KR20180063923A - 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어 - Google Patents

내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어 Download PDF

Info

Publication number
KR20180063923A
KR20180063923A KR1020160163359A KR20160163359A KR20180063923A KR 20180063923 A KR20180063923 A KR 20180063923A KR 1020160163359 A KR1020160163359 A KR 1020160163359A KR 20160163359 A KR20160163359 A KR 20160163359A KR 20180063923 A KR20180063923 A KR 20180063923A
Authority
KR
South Korea
Prior art keywords
yarn
nylon
cord
hybrid
aramid
Prior art date
Application number
KR1020160163359A
Other languages
English (en)
Other versions
KR101878779B1 (ko
Inventor
이경하
박진경
남윤희
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020160163359A priority Critical patent/KR101878779B1/ko
Priority to US16/464,350 priority patent/US20210114414A1/en
Priority to DE112017006111.3T priority patent/DE112017006111T5/de
Priority to PCT/KR2017/013279 priority patent/WO2018101668A1/ko
Publication of KR20180063923A publication Critical patent/KR20180063923A/ko
Application granted granted Critical
Publication of KR101878779B1 publication Critical patent/KR101878779B1/ko
Priority to US18/101,117 priority patent/US20230219372A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/005Reinforcements made of different materials, e.g. hybrid or composite cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0042Reinforcements made of synthetic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

본 발명은 타이어 코드 및 래디얼 공기입 타이어에 관한 것으로, 본 발명은 1본의 나일론 6,6 또는 나일론 6 사 및 1본의 아라미드 사를 각각 선연하고 이를 합연하여서 된 생코드를 해연하였을 때, 아라미드 사가 나일론 6,6 또는 나일론 6 사 대비 5 ~ 100mm/m 더 길게 투입된 것을 특징으로 한다. 본 발명에 따른 하이브리드 딥 코드는 내피로도는 80%이상으로 우수하고, 인장시험시 초기 변형은 나일론(Nylon)에 의해 낮은 모듈러스를 발생하게 하고 아라미드 사가 힘을 받기 시작하는 구간부터 높은 모듈러스를 발현하게 할 수 있어, 금형 (Mold) 내부에서 그린타이어 (Green Tire)를 블래더로 부풀리는 작업시 변형에 용이하게 작용하여 타이어 제조를 쉽게 할 수 있는 이점이 있다.

