KR20180124996A - Cathode active material for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same - Google Patents

Cathode active material for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
KR20180124996A
KR20180124996A KR1020187031221A KR20187031221A KR20180124996A KR 20180124996 A KR20180124996 A KR 20180124996A KR 1020187031221 A KR1020187031221 A KR 1020187031221A KR 20187031221 A KR20187031221 A KR 20187031221A KR 20180124996 A KR20180124996 A KR 20180124996A
Authority
KR
South Korea
Prior art keywords
active material
compound
positive electrode
precursor
cathode active
Prior art date
Application number
KR1020187031221A
Other languages
Korean (ko)
Other versions
KR102363230B1 (en
Inventor
아키히사 카지야마
카즈미치 코가
츠요시 와키야마
류타 마사키
타카유키 야마무라
카즈토시 마츠모토
Original Assignee
바스프 토다 배터리 머티리얼스 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017008699A external-priority patent/JP2017188428A/en
Application filed by 바스프 토다 배터리 머티리얼스 엘엘씨 filed Critical 바스프 토다 배터리 머티리얼스 엘엘씨
Publication of KR20180124996A publication Critical patent/KR20180124996A/en
Application granted granted Critical
Publication of KR102363230B1 publication Critical patent/KR102363230B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

반복 충방전에 대하여 열화가 적고, 안정적인 충방전을 가능하게 하는 양극 활물질을 얻어, 비수전해질 이차전지의 고출력화 및 장수명화를 가능하게 한다.
양극 활물질은 일반식:Lia(NibCocAldMee)O2(단, Me = Mn, Mg, Ti, Ru, Zr, Nb, Mo, W이며, 1.00

Figure pct00022
a
Figure pct00023
1.15, 0.25 < b <1, 0 < c
Figure pct00024
0.30, 0
Figure pct00025
d
Figure pct00026
0.05, 0
Figure pct00027
e
Figure pct00028
0.40)으로 표시되는 리튬 전이금속층상 산화물로 이루어지는 양극 활물질은, 1차 입자가 응집된 2차 입자로 구성되며, 이 2차 입자 내에서의 미반응 또는 분해반응에 의해 발생된 Li 조성비: Li/M(M = Ni + Co + Al + Me)의 변동계수(표준편차값/평균값)가 30% 이하이다.It is possible to obtain a positive electrode active material capable of stable charging and discharging with little deterioration with respect to repetitive charging and discharging, thereby enabling high output and long life of the nonaqueous electrolyte secondary battery.
The cathode active material is represented by the general formula Li a Ni b Co c Al d Me e O 2 where Me = Mn, Mg, Ti, Ru, Zr, Nb, Mo,
Figure pct00022
a
Figure pct00023
1.15, 0.25 < b < 1, 0 < c
Figure pct00024
0.30, 0
Figure pct00025
d
Figure pct00026
0.05, 0
Figure pct00027
e
Figure pct00028
0.40) is composed of secondary particles in which primary particles are aggregated, and the Li composition ratio generated by unreacted or decomposed reaction in the secondary particles is Li / The variation coefficient (standard deviation value / average value) of M (M = Ni + Co + Al + Me) is 30% or less.

Description

비수전해질 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 비수전해질 이차전지Cathode active material for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same

본 발명은 비수전해질 이차전지용 양극 활물질, 그 제조방법, 및 이를 이용한 비수전해질 이차전지에 관한 것이며, 특히 반복 충방전에 대하여, 열화가 적은 안정된 충방전을 할 수 있는 양극 활물질, 그 제조방법, 및 이를 이용한 비수전해질 이차전지에 관한 것이다.The present invention relates to a positive electrode active material for a nonaqueous electrolyte secondary battery, a method for producing the same, and a nonaqueous electrolyte secondary battery using the same. More particularly, the present invention relates to a positive active material capable of stable charging and discharging with less deterioration, And a nonaqueous electrolyte secondary battery using the same.

근년 들어, AV 기기나 퍼스널 컴퓨터 등의 전자기기의 휴대화, 무선화가 급속히 진행되고 있으며, 이들의 구동용 전원으로 소형, 경량이며 고 에너지 밀도를 갖는 이차전지에 대한 요구가 높아지고 있다. 또한, 최근에는 지구 환경에 대한 배려에서, 전기 자동차, 하이브리드 자동차의 개발 및 실용화가 이루어져, 대형 전원의 용도를 위하여 내구 특성이 우수한 리튬 이온 이차전지에 대한 요구가 높아지고 있다. 이와 같은 상황 하에서, 반복 충방전 수명 및 출력 특성이 우수한 리튬 이온 이차전지가 주목 받고 있다.2. Description of the Related Art In recent years, portable devices and electronic devices such as AV devices and personal computers have been rapidly made portable and wireless. There is a growing demand for secondary batteries that are small, lightweight, and have a high energy density as their driving power sources. In recent years, development and commercialization of electric vehicles and hybrid vehicles have been carried out in consideration of the global environment, and the demand for lithium ion secondary batteries having excellent durability characteristics for use in large-sized power sources is increasing. Under such circumstances, a lithium ion secondary battery having excellent repetitive charge / discharge life and output characteristics has been attracting attention.

이러한 요구를 충족하기 위하여, 통상적으로 충방전 중의 Li 이온의 삽입(insertion)/탈리(extraction)에 수반하는, 전극 활물질과 전해액의 계면 반응을 제어하는 수단이 채택되고 있다. 그 일례가 활물질의 각종 표면처리이며, 그 효과는 실증되었다.Means for controlling the interface reaction between the electrode active material and the electrolytic solution, usually accompanied by the insertion / extraction of Li ions during charging and discharging, have been adopted in order to satisfy such a demand. One example is various surface treatments of the active material, and the effect is demonstrated.

또한, 활물질의 출력과 내구성을 향상시킬 목적에서, 활물질의 결정자를 미세화하면서 그들 응집체를 거동 단위로 한 2차 입자 형태의 입자 설계가 주류가 되고, 그에 따른 효과도 실증되었다. 그러나, 이와 같은 2차 입자를 거동 단위로 하는 활물질의 특유한 문제로, 충방전 중의 응집 형태의 붕괴, 즉 입계를 기점으로 한 거동 입자의 균열을 들 수 있다. 이러한 균열은 도전 경로의 감소 및 전극 밀도의 저하를 초래하며, 나아가 전지 특성의 급격한 저하를 초래하는 것이다. 따라서, 더 한층의 성능 향상을 위해서는, 이와 같은 결정 계면 박리 등에 의해 서서히 그 특성이 훼손된다는 문제를 해결할 필요가 있다.Further, for the purpose of improving the output and durability of the active material, the particle design of secondary particles in the form of secondary particles in which the agglomerates are acting as a unit becomes finer while the crystallizers of the active material are made finer, and the effect therefrom has also been demonstrated. However, a specific problem of the active material having such a secondary particle as a behavior unit is the collapse of the aggregated form during charging and discharging, that is, the crack of the moving particle starting from the grain boundary. Such cracks lead to a decrease in the conductive path and a decrease in the electrode density, and furthermore, a sharp decrease in the battery characteristics. Therefore, in order to further improve the performance, it is necessary to solve the problem that the characteristics are gradually degraded due to the crystal interface peeling or the like.

이러한 문제를 해결하기 위해, 2차 입자를 거동 단위로 하는 입자에 있어서, 거동 단위의 내부에 형성되는 결정 입계의 조성 제어에 착안하여, 피막을 응집입자 내부의 결정 계면으로까지 생성시켜 결정 계면의 박리를 방지하는 선행 기술이 보고되었다.In order to solve such a problem, attention has been paid to the control of the composition of grain boundaries formed in the inside of the behavior unit in the particle having the secondary particles as the moving unit, and the coating is formed to the crystal interface in the inside of the aggregated particles, Prior art to prevent peeling has been reported.

그 예로, Ni을 포함하는 층상 산화물 양극 활물질에 있어서, 입계에 Ti를 존재시키는 것(예를 들어, 특허문헌 1 등 참조), Nb을 존재시키는 것(예를 들어, 특허문헌 2 등을 참조), Ti, Zr, Hf, Si, Ge, Sn의 적어도 1종의 원소를 포함하는 화합물을 존재시키는 것(예를 들어, 특허문헌3 등 참조) 등을 들 수 있다.For example, in the layered oxide cathode active material containing Ni, the presence of Ti in the grain boundary (see, for example, Patent Document 1 and the like), the presence of Nb (see, for example, Patent Document 2) , And a compound containing at least one element of Ti, Zr, Hf, Si, Ge, and Sn (see, for example, Patent Document 3).

JPJP 2012-281632012-28163 AA JPJP 2002-1510712002-151071 AA JPJP 2007-3175762007-317576 AA

그러나, 상기 특허문헌 1 ~ 3에 기재된 수단만으로는, 양극 활물질의 성능을 충분히 향상시킬 수 없어, 반복 충방전에 대하여 열화가 적은 안정된 충방전을 충분히 실시할 수 있는 양극을 얻기가 어렵다.However, with the means described in the above Patent Documents 1 to 3, it is difficult to sufficiently improve the performance of the positive electrode active material, and it is difficult to obtain a positive electrode capable of sufficiently carrying out stable charge and discharge with less deterioration in repetitive charging and discharging.

본 발명은 상기 문제점을 감안하여 이루어진 것으로, 그 목적은 반복 충방전에 대하여 열화가 적고, 안정된 충방전을 실시 가능하게 하는 양극 활물질을 얻어, 전지의 고출력화 및 장수명화를 가능하게 하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a positive electrode active material capable of carrying out stable charging and discharging with less deterioration in repetitive charging and discharging, thereby enabling high output and longevity.

본원 발명자들은, 예의 검토를 실시한 결과, 양극 활물질의 원료인 Li 성분의 입계 석출이 전지 수명의 저해 요인이 되고 있음을 발견하였다. 또한, 이러한 Li 성분의 입계 석출은, 활물질 합성 시의 Li 과잉 첨가나 원료의 혼합 불량에 따른 입자 내에서의 Li 농도의 불균일에 의해 생기는 것임을 발견하였다.As a result of intensive studies, the inventors of the present invention have found that the precipitation of the Li component, which is a raw material of the positive electrode active material, in the intermetallic compound is an impediment to battery life. It has also been found that such intermetallic precipitation of the Li component is caused by unevenness of the Li concentration in the particles due to excess Li addition in the synthesis of the active material and poor mixing of the raw materials.

그래서, 본 발명에서는, 비수전해질 이차전지용 양극 활물질을 리튬 전이금속층상 산화물로 구성하고, 그 입자 내에서의 Li 농도의 변동 계수를 30% 이하로 하였다.Thus, in the present invention, the cathode active material for a nonaqueous electrolyte secondary battery is composed of a lithium transition metal layered oxide, and the coefficient of variation of the Li concentration in the particle is set to 30% or less.

구체적으로, 본 발명에 관한 양극 활물질은, 일반식이 Lia (NibCocAldMee)O2(단, Me = Mn, Mg, Ti, Ru, Zr, Nb, Mo, W이며, 1.00

Figure pct00001
a
Figure pct00002
1.15, 0.25 < b < 1, 0 < c
Figure pct00003
0.30, 0
Figure pct00004
d
Figure pct00005
0.05, 0
Figure pct00006
e
Figure pct00007
0.40)로 표시되는 리튬 전이금속층상 산화물로 이루어지며, 1차 입자가 응집된 2차 입자로 구성되고, 상기 2차 입자 내에서의 Li/M(M= Ni + Co + Al + Me)로 표시되는 변동 계수가 30% 이하인 것을 특징으로 하는 비수전해질 이차전지용 양극 활물질이다.Specifically, the cathode active material according to the present invention has a composition represented by the general formula Li a (Ni b Co c Al d Me e ) O 2 (provided that Me = Mn, Mg, Ti, Ru, Zr, Nb,
Figure pct00001
a
Figure pct00002
1.15, 0.25 < b < 1, 0 < c
Figure pct00003
0.30, 0
Figure pct00004
d
Figure pct00005
0.05, 0
Figure pct00006
e
Figure pct00007
(M = Ni + Co + Al + Me) in the secondary particle, which is composed of secondary particles in which the primary particles are aggregated and is composed of a lithium transition metal layer oxide represented by the formula Is not more than 30%. &Lt; RTI ID = 0.0 &gt; [10] &lt; / RTI &gt;

본 발명에 관한 양극 활물질은 층상 산화물로 구성되며, 예를 들어 Li/Mn2O4 스피넬 산화물과 같은 전율고용체와는 달리, Li의 고용영역이 매우 작다. 따라서 합성 직후의 결정 중의 Li에 대하여, M원소(M = Ni, Co, Al, Mn, Mg, Ti, Ru, Zr, Nb, Mo, W)와의 비율인 Li/M의 값은 1.0에서 크게 벗어나는 일은 없다. 한편, 응집 거동입자(2차 입자)의 내부에서, M원소(M = Ni, Co, Al, Mn, Mg, Ti, Ru, Zr, Nb, Mo, W)의 농도가 낮은 부분이 존재하는 경우는, 거기에 결정립계가 존재한다. Li/M 비율의 변동은, 이러한 입계 부분에서의 M농도 저하와, 미반응 또는 분해생성물인 Li 석출로 커지는데, 본 발명에서는 Li/M 변동 계수가 30% 이하이므로, Li/M의 변동이 적고 국소적인 조성 차이가 억제되어, 응집입자 전체에서 평균적인 조성을 갖는다. 따라서, 본 발명에 관한 양극 활물질에 따르면, Li 성분의 입계 석출을 억제할 수 있어, 결과적으로 반복 충방전에 대하여 열화가 적고, 안정된 충방전을 가능하게 하여, 전지의 고출력화와 장수명화를 가능하게 한다.The positive electrode active material according to the present invention is composed of a layered oxide, and unlike the pyroelectric solid solution such as Li / Mn 2 O 4 spinel oxide, the solid solution region of Li is very small. Therefore, the value of Li / M, which is the ratio of the element M (M = Ni, Co, Al, Mn, Mg, Ti, Ru, Zr, Nb, Mo and W) There is no work. On the other hand, when there is a portion of the M element (M = Ni, Co, Al, Mn, Mg, Ti, Ru, Zr, Nb, Mo and W) , There is a grain boundary there. The variation of the Li / M ratio is increased by the decrease of the concentration of M in the grain boundary portion and the precipitation of Li which is an unreacted or decomposed product. In the present invention, the variation coefficient of Li / M is 30% And a local difference in composition is suppressed, so that an average composition is obtained in all of the agglomerated particles. Therefore, according to the cathode active material of the present invention, it is possible to suppress the precipitation of the Li component at the intergranular deposition, resulting in less deterioration in repetitive charging and discharging, enabling stable charging and discharging, .

