플레이 및 유리 창문 단일창에 적용된 모습을 도시한다.1 shows a cross-sectional view of the structure of a mechanical / optical energy hybrid power plant according to an embodiment of the present invention. FIG. 1 shows a state in which a single window of a commercially available display and a glass window is applied.

도 2는 본 발명의 추가적인 실시예에 따른 기계적/광학적 에너지 하이브리드 발전소자의 구조의 단면도를 도시한다. 도 2의 경우 시판되고 있는 디스플레이 및 유리 창문 이중창에 적용된 모습을 도시한다.Figure 2 shows a cross-sectional view of the structure of a mechanical / optical energy hybrid power plant according to a further embodiment of the present invention. FIG. 2 shows a state in which the display is applied to a commercially available dual-pane window and a glass window.

도 3은 본 발명의 일 실시예에 따른 기계적/광학적 에너지 하이브리드 발전소자의 전기발전 메커니즘을 설명하는 도면이다. 주어진 진동 에너지에 의해 투명한 폴리머층과 metal grid 층이 흔들리면서 강유전/유전/일렉트렛 특성을 갖는 페로브스카이트 매트릭스 물질로부터 전기적 포텐셜 혹은 커패시턴스 값의 변화를 감지하여 전기 발전이 이루어진다. 또한, 주어진 광학적 에너지는 페로브스카이트 매트릭스 내의 입자에 의해 측면부의 태양전지 측으로 수확되어 전기 발전이 이루어지게 된다.3 is a diagram illustrating an electric power generation mechanism of a mechanical / optical energy hybrid power plant according to an embodiment of the present invention. The electrical energy is generated by detecting the change of electric potential or capacitance value from the perovskite matrix material having the ferroelectric / dielectric / electret characteristic while the transparent polymer layer and the metal grid layer are shaken by the given vibration energy. In addition, the given optical energy is collected by the particles in the perovskite matrix to the side of the solar cell side, and electric power is generated.

제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다. The description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features presented herein.

Claims (4)

페로브스카이트 구조를 갖는 양자점이 포함되어 있는 투명한 폴리머층;
상기 폴리머층의 일면에 설치되며 상기 투명한 폴리머층과 이격되어 있고, 전극이 배치되어 있는 투명한 탄성 물질층;
상기 폴리머층의 반대면에 설치된 투명 전극; 및
상기 투명한 폴리머층의 양 측면에 배치된 태양전지를 포함하고,
상기 양자점은 폴링(poling)에 의해 강유전 특성을 나타내며,
외부 진동에 의해 상기 폴리머층의 이격 공간에서의 진동에 의해 커패시턴스의 변화가 일어나며 이에 의해 전기 에너지가 얻어지고,
상기 양자점에 의해 입사된 광을 굴절시켜 양 측면에 배치된 태양전지로 광을 집합시켜 상기 태양전지에 의해 전기 에너지가 얻어지는,
페로브스카이트 구조를 갖는 양자점을 이용한 하이브리드 에너지 발전 소자.
A transparent polymer layer containing quantum dots having a perovskite structure;
A transparent elastic material layer disposed on one side of the polymer layer and spaced apart from the transparent polymer layer, the transparent elastic material layer having electrodes disposed thereon;
A transparent electrode provided on the opposite side of the polymer layer; And
And a solar cell disposed on both sides of the transparent polymer layer,
The quantum dot exhibits ferroelectric characteristics by poling,
A change in capacitance is caused by the vibration in the spacing space of the polymer layer due to the external vibration, whereby electric energy is obtained,
Wherein the light is refracted by the quantum dots to aggregate light into solar cells arranged on both sides, and electric energy is obtained by the solar cell,
Hybrid energy generation device using quantum dots with perovskite structure.
제 1 항에 있어서,
상기 투명 전극이 설치된 면에 반사 방지층을 추가로 포함하는,
페로브스카이트 구조를 갖는 양자점을 이용한 하이브리드 에너지 발전 소자.
The method according to claim 1,
Further comprising an antireflection layer on a side where the transparent electrode is provided,
Hybrid energy generation device using quantum dots with perovskite structure.
제 1 항에 따른 페로브스카이트 구조를 갖는 양자점을 이용한 하이브리드 에너지 발전 소자를 포함한, 창문.
A window including a hybrid energy generating element using a quantum dot having a perovskite structure according to claim 1.
제 1 항에 따른 페로브스카이트 구조를 갖는 양자점을 이용한 하이브리드 에너지 발전 소자를 포함한, 디스플레이.A display comprising a hybrid energy generating device using a quantum dot having a perovskite structure according to claim 1.
KR1020170064694A 2017-05-25 2017-05-25 Hybrid energy generator using quantum dot having perovskite structure KR20180129132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170064694A KR20180129132A (en) 2017-05-25 2017-05-25 Hybrid energy generator using quantum dot having perovskite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170064694A KR20180129132A (en) 2017-05-25 2017-05-25 Hybrid energy generator using quantum dot having perovskite structure