Description

내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어{A Hybrid Dipped Cord Having Excellent Fatigue Resistance and Radial Tire Using the Same}
본 발명은 나일론 6,6 사 또는 나일론 6 사 및 아라미드 사를 이용한 내피로도가 우수한 하이브리드 딥 코드의 제조 방법 및 이를 적용한 래디얼 공기입 타이어에 관한 것이다.
최근 들어 도로 환경의 개선과 차량의 성능 향상에 따라 타이어의 성능은 계속적으로 개선되어져 왔으며, 특히 차량의 무게 증가, 한계속도의 상승에 따라 안전성이 더욱 중요한 타이어의 품질 요소로 인식되고 있다. 이러한 타이어 안전성 증가 요구 추세에 맞추어, 타이어의 안전 기준 또한 변화되고 있는 추세에 있으며, 타이어 업계에서도 타이어의 안전성을 부여하기 위한 방법에 대한 연구가 활발하게 진행되고 있다.
통상적으로 타이어 코드는 같은 종류의 원사를 꼬아서 생코드(Raw cord)를 만들고, 이것을 딥핑액에 침지한 후 열처리하여 딥코드(Dip cord)를 만들게 되는데, 하이브리드 코드는 서로 다른 종류의 원사의 특징을 발현하기 위해 이종의 원사를 꼬아서 만든 코드를 말한다.
한편, 원사에 꼬임을 부여하는 단계에서 꼬임의 수가 높아지면 강력은 낮아지고, 중/절신은 높아지며, 내피로도가 높아지는 현상을 나타내며, 꼬임의 수가 낮아질수록 강력은 높아지고, 중/절신은 낮아지며 내피로도로 낮아지는 경향을 나타낸다.
꼬임은 각각의 원사에 선연을 주는 단계(Ply)를 거쳐, 원사를 합쳐서 꼬임을 주는 단계(Cable)로 생코드가 완성되게 된다. Ply에 선연을 주는 것은 케이블링시 이중꼬임을 방지하기 위해서이다.
같은 종류의 원사를 꼬아서 생코드를 제작하는 경우, Ply간 연사 조건은 동일하게 하는 것이 보편적이나, 하이브리드 코드의 경우 각각의 Ply에 연사 조건을 다르게 설정하여 생코드, 나아가 딥코드의 물성을 조절할 수 있다.
하이브리드 코드에 있어, 이종의 원사 각각에 연사 조건을 달리하는 방법 중에는, 종래부터, 이종의 원사에 꼬임수를 각각 다르게 부여하는 방법이 있었다. 즉, 모듈러스가 높고 절신이 낮은 섬유 사(예컨대 아라미드 사)는 하연 부여시 상연 꼬임수 보다 적게 부여하고, 모듈러스가 낮고 절신이 높은 섬유 사(예컨대 나일론 사)는 하연 부여시 상연 꼬임수와 동일한 꼬임수를 부여하게 되면, 상연 후에 모듈러스가 높은 섬유 사는 하연수가 상연수보다 적기 때문에 상연의 연사방향으로 꼬임이 부여되나, 모듈러스가 낮은 섬유 사는 상하연수가 동일하여 꼬임이 부여되지 않기 때문에, 생코드의 초기 모듈러스가 낮아지는 효과가 있다. 그러나 이와 같은 기술은 하연 부여 후 상연이 부여되는 연사기(DRT, RT)에서만 적용 가능하며, 상하연이 동시에 발생되는 다이렉트 연사기(Direct Cabler)에서는 사용할 수 없는 방법이다.
미국특허 제6601378호
본 발명은 위에서 기술된 종래기술의 문제점을 해결한 것으로, 본 발명의 목적은 나일론 6,6 또는 나일론 6 사 및 아라미드 사를 이용한 하이브리드 코드의 제조 방법에 있어서, 상하연이 동시에 발생되는 다이렉트 연사기 (Direct Cabler)에서 생코드를 연사하는 단계에서 아라미드 사를 나일론 6,6 또는 나일론 6 사보다 더 길게 투입하여 적당한 꼬임을 부여함으로써 하연사를 제조하고, 상기 하연사를 합사하여 꼬임을 부여함으로써 내피로도가 향상된 생코드를 제조하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 나일론 6,6 또는 나일론 6 사 및 아라미드 사를 이용한 생코드를 디핑액에 침지시킨 후 열처리 하여 제조된 일정한 값의 내피로도를 가진 공기입 래디얼 타이어의 카카스 플라이 또는 캡 플라이 층을 위한 하이브리드 딥 코드를 제공하는 것이다.
본 발명의 적절한 실시 형태에 따르면, 하이브리드 생코드는 1본의 나일론 6,6 또는 나일론 6 사 및 1본의 아라미드 사를 각각 선연하고 이를 합연하여서 된 생코드를 해연하였을 때, 아라미드 사가 나일론 6,6 또는 나일론 6 사 대비 5 ~ 100 mm/m 더 길게 투입된 것을 특징으로 한다.
본 발명의 다른 적절한 실시 형태에 따르면, 생코드를 해연하였을 때, 아라미드 사가 나일론 6,6 또는 나일론 6 사 대비 5 ~ 50 mm/m 더 길게 투입된 것을 특징으로 한다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 하이브리드 딥 코드는 생코드를 접착액으로 디핑하여 제조된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 하이브리드 딥 코드의 내피로도는 80%이상이다.
본 발명의 적절한 실시 형태에 따르면, 래디얼 공기입 타이어를 위한 하이브리드 딥 코드의 제조 방법은 1본의 나일론 6,6 또는 나일론 6 사 및 1본의 아라미드 사를 준비하는 단계; 상기 1본의 아라미드 사를 상기 나일론 6,6 또는 나일론 6 사보다 더 길게 투입하여 각 200 내지 500 TPM 연수의 꼬임을 부여함으로써 하연사를 제조하는 단계; 상기 하연사를 2본으로 합사하여 200 내지 500 TPM 연수의 꼬임을 부여하여 생코드로 제조하는 단계; 및 상기 생코드를 디핑액에 침지시킨 후 열처리하여 딥 코드로 제조하는 단계;를 포함하고, 생코드 단계에서 해연하였을 때 아라미드 사가 나일론 6,6 또는 나일론 6 사 대비 5 ~ 100mm/m 더 긴 것을 특징으로 한다.
본 발명의 다른 적절한 실시 형태에 따르면, 나일론 6,6 사 또는 나일론 6 사 및 아라미드 사의 섬도는 각각 500 내지 3000 데니어가 되는 것을 특징으로 한다.
본 발명의 적절한 실시 형태에 따르면, 한 쌍의 평행한 비드코어와 비드코어 주위에 감기는 하나 이상의 래디얼 카카스층과 그 카카스층 외주 측에 적층된 벨트층 및 벨트층의 외주 측에 형성된 원주방향의 벨트 보강층을 포함하는 래디얼 공기입 타이어는 카카스 플라이 또는 벨트층이 위에서 제시된 하이브리드 딥 코드를 포함하고, 1층 또는 2층으로 사용될 수 있다.
본 발명은 아라미드 사가 나일론(Nylon) 사 대비 길게 투입되도록 함으로써 강력은 떨어지고, 중/절신은 높아지도록 하여 이로 인한 내피로도 상승을 가져옴으로써 인장시험시 초기 변형은 나일론(Nylon)에 의해 낮은 모듈러스를 발생하게 하고 아라미드 사가 힘을 받기 시작하는 구간부터 높은 모듈러스를 발현하게 할 수 있어, 가류시 금형(Mold) 내부에서 그린 타이어 (Green Tire)를 블래더로 부풀리는 작업시 변형에 용이하게 작용하여 타이어 제조를 쉽게 할 수 있다. 본 발명에 따르면, 기존에 아라미드를 단독으로 사용시 높은 모듈러스로 금형 (Mold) 내 변형에 어려움이 있었던 단점을 극복할 수 있고, 아라미드 단독 사용시 문제가 되는 낮은 내피로성 및 접착력을 개선할 수 있으며, 나일론 6,6 또는 나일론 6을 단독으로 사용시 문제가 되는 낮은 모듈러스와 내열성을 개선하여 고성능 타이어 제조를 가능하게 한다.
도 1은 발명에 따른 하이브리드 딥 코드를 카카스층 또는 캡플라이층에 사용하여 제조된 승용차용 타이어의 구조를 도식적으로 나타낸 일예이다.
도 2는 본 발명에 따른 나일론 6,6 사 또는 나일론 6 사의 방사 및 연신 공정을 도식적으로 나타낸 일예이다.
도 3은 본 발명에 따른 아라미드 사의 제조공정을 도식적으로 나타낸 일예이다.
이하, 본 발명에 의한 바람직한 실시예를 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
먼저, 본 발명에 사용되는 나일론(Nylon) 사의 제조 방법을 첨부한 도면을 참조하여 구체적으로 설명한다.
본 발명의 하이브리드 타이어 코드의 제조에 사용되는 나일론(Nylon)은 주쇄에 강한 극성을 가지는 아미드(amide)기를 함유하고, 입체 규칙성 및 대칭성을 가져 결정성(crystalline)을 가진다. 일반적으로 폴리아미드(Polyamide)는 아미드 결합(-CONH-)으로 연결된 중합체의 총칭을 의미하며, 디아민과 2가 산의 축합 중합으로 얻을 수 있다. 폴리아미드는 분자 구조 내의 아미드 결합에 의하여 특징이 달라지며, 아미드기의 비율에 따라 물성이 다르게 변한다. 예를 들면, 분자 내의 아미드기의 비율이 높아지면 비중, 융점, 흡수성, 강성 등이 올라가는 특성이 있다.
또한, 폴리아미드는 내부식성, 내마모성, 내화학성 및 절연성이 우수한 특성으로 인해 의류용, 타이어코드, 카핏, 로프, 컴퓨터 리본, 낙하산, 플라스틱, 접착제 등의 광범위한 분야에서 응용되고 있는 소재이다.
일반적으로 폴리아미드는 방향족 폴리아미드와 지방족 폴리아미드로 구분이 되는데, 대표적인 지방족 폴리아미드로는 나일론(Nylon)이 있다. 나일론은 본래 미국 듀폰 사의 상표명이지만 현재는 일반명으로 사용되고 있다.
나일론은 흡습성 고분자이며, 온도에 민감하게 반응한다. 대표적인 나일론으로는 나일론 6, 나일론 66 및 나일론 46 등이 있다.
먼저, 나일론 6은 내열성, 성형성 및 내약품성이 우수한 특성이 있으며, 이를 제조하기 위해서는 ε-카프로락탐(Caprolactam)의 개환 중합으로 제조된다. 나일론 6이라고 하는 것은 카프로락탐의 탄소수가 6개이기 때문이다.
Figure pat00001
(반응식 1) 카프로락탐의 나일론 6 중합