본 발명에 관한 양극 활물질에 있어서, 2차 입자의 입계에 F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Te, Mo, Sc, Nb 및 W(이하, A 원소라 한다) 중 복수, 혹은 어느 하나가 존재하는 것이 바람직하다. 이들 A 원소는 미반응 혹은 분해 생성물인 Li의 일부와 반응하여 Li-A-O 화합물이 되므로, 변동 계수의 저감으로 이어진다. 여기서, 이 경우의 2차 입자의 입계란, 1차 입자끼리 서로 접촉하는 계면을 나타낸다.In the cathode active material according to the present invention, at least one of F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Te, Mo, Sc, Nb and W , And an A atom). The element A reacts with a part of Li, which is an unreacted or decomposed product, to become a Li-A-O compound, leading to reduction of the coefficient of variation. In this case, the inlet of the secondary particles shows the interface where the primary particles come into contact with each other.

본 발명자들이 예의 검토한 결과, 입계에 석출되기 쉬운 미반응 또는 분해 생성물인 Li 성분이 A 원소와의 화합물이 됨으로써 상기 변동 계수가 억제되어, 결과적으로 전지에 있어서의 저항 성분의 제거가 달성되는 것을 발견하였다. 더욱이, 이 반응 생성물은 Li 이온 전도체이기 때문에, 전지로 사용했을 때의 반복 충방전에 대하여 열화가 적어, 보다 안정된 충방전이 가능한 양극 활물질을 얻을 수 있다. 또한, 우수한 전지 특성을 얻기 위해서는 상기 변동 계수가 30% 이하인 것이라는 결론에 이르렀다. 여기서, 변동 계수에 따른 Li/M의 "Li"은 상기 A 원소와 화합하지 않은 Li을 의미한다.As a result of intensive investigations by the present inventors, it has been found that the Li component, which is an unreacted or decomposed product that is liable to precipitate in the grain boundary, becomes a compound with the element A, whereby the coefficient of variation is suppressed and consequently the removal of the resistance component in the battery is achieved Respectively. Moreover, since this reaction product is a Li ion conductor, deterioration is lessened by repeated charging / discharging when used as a battery, and a cathode active material capable of more stable charging / discharging can be obtained. Further, in order to obtain excellent battery characteristics, it was concluded that the coefficient of variation was 30% or less. Here, " Li " of Li / M according to the coefficient of variation means Li that does not coincide with the A element.

본 발명에 관한 양극 활물질에 있어서, 결정자 크기는 100nm 이상 600nm 이하이며, 또, 평균 2차 입자 지름은 3.0μm 이상 20μm 이하인 것이 바람직하다.In the cathode active material according to the present invention, the crystallite size is preferably 100 nm or more and 600 nm or less, and the average secondary particle diameter is preferably 3.0 mu m or more and 20 mu m or less.

결정자 크기에 대하여, 상한값이 600nm를 초과할 경우, 2차 입자의 기계적 응집 강도가 저하되어 응집체 붕괴의 요인이 된다. 하한값이 100nm 미만이면, 2차 응집체 구조의 입계 면적이 증가하여, 부반응에 따른 전지 성능 열화의 지배적 요인이 된다. 또한 평균 2차 입자 지름에 대하여, 상한값이 20μm를 초과할 경우, 충방전에 수반되는 Li의 확산이 저해되어 전지의 입출력 저하의 요인이 된다. 하한값이 3.0μm 미만이면, 활물질과 전해액 계면이 증가하여 바람직하지 못한 부반응 증가로 이어진다. 따라서, 결정자 크기는 100nm 이상 600nm 이하이고, 또 평균 2차 입자 지름은 3.0μm 이상 20μm 이하인 것이 바람직하다.When the upper limit of the crystallite size is more than 600 nm, the mechanical cohesion strength of the secondary particles is lowered, which causes aggregate collapse. When the lower limit value is less than 100 nm, the grain boundary area of the secondary aggregate structure increases, which is a dominant factor in battery performance deterioration due to side reactions. When the upper limit of the average secondary particle diameter is more than 20 mu m, the diffusion of Li accompanied by charge and discharge is inhibited, which causes a decrease in input / output of the battery. If the lower limit is less than 3.0 mu m, the active material and the electrolyte interface increase, leading to an undesirable side reaction increase. Therefore, the crystallite size is preferably 100 nm or more and 600 nm or less, and the average secondary particle diameter is preferably 3.0 μm or more and 20 μm or less.

본 발명에 관한 비수전해질 이차전지는, 상기 비수전해질 이차전지용 양극 활물질을 사용한 것을 특징으로 한다.The nonaqueous electrolyte secondary battery according to the present invention is characterized by using the positive electrode active material for the nonaqueous electrolyte secondary battery.

본 발명에 관한 비수전해질 이차전지에 따르면, 상기와 같은 양극 활물질이 사용되므로, 반복 충방전에 대하여 열화가 적고, 안정된 충방전을 가능하게 하여, 전지의 고출력화 및 장수명화가 가능해진다.According to the nonaqueous electrolyte secondary battery of the present invention, since the above-mentioned positive electrode active material is used, deterioration is reduced in repetitive charging and discharging, stable charge and discharge can be performed, and high output and long life of the battery become possible.

본 발명에 따른 양극 활물질의 제조방법은, Ni 화합물과 Co 화합물과, 임의로 Al 화합물 및 Me 화합물 중 적어도 하나를 이용한 공침법에 의해, Ni과 Co와, 임의로 Al 및 Me 원소 중 적어도 하나를 주성분으로 하는 복합 화합물 전구체를 얻는 단계, 전구체에 리튬 화합물을 Li/M (= Ni + Co + Al + Me)의 몰 비율이 1.00 이상 1.15 이하의 범위가 되도록 혼합하여 혼합물을 얻는 단계, 혼합물을 산화 분위기에서 600℃ 이상 950℃ 이하로 소성하는 단계, 및 소성된 혼합물을 500℃ 이상 750℃ 이하에서 어닐링 처리하는 단계를 구비하는 것을 특징으로 한다.The method for producing a positive electrode active material according to the present invention is a method for producing a positive electrode active material comprising at least one element selected from the group consisting of Ni and Co and optionally at least one of Al and Me elements as a main component by coprecipitation using at least one of a Ni compound and a Co compound, , Obtaining a mixture by mixing the precursor with a lithium compound so that the molar ratio of Li / M (= Ni + Co + Al + Me) is in the range of 1.00 or more and 1.15 or less, Calcining the calcined mixture at a temperature higher than or equal to 600 ° C and lower than or equal to 950 ° C; and annealing the calcined mixture at a temperature higher than or equal to 500 ° C and lower than 750 ° C.

본 발명에 관한 양극 활물질의 제조방법에 따르면, 상기와 같은 Li/M의 변동 계수가 30% 이하이며, Li 성분의 입계 석출을 억제할 수 있어, 결과적으로 반복 충방전에 대하여 열화가 적고, 안정된 충방전을 가능하게 하는 양극 활물질을 얻을 수 있다.According to the method for producing a positive electrode active material according to the present invention, the coefficient of variation of Li / M is 30% or less as described above, and precipitation of the Li component at the grain boundary can be suppressed. As a result, A positive electrode active material capable of charging and discharging can be obtained.

본 발명에 관한 양극 활물질의 제조방법은, 전구체를 얻는 단계에 있어서 F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb 및 W 중 복수, 혹은 어느 하나의 금속 성분을 포함하는 화합물을, Ni 화합물과 Co 화합물과, 임의로 Al 화합물 및 Me 화합물 중 적어도 하나와 함께 공침 반응시켜 복합 화합물 전구체를 얻을 수도 있다.The method for producing a positive electrode active material according to the present invention is characterized in that a plurality of F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb and W in the step of obtaining the precursor , Or a compound containing any one of the metal components may be subjected to a coprecipitation reaction with at least one of a Ni compound and a Co compound and optionally an Al compound and a Me compound to obtain a complex compound precursor.

또, 이 대신, 본 발명에 관한 양극 활물질의 제조방법은, 혼합물에 F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc , Nb 및 W 중 복수, 혹은 하나의 금속 성분을 포함하는 화합물을 혼합하는 단계를 더 포함할 수도 있다.Alternatively, the method for producing a positive electrode active material according to the present invention may comprise the steps of mixing a mixture of Fe, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb and W The method may further include mixing a compound containing a plurality of metal components or one metal component.

이들 방법을 이용함으로써, 입계에서의 미반응 혹은 분해 생성물인 Li의 석출을 억제할 수 있어, 전지의 반복 충방전에 대하여 열화가 적고, 보다 안정된 충방전이 가능한 양극 활물질을 얻을 수 있다.By using these methods, it is possible to suppress the precipitation of unreacted or decomposed product Li in the grain boundaries, and it is possible to obtain a cathode active material which is less deteriorated by repetitive charging and discharging of the battery and can perform more stable charging and discharging.

또한, 얻어진 복합 화합물 전구체에 대하여 산화 분위기에서 400℃ ~ 800℃의 온도 범위로 3시간 ~ 5시간의 열처리를 실시하는 것이 바람직하다.Further, it is preferable that the resulting composite compound precursor is subjected to a heat treatment in an oxidizing atmosphere at a temperature of 400 ° C to 800 ° C for 3 hours to 5 hours.

이와 같이 하면, 전구체의 잔류 탄산근을 감소시켜, 상기 전구체를 산화시킨 후에 사용할 수 있음으로써 전구체와 Li의 합성을 쉽게 할 수 있으며, 또, 얻어진 활물질 중에 잔존하는 탄산 리튬을 저감할 수 있다.By doing so, the residual carbonic acid residues of the precursor can be reduced, and the precursor can be used after being oxidized, so that the synthesis of the precursor and Li can be facilitated, and the lithium carbonate remaining in the obtained active material can be reduced.

본 발명에 관한 양극 활물질에 따르면, Li 성분의 입계 석출을 억제할 수 있으므로, 전지에 있어서 반복 충방전에 대하여 열화가 적고, 안정된 충방전을 가능하게 한다. 또한, 본 발명에 관한 비수전해질 이차전지에 따르면, 상기 양극 활물질을 이용하므로 고출력화 및 장수명화를 가능하게 한다.According to the positive electrode active material of the present invention, precipitation of the Li component at the intergranular deposition can be suppressed, so that deterioration of the battery due to repetitive charging and discharging is small and stable charging and discharging is possible. Further, according to the nonaqueous electrolyte secondary battery of the present invention, since the positive electrode active material is used, high output and long life can be achieved.

도 1은, 실시예에 있어서 2차 입자의 단면 조성비를 측정할 때의 개념도이다.Fig. 1 is a conceptual diagram for measuring the cross-sectional composition ratio of secondary particles in the examples. Fig.

이하, 본 발명을 실시하기 위한 형태를 설명한다. 이하의 바람직한 실시형태의 설명은 본질적으로 예시에 불과하며, 본 발명, 그 적용방법 또는 그 용도의 제한을 의도하는 것은 아니다.Hereinafter, embodiments for carrying out the present invention will be described. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.

우선, 본 발명의 일 실시형태에 관한 비수전해질 이차전지용 양극 활물질에 대하여 설명한다.First, the positive electrode active material for a nonaqueous electrolyte secondary battery according to one embodiment of the present invention will be described.

본 실시형태에 관한 양극 활물질은, 벌크 주요 성분인 Ni, Co, 및 Al 그리고 Me(Me = Mn, Mg, Ti, Ru, Zr, Nb, Mo, W)에 대한 미반응 혹은 분해 생성물인 Li 농도 비율의 변동 계수가 30% 이하이며, 일반식이 Lia(NibCocAldMee)O2(단, 1.00

Figure pct00008
a
Figure pct00009
1.15, 0.25 < b < 1, 0 < c
Figure pct00010
0 .30, 0
Figure pct00011
d
Figure pct00012
0.05, 0
Figure pct00013
e
Figure pct00014
0.40)로 표시되는 층상 산화물로 이루어진다.The positive electrode active material according to the present embodiment is characterized in that Li, which is an unreacted or decomposed product of Ni, Co, and Al and Me (Me = Mn, Mg, Ti, Ru, Zr, Nb, Mo, W) The coefficient of variation of the ratio is 30% or less, and the formula Li a (Ni b Co c Al d Me e ) O 2
Figure pct00008
a
Figure pct00009
1.15, 0.25 < b < 1, 0 < c
Figure pct00010
0.30, 0
Figure pct00011
d
Figure pct00012
0.05, 0
Figure pct00013
e
Figure pct00014
0.40).

본 실시형태에서는 상기와 같이, 양극 활물질의 2차 입자 중의 Li 조성비(Li/M(= Ni + Co + Al + Me))의 변동 계수가 30% 이하이므로, Li/M 비율의 변동이 적고, 국소적인 조성의 차이가 억제되어, 응집입자 전체에서 평균적인 조성을 갖는다. 따라서, 전지에 있어서 Li 석출에 기인하는 2차 입자 내부의 초기 저항, 및 사이클 도중의 저항 성분의 생성을 저감할 수 있으며, 그 결과, 반복 충방전의 응집 형태의 붕괴나 그에 수반하는 전지 성능 열화를 저감할 수 있다. 보다 바람직한 변동 계수는 28% 이하, 더욱 바람직하게는 27% 이하이다. 또, 하한값은 0이다. 단, 하한값에 대하여, 입계의 Li/M이 결정 내부의 변동계수보다 밑도는 경우는 이에 한정되지 않는다.In this embodiment, the coefficient of variation of the Li composition ratio (Li / M (= Ni + Co + Al + Me)) in the secondary particles of the positive electrode active material is 30% or less, The difference in local composition is suppressed and the average composition is obtained in all the aggregated particles. Therefore, it is possible to reduce the initial resistance inside the secondary particles due to Li precipitation in the battery and the generation of the resistance component during the cycle, and as a result, the collapse of the aggregate form of repeated charge and discharge and the deterioration Can be reduced. A more preferable coefficient of variation is 28% or less, more preferably 27% or less. The lower limit value is zero. However, the case where Li / M of the grain boundary is lower than the variation coefficient inside the crystal is not limited to the lower limit value.