Publications (1)

Publication Number Publication Date
KR20180129132A true KR20180129132A (en) 2018-12-05

Family

ID=64744064

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170064694A KR20180129132A (en) 2017-05-25 2017-05-25 Hybrid energy generator using quantum dot having perovskite structure

Country Status (1)

Country Link
KR (1) KR20180129132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11665917B2 (en) 2020-08-21 2023-05-30 Research & Business Foundation Sungkyunkwan University DC generation energy harvesting system and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11665917B2 (en) 2020-08-21 2023-05-30 Research & Business Foundation Sungkyunkwan University DC generation energy harvesting system and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Wu et al. A hybridized triboelectric–electromagnetic water wave energy harvester based on a magnetic sphere
Ippili et al. Light-driven piezo-and triboelectricity in organic–inorganic metal trihalide perovskite toward mechanical energy harvesting and self-powered sensor application
Oh et al. Development of a tree‐shaped wind power system using piezoelectric materials
Zhang et al. Structure design and performance of hybridized nanogenerators
CN103391020B (en) A kind of multi-freedom-degreeenergy energy acquisition device based on friction nanometer power generator
WO2012164814A1 (en) Solar cell module
KR101338597B1 (en) Generater apparatus using film type of piezoelectric element and solarcell
CN102044580A (en) Flexible solar cell plate and manufacture method thereof
Chandrasekhar et al. A sustainable blue energy scavenging smart buoy toward self-powered smart fishing net tracker
Zhang et al. Self-Powered All-in-One Fluid Sensor Textile with Enhanced Triboelectric Effect on All-Immersed Dendritic Liquid–Solid Interface
CN103780135A (en) DC frictional electricity generator
Ilyas Piezoelectric energy harvesting: methods, progress, and challenges
KR20180129132A (en) Hybrid energy generator using quantum dot having perovskite structure
Qian et al. Maximum power point tracking for triboelectric nanogenerator based wave energy converters
CN107276495B (en) Composite generator and composite power generation system based on wind energy and solar energy
Chiba et al. Extending applications of dielectric elastomer artificial muscles to wireless communication systems
KR101722326B1 (en) A modular unit piezoelectric energy harvester and piezoelectric energy harvesting system comprising the same for road
KR20100071246A (en) Solar cell module
JP2013153078A (en) Solar cell module and solar cell array using the same
KR101454441B1 (en) Hybrid energy harvesting apparatus for curved surface using transparent piezoelectric element and solar battery
KR101454435B1 (en) Hybrid energy harvesting apparatus for plate figure using transparent piezoelectric element and solar battery
KR20210004437A (en) Hybrid Energy Harvester for Simultaneously Harvesting Droplet Energy and Solar Energy
KR20140143853A (en) Hybrid energy harvesting apparatus for windows and doors using transparent piezoelectric element and solar battery
CN207475430U (en) Wave energy generating set and energy-storage system
CN105262861A (en) Solar cell embedded screen and solar mobile phone