한편, 나일론 66은 나일론 6과 전반적으로 그 특성이 비슷하지만, 나일론 6에 비하여 내열성이 매우 우수하고 자기소화성 및 내마모성이 우수한 고분자이다. 나일론 66은 헥사메틸렌디아민과 아디프산의 탈수축합 중합반응으로 제조된다.
Figure pat00002
(반응식 2) 헥사메틸렌디아민과 아디프산의 탈수축합 중합반응에 의한 나일론 66 중합
폴리헥사메틸렌아디프아미드 중합물은 최소한 85몰%의 헥사메틸렌아디프아미드 반복 단위를 함유하며, 바람직하게는 헥사메틸렌아디프아미드 단위만을 포함할 수 있다.
한편, 선택적으로 폴리헥사메틸렌아디프아미드 대신 임의의 폴리아미드 단독중합체 및 공중합체가 사용될 수 있다. 이러한 폴리아미드는 주로 지방족이 될 수 있다. 폴리(헥사메틸렌 아디프아미드) (나일론 6,6); 폴리(ε-카프로아미드) (나일론 6); 및 그들의 공중합체와 같이 널리 사용되는 나일론 중합체가 사용될 수 있지만 나일론 6,6이 가장 바람직하다.
폴리헥사메틸렌아디프아미드 칩의 제조 과정 에서 열안정성 향상을 위하여 최종 중합체 중 구리 금속이 잔존량이 20 내지 50 ppm이 되도록 제조될 수 있다. 만약 이러한 양이 20 ppm보다 적으면 방사시 열안정성이 떨어져서 열분해가 일어나고, 50 ppm보다 많으면 필요 이상의 구리 금속이 이물질로 작용하여 방사시 문제가 될 수 있다. 제조된 폴리헥사메틸렌아디프아미드 칩은 도 2에 도시된 장치에 의하여 섬유로 제조된다.
도 2를 참조하면, 폴리헥사메틸렌아디프아미드 칩은 팩(1) 및 노즐(2)을 통해 바람직하게는 270 내지 310℃의 방사온도에서, 바람직하게는 20 내지 200의 방사 드래프트비(최초 권취롤러 위에서의 선속도/노즐에서의 선속도)로 저온 용융방사가 된다. 이러한 공정은 열분해에 의한 중합체의 점도의 저하를 방지하기 위함이다. 공정 과정에서 방사 드래프트비가 20보다 작으면 필라멘트 단면 균일성이 나빠져 연신작업성이 현저히 떨어지고, 200을 초과하면 방사 중 필라멘트 파손이 발생하여 정상적인 원사를 생산하기 어렵게 된다.
용융방사 과정에서 칩의 팩 내의 여과 체류시간을 3 내지 30초로 조정되어야 한다. 만일 팩 내의 여과 체류시간이 3초 미만이면 이물질의 여과 효과가 불충분하며, 30초이상이면 과도한 팩압 증가로 인하여 열분해가 심해질 수 있다. 또한 용융방사 과정에서 압출기 스크루의 L/D(길이/직경)이 10 내지 40으로 되는 것이 바람직하다. 만약 상기 스크루의 L/D가 10미만이 되면 균일한 용융이 어렵고, 40을 초과하면 과도한 전단응력에 의한 분자량 저하가 심하여 물성이 떨어질 수 있다.
제조된 용융방출사(4)를 냉각구역(3)을 통과시켜 급냉고화시킨다. 급냉 고화 과정은 냉각구역(3)에서 냉각공기를 불어주는 방법에 따라 오픈 냉각(open quenching)법, 원형 밀폐 냉각(circular closed quenching)법 및 방사형 아웃플로우 냉각(radial outflow quenching)법으로 분류되고, 상기 방법 중 오픈 냉각(open quenching)법이 바람직하다. 이후 냉각구역(3)을 통과하여 고화된 방출사(4)는 유제 부여장치(5)에 의해 0.5 내지 1.0%로 오일링이 되어 미연사가 된다.
제조된 미연신사의 바람직한 방사속도는 200 내지 1,000m/분이다. 첫 번째 연신 롤러(6)를 통과한 사를 스핀드로(spin draw) 공법으로 일련의 연신 롤러(7, 8, 9 및 10)를 통과시키면서 총연신비 4.0배 이상, 바람직하기로는 4.5 내지 6.5 으로 연신시켜 최종 연신사(11)를 얻는다.
제조된 섬유의 건열수축률(160℃, 30분)의 값은 3 내지 6%가 되는 것이 유리하다. 이러한 섬유의 낮은 수축률은 2단 연신공정 후 이루어지는 열처리 공정에서 연신사의 결정구조를 안정화시켜 얻을 수 있다. 섬유 제조 공정 중 다단연신공정은 낮은 연신온도에서 높은 연신배율로 진행되는 1차 연신공정과 높은 온도에서 비교적 낮은 연신배율로 진행되는 2차 연신공정을 포함한다. 1차 연신 공정에서는 주로 배향에 의한 결정화가 진행된다. 이러한 배향에 의한 결정은 코드의 열수축을 좌우하는 인자가 된다. 1차 연신공정에서 바람직한 연신온도는 20 내지 50℃ 그리고 연신배율은 3.0배 이상이될 수 있다. 공정상 추가적인 냉각장치를 연신 로울러에 설치하지 않는 경우 연신온도를 20℃ 미만으로 관리하기가 어렵게 되어 경제적으로 불리하게 되고, 다른 한편으로 연신온도가 50℃를 초과하면 열에 의한 결정화가 진행될 수 있다. 또한 연신 배율이 3.0배 미만이면 충분한 배향 결정화가 일어나기 어렵다.
2차 연신공정 과정을 통하여 고온에서 열에 의한 결정화가 진행된다. 이러한 고온에서 열에 의한 결정들은 코드의 열수축에 영향을 준다. 본 발명의 2차 연신공정에서 바람직한 연신온도는 200 내지 250℃이고, 연신배율은 2.0배 이하인데, 연신온도가 200℃ 미만이면 열에 의한 충분한 결정화가 진행되지 않고, 연신온도가 250℃를 초과하면 사에 손상을 초래한다. 또한 연신 배율이 2.0배를 초과하면 사의 신도가 급격히 감소한다. 연신사의 결정 구조를 안정화시키기 위하여 이완 온도를 200 내지 250℃, 이완률을 3 내지 7%로 조정한다. 이러한 섬유의 저수축 특성은 타이어코드용 처리공정에서 급격히 열수축되는 것을 방지할 수 있어서 높은 강력이용률로 나타낸다.
본 발명의 방법에 따라 제조된 폴리아미드 섬유는 (1) 3 내지 6%의 건열수축률(160℃, 30분), (2) 9.0g/d 이상의 강도, (3) 10% 이상의 신도, (4) 500 내지 3000 데니어를 갖는다.
이하, 본 발명에 사용되는 아라미드 사의 제조 방법을 첨부한 도면을 참조하여 구체적으로 설명한다.
아라미드 섬유의 제조장치는 도프 공급부와; 방사구금과; 응고부로; 구성되되, 상기 응고부는, 상기 방사구금의 하부에 위치하며 응고액이 담겨있는 응고조와; 상기 응고액의 배출 통로를 제공하기 위하여 상기 응고조의 하부에 위치하는 제 1응고 튜브와; 상기 제 1응고 튜브의 일측면에 20~40°의 각도로 부착되어 2차 응고액이 분사되는 분사구와; 상기 분사구의 하단 부분에 부착된 제 2응고 튜브로; 구성되며, 상기 제 2응고 튜브는 요철형상을 가지고 있다.
도프 공급부로부터 제공되는 방향족 폴리아미드를 포함하는 도프는 방사구금을 통해 압출된 후 상기 응고부를 통과하면서 응고되어 멀티필라멘트를 형성한다. 상기 방향족 폴리아미드는 고강도 및 고탄성율 특성을 갖는 파라-아라미드로서, 폴리파라페닐렌테레프탈아미드(PPD-T), 폴리(4,4'-벤즈아닐라이드 테레프탈아미드), 폴리(파라페닐렌-4,4'-비페닐렌-디카복실산 아미드), 폴리(파라페닐렌-2,6-나프탈렌디카복실산 아미드), 또는 이들 중 2 이상의 혼합물일 수 있다. 상기 방향족 폴리아미드는 다음과 같은 방법에 의해 제조될 수 있다. 우선, 유기용매에 무기염을 첨가하여 중합용매를 제조한다. 상기 유기용매로는 N-메틸-2-피롤리돈(NMP), N, N'-디메틸아세트아미드(DMAc), 헥사메틸포스포아미드(HMPA), N, N, N', N'-테트라메틸 우레아(TMU), N, N-디메틸포름아미드(DMF) 또는 이들의 혼합물이 사용될 수 있다. 상기 무기염으로는 CaCl2, LiCl, NaCl, KCl, LiBr, KBr, 또는 이들의 혼합물이 사용될 수 있다. 상기 무기염은 방향족 폴리아미드의 중합도를 증가시키기 위하여 첨가하는 것이다. 다만, 상기 무기염이 과량으로 첨가되면 미처 용해되지 않는 무기염이 중합용매 내에 존재할 수 있기 때문에, 상기 무기염의 중합용매 내 함량은 10 중량% 이하인 것이 바람직하다. 상기 무기염은 유기용매에 대한 용해도가 좋지 않기 때문에 물을 첨가하여 무기염을 완전히 용해시키고, 그 후에 탈수공정을 통해 물을 제거함으로써 최종적인 중합용매를 제조할 수 있다.
이어서, 상기 중합용매에 방향족 디아민을 용해시켜 혼합용액을 제조한다. 상기 방향족 디아민은 파라-페닐렌디아민, 4,4'-디아미노비페닐, 2,6-나프탈렌디아민, 1,5-나프탈렌디아민, 또는 4,4'-디아미노벤즈아닐라이드일 수 있다. 이어서, 상기 혼합용액을 교반하면서 상기 혼합용액에 소정량의 방향족 디에시드 할라이드를 첨가함으로써 1차 중합을 수행한다. 상기 방향족 디에시드 할라이드는 테레프탈로일 디클로라이드, 4,4'-벤조일 디클로라이드, 2,6-나프탈렌디카복실산 디클로라이드, 또는 1,5-나프탈렌디카복실산 디클로라이드일 수 있다. 상기 1차 중합을 통해 중합용매 내에 예비 중합체가 형성된다. 이어서, 상기 중합용매에 방향족 디에시드 할라이드를 추가로 첨가함으로써 2차 중합을 수행하고, 이러한 2차중합을 통해 방향족 폴리아미드가 최종적으로 얻어진다. 상기 방향족 폴리아미드는 사용된 방향족 디아민과 방향족 디에시드 할라이드의 종류에 따라 폴리파라페닐렌테레프탈아미드(PPD-T), 폴리(4,4'-벤즈아닐라이드 테레프탈아미드), 폴리(파라페닐렌-4,4'-비페닐렌-디카복실산 아미드), 또는 폴리(파라페닐렌-2,6-나프탈렌디카복실산아미드)일 수 있다.
이어서, 중합반응 중에 생성된 염산을 중화시키기 위하여 상기 중합용액에 NaOH, Li2CO3, CaCO3, LiH, CaH2, LiOH, Ca(OH)2, Li2O, CaO 등과 같은 알칼리 화합물을 첨가한다. 한편, 1차 및 2차 중합공정들을 통해 얻어진 중합용액에 물을 첨가하여 슬러리 상태로 만들어 그 유동성을 향상시키는 것이 후속 공정들을 수행하는데 유리할 수 있다. 이때, 알칼리 화합물을 용해시킨 물을 상기 중합용액에 첨가함으로써 상기 중화공정과 상기 슬러리제조공정을 동시에 진행할 수도 있다.