본 실시형태에 관한 양극 활물질에 있어서, 보다 바람직한 조성은 Lia(NibCocAldMee)O2에서, a의 범위(Li/M)가 1.00 ~ 1.15이며, 보다 바람직한 a의 범위는 1.00 ~ 1.12이고, 보다 더 바람직하게는 1.00 ~ 1.10이며, b의 범위가 0.30 ~ 0.98, c의 범위가 0.05 ~ 0.35, d의 범위가 0 ~ 0.05, e의 범위가 0 ~ 0.35이다. 특히 a를 상기 범위로 하면 화학양론적 조성에 대하여 Li-rich가 되므로, 3a 사이트인 Li 사이트로 Ni이 침입하는 것을 방지할 수 있다.In the cathode active material according to the present embodiment, a more preferable composition is Li a (Ni b Co c Al d Me e ) O 2 , the range of a (Li / M) is 1.00 to 1.15, The range of b is 0.30 to 0.98, the range of c is 0.05 to 0.35, the range of d is 0 to 0.05, and the range of e is 0 to 0.35. In particular, when a is in the above range, Li is rich in the stoichiometric composition, so that Ni can be prevented from entering the Li site as the 3a site.

또한, 본 실시형태에 관한 양극 활물질은, 2차 입자의 입계에 F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb, W 등의 이종(異種)금속을 함유하는 것이 바람직하다. 이로써, 상기 원소가 입계에서의 미량의 Li 성분(미반응 혹은 분해 생성물인 Li 성분)과 반응하여 Li 화합물이 생성되고, 이것이 일종의 Li 이온 전도체로서 기능한다. 그 결과, 입계에서의 Li 성분의 석출을 억제할 수 있다. 또한, 양극 활물질의 결정 격자 내에서 상기 이종금속이 치환되어 포함될 수도 있다. 이러한 경우에도, 전지에서 반복 충방전에 의해 상기 이종금속이 2차 입자의 입계로 이동하는 것으로 생각되며, 결과적으로 입계에서의 분해 생성물인 Li 성분과 반응할 수 있어, 전술한 효과를 발휘할 수 있는 것으로 생각된다. 여기서, 상기 이종금속은, 2차 입자의 입계와 더불어 2차 입자의 표면에 존재할 수도 있다.The positive electrode active material according to the present embodiment has a structure in which particles of F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb and W It is preferable to contain a heterogeneous metal. As a result, the element reacts with a trace amount of Li component (unreacted or decomposed product Li component) in the grain boundary to produce a Li compound, which functions as a kind of Li ion conductor. As a result, precipitation of the Li component in the grain boundary can be suppressed. Also, the dissimilar metal may be substituted in the crystal lattice of the cathode active material. Even in such a case, it is considered that the dissimilar metal is moved to the grain boundary of the secondary particles by repeated charge and discharge in the battery, and as a result, it can react with the Li component which is the decomposition product in the grain boundary, . Here, the dissimilar metal may exist on the surface of the secondary particles together with the grain boundaries of the secondary particles.

본 발명에 관한 양극 활물질의 결정자 크기는 100nm ~ 600nm가 바람직하다. 상한값이 600nm를 초과하면, 2차 입자의 기계적 응집 강도가 저하되어 응집체 붕괴의 요인이 된다. 하한값이 100nm 미만이면, 이차 응집체 구조 내의 입계 면적이 증가하여, 부반응에 따른 전지 성능 열화의 지배적인 요인이 된다. 보다 바람직한 결정자 크기는 150nm ~ 500nm이다.The crystallite size of the positive electrode active material according to the present invention is preferably 100 nm to 600 nm. If the upper limit value exceeds 600 nm, the mechanical coagulation strength of the secondary particles is lowered, which is a cause of collapse of aggregate. When the lower limit value is less than 100 nm, the grain boundary area in the secondary aggregate structure increases, which is a dominant factor in degradation of cell performance due to side reactions. A more preferred crystallite size is 150 nm to 500 nm.

본 실시형태에 관한 양극 활물질의 평균 2차 입자 지름은 3.0μm ~ 20μm가 바람직하다. 상한값이 20μm를 초과할 경우, 충방전에 따른 Li의 확산이 저해되어 전지의 입출력 저하의 요인이 된다. 하한값은 3.0μm가 바람직하다. 이를 밑돌 경우, 활물질과 전해액 계면이 증가하여 바람직하지 못한 부반응의 증가로 이어진다. 보다 바람직한 평균 2차 입자의 지름은 4.0μm ~ 19μm이다.The average secondary particle diameter of the cathode active material according to the present embodiment is preferably 3.0 占 퐉 to 20 占 퐉. If the upper limit value is more than 20 mu m, the diffusion of Li due to charging and discharging is inhibited, which causes a decrease in input / output of the battery. The lower limit value is preferably 3.0 mu m. If it is below this range, the active material and the electrolyte interface increase, leading to an increase in undesirable side reactions. More preferably, the diameter of the average secondary particles is 4.0 m to 19 m.

다음으로, 본 발명의 일 실시형태에 관한 양극 활물질의 제조방법에 대하여 설명한다. 본 실시형태에 관한 양극 활물질은 예를 들어, 다음과 같이 하여 제조할 수 있다.Next, a method of manufacturing the positive electrode active material according to one embodiment of the present invention will be described. The positive electrode active material according to the present embodiment can be manufactured, for example, as follows.

우선, 최적의 pH 값으로 조정한 수용액에 니켈, 코발트, 망간의 혼합 황산 수용액을 연속적으로 공급함으로써 습식 공침 반응시켜, 전구체로서의 구형 니켈·코발트·망간계 복합 화합물 입자를 얻는다. 이 니켈·코발트·망간계 복합 화합물 입자는 복합 수산화물인 것이 바람직하다. 이어서, 이 전구체와 리튬 화합물을, 몰비 Li/(Ni + Co + Mn)을 소정의 범위, 예를 들어 1.00 ~ 1.15 정도로 한 혼합물을 얻고, 이것을 산화 분위기 하에서 600 ~ 950℃로 소성한다. 여기서, 이 소성 후의 냉각 도중, 또는 일단 냉각시킨 후에, 산화 분위기 하에서 500℃ ~ 750℃로 어닐링을 실시할 수도 있다. 이 어닐링 처리에 의해, 얻어진 양극 활물질의 2차 입자 중의 Li 조성비(Li/M)의 변동 계수를 저감할 수 있다. 이와 같이 하여, 본 실시형태에 관한 양극 활물질을 얻을 수 있다. 여기서, 이상에서는 Me 원소가 포함되지 않은 경우에 대하여 설명하였으나, 당연히 Me 원소를 추가하여 복합 산화물을 제조할 수도 있다.First, a mixed solution of sulfuric acid of nickel, cobalt, and manganese is continuously supplied to an aqueous solution adjusted to an optimum pH value to perform a wet coprecipitation reaction to obtain spherical nickel-cobalt-manganese composite compound particles as a precursor. The nickel-cobalt-manganese composite compound particles are preferably complex hydroxides. Subsequently, this mixture of the precursor and the lithium compound in a molar ratio Li / (Ni + Co + Mn) in a predetermined range, for example, about 1.00 to 1.15 is obtained and calcined at 600 to 950 ° C under an oxidizing atmosphere. Here, annealing may be performed at 500 to 750 占 폚 in an oxidizing atmosphere during cooling after the calcination, or after cooling once. By this annealing treatment, the coefficient of variation of the Li composition ratio (Li / M) in the secondary particles of the obtained positive electrode active material can be reduced. In this manner, the positive electrode active material according to the present embodiment can be obtained. Here, the case where the Me element is not included is described above, but it is also possible to add a Me element to prepare a composite oxide.

본 실시예에서는, F Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb, W 등의 이종금속을 첨가할 수도 있으며, 그 첨가시기에 대해서는 상기 습식 공침 반응 시라도 되고, 또는 그 후에 건식 혼합으로 첨가할 수도 있으며, 특별히 제한되지 않는다.In this embodiment, different metals such as F Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb and W may be added. The wet co-precipitation reaction may be performed, or may be added by dry mixing after that, but it is not particularly limited.

얻어진 상기 복합 화합물 입자는, 결정자 크기가 100nm ~ 600nm, 평균 2차 입자 지름이 3μm ~ 20μm, BET 비표면적이 0.15m2/g ~ 1.0m2/g가 되도록 제조되는 것이 바람직하며, 경우에 따라서는 분쇄 등의 처리를 실시할 수도 있다.The obtained composite compound particles are preferably prepared so that the crystallite size is 100 nm to 600 nm, the average secondary particle diameter is 3 μm to 20 μm, and the BET specific surface area is 0.15 m 2 / g to 1.0 m 2 / g. A treatment such as grinding may be carried out.

본 실시형태에 이용하는 리튬 화합물로는 특별히 한정되는 일 없이 각종 리튬염을 사용할 수 있는데, 예를 들어, 수산화리튬 일수화물, 질산 리튬, 탄산 리튬, 아세트산 리튬, 브롬화 리튬, 염화 리튬, 구연산 리튬, 불화 리튬, 요오드화 리튬, 젖산 리튬, 옥살산 리튬, 인산 리튬, 피루브산 리튬, 황산 리튬 및 산화 리튬 등을 들 수 있는데, 바람직하게는 탄산 리튬 또는 수산화 리튬 일수화물이다.The lithium compound used in the present embodiment is not particularly limited and various lithium salts can be used. For example, lithium salts such as lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, Lithium, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide and the like, preferably lithium carbonate or lithium hydroxide monohydrate.

본 실시형태에서, 전구체와 Li 화합물의 혼합물에서 Li/M 비율은, 몰비로 1.00 ~ 1.15이다. Li/M 비율이 1.00보다 작은 경우, 결정 구조의 Li 사이트로 Ni이 혼입하여 단일 결정상을 얻지 못하고, 전지 성능의 저하 요인이 된다. Li/M 비율이 1.15보다 큰 경우에는 화학양론 조성보다 과잉분의 Li이 저항 성분의 요인이 되어 전지 성능의 저하를 초래한다. 보다 바람직한 Li/M 비율은 몰비로 1.00 ~ 1.12이며, 보다 더 바람직하게는 1.00 ~ 1.10이다.In the present embodiment, the Li / M ratio in the mixture of the precursor and the Li compound is 1.00 to 1.15 in terms of the molar ratio. When the Li / M ratio is less than 1.00, Ni is mixed into the Li site of the crystal structure, and a single crystal phase can not be obtained, which is a factor of deteriorating the battery performance. When the Li / M ratio is larger than 1.15, excess Li of the stoichiometric composition becomes a factor of the resistance component, resulting in deterioration of the battery performance. More preferably, the molar ratio of Li / M is 1.00 to 1.12, and more preferably 1.00 to 1.10.

본 실시형태에서, 전구체와 Li 화합물의 혼합물을 소성할 때의 분위기는 산화 분위기며, 바람직한 산소 함유량은 20vol% 이상이다. 산소 함량이 상기 범위 미만이면, Li 이온이 전이금속 사이트로 혼입되어, 전지 성능의 저하로 이어진다. 산소 함량의 상한은 특별히 제한되지 않는다.In this embodiment, the atmosphere for firing the mixture of the precursor and the Li compound is an oxidizing atmosphere, and the preferable oxygen content is 20 vol% or more. If the oxygen content is less than the above range, Li ions are mixed into the transition metal sites, leading to deterioration of battery performance. The upper limit of the oxygen content is not particularly limited.

본 실시형태에서, 소성 온도는 600℃ ~ 950℃가 바람직하다. 소성 온도가 600℃ 미만이면, 원소의 확산 에너지가 부족하기 때문에 목적으로 하는 열평형 상태의 결정 구조에 도달하지 못하여 단일층을 얻을 수 없다. 또한, 소성 온도가 950℃를 초과하는 경우, 전이금속의 환원에 의한 결정의 산소 결손이 발생하여, 목적하는 결정 구조의 단일층을 얻을 수 없다. 여기서, 바람직한 소성 시간은 5 ~ 20 시간이며, 보다 더 바람직한 소성 시간은 5 ~ 15 시간이다.In the present embodiment, the firing temperature is preferably 600 占 폚 to 950 占 폚. If the sintering temperature is less than 600 ° C, the diffusion energy of the element is insufficient, so that the desired thermal equilibrium crystal structure can not be attained and a single layer can not be obtained. When the calcination temperature exceeds 950 deg. C, oxygen deficiency of crystals due to the reduction of the transition metal occurs, and a single layer of the desired crystal structure can not be obtained. Here, the preferable baking time is 5 to 20 hours, and the more preferable baking time is 5 to 15 hours.

소성 후의 어닐링 처리는 500℃ ~ 750℃의 온도 범위가 바람직하며, 분위기는 산화 분위기가 바람직하다. 어닐링 온도가 500℃ 미만일 경우에는 원소의 확산 에너지가 부족하기 때문에, 미반응 혹은 분해 생성물인 Li이 A 원소와 반응하여 입계로 확산할 수 없다. 그 결과, 목적으로 하는 조성 변동의 저감을 할 수 없다. 즉, Li/M의 변동 계수를 30% 이하로 할 수 없다. 어닐링 온도가 750℃를 초과하는 경우에는, 산소의 활성이 부족하여 불순물상인 전이금속의 암염 구조 산화물이 생성된다. 보다 바람직한 어닐링 온도는 550℃ ~ 730℃, 보다 더 바람직하게는 580℃ ~ 700℃이다. 또한 바람직한 어닐링 시간은 3 ~ 20시간, 더욱 바람직하게는 3 ~ 15시간이다. 또, 소성 후의 어닐링 처리는, 소성 처리 후 계속해서 실시하는 것이 바람직하다.The annealing treatment after firing is preferably performed at a temperature in the range of 500 ° C to 750 ° C, and the atmosphere is preferably an oxidizing atmosphere. If the annealing temperature is less than 500 ° C, the diffusion energy of the element is insufficient, so that Li, which is an unreacted or decomposed product, can not diffuse into the grain boundary due to reaction with the element A. As a result, the aimed composition fluctuation can not be reduced. That is, the coefficient of variation of Li / M can not be 30% or less. When the annealing temperature exceeds 750 ° C, the activity of oxygen is insufficient, and a salt structure oxide of a transition metal, which is an impurity phase, is produced. The more preferable annealing temperature is 550 ° C to 730 ° C, and still more preferably 580 ° C to 700 ° C. The preferred annealing time is 3 to 20 hours, more preferably 3 to 15 hours. It is preferable that the annealing treatment after firing is carried out continuously after the firing treatment.