이어서, 상기 중합용액으로부터 중합용매를 추출한다. 이와 같은 추출공정은 물을 이용하여 수행하는 것이 가장 효과적이고 경제적이다. 예를 들어, 배출구가 구비된 욕조에 필터를 설치하고 상기 필터 위에 중합체를 위치시킨 후 물을 부어, 중합체 내에 함유된 중합용매를 물과 함께 상기 배출구로 배출시킬 수 있다. 한편, 상기 중합용액 내에 존재하는 방향족 폴리아미드의 입자 크기가 너무 크면 중합용매 추출에 많은 시간이 소요되어 생산성이 저하될 수 있다. 따라서, 상기 중합용매 추출 공정 전에, 상기 방향족 폴리아미드의 분쇄 공정이 수행될 수도 있다.
이어서, 탈수 및 건조 공정들을 통해, 방향족 폴리아미드에 잔류하는 물을 제거한다. 상기 방법에 의하여 제조된 도프가 도프 공급부를 통해 방사구금으로 제공된 후 압출된다. 상기 방사구금은 0.1mm 이하의 직경을 갖는 다수의 모세관들을 갖는다. 만약 방사구금에 형성된 모세관의 직경이 0.1 mm를 초과할 경우에는 생성되는 모노필라멘트의 분자 배향성이 나빠짐으로써 결과적으로 멀티 필라멘트의 강도가 낮아지는 결과가 야기된다. 상기 요철 형상은 난류의 발생을 촉진하기 위하여 강구된 구성으로 상기 제 2응고 튜브는 단면적의 지름을 8~11mm, 요철 반경을 0.5~1.5mm로 구현하여 달성된다. 상기 제 1응고 튜브와 제 2 응고 튜브의 길이의 합은 100~150mm인 것이 바람직하다. 상기 길이의 합이 100mm 미만이면 요철에 의한 효과가 미흡하여 응고액이 조기 이탈되는 등 균일한 응고가 이루어지지 않고, 150mm를 초과할 경우는 요철부의 저항으로 응고조에 저장된 응고액에 대한 펌핑능력이 떨어질 수 있다. 상기 분사구는 제 1응고 튜브의 일측면에 부착되는데, 20~40°의 각도 바람직하게는 30°의 각도로 부착되는 것이 바람직하다. 상기 각도 즉, 20~40°를 벗어나서 부착되면 응고액에 대한 펌핑능력이 너무 느려 고속방사가 불가능하게 되는 문제점이 발생된다. 상기 분사구를 통해 분사되는 2차 응고액은 1차 응과액과 용매의 조성 및 온도가 상이하도록 제조된다. 이 또한 요철 형상의 제 2응고 튜브와 마찬가지로 난류의 발생을 촉진시키기 위함이다. 상기 난류의 발생의 촉진은 잔류 용매 특히 황산의 추출을 향상시켜 최종 생성되는 아라미드 섬유의 물성 저하를 방지할 수 있다.
상기 아라미드 섬유의 물성에는 신도 및 인장강도 등이 포함될 수 있다. 그러나 반드시 이에 한정되는 것은 아니고 당업자가 측정할 수 있는 모든 물성이 포함되는 것은 물론이다.
본 발명에서는 상기 나일론 6,6 또는 나일론 6 사 및 아라미드 사를 이용하여 하이브리드 코드를 제조하는 데 있어서, 딥 코드 제조의 전단계로서 코드에 연을 부여하는 단계(연사공정)를 거치게 된다.
본 발명의 연사공정을 보다 상세히 설명하면, 상기 방법에 의해 제조된 나일론 6,6 또는 나일론 6 사 및 아라미드 사는 권취된 원사 각각 1본을 가연 및 합연이 동시 진행되는 다이렉트 연사기로써 연사하여 타이어 코드용 ‘생코드’를 제조한다. 생코드는 타이어 코드용 나일론 6,6 또는 나일론 6 및 아라미드 사에 하연(Ply Twist)을 가한 후에 상연(Cable Twist)을 가하여 합연함으로써 제조되며, 일반적으로 상연과 하연은 같은 연수를 가하게 된다. 본 발명에서 중요한 연사공정으로는, 생코드의 제조를 위한 하연 부여시, 아라미드 사를 나일론 6,6 또는 나일론 6 사보다 5~100mm/m 더 길게 투입한다는 점이다.
본 발명에 따른 내피로도가 우수한 하이브리드 딥 코드를 제조하는 방법은 1본의 나일론 6,6 또는 나일론 6 사 및 1본의 아라미드 사를 준비하는 단계; 상기 1본의 아라미드 사를 상기 나일론 6,6 또는 나일론 6 사보다 더 길게 투입하여 각 200 내지 500 TPM 연수의 꼬임을 부여함으로써 하연사를 제조하는 단계; 상기 하연사를 2본으로 합사하여 200 내지 500 TPM 연수의 꼬임을 부여하여 생코드로 제조하는 단계; 및 상기 생코드를 디핑액에 침지시킨 후 열처리하여 딥 코드로 제조하는 단계; 를 포함한다.
일반적으로 꼬임이 높은 경우, 강력은 감소하며, 중신 및 절신은 증가하는 경향을 띠게 된다. 또한 내피로도는 꼬임의 증가에 따라 향상되는 추세를 보이게 된다. 본 발명에서 제조한 하이브리드 타이어코드의 연수는 상/하연 동시에 200 내지 500TPM(twist per meter)으로 제조하였다. 이때 200/200TPM 미만일 경우에는 생코드의 절신이 감소하여 내피로도가 저하되기 쉽고, 500/500TPM 초과일 경우에는 강력 저하가 커서 타이어 코드용으로 적절하지 않다.
연사에 사용되는 나일론 6,6 또는 나일론 6 사 및 아라미드 사의 섬도는 각각 500 내지 3000데니어인 것이 바람직하다. 500 데니어 미만의 경우 500TPM에서 강력 저하가 매우 크고, 3000데니어 초과의 경우 200TPM에서 내피로도가 저하되므로 바람직하지 않다.
본 발명에 따른 하이브리드 생코드는 해연하였을 때, 아라미드 사가 나일론 6,6 또는 나일론 6 사 대비 5~100mm/m 더 길게 투입된 것을 특징으로 한다. 5mm 미만으로 투입된 경우 내피로도가 감소하여 적절하지 않고, 100mm를 초과하여 투입한 경우 강력이 감소하여 적절하지 않다. 생코드를 해연하였을 때 아라미드 사가 나일론 6,6 또는 나일론 6 사 대비 5~50 mm/m 더 길게 투입된 것이 더욱 바람직하고, 생코드를 해연하였을 때 아라미드 사가 나일론 6,6 또는 나일론 6 사 대비 10 ~ 30 mm/m 더 길게 투입된 것이 가장 바람직하다.
초기 신장률이 높고 절신이 낮은 아라미드 사의 투입량을 높게 부여하고, 나일론 6,6 또는 나일론 6 사의 투입량은 짧게 부여하여 하연하게 되면, 아라미드 사가 나일론 6,6 또는 나일론 6 사보다 길게 투입된 형태의 생코드를 제작할 수 있다.
본 발명에 따른 제조 방법에서 아라미드 사가 나일론 6,6 또는 나일론 6 사 대비 길게 투입될수록 강력은 떨어지고, 중/절신은 높아지는 경향을 나타내며 이로 인한 내피로도 상승을 기대할 수 있다. 특히 이러한 경우 인장시험시 초기 변형은 나일론 6,6 또는 나일론 6에 의해 낮은 모듈러스를 발생하게 되며 아라미드 사가 힘을 받기 시작하는 구간부터 높은 모듈러스를 발현하게 된다.
반대로 아라미드 사의 투입량이 짧을수록 (나일론 6,6 보다는 길게 투입되나 아라미드 사의 길이가 짧아질수록) 강력은 높아지며, 중/절신 및 내피로도는 낮아지는 경향을 나타내게 된다.
제조된 '생코드 (Raw Cord)'는 제직기(weaving machine)를 사용하여 제직되고, 그리고 수득된 직물은 딥핑액에 침지 및 경화되어 '생코드' 표면에 수지층이 부착된 타이어코드용 '딥 코드(Dip Cord)'로 제조된다.
본 발명의 딥핑 공정을 보다 상세히 설명하면, 딥핑은 섬유의 표면에 RFL(Resorcinol Formaline-Latex)이라 불리는 수지층을 함침하여 줌으로써 달성되는데, 원래 고무와의 접착성이 떨어지는 타이어 코드용 섬유의 단점을 개선하기 위하여 실시된다.
통상의 레이온 섬유 또는 나일론 섬유는 1욕 디핑을 행하는 것이 보통이며, 폴리에틸렌테레프탈레이트 또는 폴리에틸렌나프탈레이트 섬유를 사용하는 경우, 섬유 표면의 반응기가 레이온 섬유나 나일론 섬유에 비하여 적기 때문에 폴리에틸렌테레프탈레이트 또는 폴리에틸렌나프탈레이트 표면을 먼저 활성화 한 후에 접착처리를 하게 된다(2욕 딥핑).
본 발명에서 하이브리드 코드와 고무의 접착을 위한 접착액은 아래와 같은 방법을 이용하여 제조될 수 있다. 하기에 기재된 예가 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다.
29.4wt% 레소시놀 45.6 중량부; 증류수 255.5 중량부; 37% 포르말린 20 중량부; 및 10wt%수산화나트륨 3.8 중량부를 포함하는 용액을 제조하여 25℃에서 5시간 교반하면서 반응시킨다.
다음으로 40wt% VP-라텍스 300 중량부, 증류수 129 중량부, 28% 암모니아수 23.8 중량부를 첨가한 후 25℃에서 20시간 동안 숙성시켜 고형분 농도 19.05%가 되도록 유지한다.
접착액의 부착량을 조절하기 위하여 0 내지 3%의 신장(stretch)을 필요로 하고, 바람직하게는 1 내지 2%의 신장이 이루어질 수 있다. 만약 신장 비율이 너무 높으면, 접착액의 부착량은 조절될 수 있지만 절신이 감소되어 결과적으로 내피로성이 감소된다. 다른 한편 신장 비율을 너무 낮추면, 예를 들어 0% 미만으로 낮추는 경우에는 딥코드 내부로 딥핑액이 침투되어 DPU를 조절하는 것이 불가능진다는 문제점이 발생한다.
접착제 부착량은 고형분 기준으로 섬유 무게에 대하여 2 내지 7%가 바람직하다. 접착액을 통과한 후 하이브리드 딥코드는 120 내지 180℃에서 건조된다. 180초 내지 220초간 건조되고, 건조 과정에서 하이브리드 딥코드가 1 내지 2% 정도로 신장(strech)이 된 상태에서 건조되는 것이 유리하다. 신장 비율이 낮은 경우 코드의 중신 및 절신이 증가하여 타이어코드로 적용되기 어려운 물성을 나타내게 될 수 있다. 다른 한편으로 신장 비율이 3%를 넘는 경우 중신수준은 적절하나 절신이 너무 작아져 내피로성이 저하될 수 있다.
건조 후에는 130 내지 260℃의 온도 범위에서 열처리된다. 열처리시 신장 비율은 -2 내지 3% 사이를 유지하며, 열처리 시간은 50초 내지 90초가 적정하다. 50초 미만시간 동안 열처리가 되는 경우 접착액의 반응시간이 부족하여 접착력이 낮아지는 결과를 가져오게 되며, 90초를 초과하여 열처리가 되는 경우 접착액의 경도가 높아져서 코드의 내피로성이 감소될 수 있다.
전술한 방법에 따라 제조된 하이브리드 딥 코드는 내피로도가 80% 이상인 것을 특징으로 한다. 내피로도가 80% 미만이면 타이어로 제작시 내구성이 감소하여 바람직하지 않다.
이와 같은 공정을 통하여 제조된 하이브리드 딥코드는 승용차용 타이어의 제조를 위해 사용되는데, 가류시 금형 (Mold) 내부에서 그린 타이어 (Green Tire)를 블래더로 부풀리는 작업시 아라미드 사를 단독으로 사용할 때 변형에 어려움이 있는 것에 비하여 변형이 용이하게 작용하여 타이어 제조를 쉽게 하기 위하여 사용된다. 이와 같은 공정을 통하여 제조된 하이브리드 딥코드는 승용차용 타이어에 적용되는데, 주로 캡플라이 및 카카스 플라이에 적용되어 아라미드 사를 단독으로 사용할 때 문제가 되는 낮은 내피로성 및 접착력을 개선하고, 나일론 6,6 또는 나일론 6 사를 단독으로 사용할 때 문제가 되는 낮은 모듈러스 및 내열성을 개선하여 내피로도가 우수한 고성능 타이어를 제조하기 위하여 사용된다.
도 2는 본 발명에 따른 하이브리드 딥코드가 카카스 플라이 또는 캡플라이로 적용된 승용차용 타이어의 구조를 도시한 것이다.
도 2를 참조하면, 타이어(31)의 비드 영역(35)은 각각 비신장성인 환상의 비드코어(36)가 된다. 비드코어(36)는 연속적으로 감겨진 단일의 또는 단일 필라멘트 강선으로 만들어지는 것이 바람직하다. 바람직한 실시 형태는 0.95mm 내지 1.00mm 직경의 고강도 강선이 4x4 구조를 형성하며, 4x5 구조가 된다.
본 발명에 따른 타이어 코드의 실시 예에 있어, 비드 영역(35)은 비드필러(37)를 가질 수 있고, 상기 비드필러(37)는 일정 수준 이상의 경도를 가져야 하며, 바람직하게는 Shore A hardness 40이상의 경도를 가질 수 있다.
본 발명에 따르면, 타이어(31)는 벨트(38) 및 캡플라이(39)에 의하여 크라운부가 보강될 수 있다. 벨트(38)는 두 개의 코드(41, 42)로 이루어진 절단 벨트 플라이(40)를 포함하고 벨트 플라이(40)의 코드(41)는 타이어의 원주 방향 중앙 면에 대하여 약 20°의 각도로 배향될 수 있다. 벨트 플라이(40)의 하나의 코드(41)는 원주 방향 중앙 면과 대향하는 방향으로, 다른 벨트 플라이(40)의 코드(42)의 방향과는 반대로 배치될 수 있다. 그러나 벨트(38)는 임의의 수의 플라이를 포함할 수 있으며, 바람직하게는 16 내지 24°의 범위로 배치될 수 있다. 벨트(38)는 타이어(31)의 작동 중에 노면으로부터의 트레드(33)의 상승을 최소화하도록 측방향 강성을 제공하는 역할을 한다. 벨트(38)의 코드(41, 42)는 스틸코드로 제조될 수 있고, 2+2구조로 되어 있지만, 임의의 구조로 제작될 수 있다. 벨트(38)의 상부에는 캡 플라이(39)와 에지플라이(44)가 보강되어 있는데 캡플라이(39)의 코드(45)는 타이어의 원주 방향에 평행하게 보강되어 타이어의 고속 회전에 따른 원주 방향의 크기 변화를 억제하는 작용을 하며, 고온에서의 열수축 응력이 큰 캡플라이(39)의 코드(45)가 사용된다. 상기 캡플라이(39)의 코드(45)는 본 발명의 방법에 따라 제조된 나일론 6,6 또는 나일론 6 사 및 아라미드 사로 제조된 하이브리드 딥코드를 이용하여 제조될 수 있다. 1층의 캡플라이(39)와 1층의 에지플라이(44)가 사용될 수 있고, 바람직하게는 1또는 2층의 캡플라이 및 1 또는 2층의 에지플라이가 보강될 수 있다.
도 2에서 설명되지 않은 도면 부호 32 및 34는 카카스 층(32) 및 플라이 턴업(34)을 나타낸다. 그리고 도면부호 33은 카카스 층 보강용 코드(33)를 나타낸다.
이하 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다. 아래의 실시예 및 비교예에서 하이브리드 딥 코드의 특성은 아래와 같은 방법으로 물성이 평가되었다.
(a) 하이브리드 딥 코드 강력(kgf) 및 중간신도(%)
107℃로 2시간 건조된 후 인스트론사의 저속 신장형 인장시험기를 이용하여 시료장 250mm, 인장속도 300m/min로 측정되었다. 중간신도(Elongation at specific load)는 4.5kg의 하중에서 신도가 측정되었다.
(b) 건열수축률(%, Shrinkage)
25℃, 65% RH에서 24시간 동안 방치한 후, 0.05g/d의 정하중에서 측정한 길이(L0)와 150℃로 30분간 0.05g/d의 정하중에서 처리한 후의 길이(L1)의 비를 이용하여 건열수축률을 나타냈다.
S(%) = (L0 - L1) / L0 ×100
(c) 하이브리드 딥코드 E-S 값
일정 하중 하에서의 신도를 본 발명에서는 중간신도(E)라 부르며, 'S'는 상기 (b)항의 건열수축률을 의미하는 것으로, 중간신도(E) 및 건열수축률(S)의 합을 ' E-S '로 표시하였다.
E-S = 중간신도(%) + 건열수축률(%)
(d) 내피로도
타이어 코드의 피로 시험에 통상적으로 사용되는 Belt Fatigue Tester를 이용하여 피로시험 후 잔여강력을 측정하여 내피로도를 비교하였다. 피로 시험 조건은 상온, 힘(load) 80 kg, 37,500회 반복의 조건이었으며, 피로 시험 후 고무와 코드를 분리하여 잔여강력을 측정하였다. 잔여 강력의 측정은 통상의 인장 강도 시험기를 이용하여 앞의 (a)방법에 따라 측정하였다.
실시예 1
타이어 보강용 섬유를 제조하기 위하여 앞에서 설명한 방법에 따라 나일론 6,6 및 아라미드 섬유를 각각 얻었다. 1본의 나일론 6,6 사(1260D)와 1본의 아라미드 사(1500D)에 300TPM의 꼬임을 각각 부여하고, 이를 합사하여 300TPM의 꼬임을 부여하여 생코드를 제조하였다. 이때 아라미드 사는 나일론 6,6 사보다 10mm/m 더 길게 투입되었다. 이후 하기의 방법으로 조제된 접착액에 통과시켜 접착액을 부여하였다. 건조시 2%의 신장(stretch)을 가하여 열수축에 의한 생코드의 불균일이 발생하지 않도록 조절하여 주었다.
29.4wt% 레소시놀 45.6 중량부; 증류수 255.5 중량부; 37% 포르말린 20 중량부; 및 10wt%수산화나트륨 3.8 중량부을 포함하는 용액을 조제 후, 25℃에서 5시간 교반시키며 반응시키고 그리고 다음의 성분을 추가하였다: 40wt% VP-라텍스 300 중량부 , 증류수 129 중량부, 28% 암모니아수, 23.8 중량부 상기 성분 첨가 후 25℃에서 20시간 동안 숙성시켜 고형분 농도 19.05%로 유지되도록 하였다. 접착액을 부여하여 150℃에서 2분간 건조시킨 후, 170℃에서 60초간 열처리를 하여 제조된 하이브리드 딥 코드의 물성을 평가하여 표 1로 나타내었다
실시예 2
아라미드 사의 섬도가 1000데니어, 나일론 6,6 사의 섬도가 840데니어인 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 딥 코드를 제조하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1에 나타내었다.
실시예 3
생코드 제조시 연사 단계에서 하연 부여시 아라미드 사의 길이를 나일론 6,6 사 대비 20mm/m 더 길게 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 하이브리드 딥 코드를 제조하였고, 제조된 하이브리드 딥 코드의 물성을 평가하여 표 1로 나타내었다.
실시예 4
생코드 제조시 연사 단계에서 하연 부여시 아라미드 사의 길이를 나일론 6,6 사 대비 30mm/m 더 길게 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 하이브리드 딥 코드를 제조하였고, 제조된 하이브리드 딥 코드의 물성을 평가하여 표 1로 나타내었다.
실시예 5
생코드 제조시 연사 단계에서 하연 부여시 아라미드 사의 길이를 나일론 6,6 사 대비 40mm/m 더 길게 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실험을 수행하여 생코드 및 처리 코드를 제조하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1에 나타내었다.
비교예 1
생코드의 제조를 위한 연사공정시, 1본의 아라미드 사(1500D)에 40 TPM의 선연을 부여한 후, 상기 선연이 부여된 1본의 아라미드 사(1500D) 및 꼬임이 부여되지 않은 1본의 나일론 6,6 사(1260D)를 각각 300TPM의 꼬임을 부여하여 하연사를 제조하고 합연하면서 아라미드 사와 나일론 6,6 사를 동일한 길이로 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 딥 코드를 제조하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1에 나타내었다.
비교예 2
생코드의 제조를 위한 연사공정시, 1본의 나일론 6,6 사(1260D) 및 아라미드사(1500D)룰 각각 300TPM의 꼬임을 부여하여 하연사를 제조하고 합연하면서 아라미드 사와 나일론 6,6 사를 동일한 길이로 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 딥 코드를 제조하였다. 위와 같이 제조된 딥 코드의 물성을 평가하여 표 1에 나타내었다.