또한, 어닐링의 효과를 양호하게 발휘시키기 위해, 어닐링 온도는 소성 온도보다 저온인 것이 필요하며, 보다 바람직하게는 소성 온도보다 30℃ 이상 낮은 온도에서 어닐링하는 것이 바람직하다.Further, in order to exert the effect of annealing well, the annealing temperature needs to be lower than the firing temperature, and more preferably, it is preferable to perform annealing at a temperature 30 DEG C or more lower than the firing temperature.

다음으로, 본 발명의 일 실시형태에 관한 비수전해질 이차전지에 대하여 설명한다.Next, a nonaqueous electrolyte secondary battery according to one embodiment of the present invention will be described.

본 실시형태에 관한 비수전해질 이차전지는, 상기 양극 활물질을 포함하는 양극, 음극 및 전해질로 구성된다. 본 발명에 관한 비수전해질 이차전지는, 작동 전압 또는 초기의 결정 상전이에 따른 전압이 리튬 기준으로 4.5V 이하라도 사용할 수 있다.The nonaqueous electrolyte secondary battery according to the present embodiment is composed of a positive electrode including the positive electrode active material, a negative electrode, and an electrolyte. The nonaqueous electrolyte secondary battery according to the present invention can be used even when the operating voltage or the voltage depending on the initial crystal phase transition is 4.5 V or less based on lithium.

본 발명의 양극 합제로는 특별히 한정되는 것은 아니나, 예를 들어 활물질 : 도전제 : 바인더의 비율 90 : 5 : 5로 혼련함으로써 얻어진다.The positive electrode mixture of the present invention is not particularly limited, but can be obtained by kneading, for example, a ratio of active material: conductive agent: binder of 90: 5: 5.

음극 활물질로는, 리튬 금속, 리튬/알루미늄 합금, 리튬/주석 합금, 규소, 규소/탄소 복합체, 흑연(graphite) 등을 사용할 수 있다.As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, silicon, silicon / carbon composite, graphite and the like can be used.

또한, 전해액의 용매로는, 탄산 에틸렌(EC)과 탄산디에틸(DEC) 조합 외에, 탄산 프로필렌(PC), 탄산디메틸(DMC) 등을 기본 구조로 한 카보네이트류나, 디메톡시에탄(DME) 등 에테르류의 적어도 1 종류를 포함하는 유기 용매를 사용할 수 있다.Examples of the solvent for the electrolytic solution include a carbonate having a basic structure such as propylene carbonate (PC) or dimethyl carbonate (DMC) or dimethoxyethane (DME) in addition to the combination of ethylene carbonate (EC) and diethyl carbonate An organic solvent containing at least one kind of ether may be used.

또한, 전해질로는 육불화 인산 리튬(LiPF6) 이외에, 과염소산 리튬(LiClO4), 사불화 붕산 리튬(LiBF4) 등 리튬염의 적어도 1 종류를 상기 용매에 용해시켜 사용할 수 있다.As the electrolyte, at least one lithium salt such as lithium perchlorate (LiClO 4 ) and lithium tetrafluoroborate (LiBF 4 ) in addition to lithium hexafluorophosphate (LiPF 6 ) can be used by dissolving in the solvent.

<작용><Action>

본 발명에서 중요한 점은, 본 발명에 관한 양극 활물질을 이용한 비수전해질 이차전지는, 저온에서 고온까지의 반복 충방전에 있어서 용량 열화가 적은 안정된 충방전을 실시할 수 있다는 점이다.An important point of the present invention is that the nonaqueous electrolyte secondary battery using the positive electrode active material according to the present invention can perform stable charging and discharging with less capacity deterioration in repetitive charging and discharging from a low temperature to a high temperature.

본 발명에서는, 응집 2차 입자를 거동 단위로 하는 양극 활물질로서의 리튬 전이금속 산화물에 대한 반복 충방전에 있어서, 결정 표면, 즉 입계에서 일어나는 부반응이 억제되므로, 전지 용량 열화를 저감할 수 있다. 여기서, 부반응이란, 계면의 고저항이 일으키는 전기 이중층 증대에 기인하는 반응 등을 말한다. 이들이 원인이 되는 부작용으로는, 입계 중에서의 부반응 생성물에 의한 입계의 박리, 나아가 그에 따른 2차 입자 거동 단위 내에서의 도전성 저하, 유기 불순물의 분해, 및 금속 불순물의 용해 석출 등이며, 거시적으로는 전극의 팽창 등이다.In the present invention, in the repeated charge / discharge of the lithium transition metal oxide as the cathode active material with the agglomerated secondary particles acting as a unit, side reactions occurring at the crystal surface, that is, at the grain boundary, are suppressed, and battery capacity deterioration can be reduced. Here, the term "side reaction" refers to a reaction due to an increase in electric double layer caused by a high resistance at an interface. The side effects caused by these are peeling of the grain boundaries due to side reaction products in the grain boundaries, deterioration of conductivity in the secondary grain behavior unit, and decomposition of organic impurities and dissolution and precipitation of metal impurities. Expansion of the electrode, and the like.

본 발명에서는, 전술한 바와 같이, 양극 활물질의 2차 입자 중의 Li 조성비 Li/M의 변동 계수가 30% 이하이므로, Li/M의 변동이 적고, 국소적인 조성 차이가 억제되어 응집입자 전체에서 평균적인 조성을 갖는다. 따라서, 전지에 있어서 미반응 또는 분해 생성물인 Li 석출에 기인하는 2차 입자 내부의 초기 저항, 및 주기 중 저항 성분의 생성을 저감시킬 수 있으며, 그 결과, 반복 충방전의 응집 형태 붕괴 및 그에 따른 전지 성능의 열화를 저감할 수 있다.In the present invention, as described above, since the coefficient of variation of the Li composition ratio Li / M in the secondary particles of the cathode active material is 30% or less, fluctuation of Li / M is small and local compositional difference is suppressed, . Therefore, it is possible to reduce the initial resistance inside the secondary particles due to Li precipitation, which is unreacted or decomposed in the battery, and the generation of resistance components in the cycle, and as a result, the collapsed form collapse of repetitive charge / Deterioration of battery performance can be reduced.

이와 더불어, 본 발명에서는 안정성 향상을 위하여, F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb, W 등의 이종금속을 양극 활물질의 2차 입자 입계에 존재시키는 것이 바람직하다. 이는, 본 발명자들이 발견한 원료 유래의 미반응 또는 분해 생성물인 Li 성분의 1차 입자 사이에서의 입계 석출이 전지 수명의 저해 요인이 되고 있음을 더욱 발전시켜, 응집 2차 입자 내부(후술하는 실시예에서는 응집 2차 입자의 파단면)의 입계에서, 특히 잉여 Li량(미반응 또는 분해 생성물인 Li량)과 타원소를 반응시켜 Li 이온 전도체를 생성하고, 그 결과 입계의 저항 성분이 저감되어, 저온에서 고온까지의 반복 충방전에서 용량 열화가 적은 안정된 충방전을 실시할 수 있다는 지견에 따른 것이다.In order to improve the stability of the positive electrode active material, a different metal such as F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb, It is preferably present in the secondary particle grain boundary. This is further improved by the fact that the intergranular precipitation between the primary particles of the Li component which is an unreacted or decomposed product originating from the raw materials discovered by the present inventors is an obstacle to battery life, (In the example, the fractured surface of the agglomerated secondary particles), Li ion conductor is produced by reacting an extra Li amount (unreacted or decomposed product Li amount) with the other element, and as a result, the resistance component of the grain boundary is reduced , And stable charging and discharging with less capacity deterioration can be performed in repeated charging and discharging from a low temperature to a high temperature.

(실시예)(Example)

본 발명의 대표적인 실시예를 이하에 나타낸다. 우선, 본 실시예에서의 양극 활물질에 대한 각종 측정 방법에 대하여 설명한다.Exemplary embodiments of the present invention are described below. First, various measuring methods for the positive electrode active material in this embodiment will be described.

양극 활물질에서 결정 입계 부분의 확인 및 입계 근방 결정 입자 내부의 결정 구조는, Ar 이온 밀링으로 얻은 단면을, 가속 전압 300keV에서 TEM Image 다간섭상 및 제한 시야 전자선 회절 패턴으로 동정하였다.Identification of the crystal grain boundaries in the cathode active material and crystal structure inside the grain boundaries near the grain boundary were identified by TEM image multi-interference and limited field electron diffraction patterns at an acceleration voltage of 300 keV obtained by Ar ion milling.

양극 활물질의 결정 입계 부분 및 입계를 포함한 2차 입자 단면 내의 이온 분포의 확인은, 이차 이온 질량 분석법을 통해 실시하였다. 구체적으로는, 이차 이온 질량 분석 장치 Nano-SIMS50L(AETEK CAMECA사제)를 사용하여, Cs + 이온을 8keV로 가속하고, 지름 100nm 이하로 조이고 절삭한 관찰 단면에 60nm 간격으로 조사하여, 샘플에서 발생되는 이차 이온을 동정하였다. 이로써, 60 내지 100 나노 오더의 미세한 공간 분해능을 갖는 Li를 포함한 주요 원소인 Ni 등의 분포 상태를 측정하였다.The ion distribution in the secondary particle cross section including the grain boundary portion and the grain boundary of the cathode active material was confirmed by secondary ion mass spectrometry. Specifically, Cs + ions were accelerated to 8 keV by using a secondary ion mass spectrometer Nano-SIMS50L (manufactured by AETEK CAMECA), irradiated at intervals of 60 nm on the observation cross section cut with a diameter of 100 nm or less, Secondary ions were identified. As a result, the distribution state of Ni, which is a main element including Li having a fine spatial resolution of 60 to 100 nanometers, was measured.

응집입자의 단면(관찰면)은, 수지에 봉입한 양극 활물질을 이온 밀러로 절삭하여 얻었다. 이 때의 단면은 적어도 지름이 3μm가 되도록 하여, 응집입자의 한쪽 끝단에서 반대쪽 끝단까지 적어도 3μm의 직선 부분에 대하여 연속적으로 조성비를 측정하고, 표준 편차값, 평균값을 산출하여, 변동 계수(표준 편차 / 평균값)로 하였다.The cross-section (observation plane) of the aggregated particles was obtained by cutting the positive electrode active material encapsulated in the resin with an ion miller. The cross section at this time was measured at least at a diameter of 3 mu m, and the composition ratio was continuously measured with respect to a linear portion of at least 3 mu m from one end to the opposite end of the agglomerated particles. The standard deviation value and the average value were calculated, / Average value).

당해 측정 개념도를 도 1에 나타낸다. 본 발명에 관한 양극 활물질은, 다수의 1차 입자(결정 입자)(1)가 응집된 2차 입자(2)이다. 수지에 봉입한 2차 입자(2)의 관찰 단면에 대하여, 소정의 길이의 직선 부분(3)을 선택하여 조성비를 측정하였다.The measurement conceptual diagram is shown in Fig. The positive electrode active material according to the present invention is a secondary particle (2) in which a plurality of primary particles (crystal particles) 1 are aggregated. The linear portion 3 having a predetermined length was selected for the observation cross section of the secondary particles 2 sealed in the resin, and the composition ratio was measured.

또한, 보조적 분석으로, 사전에 FIB-SIM 영상과 상기 Nano SIMS의 Ni 분포를 비교하여, Nano SIMS로 얻어지는 Ni 분포와 실제 입계 위치가 일치하는 것을 확인하였다.In addition, it was confirmed that the Ni distribution obtained by Nano SIMS and the actual grain boundary position coincide with each other by comparing the FIB-SIM image with the Ni distribution of the Nano SIMS by an auxiliary analysis.

마찬가지로, 입계 근방 즉, 결정 표면 근방의 전이금속의 상태 분석은, STEM-EELS를 이용하여 가속 전압 200keV, 빔 지름 0.2nm, 조사 전류 1.00nA로 실시하였다.Likewise, the state of the transition metal in the vicinity of the grain boundary, that is, the vicinity of the crystal surface, was analyzed using STEM-EELS at an acceleration voltage of 200 keV, a beam diameter of 0.2 nm and an irradiation current of 1.00 nA.

본 실시형태에 관한 양극 활물질을 포함하는 양극 합제의 반복 충방전 특성 측정은 2032 사이즈의 코인 셀을 이용하였다. 이 코인 셀에 대해서는, 양극 활물질로서 복합 산화물 90중량%, 도전제로서 카본 블랙 5중량%, 바인더로서 N-메틸 피롤리돈에 용해시킨 폴리 불화 비닐리덴 5중량%를 혼합한 후, Al 금속박으로 도포하여 110℃에서 건조하였다. 이 시트를 φ16mm로 펀칭한 후, 3.0t/cm2로 압착한 것을 양극으로 사용하였다. 음극에는 금속 리튬박을 사용하였다. 전해액으로는, EC와 DMC를 체적비 1 : 2로 혼합한 용매에 1mol/L의 LiPF6를 용해시킨 것을 사용하여, 상기 사이즈의 코인 셀을 제조하였다.A 2032 size coin cell was used to measure the repetition charge / discharge characteristics of the positive electrode mixture containing the positive electrode active material according to the present embodiment. The coin cell was prepared by mixing 90 wt% of a composite oxide as a cathode active material, 5 wt% of carbon black as a conductive agent, and 5 wt% of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder, And dried at 110 ° C. This sheet was punched to a diameter of 16 mm, and then pressed at 3.0 t / cm 2 , and used as a positive electrode. A metal lithium foil was used for the cathode. As the electrolytic solution, a coin cell of the above-mentioned size was prepared by dissolving 1 mol / L of LiPF 6 in a solvent mixed with EC and DMC at a volume ratio of 1: 2.