처리코드 물성
비 고
강력(kg) 중간신도
6.8kg(%)
수축률(%) ES치(%) 내피로도(%)
실시예 1 37.2 5.0 1.7 6.7 85.4
실시예 2 24.7 5.1 1.4 6.5 87.8
실시예 3 36.8 5.3 1.8 7.1 88.8
실시예 4 36.6 5.6 1.9 7.5 88.7
실시예 5 36.3 5.9 2.0 7.9 89.9
비교예 1 36.5 5.2 2.0 5.1 75.1 내피로도가 낮음
비교예 2 38.6 4.7 1.8 6.5 71.2 내피로도가 낮음
상기 표 1의 시험 결과로 볼 때, 본 발명에 따른 하이브리드 딥코드의 경우 비교예에 비하여 내피로도가 향상됨을 알 수 있다.
실시예 6
본 발명의 실시예 1에 의해 제조된 하이브리드 딥코드를 캡플라이로 사용하여 제조된 래디얼 타이어는 반경 방향 외측 플라이 턴업을 갖는 카카스층을 가지며, 상기 카카스층은 1층이 포함하도록 설치하였다. 이 때 카카스 코드의 사양은 다음의 표2에 나타낸 바와 같이 하고, 타이어의 원주 방향 중간 면에 대하여 90도 각도로 배향하였다. 상기 플라이 턴업(34)은 타이어 최대 단면 높이에 대하여 40 내지 80%의 높이를 갖도록 하였다. 비드부(35)는 0.95 내지 1.00mm 직경의 고강도 강선이 4로 형성된 비드코어(36)와 shore A hard ness 40 이상의 경도의 비드필러(37)를 갖도록 하였다. 벨트(38)는 상부에 1층의 캡플라이(39)와 1층의 에지 플라이(44)로 된 벨트 보강층에 의해 보강되며 캡플라이(39) 내의 캡플라이 코드가 타이어의 원주 방향에 대하여 평행하도록 배치하였다.
실시예 7
타이어 제작을 위한 코드 소재를 실시예 2에 의해 제조된 하이브리드 딥코드를 사용한 것을 제외하고는 실시예 6와 동일한 방법으로 타이어를 제조하였다.
실시예 8
타이어 제작 을 위한 코드 소재를 실시예 3에 의해 제조된 하이브리드 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
실시예 9
타이어 제작을 위한 코드 소재를 실시예 4에 의해 제조된 하이브리드 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
실시예 10
타이어 제작을 위한 코드 소재를 실시예 5에 의해 제조된 하이브리드 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
비교예 3
타이어 제작을 위한 코드 소재를 비교예 1에 의해 제조된 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
비교예 4
타이어 제작을 위한 코드 소재를 비교예 2에 의해 제조된 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
실시예6 실시예7 실시예8 실시예9 실시예 10 비교예 3 비교예 4
카카스 소재 폴리에틸렌
테레프탈레이트
폴리에틸렌
테레프탈레이트
폴리에틸렌
테레프탈레이트
폴리에틸렌
테레프탈레이트
폴리에틸렌
테레프탈레이트
폴리에틸렌
테레프탈레이트
폴리에틸렌
테레프탈레이트
규격(d/합연사) 1500d/2 1500d/2 1500d/2 1500d/2 1500d/2 1500d/2 1500d/2
강력(Kg) 24 24 24 24 24 24 24
탄성계수(g/d) 60 60 60 60 60 60 60
캡플라이 소재 실시예1의 하이브리드 딥코드 실시예2의
하이브리드 딥코드
실시예3의
하이브리드 딥코드
실시예4의
하이브리드 딥코드
실시예5의 하이브리드딥코드 비교예1의 하이브리드딥코드 비교예2의
하이브리드 딥코드
타이어 편평비 0.60 0.60 0.60 0.60 0.60 0.60 0.60
카카스층수 1 1 1 1 1 1 1
캡플라이층수 1 1 1 1 1 1 1
실시 예 11
본 발명의 실시예 1에 의해 제조된 하이브리드 딥코드를 카카스층에 사용하여 제조된 래디얼 타이어는 반경 방향 외측 플라이 턴 업을 갖는 카카스층을 가지며, 상기 카카스층은 1층이 포함하도록 설치하였다. 이때 캡 플라이 및 카카스 코드의 사양은 다음의 표 3에 나타낸 바와 같이 하고, 실시예 6과 동일한 방법으로 타이어를 제조하였다.
실시 예 12
타이어 제작을 위한 코드 소재를 실시예 2에 의 해 제조된 하이브리드 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다 .
실시예 13
타이어 제작을 위한 코드 소재를 실시예 3에 의해 제조된 하이브리드 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조 하였다.
실시예 14
타이어 제작을 위한 코드 소재를 실시예 4에 의해 제조된 하이브리드 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
실시예 15
타이어 제작을 위한 코드 소재를 실시예 5에 의해 제조된 하이브리드 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
비교 예 5
타이어 제작을 위한 코드 소재를 비교예 1에 의해 제조된 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
비교 예 6
타이어 제작을 위한 코드 소재를 비교예 2에 의해 제조된 딥코드를 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 타이어를 제조하였다.
실시예11 실시예12 실시예13 실시예14 실시예 15 비교예 5 비교예 6
카카스 소재 실시예1의 하이브리드 딥코드 실시예2의
하이브리드 딥코드
실시예3의
하이브리드 딥코드
실시예4의
하이브리드 딥코드
실시예5의 하이브리드딥코드 비교예1의 하이브리드딥코드 비교예2의
하이브리드 딥코드
캡플라이 소재 나이론6,6 나이론6,6 나이론6,6 나이론6,6 나이론6,6 나이론6,6 나이론6,6
규격(d/합연사) 1260d/2 1260d/2 1260d/2 1260d/2 1260d/2 1260d/2 1260d/2
강력(kg) 24 24 24 24 24 24 24
탄성계수
(g/d)
50 50 50 50 50 50 50
타이어 편평비 0.60 0.60 0.60 0.60 0.60 0.60 0.60
카카스층수 1 1 1 1 1 1 1
캡플라이층수 1 1 1 1 1 1 1
상기 실시예 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 및 비교예 3, 4, 5, 6에 따라 제조된 205/65 R15 V 타이어를 2000cc 등급의 승용차에 장착하고 60km/h 속도로 주행하면서 차량 내에서 발생하는 소음을 측정하여 가청 주파수 영역의 갑을 노이즈(dB)로 나타내었으며, 조종 안정성 및 승차감은 숙련된 운전자가 테스트 코스를 주행하여 100점 만점에 5점의 단위로 평가하여 그 결과를 다음의 표 4에 나타내었다. 내구성은 FMVSS 109의 P-메트릭 타이어 내구성 테스트(P-metric tire endurance test) 방법을 따라 측정온도 섭씨 38℃(℃), 타이어 표기 하중의 85, 90, 100% 조건으로, 주행 속도 80k m/h로 하여 총 34시간 주행하여 트레드나 사이드월, 카카스 코드, 이너라이너, 비드 등 어느 부위에도 비드 분리, 코드 절단, 벨트 세퍼레이션 등의 흔적을 찾을 수 없는 경우에 합격(OK)으로 판정하였다.
구 분 타이어무게
(kg)
승차감 조종안정성 내구성 유니포머티 소음(dB)
실시예6 9.98 100 100 OK 100 60.4
실시예7 9.98 100 100 OK 100 60.4
실시예8 9.99 100 100 OK 100 60.5
실시예9 10.02 100 100 OK 100 61.2
실시예10 10.1 100 100 OK 100 61
비교예3 10.01 97 96 OK 92 62
비교예4 10.08 94 95 OK 93 62.1
실시예11 10.2 100 100 OK 100 60.4
실시예12 10.2 100 100 OK 100 60.3
실시예13 10.12 100 100 OK 100 60.4
실시예14 10.0 100 100 OK 100 60.6
실시예15 10.21 100 100 OK 100 60.6
비교예5 10.5 95 97 OK 94 61.5
비교예6 10.6 95 94 OK 93 63
상기 표 4의 시험 결과로 볼 때, 본 발명에 따른 하이브리드 코드를 사용한 타이어(실시예 6 내지 15)는 비교예 3 내지 6에 비하여 노이즈 감소 및 조종 안정성 면에 효과가 우수하였으며, 타이어의 유니포머티 또한 향상 됨을 알 수 있다.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 기술되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이 며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.
1 : 팩 2 : 노즐
3 냉각구역 4 방출사
5 유제 부여장치
6,7,8,9,10 연신 롤러
11 최종 연신사
31 : 타이어 32 : 카카스층
33 : 카카스층 보강용 코드 34 : 플라이 턴업
35 : 비드영역 36 : 비드코어
37 : 비드필러 38 : 벨트 구조체
39 : 캡플라이 40 : 벨트플라이
41, 42 : 벨트코드 43 : 트레드
44 : 에지플라이 45 : 캡플라이 코드

Claims (9)

  1. 래디얼 공기입 타이어를 위한 하이브리드 타이어 코드에 있어서,
    1본의 나일론 6,6 사 또는 나일론 6 사 및 1본의 아라미드 사를 각각 선연하고 이를 합연하여서 된 생코드를 해연하였을 때, 아라미드 사가 나일론 6,6 사 또는 나일론 6 사 대비 5~100mm/m 더 길게 투입된 것을 특징으로 하는 하이브리드 생코드.
  2. 제1항에 있어서,
    생코드를 해연하였을 때, 아라미드 사가 나일론 6,6 사 또는 나일론 6 사 대비 5~50mm/m 더 길게 투입된 것을 특징으로 하는 하이브리드 생코드.
  3. 제1항에 있어서,
    생코드를 해연하였을 때, 아라미드 사가 나일론 6,6 사 또는 나일론 6 사 대비 10~30mm/m 더 길게 투입된 것을 특징으로 하는 하이브리드 생코드.
  4. 제 1항의 생코드를 접착액으로 디핑하여 제조된 하이브리드 딥 코드.
  5. 제 4항에 있어서,
    내피로도가 80%이상인 하이브리드 딥 코드.
  6. 한 쌍의 평행한 비드코어와 비드코어 주위에 감기는 하나 이상의 래디얼 카카스층과 그 카카스층 외주 측에 적층된 벨트층 및 벨트층의 외주 측에 형성된 원주방향의 벨트 보강층을 포함하는 래디얼 공기입 타이어에 있어서,
    상기 카카스층은 제 4항 내지 제 5항 중의 어느 하나의 항에 따른 하이브리드 딥 코드를 포함하고, 카카스층이 1층 또는 2층으로 사용되는 것을 특징으로 하는 래디얼 공기입 타이어.
  7. 한 쌍의 평행한 비드코어와 비드코어 주위에 감기는 하나 이상의 래디얼 카카스층과 그 카카스층 외주 측에 적층된 벨트층 및 벨트층의 외주 측에 형성된 원주방향의 벨트 보강층을 포함하는 래디얼 공기입 타이어에 있어서,
    상기 벨트 보강층인 캡플라이는 제 4항 내지 제 5항 중의 어느 하나의 항에 따른 하이브리드 딥 코드를 포함하고, 캡플라이가 1층 또는 2층으로 사용되는 것을 특징으로 하는 래디얼 공기입 타이어.
  8. 래디얼 공기입 타이어를 위한 하이브리드 딥 코드의 제조 방법에 있어서,
    1본의 나일론 6,6 사 또는 나일론 6 사 및 1본의 아라미드 사를 준비하는 단계;
    상기 1본의 아라미드 사를 상기 나일론 6,6 사 또는 나일론 6 사보다 더 길게 투입하여 각 200 내지 500 TPM 연수의 꼬임을 부여함으로써 하연사를 제조하는 단계;
    상기 하연사를 2본으로 합사하여 200 내지 500 TPM 연수의 꼬임을 부여하여 생코드로 제조하는 단계; 및
    상기 생코드를 디핑액에 침지시킨 후 열처리하여 딥 코드로 제조하는 단계; 를 포함하고, 상기 생코드 단계에서 해연하였을 때 아라미드 사가 나일론 6,6 사 또는 나일론 6 사 대비 5~100mm/m 더 긴 것을 특징으로 하는 하이브리드 딥 코드의 제조 방법.
  9. 제 8항에 있어서,
    나일론 6,6 사 또는 나일론 6 사 및 아라미드 사의 섬도는 각각 500 내지 3000 데니어가 되는 것을 특징으로 하는 하이브리드 딥 코드의 제조 방법.
KR1020160163359A 2016-12-02 2016-12-02 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어 KR101878779B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020160163359A KR101878779B1 (ko) 2016-12-02 2016-12-02 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
US16/464,350 US20210114414A1 (en) 2016-12-02 2017-11-21 Hybrid dipped cord exhibiting excellent fatigue resistance and radial pneumatic tire having same applied thereto
DE112017006111.3T DE112017006111T5 (de) 2016-12-02 2017-11-21 Getauchter Hybridkord mit ausgezeichneter Ermüdungsbeständigkeit und Radialreifen unter Verwendung desselben
PCT/KR2017/013279 WO2018101668A1 (ko) 2016-12-02 2017-11-21 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
US18/101,117 US20230219372A1 (en) 2016-12-02 2023-01-25 Method of manufacturing a hybrid dip cord having excellent fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160163359A KR101878779B1 (ko) 2016-12-02 2016-12-02 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어