반복 충방전 특성의 측정에 대해서는, 상기 코인 셀을 0.5C 비율로 4.3V까지 (CC-CV)로 충전한 후, 1C 비율로 3.0V까지 방전(CC)하고, 이를 100주기 반복하여, 용량 유지율을 산출하였다. 여기서, 이 시험은 60℃의 항온조 내에서 실시하였다.For the measurement of the repetition charge / discharge characteristics, the coin cell was charged at a rate of 0.5 C to a voltage of 4.3 V (CC-CV), discharged at a rate of 1 C to 3.0 V (CC) Respectively. Here, this test was carried out in a thermostatic chamber at 60 占 폚.

평균 이차 입자 지름(D50) 값은, 레이저식 입도 분포 측정장치 마이크로 트랙 HRA(NIKKISO(주)제)를 이용하여, 습식 레이저법으로 측정한 체적 기준의 평균 입자 지름이다.The average secondary particle diameter (D50) is an average particle diameter based on volume measured by a wet laser method using a laser type particle size distribution measuring apparatus Microtrack HRA (manufactured by NIKKISO CO., LTD.).

양극 활물질 입자의 결정자 크기의 산출은, X선 회절장치[Smart Lab(주) RIGAKU사제]에서, 슬릿은 2/3도로 하고, 2θ/θ가 10°~ 90° 범위를, 0.02° 간격으로 1.2°/min 스텝 스캐닝으로 실시하였다. 그 후, 텍스트 데이터를 이용하여 Rietvelt 해석을 수행함으로써 결정자 크기를 산출하였다.The crystallite size of the positive electrode active material particles was calculated by using an X-ray diffractometer (Smart Lab, RIGAKU CO., LTD.) At a slit of 2/3 and a range of 2? /? ° / min step scanning. After that, the determinant size was calculated by performing the Rietvelt analysis using the text data.

Rietvelt 해석에서는, S값이 1.3 이하일 때의 값을 사용하였다. 해석 방법은 예를 들어, 「R.A.Young, ed., "The Rietvelt Method", Oxford University Press (1992)」를 참고하였다.In the Rietvelt analysis, the value when the S value is 1.3 or less is used. An analytical method is described in, for example, R. A. Young, ed., The Rietvelt Method, Oxford University Press (1992).

날개형 교반기를 구비한 반응기 내에, pH = 12.0이 되도록 수산화 나트륨 수용액을 제조하였다. 여기에 암모니아 농도가 0.80mol/l로 되도록 암모니아 수용액을 적하하였다. 황산 니켈, 황산 코발트, 황산 망간 혼합수용액을, Ni/Co/Mn = 0.8/0.1/0.1의 조성비가 되도록 연속적으로 반응기에 공급하면서, 반응용액의 pH가 12, 암모니아 농도가 0.8mol/l로 되도록 수산화 나트륨 수용액 및 암모니아 수용액을 연속적으로 공급하여, 목표 평균 2차 입자 지름까지 성장시켰다. 더불어, 현탁액에 기계적인 전단력을 가함으로써 구형의 복합 전이금속 침전물을 얻었다.In a reactor equipped with a wing-type stirrer, an aqueous solution of sodium hydroxide was prepared so that pH = 12.0. An ammonia aqueous solution was added dropwise thereto so that the ammonia concentration became 0.80 mol / l. The pH of the reaction solution was adjusted to 12 and the ammonia concentration was adjusted to 0.8 mol / l while continuously supplying the nickel sulfate, cobalt sulfate and manganese sulfate aqueous solution to the reactor so that the composition ratio of Ni / Co / Mn was 0.8 / 0.1 / 0.1. An aqueous solution of sodium hydroxide and an aqueous ammonia solution were successively supplied to grow the target secondary particle diameter to the target average secondary particle size. In addition, a spherical composite transition metal precipitate was obtained by applying a mechanical shear force to the suspension.

반응 후 취해 낸 현탁액을, 필터 프레스를 이용하여 물 세정한 후, 150℃에서 12시간 건조하여, 니켈·코발트·망간계 화합물 입자(니켈·코발트·망간 복합 수산화물 입자)를 얻었다. 이 복합 수산화물 입자와 수산화 리튬 수화물을 몰비 Li/(Ni + Co + Mn) = 1.02가 되도록 혼합하였다.The suspension obtained after the reaction was washed with water using a filter press and then dried at 150 ° C for 12 hours to obtain nickel-cobalt-manganese-based compound particles (nickel-cobalt-manganese composite hydroxide particles). The composite hydroxide particles and lithium hydroxide hydrate were mixed so that the molar ratio Li / (Ni + Co + Mn) = 1.02.

혼합물은 산화 분위기 하에서 750℃로 10시간 소성한 후, 산화 분위기 하에서 어닐링 처리로 650℃에서 7시간의 열처리를 실시한 후 해쇄(scattering)하였다. 얻어진 소성물의 화학 조성은, ICP 분석 결과 Li1 . 02Ni0 . 8Co0 . 1Mn0 . 1O2였다. 또한 평균 2차 입자 지름은 10.4μm이며, 결정자 크기는 462nm였다.The mixture was calcined at 750 DEG C for 10 hours in an oxidizing atmosphere, annealed at 650 DEG C for 7 hours under oxidizing atmosphere, and then scattered. Chemical composition of the obtained calcination, ICP analysis Li 1. 02 Ni 0 . 8 Co 0 . 1 Mn 0 . 1 O 2 . The average secondary particle diameter was 10.4 mu m and the crystallite size was 462 nm.

얻어진 Li1 . 02Ni0 . 8Co0 . 1Mn0 . 1O2에 ZrO2을 Zr/ Li1 . 02Ni0 . 8Co0 . 1Mn0 . 1O2 = 0.01이 되도록 혼합하고, 650℃에서 7시간 추가 소성하여 최종 생성물을 얻었다. 이 추가 소성으로 원래의 결정자 크기는 변하지 않았다.The obtained Li 1 . 02 Ni 0 . 8 Co 0 . 1 Mn 0 . A ZrO 2 to 1 O 2 Zr / Li 1. 02 Ni 0 . 8 Co 0 . 1 Mn 0 . 1 O 2 = 0.01, and further calcined at 650 ° C for 7 hours to obtain a final product. This additional calcination did not change the original crystallite size.

이 입자의 단면에 대하여, 상기 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정과 입계를 포함한 Li/M의 변동 계수는 24.6%였다. 또한, Zr은 Li 농도가 높은 입계에 공존함을 확인하였다.As a result of elemental distribution analysis in the above Nano SIMS, the coefficient of variation of Li / M including crystal and grain boundaries was 24.6%. Also, it was confirmed that Zr coexisted in the grain boundary having a high Li concentration.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상과 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였다.As a supplemental measurement, a high-resolution TEM, a multilayer interference phase, a limited field electron diffraction pattern, and a STEM-EELS analysis were performed at 20 nm intervals from the grain boundary to the inside of the crystal. As a result, it was confirmed that the crystal structure in the vicinity of the grain boundary had an R-3m structure like a bulk, and no transition metal was reduced.

또한, 상기 최종 생성물을 양극 활물질로 하여, 전술한 방법으로 코인 셀을 제작하고, 그 충방전 주기 측정을 실시한 결과, 99.6%의 유지율을 얻었다.Further, a coin cell was fabricated by using the above-mentioned final product as a cathode active material, and the charge / discharge cycle was measured. As a result, a retention rate of 99.6% was obtained.

전구체의 조성비에 대하여 Ni/Co/Mn = 1.0/1.0/1.0로 변경하고, Li 원료, 전이금속 혼합 구형 산화물, ZrO2 및 La2O3의 혼합물을 산화 분위기 하에서 850℃로 10시간 소성한 후, 어닐링 처리로서 대기 분위기 하에서 630℃로 8시간 열처리를 실시하였다. 이를 해쇄하여 양극 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The composition of the precursor was changed to Ni / Co / Mn = 1.0 / 1.0 / 1.0, and the mixture of the Li source, transition metal mixed spherical oxide, ZrO 2 and La 2 O 3 was fired at 850 ° C for 10 hours , And then annealed at 630 캜 for 8 hours in an atmospheric environment. A cathode active material was obtained in the same manner as in Example 1, except that the cathode active material powder was obtained by shredding the cathode active material powder.

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 26.7%였다. 또한, Zr은 Li 농도가 높은 입계에 공존함을 확인하였다.As a result of elemental distribution analysis in Nano SIMS, the coefficient of variation of Li / M including crystal and grain boundaries was 26.7%. Also, it was confirmed that Zr coexisted in the grain boundary having a high Li concentration.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure in the vicinity of the grain boundary had an R-3m structure like a bulk, and no transition metal was reduced.

실시예 2에서 얻어진 양극 활물질을 이용하여 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과, 99.1%의 유지율을 얻었다.Using the cathode active material obtained in Example 2, a coin cell was manufactured by the above-mentioned method, and the charge / discharge cycle was measured. As a result, a retention ratio of 99.1% was obtained.

날개형 교반기를 구비한 반응기 내에, pH = 12.0이 되도록 수산화 나트륨 수용액을 제조하였다. 여기에 암모니아 농도가 0.80mol/l로 되도록 암모니아 수용액을 적하하였다. 황산 니켈, 황산 코발트, 알루민산 나트륨 혼합 수용액을 연속적으로 반응기에 공급하면서, 반응 용액의 pH가 12, 암모니아 농도가 0.8mol/l로 되도록 수산화 나트륨 수용액 및 암모니아 수용액을 연속적으로 공급하여, 목표 평균 2차 입자 지름까지 성장시켰다. 더불어 현탁액에 기계적인 전단력을 가함으로써 구형의 복합 전이금속 침전물을 얻었다.In a reactor equipped with a wing-type stirrer, an aqueous solution of sodium hydroxide was prepared so that pH = 12.0. An ammonia aqueous solution was added dropwise thereto so that the ammonia concentration became 0.80 mol / l. An aqueous solution of sodium hydroxide and an aqueous ammonia solution were continuously supplied so that the reaction solution had a pH of 12 and an ammonia concentration of 0.8 mol / l while a continuous aqueous solution of nickel sulfate, cobalt sulfate and sodium aluminate was continuously supplied to the reactor, And grown to the diameter of the tea particle. In addition, spherical composite transition metal precipitates were obtained by applying mechanical shear force to the suspension.

반응 후 꺼낸 현탁액을, 필터 프레스를 이용하여 물 세정한 후, 150℃에서 12시간 건조하여, 니켈·코발트·알루미늄계 화합물 입자(니켈·코발트·알루미늄 복합 수산화물 입자)를 얻었다. 이 얻어진 전구체에 대하여, 대기 중 580℃의 온도에서 5시간의 열처리를 실시하였다. 이 전구체의 조성비에 대하여 Ni/Co/Al = 0.95/0.02/0.03이며, 수산화 리튬과 상기 전이금속 혼합 구형 산화물 및 WO3의 혼합물을, 산화 분위기 하에서 740℃로 10시간 소성한 후, 어닐링 처리로서 산소 분위기 하에서 660℃로 5시간 열처리를 실시하였다. 이를 해쇄하여 양극 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The suspension taken out after the reaction was washed with water using a filter press and then dried at 150 ° C for 12 hours to obtain nickel-cobalt-aluminum compound particles (nickel-cobalt-aluminum composite hydroxide particles). The obtained precursor was subjected to a heat treatment at a temperature of 580 캜 for 5 hours in the atmosphere. The mixture of lithium hydroxide and the transition metal mixed spherical oxide and WO 3 was fired at 740 占 폚 for 10 hours in an oxidizing atmosphere, and then subjected to annealing treatment to obtain a precursor of Ni / Co / Al = 0.95 / 0.02 / 0.03 Heat treatment was performed at 660 占 폚 for 5 hours in an oxygen atmosphere. A cathode active material was obtained in the same manner as in Example 1, except that the cathode active material powder was obtained by shredding the cathode active material powder.

이 입자의 단면에 대하여, Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 26.5%였다. 또한 W는 Li 농도가 높은 입계에 공존하는 것을 확인하였다.As a result of elemental distribution analysis in Nano SIMS, the coefficient of variation of Li / M including crystal and grain boundaries was 26.5%. It was also confirmed that W coexisted in the grain boundary having a high Li concentration.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure in the vicinity of the grain boundary had an R-3m structure like a bulk, and no transition metal was reduced.

실시예 3에서 얻어진 양극 활물질을 이용하여 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과, 98.0%의 유지율을 얻었다.A coin cell was manufactured by the above-described method using the cathode active material obtained in Example 3, and the charge / discharge cycle was measured. As a result, a retention ratio of 98.0% was obtained.

날개형 교반기를 구비한 반응기 내에, pH = 12.0이 되도록 수산화 나트륨 수용액을 제조하였다. 여기에 암모니아 농도가 0.80mol/l로 되도록 암모니아 수용액을 적하하였다. 황산 니켈, 황산 코발트, 알루민산 나트륨, 황산 망간, 황산 마그네슘 혼합 수용액을 연속적으로 반응기에 공급하면서, 반응 용액의 pH가 12, 암모니아 농도가 0.8mol/l로 되도록 수산화 나트륨 수용액 및 암모니아 수용액을 연속적으로 공급하여, 목표 평균 2차 입자 지름까지 성장시켰다. 더불어, 현탁액에 기계적인 전단력을 가함으로써 구형의 복합 전이금속 침전물을 얻었다.In a reactor equipped with a wing-type stirrer, an aqueous solution of sodium hydroxide was prepared so that pH = 12.0. An ammonia aqueous solution was added dropwise thereto so that the ammonia concentration became 0.80 mol / l. An aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied to the reactor so that the pH of the reaction solution became 12 and the ammonia concentration became 0.8 mol / l while continuously supplying an aqueous solution of nickel sulfate, cobalt sulfate, sodium aluminate, manganese sulfate and magnesium sulfate into the reactor continuously And grown to a target average secondary particle diameter. In addition, a spherical composite transition metal precipitate was obtained by applying a mechanical shear force to the suspension.

반응 후 꺼낸 현탁액을, 필터 프레스를 이용하여 물 세정한 후, 150℃에서 12시간 건조하여, 니켈·코발트·알루미늄·망간·마그네슘계 화합물 입자(니켈·코발트·알루미늄·망간·마그네슘 복합 수산화물 입자)를 얻었다. 이 얻어진 전구체에 대하여, 대기 중 600℃의 온도에서 5시간의 열처리를 실시하였다. 이 전구체의 조성비에 대하여, Ni/Co/Al/Mn/Mg = 0.92/0.02/0.03/0.02/0.01이며, 수산화 리튬과 상기 전이금속 혼합 구형 산화물 및 ZrO2의 혼합물을 산화 분위기 하에서 740℃로 10시간 소성한 후, 어닐링 처리로서 산소 분위기 하에서 600℃로 4시간 열처리를 실시하였다. 이를 해쇄하여 양극 활물질 분말을 얻은 것을 제외하고는 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The suspension taken out after the reaction was washed with water using a filter press and then dried at 150 ° C for 12 hours to obtain nickel-cobalt-aluminum-manganese-magnesium compound particles (nickel-cobalt-aluminum-manganese- . The obtained precursor was subjected to a heat treatment at 600 ° C for 5 hours in the air. The mixture of lithium hydroxide and the transition metal mixed spherical oxide and ZrO 2 was heated to 740 ° C at 1040 ° C under an oxidizing atmosphere, and the composition ratio of the precursor was Ni / Co / Al / Mn / Mg = 0.92 / 0.02 / 0.03 / 0.02 / After the time firing, annealing was performed for 4 hours at 600 占 폚 in an oxygen atmosphere. A cathode active material was obtained in the same manner as in Example 1 except that the cathode active material powder was obtained by shredding the cathode active material powder.

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 25.3%였다. 또한, Zr은 Li 농도가 높은 입계에 공존하는 것을 확인하였다.As a result of elemental distribution analysis in Nano SIMS, the coefficient of variation of Li / M including crystal and grain boundaries was 25.3%. Also, it was confirmed that Zr coexisted in the grain boundary with a high Li concentration.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure in the vicinity of the grain boundary had an R-3m structure like a bulk, and no transition metal was reduced.

실시예 4에서 얻어진 양극 활물질을 이용하여 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과 98.0%의 유지율을 얻었다.A coin cell was manufactured by the above-described method using the cathode active material obtained in Example 4, and the charge / discharge cycle was measured. As a result, a retention ratio of 98.0% was obtained.

날개형 교반기를 구비한 반응기 내에, pH = 12.0이 되도록 수산화 나트륨 수용액을 제조하였다. 여기에 암모니아 농도가 0.80mol/l로 되도록 암모니아 수용액을 적하하였다. 황산 니켈, 황산 코발트, 알루민산 나트륨, 황산 티타닐 혼합 수용액을 연속적으로 반응기에 공급하면서, 반응 용액의 pH가 12, 암모니아 농도가 0.8mol/l로 되도록 수산화 나트륨 수용액 및 암모니아 수용액을 연속적으로 공급하여, 목표 평균 2차 입자 지름까지 성장시켰다. 더불어, 현탁액에 기계적인 전단력을 가함으로써 구형의 복합 전이금속 침전물을 얻었다.In a reactor equipped with a wing-type stirrer, an aqueous solution of sodium hydroxide was prepared so that pH = 12.0. An ammonia aqueous solution was added dropwise thereto so that the ammonia concentration became 0.80 mol / l. An aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied such that the pH of the reaction solution became 12 and the ammonia concentration became 0.8 mol / l while continuously supplying the aqueous solution of nickel sulfate, cobalt sulfate, sodium aluminate and titanyl sulfate mixture into the reactor , And the target average secondary particle size was grown. In addition, a spherical composite transition metal precipitate was obtained by applying a mechanical shear force to the suspension.

반응 후 꺼낸 현탁액을, 필터 프레스를 이용하여 물 세정한 후, 150℃에서 12시간 건조하여, 니켈·코발트·알루미늄·티타늄계 화합물 입자 (니켈·코발트·알루미늄·티타늄 복합 수산화물 입자)를 얻었다. 이 얻어진 전구체에 대하여, 대기 중 630℃의 온도에서 5시간의 열처리를 실시하였다. 이 전구체의 조성비에 대하여, Ni/Co/Al/Ti = 0.91/0.05/0.03/0.01이며, 수산화 리튬과 상기 전이금속 혼합 구형 산화물 및 Nb2O5의 혼합물을 산화 분위기 하, 750℃에서 10시간 소성한 후, 어닐링 처리로서 산소 분위기 하에서 660℃로 5시간 열처리를 실시하였다. 이를 해쇄하여 양극 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The suspension taken out after the reaction was washed with water using a filter press and then dried at 150 ° C for 12 hours to obtain nickel-cobalt-aluminum-titanium-based compound particles (nickel-cobalt-aluminum-titanium composite hydroxide particles). The obtained precursor was subjected to a heat treatment at a temperature of 630 캜 in the atmosphere for 5 hours. The mixture of lithium hydroxide, the transition metal mixed spherical oxide and Nb 2 O 5 was oxidized at 750 ° C for 10 hours in an oxidizing atmosphere, with the composition ratio of the precursor being Ni / Co / Al / Ti = 0.91 / 0.05 / 0.03 / After baking, annealing was performed for 5 hours at 660 占 폚 in an oxygen atmosphere. A cathode active material was obtained in the same manner as in Example 1, except that the cathode active material powder was obtained by shredding the cathode active material powder.

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 26.8%였다. 또한, Nb은 Li 농도가 높은 입계에 공존하는 것을 확인하였다.As a result of elemental distribution analysis in Nano SIMS, the coefficient of variation of Li / M including crystal and grain boundaries was 26.8%. Further, it was confirmed that Nb coexists in the grain boundary having a high Li concentration.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure in the vicinity of the grain boundary had an R-3m structure like a bulk, and no transition metal was reduced.

실시예 5에서 얻어진 양극 활물질을 이용하여 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과 96.7%의 유지율을 얻었다.A coin cell was manufactured by the above-described method using the cathode active material obtained in Example 5, and the charge / discharge cycle was measured. As a result, a retention rate of 96.7% was obtained.

날개형 교반기를 구비한 반응기 내에, pH = 12.0이 되도록 수산화 나트륨 수용액을 제조하였다. 여기에 암모니아 농도가 0.80mol/l로 되도록 암모니아 수용액을 적하하였다. 황산 니켈, 황산 코발트, 알루민산 나트륨, 황산 루테늄 혼합 수용액을 연속적으로 반응기에 공급하면서, 반응 용액의 pH가 12, 암모니아 농도가 0.8mol/l로 되도록 수산화 나트륨 수용액 및 암모니아 수용액을 연속적으로 공급하여, 목표 평균 2차 입자 지름까지 성장시켰다. 더불어, 현탁액에 기계적인 전단력을 가함으로써 구형의 복합 전이금속 침전물을 얻었다.In a reactor equipped with a wing-type stirrer, an aqueous solution of sodium hydroxide was prepared so that pH = 12.0. An ammonia aqueous solution was added dropwise thereto so that the ammonia concentration became 0.80 mol / l. An aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied such that the pH of the reaction solution became 12 and the ammonia concentration became 0.8 mol / l, while continuously supplying the aqueous solution of nickel sulfate, cobalt sulfate, sodium aluminate and ruthenium sulfate into the reactor, To the target average secondary particle diameter. In addition, a spherical composite transition metal precipitate was obtained by applying a mechanical shear force to the suspension.

반응 후 꺼낸 현탁액을, 필터 프레스를 이용하여 물 세정한 후, 150℃에서 12시간 건조하여, 니켈·코발트·알루미늄·루테늄계 화합물 입자(니켈·코발트·알루미늄·루테늄 복합 수산화물 입자)를 얻었다. 이 얻어진 전구체에 대하여, 대기 중 580℃의 온도에서 5시간의 열처리를 실시하였다. 이 전구체의 조성비에 대하여, Ni/Co/Al/Ru = 0.70/0.20/0.05/0.05이며, 수산화 리튬과 상기 전이금속 혼합 구형 산화물 및 Y2O3의 혼합물을 산화 분위기 하, 730℃에서 10시간 소성한 후, 어닐링 처리로서 산소 분위기 하에서 620℃로 4시간 열처리를 실시하였다. 이를 해쇄하여 양극 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The suspension taken out after the reaction was washed with water using a filter press and then dried at 150 ° C for 12 hours to obtain nickel-cobalt-aluminum-ruthenium compound particles (nickel-cobalt-aluminum ruthenium complex hydroxide particles). The obtained precursor was subjected to a heat treatment at a temperature of 580 캜 for 5 hours in the atmosphere. The mixture of lithium hydroxide, the transition metal mixed spherical oxide and Y 2 O 3 was oxidized at 730 ° C for 10 hours in an oxidizing atmosphere with a composition ratio of the precursor of Ni / Co / Al / Ru = 0.70 / 0.20 / After baking, annealing was performed for 4 hours at 620 占 폚 in an oxygen atmosphere. A cathode active material was obtained in the same manner as in Example 1, except that the cathode active material powder was obtained by shredding the cathode active material powder.

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 24.5%였다. 또한, Y는 Li 농도가 높은 입계에 공존하는 것을 확인하였다.As a result of elemental distribution analysis in Nano SIMS, the variation coefficient of Li / M including crystal and grain boundaries was 24.5%. Further, it was confirmed that Y coexisted in a grain boundary having a high Li concentration.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure in the vicinity of the grain boundary had an R-3m structure like a bulk, and no transition metal was reduced.

실시예 6에서 얻어진 양극 활물질을 이용하여 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과 98.9 %의 유지율을 얻었다.A coin cell was manufactured by the above-described method using the cathode active material obtained in Example 6, and the charge / discharge cycle was measured. As a result, a retention ratio of 98.9% was obtained.

날개형 교반기를 구비한 반응기 내에, pH = 12.0이 되도록 수산화 나트륨 수용액을 제조하였다. 여기에 암모니아 농도가 0.80mol/l로 되도록 암모니아 수용액을 적하하였다. 황산 니켈, 황산 코발트, 알루민산 나트륨, 황산 망간 혼합 수용액을 연속적으로 반응기에 공급하면서, 반응 용액의 pH가 12, 암모니아 농도가 0.8mol/l로 되도록 수산화 나트륨 수용액 및 암모니아 수용액을 연속적으로 공급하여, 목표 평균 2차 입자 지름까지 성장시켰다. 더불어, 현탁액에 기계적인 전단력을 가함으로써 구형의 복합 전이금속 침전물을 얻었다.In a reactor equipped with a wing-type stirrer, an aqueous solution of sodium hydroxide was prepared so that pH = 12.0. An ammonia aqueous solution was added dropwise thereto so that the ammonia concentration became 0.80 mol / l. An aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied such that the pH of the reaction solution became 12 and the ammonia concentration became 0.8 mol / l while continuously supplying the aqueous solution of nickel sulfate, cobalt sulfate, sodium aluminate and manganese sulfate into the reactor, To the target average secondary particle diameter. In addition, a spherical composite transition metal precipitate was obtained by applying a mechanical shear force to the suspension.

반응 후 꺼낸 현탁액을, 필터 프레스를 이용하여 물 세정한 후, 150℃에서 12시간 건조하여, 니켈·코발트·알루미늄·망간계 화합물 입자(니켈·코발트·알루미늄·망간 복합 수산화물 입자)를 얻었다. 이 얻어진 전구체에 대하여, 대기 중 600℃의 온도에서 5시간의 열처리를 실시하였다. 이 전구체의 조성비에 대하여 Ni/Co/Al/Mn = 0.92/0.08/0.02/0.02이며, 수산화 리튬과 상기 전이금속 혼합 구형 산화물 및 TeO2 혼합물을 산화 분위기 하, 750℃에서 10시간 소성한 후, 어닐링 처리로서 산소 분위기 하에서 630℃로 5시간 동안 열처리를 실시하였다. 이를 해쇄하여 양극 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The suspension taken out after the reaction was washed with water using a filter press and then dried at 150 ° C for 12 hours to obtain nickel-cobalt-aluminum-manganese-based compound particles (nickel-cobalt-aluminum-manganese composite hydroxide particles). The obtained precursor was subjected to a heat treatment at 600 ° C for 5 hours in the air. The mixture of lithium hydroxide and the transition metal mixed spherical oxide and TeO 2 was calcined at 750 ° C for 10 hours in an oxidizing atmosphere, and the composition ratio of the precursor was Ni / Co / Al / Mn = 0.92 / 0.08 / 0.02 / 0.02. As the annealing treatment, heat treatment was performed at 630 캜 for 5 hours in an oxygen atmosphere. A cathode active material was obtained in the same manner as in Example 1, except that the cathode active material powder was obtained by shredding the cathode active material powder.

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 25.5%였다. 또한, Te는 Li 농도가 높은 입계에 공존하는 것을 확인하였다.As a result of elemental distribution analysis in Nano SIMS, the variation coefficient of Li / M including crystal and grain boundaries was 25.5%. In addition, it was confirmed that Te coexisted in a grain boundary having a high Li concentration.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure in the vicinity of the grain boundary had an R-3m structure like a bulk, and no transition metal was reduced.

실시예 7에서 얻어진 양극 활물질을 이용하여 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과 98.5%의 유지율을 얻었다.A coin cell was prepared using the cathode active material obtained in Example 7 as described above, and the charge / discharge cycle was measured. As a result, a retention ratio of 98.5% was obtained.

날개형 교반기를 구비한 반응기 내에, pH = 12.0이 되도록 수산화 나트륨 수용액을 제조하였다. 여기에 암모니아 농도가 0.80mol/l로 되도록 암모니아 수용액을 적하하였다. 황산 니켈, 황산 코발트, 알루민산 나트륨, 황산 마그네슘, 산화 몰리브덴 혼합 수용액을 연속적으로 반응기에 공급하면서, 반응 용액의 pH가 12, 암모니아 농도가 0.8mol/l로 되도록 수산화 나트륨 수용액 및 암모니아 수용액을 연속적으로 공급하여, 목표 평균 2차 입자 지름까지 성장시켰다. 더불어, 현탁액에 기계적인 전단력을 가함으로써 구형의 복합 전이금속 침전물을 얻었다.In a reactor equipped with a wing-type stirrer, an aqueous solution of sodium hydroxide was prepared so that pH = 12.0. An ammonia aqueous solution was added dropwise thereto so that the ammonia concentration became 0.80 mol / l. An aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied to the reactor so that the pH of the reaction solution became 12 and the ammonia concentration became 0.8 mol / l while continuously supplying an aqueous solution of nickel sulfate, cobalt sulfate, sodium aluminate, magnesium sulfate and molybdenum oxide into the reactor continuously And grown to a target average secondary particle diameter. In addition, a spherical composite transition metal precipitate was obtained by applying a mechanical shear force to the suspension.

반응 후 꺼낸 현탁액을, 필터 프레스를 이용하여 물 세정한 후, 150℃에서 12시간 건조하여, 니켈·코발트·알루미늄·마그네슘·몰리브덴계 화합물 입자(니켈·코발트·알루미늄·마그네슘·몰리브덴 복합 수산화물 입자)를 얻었다. 이 얻어진 전구체에 대하여, 대기 중 570℃의 온도에서 5시간의 열처리를 실시하였다. 이 전구체의 조성비에 대하여 Ni/Co/Al/Mg/Mo = 0.80/0.10/0.05/0.02/0.03이며, 수산화 리튬과 상기 전이금속 혼합 구형 산화물 및 NH4H2PO3의 혼합물을 산화 분위기 하, 760℃에서 10시간 소성한 후, 어닐링 처리로서 산소 분위기 하에서 640℃로 6시간 열처리를 실시하였다. 이를 해쇄하여 양극 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The suspension taken out after the reaction was washed with water using a filter press and then dried at 150 ° C for 12 hours to obtain nickel, cobalt, aluminum, magnesium, molybdenum compound particles (nickel, cobalt, aluminum magnesium, molybdenum complex hydroxide particles) . The obtained precursor was subjected to a heat treatment at a temperature of 570 캜 for 5 hours in the atmosphere. The mixture of the lithium hydroxide, the transition metal mixed spherical oxide and NH 4 H 2 PO 3 was oxidized under an oxidizing atmosphere, and the composition ratio of the precursor was Ni / Co / Al / Mg / Mo = 0.80 / 0.10 / 0.05 / 0.02 / After baking at 760 ° C for 10 hours, annealing was performed at 640 ° C for 6 hours in an oxygen atmosphere. A cathode active material was obtained in the same manner as in Example 1, except that the cathode active material powder was obtained by shredding the cathode active material powder.

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 27.3%였다. 또한, P는 Li 농도가 높은 입계에 공존하는 것을 확인하였다.As a result of elemental distribution analysis in Nano SIMS, the coefficient of variation of Li / M including crystal and grain boundaries was 27.3%. Further, it was confirmed that P coexisted in the grain boundary having a high Li concentration.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure in the vicinity of the grain boundary had an R-3m structure like a bulk, and no transition metal was reduced.

실시예 8에서 얻어진 양극 활물질을 이용하여 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과 98.2%의 유지율을 얻었다.A coin cell was produced by using the above-mentioned positive electrode active material obtained in Example 8, and the charge / discharge cycle was measured. As a result, a maintenance ratio of 98.2% was obtained.

[비교예 1][Comparative Example 1]

전구체의 조성비에 대하여 Ni/Co/Mn = 0.6/0.2/0.2로 변경하고, Li 원료와 전이금속 혼합 구형 산화물의 혼합물에 대하여, 소성 조건을 산화 분위기 하, 750℃에서 10시간으로 하고, 어닐링 처리는 실시하지 않으며, 그 후 해쇄하여 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The composition of the precursor was changed to Ni / Co / Mn = 0.6 / 0.2 / 0.2, and the mixture of the Li source and the transition metal mixed spherical oxide was calcined under the oxidizing atmosphere at 750 占 폚 for 10 hours, And the active material powder was obtained by crushing the active material powder to obtain a positive electrode active material in the same manner as in Example 1. [

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 32.0%였다.As a result of elemental distribution analysis in Nano SIMS, the coefficient of variation of Li / M including crystal and grain boundaries was 32.0%.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방 이외에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였으나, 입계 최근방 부분에만 전이금속이 Li 사이트로 혼입됨이 인정되는 동시에, 전이금속의 환원을 시사하는 EELS의 에너지 시프트를 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure except the vicinity of the grain boundary has an R-3m structure like bulk and no reduction of the transition metal, but it is recognized that the transition metal is incorporated into the Li site only in the recent chamber portion of the grain boundary , And the energy shift of EELS suggesting the reduction of the transition metal was confirmed.

비교예 1에서 얻어진 양극 활물질을 이용하여, 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과 90.0%의 유지율을 얻었다.Using the cathode active material obtained in Comparative Example 1, a coin cell was produced by the above-mentioned method, and the charge / discharge cycle was measured. As a result, a retention ratio of 90.0% was obtained.

[비교예 2][Comparative Example 2]

전구체의 조성비에 대하여 Ni/Co/Mn = 0.5/0.2/0.3으로 변경하고, Li 원료와 전이금속 혼합 구형 산화물의 혼합물에 대하여, 소성 조건을 산화 분위기 하, 950℃에서 10시간으로 하고, 어닐링 처리를 실시하지 않으며, 그 후 해쇄하여 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The composition of the precursor was changed to Ni / Co / Mn = 0.5 / 0.2 / 0.3, and the mixture of the Li source and the transition metal mixed spherical oxide was calcined under the oxidizing atmosphere at 950 캜 for 10 hours, , And then the active material powder was obtained by shredding it to obtain an active material powder, a cathode active material was obtained in the same manner as in Example 1.

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 28.8%였다.As a result of elemental distribution analysis in Nano SIMS, the variation coefficient of Li / M including crystal and grain boundaries was 28.8%.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방 이외에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또, 전이금속의 환원도 없음을 확인하였으나, 입계 최근방 부분에만 전이금속이 Li 사이트로 혼입됨이 인정되는 동시에, 전이금속의 환원을 시사하는 EELS의 에너지 시프트를 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure except the vicinity of the grain boundary has an R-3m structure like bulk and no reduction of the transition metal, but it is recognized that the transition metal is incorporated into the Li site only in the recent chamber portion of the grain boundary , And the energy shift of EELS suggesting the reduction of the transition metal was confirmed.

비교예 2에서 얻어진 양극 활물질을 이용하여, 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과 96.2%의 유지율을 얻었다.Using the cathode active material obtained in Comparative Example 2, a coin cell was produced by the above-mentioned method, and the charge / discharge cycle was measured. As a result, a retention ratio of 96.2% was obtained.

[비교예 3][Comparative Example 3]

날개형 교반기를 구비한 반응기 내에, pH = 12.0이 되도록 수산화 나트륨 수용액을 제조하였다. 여기에 암모니아 농도가 0.80mol/l로 되도록 암모니아 수용액을 적하하였다. 황산 니켈, 황산 코발트, 알루민산 나트륨 혼합 수용액을 연속적으로 반응기에 공급하면서, 반응 용액의 pH가 12, 암모니아 농도가 0.8mol/l로 되도록 수산화 나트륨 수용액 및 암모니아 수용액을 연속적으로 공급하여, 목표 평균 2차 입자 지름까지 성장시켰다. 더불어, 현탁액에 기계적인 전단력을 가함으로써 구형의 복합 전이금속 침전물을 얻었다.In a reactor equipped with a wing-type stirrer, an aqueous solution of sodium hydroxide was prepared so that pH = 12.0. An ammonia aqueous solution was added dropwise thereto so that the ammonia concentration became 0.80 mol / l. An aqueous solution of sodium hydroxide and an aqueous ammonia solution were continuously supplied so that the reaction solution had a pH of 12 and an ammonia concentration of 0.8 mol / l while a continuous aqueous solution of nickel sulfate, cobalt sulfate and sodium aluminate was continuously supplied to the reactor, And grown to the diameter of the tea particle. In addition, a spherical composite transition metal precipitate was obtained by applying a mechanical shear force to the suspension.

반응 후 꺼낸 현탁액을, 필터 프레스를 이용하여 물 세정한 후, 150℃에서 12시간 건조하여, 니켈·코발트·알루미늄계 화합물 입자(니켈·코발트·알루미늄 복합 수산화물 입자)를 얻었다. 이 얻어진 전구체에 대하여, 대기 중에서 570℃의 온도로 5시간의 열처리를 실시하였다. 이 전구체의 조성비에 대하여, Ni/Co/Al = 0.80/0.15/0.05이며, 수산화 리튬 및 상기 전이금속 혼합 구형 산화물의 혼합물에 대하여, 소성 조건을 산화 분위기 하, 750℃에서 10시간으로 하고, 어닐링 처리를 실시하지 않으며, 그 후 해쇄하여 활물질 분말을 얻은 것을 제외하고는, 실시예 1과 마찬가지로 하여 양극 활물질을 얻었다.The suspension taken out after the reaction was washed with water using a filter press and then dried at 150 ° C for 12 hours to obtain nickel-cobalt-aluminum compound particles (nickel-cobalt-aluminum composite hydroxide particles). The obtained precursor was subjected to a heat treatment at a temperature of 570 캜 for 5 hours in the air. The mixture of lithium hydroxide and the above-mentioned transition metal mixed spherical oxide was subjected to firing under the oxidizing atmosphere at 750 占 폚 for 10 hours and annealing A positive electrode active material was obtained in the same manner as in Example 1, except that no treatment was carried out and the active material powder was obtained by subsequent smoothing.

이 입자의 단면에 대하여 Nano SIMS에서 원소 분포 분석을 실시한 결과, 결정 및 입계를 포함한 Li/M의 변동 계수는 34.0%였다.As a result of elemental distribution analysis in Nano SIMS, the coefficient of variation of Li / M including crystal and grain boundaries was 34.0%.

보조적 측정으로, 고분해능 TEM에서 다파 간섭상 및 제한 시야 전자선 회절 패턴, 그리고 STEM-EELS 분석을, 입계에서 결정 내부에 걸쳐 20nm 간격으로 실시하였다. 그 결과, 입계 근방 이외에서의 결정 구조는 벌크와 같이 R-3m 구조를 가지며, 또한, 전이금속의 환원도 없음을 확인하였으나, 입계 최근방 부분에만 전이금속이 Li 사이트로 혼입됨이 인정되는 동시에, 전이금속의 환원을 시사하는 EELS의 에너지 시프트를 확인하였다.As a supplemental measurement, the high-resolution TEM and the STE-EELS analysis were performed at 20 nm intervals across the crystal in the grain boundaries. As a result, it was confirmed that the crystal structure except for the vicinity of the grain boundary had an R-3m structure like bulk and no reduction of the transition metal, but it was recognized that the transition metal was incorporated into the Li site only in the recent chamber portion of the grain boundary , And the energy shift of EELS suggesting the reduction of the transition metal was confirmed.

비교예 3에서 얻어진 양극 활물질을 이용하여, 전술한 방법으로 코인 셀을 제조하고, 그 충방전 주기 측정을 실시한 결과 95.0%의 유지율을 얻었다.Using the cathode active material obtained in Comparative Example 3, a coin cell was produced by the above-mentioned method and the charge / discharge cycle was measured. As a result, a retention rate of 95.0% was obtained.

실시예 1 ~ 8 및 비교예 1 ~ 3에서 얻어진 양극 활물질의 Li/M의 변동 계수 및 충방전 특성을 포함하는 각종 특징을 표 1에 나타낸다.Table 1 shows various characteristics including the coefficient of variation and charge / discharge characteristics of Li / M of the cathode active material obtained in Examples 1 to 8 and Comparative Examples 1 to 3.

조성Furtherance 어닐링
온도
(℃)
Annealing
Temperature
(° C)
어닐링
시간
(hr)
Annealing
time
(hr)
Li/M
변동
계수(%)
Li / M
Variance
Coefficient(%)
Cycle
(101st/1st)
유지율(%)
Cycle
(101st / 1st)
Retention rate (%)
평균 2차 입자
지름
(μm)
Average secondary particle
diameter
(μm)
결정자
크기
(nm)
crystallite
size
(nm)
dopantdopant
실시예1Example 1 Li1.02Ni0.8Co0.1Mn0.1O2 Li 1.02 Ni 0.8 Co 0.1 Mn 0.1 O 2 650650 77 24.624.6 99.699.6 10.410.4 462462 ZrZr 실시예2Example 2 Li1.05Ni0.33Co0.33Mn0.33O2 Li 1.05 Ni 0.33 Co 0.33 Mn 0.33 O 2 630630 88 26.726.7 99.199.1 9.139.13 556556 La、ZrLa, Zr 실시예3Example 3 Li1.01Ni0.95Co0.02Al0.03O2 Li 1.01 Ni 0.95 Co 0.02 Al 0.03 O 2 660660 55 26.526.5 98.098.0 10.310.3 300300 WW 실시예4Example 4 Li1.01Ni0.92Co0.02Al0.03Mn0.02Mg0.01O2 Li 1.01 Ni 0.92 Co 0.02 Al 0.03 Mn 0.02 Mg 0.01 O 2 600600 44 25.325.3 98.098.0 11.211.2 342342 ZrZr 실시예5Example 5 Li1.01Ni0.91Co0.05Al0.03Ti0.01O2 Li 1.01 Ni 0.91 Co 0.05 Al 0.03 Ti 0.01 O 2 660660 55 26.826.8 96.796.7 12.112.1 435435 NbNb 실시예6Example 6 Li1.02Ni0.70Co0.20Al0.05Ru0.05O2 Li 1.02 Ni 0.70 Co 0.20 Al 0.05 Ru 0.05 O 2 620620 44 24.524.5 98.998.9 11.511.5 356356 YY 실시예7Example 7 Li1.01Ni0.92Co0.08Al0.02Mn0.02O2 Li 1.01 Ni 0.92 Co 0.08 Al 0.02 Mn 0.02 O 2 630630 55 25.525.5 98.598.5 11.811.8 451451 TeTe 실시예8Example 8 Li1.01Ni0.80Co0.10Al0.05
Mg0 . 02Mo0 . 03O2
Li 1.01 Ni 0.80 Co 0.10 Al 0.05
Mg 0 . 02 Mo 0 . 03 O 2
640640 66 27.327.3 98.298.2 12.312.3 392392 PP
비교예1Comparative Example 1 Li1.01Ni0.6Co0.2Mn0.2O2 Li 1.01 Ni 0.6 Co 0.2 Mn 0.2 O 2 -- -- 32.032.0 90.090.0 9.139.13 556556 -- 비교예2Comparative Example 2 Li1.04Ni0.5Co0.2Mn0.3O2 Li 1.04 Ni 0.5 Co 0.2 Mn 0.3 O 2 -- -- 28.828.8 96.296.2 10.410.4 462462 -- 비교예3Comparative Example 3 Li1.01Ni0.8Co0.15Al0.05O2 Li 1.01 Ni 0.8 Co 0.15 Al 0.05 O 2 -- -- 34.034.0 95.095.0 10.410.4 462462 AlAl

이상의 결과로부터, 본 발명에 관한 양극 활물질의 특징을 구비한 실시예 1 ~ 8의 양극 활물질을 이용하여 제작한 이차전지는, 비교예 1 ~ 3의 양극 활물질을 사용하여 제작한 이차전지와 비교하여, 반복 충방전 특성이 우수한 것으로 밝혀졌다.From the above results, it can be seen that the secondary battery produced using the cathode active materials of Examples 1 to 8 having the characteristics of the cathode active material of the present invention is superior to the secondary battery produced by using the cathode active materials of Comparative Examples 1 to 3 , And it was found that the charge and discharge characteristics were excellent.

본 발명에 관한 양극 활물질은, 방전용량이 크고 주기 특성이 우수하므로, 비수 전해질 이차전치용 양극 활물질로서 적합하다. The positive electrode active material according to the present invention is suitable as a nonaqueous electrolyte secondary replacement positive electrode active material because of its large discharge capacity and excellent cycle characteristics.

1: 1차 입자
2: 2차 입자
3: 조성비를 측정하는 기준선
1: Primary particles
2: secondary particles
3: Baseline for measuring the composition ratio

Claims (8)

일반식이,
Lia(NibCocAldMee)O2(단, Me = Mn, Mg, Ti, Ru, Zr, Nb, Mo, W이며, 1.00
Figure pct00015
a
Figure pct00016
1.15, 0.25 < b < 1, 0 < c
Figure pct00017
0.30, 0
Figure pct00018
d
Figure pct00019
0.05, 0
Figure pct00020
e
Figure pct00021
0.40)으로 표시되는 리튬 전이금속층상 산화물로 이루어지는 양극 활물질에 있어서,
상기 양극 활물질은, 1차 입자가 응집된 2차 입자로 구성되며, 이 2차 입자 내에서의 Li/M(M = Ni + Co + Al + Me)의 변동계수가 28.0% 이하인 것을 특징으로 하는 비수전해질 이차전지의 양극 활물질.
The general diet,
The Li a (Ni b Co c Al d Me e) O 2 ( stage, Me = Mn, Mg, Ti , Ru, Zr, Nb, Mo, W, 1.00
Figure pct00015
a
Figure pct00016
1.15, 0.25 < b < 1, 0 < c
Figure pct00017
0.30, 0
Figure pct00018
d
Figure pct00019
0.05, 0
Figure pct00020
e
Figure pct00021
0.40), the positive electrode active material comprising a lithium transition metal layered oxide,
Wherein the positive electrode active material is composed of secondary particles in which primary particles are aggregated and the coefficient of variation of Li / M (M = Ni + Co + Al + Me) in the secondary particles is 28.0% Cathode Active Material of Non - aqueous Electrolyte Secondary Battery.
제 1항에 있어서,
상기 2차 입자의 입계에, F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Te, Ce, Zr, La, Mo, Sc, Nb 및 W 중의 복수 또는 어느 하나가 존재하는 양극 활물질.
The method according to claim 1,
Wherein at least one of F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Te, Ce, Zr, La, Mo, Sc, Nb and W is present in the grain boundaries of the secondary particles Active material.
제 1항 또는 제 2항에 있어서,
상기 양극 활물질의 결정자 크기는 100nm 이상 600nm 이하이며, 또 평균 2차 입자 지름은 3.0μm 이상 20μm 이하인 양극 활물질.
3. The method according to claim 1 or 2,
Wherein the cathode active material has a crystallite size of 100 nm or more and 600 nm or less and an average secondary particle diameter of 3.0 占 퐉 or more and 20 占 퐉 or less.
제 1항 내지 제 3항 중 어느 한 항에 기재한 양극 활물질을 이용한 비수전해질 이차전지.A nonaqueous electrolyte secondary battery using the positive electrode active material according to any one of claims 1 to 3. 청구항 1에 기재한 양극 활물질을 제조하는 방법에 있어서,
Ni 화합물과 Co 화합물과 Al 화합물과 임의로 Me 화합물을 이용한 공침법에 의하여, Ni과 Co와 Al과 임의로 Me 원소를 주성분으로 하는 복합화합물 전구체를 얻는 단계와,
상기 전구체에 리튬 화합물을 Li/M(M = Ni + Co + Al + Me)의 몰 비율이 1.00 이상 1.15 이하의 범위가 되도록 혼합하여 혼합물을 얻는 단계와,
상기 혼합물을 산화 분위기에서 600℃ 이상 950℃ 이하로 소성하는 단계와,
상기 소성 단계 후 계속해서, 상기 소성된 혼합물을 500℃ 이상 750℃ 이하에서 어닐링 처리하는 단계를 구비하는 것을 특징으로 하는 양극 활물질의 제조방법.
The method for producing the positive electrode active material according to claim 1,
Obtaining a complex compound precursor containing Ni, Co, Al and optionally Me as a main component by coprecipitation using a Ni compound, a Co compound, an Al compound, and optionally a Me compound;
Mixing the precursor with a lithium compound so that the molar ratio of Li / M (M = Ni + Co + Al + Me) is in the range of 1.00 or more and 1.15 or less,
Firing the mixture in an oxidizing atmosphere at a temperature of 600 ° C or more and 950 ° C or less,
And subsequently annealing the calcined mixture at a temperature of 500 ° C or more and 750 ° C or less after the calcination step.
제 5항에 있어서,
상기 전구체를 얻는 단계에 있어서, F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Te, Ce, Zr, La, Mo, Sc, Nb 및 W 중의 복수 또는 어느 하나의 금속성분을 포함하는 화합물을, 상기 Ni 화합물과 Co 화합물과 Al 화합물과 임의로 Me 화합물과 함께 공침 반응시켜 복합산화물 전구체를 얻는 양극 활물질의 제조방법.
6. The method of claim 5,
In the step of obtaining the precursor, a plurality of or any one metal component of F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Te, Ce, Zr, La, Mo, Sc, Wherein the complex oxide precursor is obtained by coprecipitation reaction of the Ni compound, the Co compound, the Al compound and optionally the Me compound.
제 5항에 있어서,
상기 혼합물에 F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Te, Ce, Zr, La, Mo, Sc, Nb 및 W 중의 복수 또는 어느 하나의 금속성분을 포함하는 화합물을 혼합하는 단계를 더 포함하는 양극 활물질의 제조방법.
6. The method of claim 5,
A mixture of a compound containing a plurality of or any one of the metal components of F, Mg, Al, P, Ca, Ti, Y, Sn, Bi, Te, Ce, Zr, La, Mo, Sc, Wherein the method further comprises:
제 5항 내지 7항 중 어느 한 항에 있어서,
상기 전구체를 얻는 단계 후이며, 또 상기 혼합물을 얻는 단계 전에, 얻어진 상기 복합화합물 전구체에 대하여, 산화 분위기 중에서 400℃ ~ 800℃ 온도로 3시간 ~ 5시간의 열처리를 실시하는 것을 특징으로 하는 양극 활물질의 제조방법.
The method according to any one of claims 5 to 7,
Wherein after the step of obtaining the precursor and before the step of obtaining the mixture, the obtained composite compound precursor is subjected to a heat treatment at 400 to 800 DEG C for 3 to 5 hours in an oxidizing atmosphere &Lt; / RTI &gt;
KR1020187031221A 2016-03-30 2017-03-28 Anode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using same KR102363230B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2016-067667 2016-03-30
JP2016067667 2016-03-30
JP2017008699A JP2017188428A (en) 2016-03-30 2017-01-20 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery using the same
JPJP-P-2017-008699 2017-01-20
PCT/JP2017/012635 WO2017170548A1 (en) 2016-03-30 2017-03-28 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same

Publications (2)

Publication Number Publication Date
KR20180124996A true KR20180124996A (en) 2018-11-21
KR102363230B1 KR102363230B1 (en) 2022-02-16

Family

ID=59964648

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187031221A KR102363230B1 (en) 2016-03-30 2017-03-28 Anode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using same

Country Status (3)

Country Link
KR (1) KR102363230B1 (en)
CN (1) CN108886144B (en)
WO (1) WO2017170548A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735728B2 (en) 2017-11-21 2023-08-22 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and method of manufacturing cathode active material for non-aqueous electrolyte secondary battery
KR102453273B1 (en) * 2018-05-23 2022-10-11 주식회사 엘지에너지솔루션 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery comprising the same
KR102569296B1 (en) * 2019-01-10 2023-08-22 주식회사 엘지화학 Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby
JP7164006B2 (en) * 2019-02-26 2022-11-01 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
US20220278322A1 (en) * 2019-07-08 2022-09-01 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
US20220411282A1 (en) * 2019-10-18 2022-12-29 Ecopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery comprising same
CN112687866A (en) * 2019-10-18 2021-04-20 Ecopro Bm有限公司 Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR102412692B1 (en) * 2019-10-18 2022-06-24 주식회사 에코프로비엠 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
EP3944372A4 (en) * 2019-11-28 2022-08-03 Lg Chem, Ltd. Method for preparing positive electrode active material for lithium secondary battery, and positive electrode active material prepared thereby for lithium secondary battery
JPWO2021152997A1 (en) * 2020-01-27 2021-08-05
US20230065418A1 (en) * 2020-01-31 2023-03-02 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20210150863A (en) * 2020-06-04 2021-12-13 에스케이이노베이션 주식회사 Lithium secondary battery
KR102293034B1 (en) * 2020-06-04 2021-08-24 에스케이이노베이션 주식회사 Cathode active material for lithium secondary battery and lithium secondary battery including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151071A (en) 2000-11-08 2002-05-24 Dowa Mining Co Ltd Positive electrode active material for nonaqueous system secondary battery and its manufacturing method, and nonaqueous system secondary battery using the same
JP2007280723A (en) * 2006-04-05 2007-10-25 Hitachi Metals Ltd Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it
JP2007317576A (en) 2006-05-26 2007-12-06 Sony Corp Cathode active material and battery
JP2012028163A (en) 2010-07-23 2012-02-09 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
KR20140016314A (en) * 2011-04-14 2014-02-07 도다 고교 가부시끼가이샤 Li-ni composite oxide particle powder and process for producing same, and non-aqueous electrolyte secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135842B2 (en) 2007-03-26 2013-02-06 三菱化学株式会社 Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same
KR20120061943A (en) 2009-12-22 2012-06-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
CN101719422B (en) * 2010-01-08 2012-08-29 西北工业大学 Anode material for lithium ion capacitor or battery and preparation method thereof
JP6486653B2 (en) * 2014-01-31 2019-03-20 パナソニック株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016002158A1 (en) * 2014-06-30 2016-01-07 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
CN104300145B (en) * 2014-10-10 2017-02-15 东莞市长安东阳光铝业研发有限公司 Preparation method for high-tapping-density modified nickel-cobalt lithium manganate positive material
CN104241640A (en) * 2014-10-10 2014-12-24 国家电网公司 Lithium nickel-cobalt-aluminum positive electrode material, preparation method thereof and lithium ion battery
CA2976022C (en) * 2015-02-17 2023-08-15 Toda Kogyo Corp. Positive electrode active substance comprising lithium nickel-cobalt-manganese-based composite transition metal layered oxide for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2017188428A (en) 2016-03-30 2017-10-12 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151071A (en) 2000-11-08 2002-05-24 Dowa Mining Co Ltd Positive electrode active material for nonaqueous system secondary battery and its manufacturing method, and nonaqueous system secondary battery using the same
JP2007280723A (en) * 2006-04-05 2007-10-25 Hitachi Metals Ltd Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it
JP2007317576A (en) 2006-05-26 2007-12-06 Sony Corp Cathode active material and battery
JP2012028163A (en) 2010-07-23 2012-02-09 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
KR20140016314A (en) * 2011-04-14 2014-02-07 도다 고교 가부시끼가이샤 Li-ni composite oxide particle powder and process for producing same, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CN108886144A (en) 2018-11-23
CN108886144B (en) 2022-03-04
KR102363230B1 (en) 2022-02-16
WO2017170548A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
KR102363230B1 (en) Anode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using same
US11018339B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
KR102278009B1 (en) Non-aqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and non-aqueous electrolyte secondary battery
KR102636863B1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries
JP5971109B2 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
EP2544274A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
EP2544272A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
EP2544273A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP7293576B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using the same
JP6436335B2 (en) Transition metal composite hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using the same
EP3690999A1 (en) Positive-electrode active material for lithium-ion secondary battery, manufacturing method for positive-electrode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP7464102B2 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the same
JP2023040082A (en) Metal complex hydroxide and production method therefor, cathode active material for lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery using the same
JP2021051880A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP7206819B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7183815B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
US20210395105A1 (en) Metal composite hydroxide and method for producing the same, positive electrode active material for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery using the same
JP7183814B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2017199591A (en) Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2021012807A (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
US20230135908A1 (en) Metal composite hydroxide, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP2024001041A (en) Positive electrode material for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right