Publications (2)

Publication Number Publication Date
KR20180063923A true KR20180063923A (ko) 2018-06-14
KR101878779B1 KR101878779B1 (ko) 2018-07-17

Family

ID=62629390

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160163359A KR101878779B1 (ko) 2016-12-02 2016-12-02 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어

Country Status (1)

Country Link
KR (1) KR101878779B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601378B1 (en) 1999-09-08 2003-08-05 Honeywell International Inc. Hybrid cabled cord and a method to make it
JP2007030868A (ja) * 2005-07-21 2007-02-08 Goodyear Tire & Rubber Co:The 単プライの空気入りランフラットタイヤ
JP2011157645A (ja) * 2010-01-29 2011-08-18 Teijin Fibers Ltd ゴム補強用複合コード
KR20120131449A (ko) * 2011-05-25 2012-12-05 주식회사 효성 이종섬유 코드의 제조 방법
KR101602605B1 (ko) * 2015-06-29 2016-03-21 코오롱인더스트리 주식회사 하이브리드 타이어 코드 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601378B1 (en) 1999-09-08 2003-08-05 Honeywell International Inc. Hybrid cabled cord and a method to make it
JP2007030868A (ja) * 2005-07-21 2007-02-08 Goodyear Tire & Rubber Co:The 単プライの空気入りランフラットタイヤ
JP2011157645A (ja) * 2010-01-29 2011-08-18 Teijin Fibers Ltd ゴム補強用複合コード
KR20120131449A (ko) * 2011-05-25 2012-12-05 주식회사 효성 이종섬유 코드의 제조 방법
KR101602605B1 (ko) * 2015-06-29 2016-03-21 코오롱인더스트리 주식회사 하이브리드 타이어 코드 및 그 제조방법

Also Published As

Publication number Publication date
KR101878779B1 (ko) 2018-07-17

Similar Documents

Publication Publication Date Title
US20230219372A1 (en) Method of manufacturing a hybrid dip cord having excellent fatigue resistance
KR101838492B1 (ko) 나일론 6.6 또는 나일론 6 사 및 아라미드 사를 이용한 고강력 타이어코드 및 이를 적용한 래디얼 공기입 타이어
KR101878781B1 (ko) 나일론 6.6 또는 나일론 6 사 및 아라미드 사를 이용한 내피로도가 우수한 타이어코드 및 이를 적용한 래디얼 공기입 타이어
KR20170090689A (ko) 승용차용 래디얼 타이어
KR101878780B1 (ko) 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
KR101878779B1 (ko) 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
KR101838491B1 (ko) 폴리에틸렌테레프탈레이트 사 및 아라미드 사를 이용한 내피로도가 우수한 타이어코드 및 이를 적용한 래디얼 공기입 타이어
KR20210105514A (ko) 나일론 사 및 아라미드 사를 이용한 하이브리드 타이어 코드
KR101878782B1 (ko) 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
KR100630263B1 (ko) 카카스 층에 하이브리드 코드를 이용한 고성능 래디얼 타이어
KR101849196B1 (ko) 고공기압 타이어
KR101838490B1 (ko) 폴리에틸렌테레프탈레이트 사 및 아라미드 사를 이용한 고강력 타이어코드 및 이를 적용한 래디얼 공기입 타이어
KR100630270B1 (ko) 고성능 래디얼 타이어
KR102387207B1 (ko) 캡플라이 코드 직물 및 이의 제조방법
KR20180079238A (ko) 폴리에틸렌테레프탈레이트 딥 코드의 캡플라이 층을 가진 고성능 래디얼 타이어
KR100894384B1 (ko) 하이브리드 딥코드의 제조 방법 및 이를 이용한 래디얼타이어
KR102228513B1 (ko) 캡플라이 코드 및 이의 제조방법
KR100761518B1 (ko) 하이브리드 딥코드의 제조 방법 및 이를 이용한 래디얼타이어
KR100761510B1 (ko) 하이브리드 딥코드의 제조 방법 및 이를 이용한 래디얼타이어
CN114867893B (zh) 用于车辆车轮的具有包括半芳香族聚酰胺的增强元件的轮胎
KR102241107B1 (ko) 캡플라이 코드 및 이의 제조방법
KR20230053184A (ko) 고성능 하이브리드 코드 및 이를 이용한 래디얼 타이어
KR100674673B1 (ko) 하이브리드 코드를 사용한 고성능 래디얼 타이어
EP4085162B1 (en) Tyres for vehicle wheels with reinforcing elements comprising semi-aromatic polyamides
KR100687048B1 (ko) 하이브리드 딥코드의 제조 방법 및 이를 이용한 래디얼타이어

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant