KR20180061042A - 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 - Google Patents

영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 Download PDF

Info

Publication number
KR20180061042A
KR20180061042A KR1020170160141A KR20170160141A KR20180061042A KR 20180061042 A KR20180061042 A KR 20180061042A KR 1020170160141 A KR1020170160141 A KR 1020170160141A KR 20170160141 A KR20170160141 A KR 20170160141A KR 20180061042 A KR20180061042 A KR 20180061042A
Authority
KR
South Korea
Prior art keywords
block
current
prediction
sub
generating
Prior art date
Application number
KR1020170160141A
Other languages
English (en)
Inventor
임성창
조승현
강정원
고현석
이진호
이하현
전동산
김휘용
최진수
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Publication of KR20180061042A publication Critical patent/KR20180061042A/ko
Priority to KR1020210083433A priority Critical patent/KR102390452B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명은 영상 부호화 및 복호화 방법에 관한 것이다. 이를 위한 영상 복호화 방법은, 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계, 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계 및 상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함할 수 있다.

Description

영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 {METHOD AND APPARATUS FOR ENCODING/DECODING IMAGE AND RECORDING MEDIUM FOR STORING BITSTREAM}
본 발명은 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체에 관한 것이다. 구체적으로, 본 발명은 중첩된 블록 움직임 보상을 이용한 영상 부호화/복호화 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 더 높은 해상도 및 화질을 갖는 영상에 대한 고효율 영상 부호화(encoding)/복호화(decoding) 기술이 요구된다.
영상 압축 기술로 현재 픽처의 이전 또는 이후 픽처로부터 현재 픽처에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽처 내의 화소 정보를 이용하여 현재 픽처에 포함된 화소값을 예측하는 화면 내 예측 기술, 잔여 신호의 에너지를 압축하기 위한 변환 및 양자화 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
종래의 영상 부호화/복호화 방법 및 장치는 중첩된 블록 움직임 보상시 한정된 주변 블록의 움직임 정보만 사용하므로 부호화 효율 향상에 한계가 있다.
본 발명은 영상의 부호화/복호화 효율을 향상시키기 위해 주변 블록의 움직임 정보 수를 증가하여 중첩된 블록 움직임 보상을 수행하는 방법 및 장치를 제공할 수 있다.
본 발명에 따른, 영상 복호화 방법은, 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계; 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계 및 상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 주변 하위 블록은, 상기 현재 블록에 시간적으로 대응되는 대응 위치 블록의 하위 블록의 주변 하위 블록을 포함할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 대응 위치 블록의 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 블록의 머지 리스트 및 움직임 벡터 리스트 중 적어도 하나에 포함된 움직임 정보를 이용하여 제2 예측 블록을 생성할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역 중 적어도 하나에 포함되는 경우에만, 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 좌측 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하고, 상기 현재 하위 블록이 상기 현재 블록의 상단 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌상단 주변 하위 블록 및 우하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 좌상단 주변 하위 블록, 좌하단 주변 하위 블록, 우하단 주변 하위 블록 및 우상단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 소정의 순서에 기초하여 유도하고, 상기 유도된 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 최종 예측 블록을 생성하는 단계는, 상기 제2 예측 블록을 생성시 사용된 주변 하위 블록의 위치에 따라 상기 제1 예측 블록 및 상기 제2 예측 블록의 샘플별 가중치를 다르게 적용하여 가중합을 수행할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 최종 예측 블록을 생성하는 단계는, 상기 현재 하위 블록의 제2 예측 블록이 복수 개인 경우, 상기 현재 블록의 제1 예측 블록과 상기 현재 하위 블록의 제2 예측 블록간의 가중합을 동시에 합산하여 상기 최종 예측 블록을 생성할 수 있다.
본 발명에 따른, 영상 부호화 방법은, 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계; 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계 및 상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 주변 하위 블록은, 상기 현재 블록에 시간적으로 대응되는 대응 위치 블록의 하위 블록의 주변 하위 블록을 포함할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 대응 위치 블록의 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 블록의 머지 리스트 및 움직임 벡터 리스트 중 적어도 하나에 포함된 움직임 정보를 이용하여 제2 예측 블록을 생성할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역 중 적어도 하나에 포함되는 경우에만, 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 좌측 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하고, 상기 현재 하위 블록이 상기 현재 블록의 상단 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌상단 주변 하위 블록 및 우하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 좌상단 주변 하위 블록, 좌하단 주변 하위 블록, 우하단 주변 하위 블록 및 우상단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 소정의 순서에 기초하여 유도하고, 상기 유도된 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 최종 예측 블록을 생성하는 단계는, 상기 제2 예측 블록을 생성시 사용된 주변 하위 블록의 위치에 따라 상기 제1 예측 블록 및 상기 제2 예측 블록의 샘플별 가중치를 다르게 적용하여 가중합을 수행할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 최종 예측 블록을 생성하는 단계는, 상기 현재 하위 블록의 제2 예측 블록이 복수 개인 경우, 상기 현재 블록의 제1 예측 블록과 상기 현재 하위 블록의 제2 예측 블록간의 가중합을 동시에 합산하여 상기 최종 예측 블록을 생성할 수 있다.
본 발명의 기록 매체는 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계; 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계 및 상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함하는 영상 부호화 방법으로 생성된 비트스트림을 저장할 수 있다.
본 발명에 따르면, 압축 효율이 향상된 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.
본 발명에 따르면, 영상의 부호화 및 복호화 효율을 향상시킬 수 있다.
본 발명에 따르면, 영상의 부호화기 및 복호화기의 계산 복잡도를 감소시킬 수 있다.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다.
도 4는 화면 간 예측 과정의 실시예를 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이다.
도 6은 본 발명의 일 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 7은 본 발명의 다른 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이다.
도 8은 본 발명의 다른 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 9는 현재 블록의 공간적 움직임 벡터 후보를 유도하는 예를 설명하기 위한 도면이다.
도 10은 현재 블록의 시간적 움직임 벡터 후보를 유도하는 예를 설명하기 위한 도면이다.
도 11은 공간적 머지 후보가 머지 후보 리스트에 추가되는 예를 설명하기 위한 도면이다.
도 12는 시간적 머지 후보가 머지 후보 리스트에 추가되는 예를 설명하기 위한 도면이다.
도 13은 하위 블록 단위로 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 14는 대응 위치 블록의 하위 블록의 움직임 정보를 이용하여 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 15는 참조 블록의 경계 영역에 인접한 블록의 움직임 정보를 이용하여 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 16은 하위 블록 그룹 단위로 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 17은 중첩된 블록 움직임 보상에 사용되는 움직임 정보의 개수의 일 예를 설명하기 위한 도면이다.
도 18 및 도 19는 제2 예측 블록 생성에 사용되는 움직임 정보의 유도 순서를 설명하기 위한 도면이다.
도 20은 현재 하위 블록의 참조 영상의 POC 및 주변 하위 블록의 참조 영상의 POC를 비교하여 제2 예측 블록 생성에 사용가능한 움직임 정보인지 여부를 결정하는 일 예를 설명하기 위한 도면이다.
도 21은 제1 예측 블록과 제2 예측 블록의 가중합 계산시 가중치 적용의 일 실시 예를 설명하기 위한 도면이다.
도 22는 제1 예측 블록과 제2 예측 블록의 가중합 계산시 블록 내 샘플 위치에 따라 서로 다른 가중치 적용되는 실시 예를 설명하기 위한 도면이다.
도 23은 중첩된 블록 움직임 보상시 소정의 순서대로 제1 예측 블록과 제2 예측 블록의 가중합이 누적 계산되는 일 실시 예를 설명하는 도면이다.
도 24는 중첩된 블록 움직임 보상시 제1 예측 블록과 제2 예측 블록의 가중합이 계산되는 일 실시 예를 설명하는 도면이다.
도 25는 본 발명의 일 실시 예에 따른 영상 복호화 방법을 설명하는 흐름도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. 후술하는 예시적 실시예들에 대한 상세한 설명은, 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 실시예를 실시할 수 있기에 충분하도록 상세히 설명된다. 다양한 실시예들은 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 실시예의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 예시적 실시예들의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
본 발명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 발명의 어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 즉, 본 발명에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.
본 발명의 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하고, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
또한, 이하에서 영상은 동영상(video)을 구성하는 하나의 픽처(picture)를 의미할 수 있으며, 동영상 자체를 나타낼 수도 있다. 예를 들면, "영상의 부호화 및/또는 복호화"는 "비디오의 부호화 및/또는 복호화"를 의미할 수 있으며, "비디오를 구성하는 영상들 중 하나의 영상의 부호화 및/또는 복호화"를 의미할 수도 있다. 여기서, 픽처는 영상과 동일한 의미를 가질 수 있다.
용어 설명
부호화기(Encoder): 부호화(Encoding)를 수행하는 장치를 의미한다.
복호화기(Decoder): 복호화(Decoding)를 수행하는 장치를 의미한다.
블록(Block): 샘플(Sample)의 MxN 배열이다. 여기서 M과 N은 양의 정수 값을 의미하며, 블록은 흔히 2차원 형태의 샘플 배열을 의미할 수 있다. 블록은 유닛을 의미할 수 있다. 현재 블록은 부호화 시 부호화의 대상이 되는 부호화 대상 블록, 복호화 시 복호화의 대상이 되는 복호화 대상 블록을 의미할 수 있다. 또한, 현재 블록은 부호화 블록, 예측 블록, 잔여 블록, 변환 블록 중 적어도 하나일 수 있다.
샘플(Sample): 블록을 구성하는 기본 단위이다. 비트 깊이 (bit depth, Bd)에 따라 0부터 2Bd - 1까지의 값으로 표현될 수 있다. 본 발명에서 샘플은 화소 또는 픽셀과 같은 의미로 사용될 수 있다.
유닛(Unit): 영상 부호화 및 복호화의 단위를 의미한다. 영상의 부호화 및 복호화에 있어서, 유닛은 하나의 영상을 분할한 영역일 수 있다. 또한, 유닛은 하나의 영상을 세분화 된 유닛으로 분할하여 부호화 혹은 복호화 할 때 그 분할된 단위를 의미할 수 있다. 영상의 부호화 및 복호화에 있어서, 유닛 별로 기정의된 처리가 수행될 수 있다. 하나의 유닛은 유닛에 비해 더 작은 크기를 갖는 하위 유닛으로 더 분할될 수 있다. 기능에 따라서, 유닛은 블록(Block), 매크로블록(Macroblock), 부호화 트리 유닛(Coding Tree Unit), 부호화 트리 블록(Coding Tree Block), 부호화 유닛(Coding Unit), 부호화 블록(Coding Block), 예측 유닛(Prediction Unit), 예측 블록(Prediction Block), 잔여 유닛(Residual Unit), 잔여 블록(Residual Block), 변환 유닛(Transform Unit), 변환 블록(Transform Block) 등을 의미할 수 있다. 또한, 유닛은 블록과 구분하여 지칭하기 위해 휘도(Luma) 성분 블록과 그에 대응하는 색차(Chroma) 성분 블록 그리고 각 블록에 대한 구문 요소를 포함한 것을 의미할 수 있다. 유닛은 다양한 크기와 형태를 가질 수 있으며, 특히 유닛의 형태는 직사각형뿐만 아니라 정사각형, 사다리꼴, 삼각형, 오각형 등 2차원으로 표현될 수 있는 기하학적 도형을 포함할 수 있다. 또한, 유닛 정보는 부호화 유닛, 예측 유닛, 잔여 유닛, 변환 유닛 등을 가리키는 유닛의 타입, 유닛의 크기, 유닛의 깊이, 유닛의 부호화 및 복호화 순서 등 중 적어도 하나 이상을 포함할 수 있다.
부호화 트리 유닛(Coding Tree Unit): 하나의 휘도 성분(Y) 부호화 트리 블록과 관련된 두 색차 성분(Cb, Cr) 부호화 트리 블록들로 구성된다. 또한, 상기 블록들과 각 블록에 대한 구문 요소를 포함한 것을 의미할 수도 있다. 각 부호화 트리 유닛은 부호화 유닛, 예측 유닛, 변환 유닛 등의 하위 유닛을 구성하기 위하여 쿼드트리(quad tree), 이진트리(binary tree) 등 하나 이상의 분할 방식을 이용하여 분할될 수 있다. 입력 영상의 분할처럼 영상의 복/부호화 과정에서 처리 단위가 되는 픽셀 블록을 지칭하기 위한 용어로 사용될 수 있다.
부호화 트리 블록(Coding Tree Block): Y 부호화 트리 블록, Cb 부호화 트리 블록, Cr 부호화 트리 블록 중 어느 하나를 지칭하기 위한 용어로 사용될 수 있다.
주변 블록(Neighbor block): 현재 블록에 인접한 블록을 의미한다. 현재 블록에 인접한 블록은 현재 블록에 경계가 맞닿은 블록 또는 현재 블록으로부터 소정의 거리 내에 위치한 블록을 의미할 수 있다. 주변 블록은 현재 블록의 꼭지점에 인접한 블록을 의미할 수 있다. 여기에서, 현재 블록의 꼭지점에 인접한 블록이란, 현재 블록에 가로로 인접한 이웃 블록에 세로로 인접한 블록 또는 현재 블록에 세로로 인접한 이웃 블록에 가로로 인접한 블록일 수 있다. 주변 블록은 복원된 주변 블록을 의미할 수도 있다.
복원된 주변 블록(Reconstructed Neighbor Block): 현재 블록 주변에 공간적(Spatial)/시간적(Temporal)으로 이미 부호화 혹은 복호화된 주변 블록을 의미한다. 이때, 복원된 주변 블록은 복원된 주변 유닛을 의미할 수 있다. 복원된 공간적 주변 블록은 현재 픽처 내의 블록이면서 부호화 및/또는 복호화를 통해 이미 복원된 블록일 수 있다. 복원된 시간적 주변 블록은 참조 픽처 내에서 현재 픽처의 현재 블록과 동일한 위치의 복원된 블록 또는 그 주변 블록일 수 있다.
유닛 깊이(Depth): 유닛이 분할된 정도를 의미한다. 트리 구조(Tree Structure)에서 루트 노드(Root Node)는 깊이가 가장 얕고, 리프 노드(Leaf Node)는 깊이가 가장 깊다고 할 수 있다. 또한, 유닛을 트리 구조로 표현했을 때 유닛이 존재하는 레벨(Level)이 유닛 깊이를 의미할 수 있다.
비트스트림(Bitstream): 부호화된 영상 정보를 포함하는 비트의 열을 의미한다.
파라미터 세트(Parameter Set): 비트스트림 내의 구조 중 헤더 정보에 해당한다. 비디오 파라미터 세트(video parameter set), 시퀀스 파라미터 세트(sequence parameter set), 픽처 파라미터 세트(picture parameter set), 적응 파라미터 세트(adaptation parameter set) 중 적어도 하나가 파라미터 세트에 포함될 수 있다. 또한, 파라미터 세트는 슬라이스(slice) 헤더 및 타일(tile) 헤더 정보를 포함할 수도 있다.
파싱(Parsing): 비트스트림을 엔트로피 복호화하여 구문 요소(Syntax Element)의 값을 결정하는 것을 의미하거나, 엔트로피 복호화 자체를 의미할 수 있다.
심볼(Symbol): 부호화/복호화 대상 유닛의 구문 요소, 부호화 파라미터(coding parameter), 변환 계수(Transform Coefficient)의 값 등 중 적어도 하나를 의미할 수 있다. 또한, 심볼은 엔트로피 부호화의 대상 혹은 엔트로피 복호화의 결과를 의미할 수 있다.
예측 유닛(Prediction Unit): 화면 간 예측, 화면 내 예측, 화면 간 보상, 화면 내 보상, 움직임 보상 등 예측을 수행할 때의 기본 유닛을 의미한다. 하나의 예측 유닛은 크기가 작은 복수의 파티션(Partition) 또는 하위 예측 유닛으로 분할 될 수도 있다.
예측 유닛 파티션(Prediction Unit Partition): 예측 유닛이 분할된 형태를 의미한다.
참조 영상 리스트(Reference Picture List): 화면 간 예측 혹은 움직임 보상에 사용되는 하나 이상의 참조 영상이 포함된 리스트를 의미한다. 참조 영상 리스트의 종류는 LC (List Combined), L0 (List 0), L1 (List 1), L2 (List 2), L3 (List 3) 등이 있을 수 있으며, 화면 간 예측에는 1개 이상의 참조 영상 리스트가 사용될 수 있다.
화면 간 예측 지시자(Inter Prediction Indicator): 현재 블록의 화면 간 예측 방향(단방향 예측, 쌍방향 예측 등)을 의미할 수 있다. 또는, 현재 블록의 예측 블록을 생성할 때 사용되는 참조 영상의 개수를 의미할 수 있다. 또는, 현재 블록에 대해 화면 간 예측 혹은 움직임 보상을 수행할 때 사용되는 예측 블록의 개수를 의미할 수 있다.
참조 영상 색인(Reference Picture Index): 참조 영상 리스트에서 특정 참조 영상을 지시하는 색인을 의미한다.
참조 영상(Reference Picture): 화면 간 예측 혹은 움직임 보상을 위해서 특정 블록이 참조하는 영상을 의미할 수 있다.
움직임 벡터(Motion Vector): 화면 간 예측 혹은 움직임 보상에 사용되는 2차원 벡터이며, 부호화/복호화 대상 영상과 참조 영상 사이의 오프셋을 의미할 수 있다. 예를 들어, (mvX, mvY)는 움직임 벡터를 나타낼 수 있으며, mvX는 가로(horizontal) 성분, mvY는 세로(vertical) 성분을 나타낼 수 있다.
움직임 벡터 후보(Motion Vector Candidate): 움직임 벡터를 예측할 때 예측 후보가 되는 블록 혹은 그 블록의 움직임 벡터를 의미한다. 또한, 움직임 벡터 후보는 움직임 벡터 후보 리스트에 포함될 수 있다.
움직임 벡터 후보 리스트(Motion Vector Candidate List): 움직임 벡터 후보를 이용하여 구성된 리스트를 의미할 수 있다.
움직임 벡터 후보 색인(Motion Vector Candidate Index): 움직임 벡터 후보 리스트 내의 움직임 벡터 후보를 가리키는 지시자를 의미한다. 움직임 벡터 예측기(Motion Vector Predictor)의 색인(index)이라고도 할 수 있다.
움직임 정보(Motion Information): 움직임 벡터, 참조 영상 색인, 화면 간 예측 지시자(Inter Prediction Indicator) 뿐만 아니라 참조 영상 리스트 정보, 참조 영상, 움직임 벡터 후보, 움직임 벡터 후보 색인, 머지 후보, 머지 색인 등 중 적어도 하나를 포함하는 정보를 의미할 수 있다.
머지 후보 리스트(Merge Candidate List): 머지 후보를 이용하여 구성된 리스트를 의미한다.
머지 후보(Merge Candidate): 공간적 머지 후보, 시간적 머지 후보, 조합된 머지 후보, 조합 양예측 머지 후보, 제로 머지 후보 등을 의미한다. 머지 후보는 화면 간 예측 지시자, 각 리스트에 대한 참조 영상 색인, 움직임 벡터 등의 움직임 정보를 포함할 수 있다.
머지 색인(Merge Index): 머지 후보 리스트 내 머지 후보를 지시하는 정보를 의미한다. 또한, 머지 색인은 공간적/시간적으로 현재 블록과 인접하게 복원된 블록들 중 머지 후보를 유도한 블록을 지시할 수 있다. 또한, 머지 색인은 머지 후보가 가지는 움직임 정보 중 적어도 하나를 지시할 수 있다.
변환 유닛(Transform Unit): 변환, 역변환, 양자화, 역양자화, 변환 계수 부호화/복호화와 같이 잔여 신호(residual signal) 부호화/복호화를 수행할 때의 기본 유닛을 의미한다. 하나의 변환 유닛은 분할되어 크기가 작은 복수의 변환 유닛으로 분할될 수 있다.
스케일링(Scaling): 변환 계수 레벨에 인수를 곱하는 과정을 의미한다. 변환 계수 레벨에 대한 스케일링의 결과로 변환 계수를 생성할 수 있다. 스케일링을 역양자화(dequantization)라고도 부를 수 있다.
양자화 매개변수(Quantization Parameter): 양자화에서 변환 계수에 대해 변환 계수 레벨(transform coefficient level)을 생성할 때 사용하는 값을 의미할 수 있다. 또는, 역양자화에서 변환 계수 레벨을 스케일링(scaling)하여 변환 계수를 생성할 때 사용하는 값을 의미할 수도 있다. 양자화 매개변수는 양자화 스텝 크기(step size)에 매핑된 값일 수 있다.
잔여 양자화 매개변수(Delta Quantization Parameter): 예측된 양자화 매개변수와 부호화/복호화 대상 유닛의 양자화 매개변수의 차분된 값을 의미한다.
스캔(Scan): 블록 혹은 행렬 내 계수의 순서를 정렬하는 방법을 의미한다. 예를 들어, 2차원 배열을 1차원 배열 형태로 정렬하는 것을 스캔이라고 한다. 또는, 1차원 배열을 2차원 배열 형태로 정렬하는 것도 스캔 혹은 역 스캔(Inverse Scan)이라고 부를 수 있다.
변환 계수(Transform Coefficient): 부호화기에서 변환을 수행하고 나서 생성된 계수 값을 의미한다. 또는, 복호화기에서 엔트로피 복호화 및 역양자화 중 적어도 하나를 수행하고 나서 생성된 계수 값을 의미할 수도 있다.변환 계수 또는 잔여 신호에 양자화를 적용한 양자화된 레벨 또는 양자화된 변환 계수 레벨도 변환 계수의 의미에 포함될 수 있다.
양자화된 레벨(Quantized Level): 부호화기에서 변환 계수 또는 잔여 신호에 양자화를 수행하여 생성된 값을 의미한다. 또는, 복호화기에서 역양자화를 수행하기 전 역양자화의 대상이 되는 값을 의미할 수도 있다. 유사하게, 변환 및 양자화의 결과인 양자화된 변환 계수 레벨도 양자화된 레벨의 의미에 포함될 수 있다.
넌제로 변환 계수(Non-zero Transform Coefficient): 값의 크기가 0이 아닌 변환 계수 혹은 값의 크기가 0이 아닌 변환 계수 레벨을 의미한다.
양자화 행렬(Quantization Matrix): 영상의 주관적 화질 혹은 객관적 화질을 향상시키기 위해서 양자화 혹은 역양자화 과정에서 이용하는 행렬을 의미한다. 양자화 행렬을 스케일링 리스트(scaling list)라고도 부를 수 있다.
양자화 행렬 계수(Quantization Matrix Coefficient): 양자화 행렬 내의 각 원소(element)를 의미한다. 양자화 행렬 계수를 행렬 계수(matrix coefficient)라고도 할 수 있다.
기본 행렬(Default Matrix): 부호화기와 복호화기에서 미리 정의되어 있는 소정의 양자화 행렬을 의미한다.
비 기본 행렬(Non-default Matrix): 부호화기와 복호화기에서 미리 정의되지 않고, 사용자에 의해서 시그널링되는 양자화 행렬을 의미한다.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
부호화 장치(100)는 인코더, 비디오 부호화 장치 또는 영상 부호화 장치일 수 있다. 비디오는 하나 이상의 영상들을 포함할 수 있다. 부호화 장치(100)는 하나 이상의 영상들을 순차적으로 부호화할 수 있다.
도 1을 참조하면, 부호화 장치(100)는 움직임 예측부(111), 움직임 보상부(112), 인트라 예측부(120), 스위치(115), 감산기(125), 변환부(130), 양자화부(140), 엔트로피 부호화부(150), 역양자화부(160), 역변환부(170), 가산기(175), 필터부(180) 및 참조 픽처 버퍼(190)를 포함할 수 있다.
부호화 장치(100)는 입력 영상에 대해 인트라 모드 및/또는 인터 모드로 부호화를 수행할 수 있다. 또한, 부호화 장치(100)는 입력 영상에 대한 부호화를 통해 비트스트림을 생성할 수 있고, 생성된 비트스트림을 출력할 수 있다. 생성된 비트스트림은 컴퓨터 판독가능한 기록 매체에 저장되거나, 유/무선 전송 매체를 통해 스트리밍될 수 있다. 예측 모드로 인트라 모드가 사용되는 경우 스위치(115)는 인트라로 전환될 수 있고, 예측 모드로 인터 모드가 사용되는 경우 스위치(115)는 인터로 전환될 수 있다. 여기서 인트라 모드는 화면 내 예측 모드를 의미할 수 있으며, 인터 모드는 화면 간 예측 모드를 의미할 수 있다. 부호화 장치(100)는 입력 영상의 입력 블록에 대한 예측 블록을 생성할 수 있다. 또한, 부호화 장치(100)는 예측 블록이 생성된 후, 입력 블록 및 예측 블록의 차분(residual)을 부호화할 수 있다. 입력 영상은 현재 부호화의 대상인 현재 영상으로 칭해질 수 있다. 입력 블록은 현재 부호화의 대상인 현재 블록 혹은 부호화 대상 블록으로 칭해질 수 있다.
예측 모드가 인트라 모드인 경우, 인트라 예측부(120)는 현재 블록의 주변에 이미 부호화/복호화된 블록의 픽셀 값을 참조 화소로서 이용할 수 있다. 인트라 예측부(120)는 참조 화소를 이용하여 공간적 예측을 수행할 수 있고, 공간적 예측을 통해 입력 블록에 대한 예측 샘플들을 생성할 수 있다. 여기서 인트라 예측은 화면 내 예측을 의미할 수 있다.
예측 모드가 인터 모드인 경우, 움직임 예측부(111)는, 움직임 예측 과정에서 참조 영상으로부터 입력 블록과 가장 매치가 잘 되는 영역을 검색할 수 있고, 검색된 영역을 이용하여 움직임 벡터를 도출할 수 있다. 참조 영상은 참조 픽처 버퍼(190)에 저장될 수 있다.
움직임 보상부(112)는 움직임 벡터를 이용하는 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 여기서 인터 예측은 화면 간 예측 혹은 움직임 보상을 의미할 수 있다.
상기 움직임 예측부(111)과 움직임 보상부(112)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터(Interpolation Filter)를 적용하여 예측 블록을 생성할 수 있다. 화면 간 예측 혹은 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 예측 및 움직임 보상 방법이 스킵 모드(Skip Mode), 머지 모드(Merge Mode), 향상된 움직임 벡터 예측(Advanced Motion Vector Prediction; AMVP) 모드, 현재 픽처 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 화면 간 예측 혹은 움직임 보상을 수행할 수 있다.
감산기(125)는 입력 블록 및 예측 블록의 차분을 사용하여 잔여 블록(residual block)을 생성할 수 있다. 잔여 블록은 잔여 신호로 칭해질 수도 있다. 잔여 신호는 원 신호 및 예측 신호 간의 차이(difference)를 의미할 수 있다. 또는, 잔여 신호는 원신호 및 예측 신호 간의 차이를 변환(transform)하거나 양자화하거나 또는 변환 및 양자화함으로써 생성된 신호일 수 있다. 잔여 블록은 블록 단위의 잔여 신호일 수 있다.
변환부(130)는 잔여 블록에 대해 변환(transform)을 수행하여 변환 계수(transform coefficient)를 생성할 수 있고, 변환 계수를 출력할 수 있다. 여기서, 변환 계수는 잔여 블록에 대한 변환을 수행함으로써 생성된 계수 값일 수 있다. 변환 생략(transform skip) 모드가 적용되는 경우, 변환부(130)는 잔여 블록에 대한 변환을 생략할 수도 있다.
변환 계수 또는 잔여 신호에 양자화를 적용함으로써 양자화된 레벨(quantized level)이 생성될 수 있다. 이하, 실시예들에서는 양자화된 레벨도 변환 계수로 칭해질 수 있다.
양자화부(140)는 변환 계수 또는 잔여 신호를 양자화 매개변수에 따라 양자화함으로써 양자화된 레벨을 생성할 수 있고, 양자화된 레벨을 출력할 수 있다. 이때, 양자화부(140)에서는 양자화 행렬을 사용하여 변환 계수를 양자화할 수 있다.
엔트로피 부호화부(150)는, 양자화부(140)에서 산출된 값들 또는 부호화 과정에서 산출된 부호화 파라미터(Coding Parameter) 값들 등에 대하여 확률 분포에 따른 엔트로피 부호화를 수행함으로써 비트스트림(bitstream)을 생성할 수 있고, 비트스트림을 출력할 수 있다. 엔트로피 부호화부(150)는 영상의 픽셀에 관한 정보 및 영상의 복호화를 위한 정보에 대한 엔트로피 부호화를 수행할 수 있다. 예를 들면, 영상의 복호화를 위한 정보는 구문 요소(syntax element) 등을 포함할 수 있다.
엔트로피 부호화가 적용되는 경우, 높은 발생 확률을 갖는 심볼(symbol)에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 부호화 대상 심볼들에 대한 비트열의 크기가 감소될 수 있다. 엔트로피 부호화부(150)는 엔트로피 부호화를 위해 지수 골롬(exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 부호화 방법을 사용할 수 있다. 예를 들면, 엔트로피 부호화부(150)는 가변 길이 부호화(Variable Length Coding/Code; VLC) 테이블을 이용하여 엔트로피 부호화를 수행할 수 있다. 또한 엔트로피 부호화부(150)는 대상 심볼의 이진화(binarization) 방법 및 대상 심볼/빈(bin)의 확률 모델(probability model)을 도출한 후, 도출된 이진화 방법, 확률 모델, 문맥 모델(Context Model)을 사용하여 산술 부호화를 수행할 수도 있다.
엔트로피 부호화부(150)는 변환 계수 레벨을 부호화하기 위해 변환 계수 스캐닝(Transform Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다.
부호화 파라미터(Coding Parameter)는 구문 요소와 같이 부호화기에서 부호화되어 복호화기로 시그널링되는 정보(플래그, 인덱스 등)뿐만 아니라, 부호화 혹은 복호화 과정에서 유도되는 정보를 포함할 수 있으며, 영상을 부호화하거나 복호화할 때 필요한 정보를 의미할 수 있다. 예를 들어, 유닛/블록 크기, 유닛/블록 깊이, 유닛/블록 분할 정보, 유닛/블록 분할 구조, 쿼드트리 형태의 분할 여부, 이진트리 형태의 분할 여부, 이진트리 형태의 분할 방향(가로 방향 혹은 세로 방향), 이진트리 형태의 분할 형태(대칭 분할 혹은 비대칭 분할), 화면 내 예측 모드/방향, 참조 샘플 필터링 방법, 예측 블록 필터링 방법, 예측 블록 필터 탭, 예측 블록 필터 계수, 화면 간 예측 모드, 움직임 정보, 움직임 벡터, 참조 영상 색인, 화면 간 예측 방향, 화면 간 예측 지시자, 참조 영상 리스트, 참조 영상, 움직임 벡터 예측 후보, 움직임 벡터 후보 리스트, 머지 모드 사용 여부, 머지 후보, 머지 후보 리스트, 스킵(skip) 모드 사용 여부, 보간 필터 종류, 보간 필터 탭, 보간 필터 계수, 움직임 벡터 크기, 움직임 벡터 표현 정확도, 변환 종류, 변환 크기, 1차 변환 사용 여부 정보, 2차 변환 사용 여부 정보, 1차 변환 인덱스, 2차 변환 인덱스, 잔여 신호 유무 정보, 부호화 블록 패턴(Coded Block Pattern), 부호화 블록 플래그(Coded Block Flag), 양자화 매개변수, 양자화 행렬, 화면 내 루프 필터 적용 여부, 화면 내 루프 필터 계수, 화면 내 루프 필터 탭, 화면 내 루프 필터 모양/형태, 디블록킹 필터 적용 여부, 디블록킹 필터 계수, 디블록킹 필터 탭, 디블록킹 필터 강도, 디블록킹 필터 모양/형태, 적응적 샘플 오프셋 적용 여부, 적응적 샘플 오프셋 값, 적응적 샘플 오프셋 카테고리, 적응적 샘플 오프셋 종류, 적응적 루프내 필터 적용 여부, 적응적 루프내 필터 계수, 적응적 루프내 필터 탭, 적응적 루프내 필터 모양/형태, 이진화/역이진화 방법, 문맥 모델 결정 방법, 문맥 모델 업데이트 방법, 레귤러 모드 수행 여부, 바이패스 모드 수행 여부, 문맥 빈, 바이패스 빈, 변환 계수, 변환 계수 레벨, 변환 계수 레벨 스캐닝 방법, 영상 디스플레이/출력 순서, 슬라이스 식별 정보, 슬라이스 타입, 슬라이스 분할 정보, 타일 식별 정보, 타일 타입, 타일 분할 정보, 픽처 타입, 비트 심도, 휘도 신호 혹은 색차 신호에 대한 정보 중 적어도 하나의 값 또는 조합된 형태가 부호화 파라미터에 포함될 수 있다.
여기서, 플래그 혹은 인덱스를 시그널링(signaling)한다는 것은 인코더에서는 해당 플래그 혹은 인덱스를 엔트로피 부호화(Entropy Encoding)하여 비트스트림(Bitstream)에 포함하는 것을 의미할 수 있고, 디코더에서는 비트스트림으로부터 해당 플래그 혹은 인덱스를 엔트로피 복호화(Entropy Decoding)하는 것을 의미할 수 있다.
부호화 장치(100)가 인터 예측을 통한 부호화를 수행할 경우, 부호화된 현재 영상은 이후에 처리되는 다른 영상에 대한 참조 영상으로서 사용될 수 있다. 따라서, 부호화 장치(100)는 부호화된 현재 영상을 다시 복원 또는 복호화할 수 있고, 복원 또는 복호화된 영상을 참조 영상으로 저장할 수 있다.
양자화된 레벨은 역양자화부(160)에서 역양자화(dequantization)될 수 있고. 역변환부(170)에서 역변환(inverse transform)될 수 있다. 역양자화 및/또는 역변환된 계수는 가산기(175)를 통해 예측 블록과 합해질 수 있다, 역양자화 및/또는 역변환된 계수 및 예측 블록을 합함으로써 복원 블록(reconstructed block)이 생성될 수 있다. 여기서, 역양자화 및/또는 역변환된 계수는 역양자화 및 역변환 중 적어도 하나 이상이 수행된 계수를 의미하며, 복원된 잔여 블록을 의미할 수 있다.
복원 블록은 필터부(180)를 거칠 수 있다. 필터부(180)는 디블록킹 필터(deblocking filter), 샘플 적응적 오프셋(Sample Adaptive Offset; SAO), 적응적 루프 필터(Adaptive Loop Filter; ALF) 등 적어도 하나를 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(180)는 인루프 필터(in-loop filter)로 칭해질 수도 있다.
디블록킹 필터는 블록들 간의 경계에 생긴 블록 왜곡을 제거할 수 있다. 디블록킹 필터를 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 서로 다른 필터를 적용할 수 있다.
샘플 적응적 오프셋을 이용하여 부호화 에러를 보상하기 위해 픽셀 값에 적정 오프셋(offset) 값을 더할 수 있다. 샘플 적응적 오프셋은 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
적응적 루프 필터는 복원 영상 및 원래의 영상을 비교한 값에 기반하여 필터링을 수행할 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. 적응적 루프 필터를 적용할지 여부에 관련된 정보는 부호화 유닛(Coding Unit, CU) 별로 시그널링될 수 있고, 각각의 블록에 따라 적용될 적응적 루프 필터의 모양 및 필터 계수는 달라질 수 있다.
필터부(180)를 거친 복원 블록 또는 복원 영상은 참조 픽처 버퍼(190)에 저장될 수 있다. 도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
복호화 장치(200)는 디코더, 비디오 복호화 장치 또는 영상 복호화 장치일 수 있다.
도 2를 참조하면, 복호화 장치(200)는 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 인트라 예측부(240), 움직임 보상부(250), 가산기(255), 필터부(260) 및 참조 픽처 버퍼(270)를 포함할 수 있다.
복호화 장치(200)는 부호화 장치(100)에서 출력된 비트스트림을 수신할 수 있다. 복호화 장치(200)는 컴퓨터 판독가능한 기록 매체에 저장된 비트스트림을 수신하거나, 유/무선 전송 매체를 통해 스트리밍되는 비트스트림을 수신할 수 있다. 복호화 장치(200)는 비트스트림에 대하여 인트라 모드 또는 인터 모드로 복호화를 수행할 수 있다. 또한, 복호화 장치(200)는 복호화를 통해 복원된 영상 또는 복호화된 영상을 생성할 수 있고, 복원된 영상 또는 복호화된 영상을 출력할 수 있다.
복호화에 사용되는 예측 모드가 인트라 모드인 경우 스위치가 인트라로 전환될 수 있다. 복호화에 사용되는 예측 모드가 인터 모드인 경우 스위치가 인터로 전환될 수 있다.
복호화 장치(200)는 입력된 비트스트림을 복호화하여 복원된 잔여 블록(reconstructed residual block)을 획득할 수 있고, 예측 블록을 생성할 수 있다. 복원된 잔여 블록 및 예측 블록이 획득되면, 복호화 장치(200)는 복원된 잔여 블록과 및 예측 블록을 더함으로써 복호화 대상이 되는 복원 블록을 생성할 수 있다. 복호화 대상 블록은 현재 블록으로 칭해질 수 있다.
엔트로피 복호화부(210)는 비트스트림에 대한 확률 분포에 따른 엔트로피 복호화를 수행함으로써 심볼들을 생성할 수 있다. 생성된 심볼들은 양자화된 레벨 형태의 심볼을 포함할 수 있다. 여기에서, 엔트로피 복호화 방법은 상술된 엔트로피 부호화 방법의 역과정일 수 있다.
엔트로피 복호화부(210)는 변환 계수 레벨을 복호화하기 위해 변환 계수 스캐닝 방법을 통해 1차원의 벡터 형태 계수를 2차원의 블록 형태로 변경할 수 있다.
양자화된 레벨은 역양자화부(220)에서 역양자화될 수 있고, 역변환부(230)에서 역변환될 수 있다. 양자화된 레벨은 역양자화 및/또는 역변환이 수행된 결과로서, 복원된 잔여 블록으로 생성될 수 있다. 이때, 역양자화부(220)는 양자화된 레벨에 양자화 행렬을 적용할 수 있다.
인트라 모드가 사용되는 경우, 인트라 예측부(240)는 복호화 대상 블록 주변의 이미 복호화된 블록의 픽셀 값을 이용하는 공간적 예측을 수행함으로써 예측 블록을 생성할 수 있다.
인터 모드가 사용되는 경우, 움직임 보상부(250)는 움직임 벡터 및 참조 픽처 버퍼(270)에 저장되어 있는 참조 영상을 이용하는 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 상기 움직임 보상부(250)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터를 적용하여 예측 블록을 생성할 수 있다. 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 보상 방법이 스킵 모드, 머지 모드, AMVP 모드, 현재 픽처 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 움직임 보상을 수행할 수 있다.
가산기(255)는 복원된 잔여 블록 및 예측 블록을 가산하여 복원 블록을 생성할 수 있다. 필터부(260)는 디블록킹 필터, 샘플 적응적 오프셋 및 적응적 루프 필터 등 적어도 하나를 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(260)는 복원 영상을 출력할 수 있다. 복원 블록 또는 복원 영상은 참조 픽처 버퍼(270)에 저장되어 인터 예측에 사용될 수 있다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다. 도 3은 하나의 유닛이 복수의 하위 유닛으로 분할되는 실시예를 개략적으로 나타낸다.
영상을 효율적으로 분할하기 위해, 부호화 및 복호화에 있어서, 부호화 유닛(Coding Unit; CU)이 사용될 수 있다. 영상 부호화/복호화의 기본 단위로서 부호화 유닛이 사용될 수 있다. 또한, 영상 부호화/복호화 시 화면 내 모드 및 화면 간 모드가 구분되는 단위로 부호화 유닛을 사용할 수 있다. 부호화 유닛은 예측, 변환, 양자화, 역변환, 역양자화, 또는 변환 계수의 부호화/복호화의 과정을 위해 사용되는 기본 단위일 수 있다.
도 3을 참조하면, 영상(300)은 최대 부호화 유닛(Largest Coding Unit; LCU) 단위로 순차적으로 분할되고, LCU 단위로 분할 구조가 결정된다. 여기서, LCU는 부호화 트리 유닛(Coding Tree Unit; CTU)과 동일한 의미로 사용될 수 있다. 유닛의 분할은 유닛에 해당하는 블록의 분할을 의미할 수 있다. 블록 분할 정보에는 유닛의 깊이(depth)에 관한 정보가 포함될 수 있다. 깊이 정보는 유닛이 분할되는 회수 및/또는 정도를 나타낼 수 있다. 하나의 유닛은 트리 구조(tree structure)를 기초로 깊이 정보를 가지고 계층적으로 분할될 수 있다. 각각의 분할된 하위 유닛은 깊이 정보를 가질 수 있다. 깊이 정보는 CU의 크기를 나타내는 정보일 수 있고, 각 CU마다 저장될 수 있다.
분할 구조는 LCU(310) 내에서의 부호화 유닛(Coding Unit; CU)의 분포를 의미할 수 있다. 이러한 분포는 하나의 CU를 복수(2, 4, 8, 16 등을 포함하는 2 이상의 양의 정수)의 CU들로 분할할지 여부에 따라 결정할 수 있다. 분할에 의해 생성된 CU의 가로 크기 및 세로 크기는 각각 분할 전의 CU의 가로 크기의 절반 및 세로 크기의 절반이거나, 분할된 개수에 따라 분할 전의 CU의 가로 크기보다 작은 크기 및 세로 크기보다 작은 크기를 가질 수 있다. CU는 복수의 CU로 재귀적으로 분할될 수 있다. CU의 분할은 기정의된 깊이 또는 기정의된 크기까지 재귀적으로 이루어질 수 있다. 예컨대, LCU의 깊이는 0일 수 있고, 최소 부호화 유닛(Smallest Coding Unit; SCU)의 깊이는 기정의된 최대 깊이일 수 있다. 여기서, LCU는 상술된 것과 같이 최대의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있고, SCU는 최소의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있다. LCU(310)로부터 분할이 시작되고, 분할에 의해 CU의 가로 크기 및/또는 세로 크기가 줄어들 때마다 CU의 깊이는 1씩 증가한다.
또한, CU가 분할되는지 여부에 대한 정보는 CU의 분할 정보를 통해 표현될 수 있다. 분할 정보는 1비트의 정보일 수 있다. SCU를 제외한 모든 CU는 분할 정보를 포함할 수 있다. 예를 들면, 분할 정보의 값이 제1 값이면, CU가 분할되지 않을 수 있고, 분할 정보의 값이 제2 값이면, CU가 분할될 수 있다.
도 3을 참조하면, 깊이가 0인 LCU는 64x64 블록일 수 있다. 0은 최소 깊이일 수 있다. 깊이가 3인 SCU는 8x8 블록일 수 있다. 3은 최대 깊이일 수 있다. 32x32 블록 및 16x16 블록의 CU는 각각 깊이 1 및 깊이 2로 표현될 수 있다.
예를 들어, 하나의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 분할된 4개의 부호화 유닛의 가로 및 세로 크기는 분할되기 전 부호화 유닛의 가로 및 세로 크기와 비교하여 각각 절반의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 분할된 4개의 부호화 유닛은 각각 16x16의 크기를 가질 수 있다. 하나의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 쿼드트리(quad-tree) 형태로 분할되었다고 할 수 있다.
예를 들어, 하나의 부호화 유닛이 2개의 부호화 유닛으로 분할 될 경우, 분할된 2개의 부호화 유닛의 가로 혹은 세로 크기는 분할되기 전 부호화 유닛의 가로 혹은 세로 크기와 비교하여 절반의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 2개의 부호화 유닛으로 세로로 분할 될 경우, 분할된 2개의 부호화 유닛은 각각 16x32의 크기를 가질 수 있다. 하나의 부호화 유닛이 2개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 이진트리(binary-tree) 형태로 분할되었다고 할 수 있다. 도 3의 LCU(320)는 쿼드트리 형태의 분할 및 이진트리 형태의 분할이 모두 적용된 LCU의 일 예이다.
도 4는 화면 간 예측 과정의 실시예를 설명하기 위한 도면이다.
도 4에 도시된 사각형은 영상을 나타낼 수 있다. 또한, 도 4에서 화살표는 예측 방향을 나타낼 수 있다. 각 영상은 부호화 타입에 따라 I 픽처(Intra Picture), P 픽처(Predictive Picture), B 픽처(Bi-predictive Picture) 등으로 분류될 수 있다.
I 픽처는 화면 간 예측 없이 화면 내 예측을 통해 부호화될 수 있다. P 픽처는 단방향(예컨대, 순방향 또는 역방향)에 존재하는 참조 영상만을 이용하는 화면 간 예측을 통해 부호화될 수 있다. B 픽처는 쌍방향(예컨대, 순방향 및 역방향)에 존재하는 참조 픽처들을 이용하는 화면 간 예측을 통해 부호화될 수 있다. 여기서, 화면 간 예측이 사용되는 경우, 부호화기에서는 화면 간 예측 혹은 움직임 보상을 수행할 수 있고, 복호화기에서는 그에 대응하는 움직임 보상을 수행할 수 있다.
아래에서, 실시예에 따른 화면 간 예측에 대해 구체적으로 설명된다.
화면 간 예측 혹은 움직임 보상은 참조 픽처 및 움직임 정보를 이용하여 수행될 수 있다.
현재 블록에 대한 움직임 정보는 부호화 장치(100) 및 복호화 장치(200)의 각각에 의해 화면 간 예측 중 도출될 수 있다. 움직임 정보는 복원된 주변 블록의 움직임 정보, 콜 블록(collocated block; col block)의 움직임 정보 및/또는 콜 블록에 인접한 블록을 이용하여 도출될 수 있다. 콜 블록은 이미 복원된 콜 픽처(collocated picture; col picture) 내에서 현재 블록의 공간적 위치에 대응하는 블록일 수 있다. 여기서, 콜 픽처는 참조 픽처 리스트에 포함된 적어도 하나의 참조 픽처 중에서 하나의 픽처일 수 있다.
움직임 정보의 도출 방식은 현재 블록의 예측 모드에 따라 다를 수 있다. 예를 들면, 화면 간 예측을 위해 적용되는 예측 모드로서, AMVP 모드, 머지 모드, 스킵 모드, 현재 픽처 참조 모드 등이 있을 수 있다. 여기서 머지 모드를 움직임 병합 모드(motion merge mode)라고 지칭할 수 있다.
예를 들면, 예측 모드로서, AMVP가 적용되는 경우, 복원된 주변 블록의 움직임 벡터, 콜 블록의 움직임 벡터, 콜 블록에 인접한 블록의 움직임 벡터, (0, 0) 움직임 벡터 중 적어도 하나를 움직임 벡터 후보로 결정하여 움직임 벡터 후보 리스트(motion vector candidate list)를 생성할 수 있다. 생성된 움직임 벡터 후보 리스트를 이용하여 움직임 벡터 후보를 유도할 수 있다. 유도된 움직임 벡터 후보를 기반으로 현재 블록의 움직임 정보를 결정할 수 있다. 여기서, 콜 블록의 움직임 벡터 또는 콜 블록에 인접한 블록의 움직임 벡터를 시간적 움직임 벡터 후보(temporal motion vector candidate)라 지칭할 수 있고, 복원된 주변 블록의 움직임 벡터를 공간적 움직임 벡터 후보(spatial motion vector candidate)라 지칭할 수 있다.
부호화 장치(100)는 현재 블록의 움직임 벡터 및 움직임 벡터 후보 간의 움직임 벡터 차분(MVD: Motion Vector Difference)을 계산할 수 있고, MVD를 엔트로피 부호화할 수 있다. 또한, 부호화 장치(100)는 움직임 벡터 후보 색인을 엔트로피 부호화하여 비트스트림을 생성할 수 있다. 움직임 벡터 후보 색인은 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서 선택된 최적의 움직임 벡터 후보를 지시할 수 있다. 복호화 장치(200)는 움직임 벡터 후보 색인을 비트스트림으로부터 엔트로피 복호화하고, 엔트로피 복호화된 움직임 벡터 후보 색인을 이용하여 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서 복호화 대상 블록의 움직임 벡터 후보를 선택할 수 있다. 또한, 복호화 장치(200)는 엔트로피 복호화된 MVD 및 움직임 벡터 후보의 합을 통해 복호화 대상 블록의 움직임 벡터를 도출할 수 있다.
비트스트림은 참조 픽처를 지시하는 참조 영상 색인 등을 포함할 수 있다. 참조 영상 색인은 엔트로피 부호화되어 비트스트림을 통해 부호화 장치(100)로부터 복호화 장치(200)로 시그널링될 수 있다. 복호화 장치(200)는 유도된 움직임 벡터와 참조 영상 색인 정보에 기반하여 복호화 대상 블록에 대한 예측 블록을 생성할 수 있다.
움직임 정보의 도출 방식의 다른 예로, 머지 모드가 있다. 머지 모드란 복수의 블록들에 대한 움직임의 병합을 의미할 수 있다. 머지 모드는 현재 블록의 움직임 정보를 주변 블록의 움직임 정보로부터 유도하는 모드를 의미할 수 있다. 머지 모드가 적용되는 경우, 복원된 주변 블록의 움직임 정보 및/또는 콜 블록의 움직임 정보를 이용하여 머지 후보 리스트(merge candidate list)를 생성할 수 있다. 움직임 정보는 1) 움직임 벡터, 2) 참조 영상 색인, 및 3) 화면 간 예측 지시자 중 적어도 하나를 포함할 수 있다. 예측 지시자는 단방향 (L0 예측, L1 예측) 또는 쌍방향일 수 있다.
머지 후보 리스트는 움직임 정보들이 저장된 리스트를 나타낼 수 있다. 머지 후보 리스트에 저장되는 움직임 정보는, 현재 블록에 인접한 주변 블록의 움직임 정보(공간적 머지 후보(spatial merge candidate)) 및 참조 영상에서 현재 블록에 대응되는(collocated) 블록의 움직임 정보(시간적 머지 후보(temporal merge candidate)), 이미 머지 후보 리스트에 존재하는 움직임 정보들의 조합에 의해 생성된 새로운 움직임 정보 및 제로 머지 후보 중 적어도 하나일 수 있다.
부호화 장치(100)는 머지 플래그(merge flag) 및 머지 인덱스(merge index) 중 적어도 하나를 엔트로피 부호화하여 비트스트림을 생성한 후 복호화 장치(200)로 시그널링할 수 있다. 머지 플래그는 블록 별로 머지 모드를 수행할지 여부를 나타내는 정보일 수 있고, 머지 인덱스는 현재 블록에 인접한 주변 블록들 중 어떤 블록과 머지를 할 것인가에 대한 정보일 수 있다. 예를 들면, 현재 블록의 주변 블록들은 현재 블록의 좌측 인접 블록, 상단 인접 블록 및 시간적 인접 블록 중 적어도 하나를 포함할 수 있다.
스킵 모드는 주변 블록의 움직임 정보를 그대로 현재 블록에 적용하는 모드일 수 있다. 스킵 모드가 사용되는 경우, 부호화 장치(100)는 어떤 블록의 움직임 정보를 현재 블록의 움직임 정보로서 이용할 것인지에 대한 정보를 엔트로피 부호화하여 비트스트림을 통해 복호화 장치(200)에 시그널링할 수 있다. 이때, 부호화 장치(100)는 움직임 벡터 차분 정보, 부호화 블록 플래그 및 변환 계수 레벨 중 적어도 하나에 관한 구문 요소를 복호화 장치(200)에 시그널링하지 않을 수 있다.
현재 픽처 참조 모드는 현재 블록이 속한 현재 픽처 내의 기-복원된 영역을 이용한 예측 모드를 의미할 수 있다. 이때, 상기 기-복원된 영역을 특정하기 위해 벡터가 정의될 수 있다. 현재 블록이 현재 픽처 참조 모드로 부호화되는지 여부는 현재 블록의 참조 영상 색인을 이용하여 부호화될 수 있다. 현재 블록이 현재 픽처 참조 모드로 부호화된 블록인지 여부를 나타내는 플래그 혹은 인덱스가 시그널링될 수도 있고, 현재 블록의 참조 영상 색인을 통해 유추될 수도 있다. 현재 블록이 현재 픽처 참조 모드로 부호화된 경우, 현재 픽처는 현재 블록을 위한 참조 영상 리스트 내에서 고정 위치 또는 임의의 위치에 추가될 수 있다. 상기 고정 위치는 예를 들어, 참조 영상 색인이 0인 위치 또는 가장 마지막 위치일 수 있다. 현재 픽쳐가 참조 영상 리스트 내에서 임의의 위치에 추가되는 경우, 상기 임의의 위치를 나타내는 별도의 참조 영상 색인이 시그널링될 수도 있다.
상술한 사항을 바탕으로, 본 발명에 따른 영상 부호화/복호화 방법에 대해 상세히 살펴보기로 한다.
도 5는 본 발명의 일 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이고, 도 6은 본 발명의 일 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 5를 참조하면, 부호화 장치는 움직임 벡터 후보를 유도하고(S501), 유도된 움직임 벡터 후보를 기초로, 움직임 벡터 후보 리스트를 생성할 수 있다(S502). 움직임 벡터 후보 리스트가 생성되면, 생성된 움직임 벡터 후보 리스트를 이용하여, 움직임 벡터를 결정하고(S503), 움직임 벡터를 이용하여, 움직임 보상을 수행할 수 있다(S504). 이후, 부호화 장치는 움직임 보상에 관한 정보를 엔트로피 부호화할 수 있다(S505).
도 6을 참조하면, 복호화 장치는 부호화 장치로부터 수신한 움직임 보상에 관한 정보를 엔트로피 복호화 하고(S601), 움직임 벡터 후보를 유도할 수 있다(S602). 그리고, 복호화 장치는 유도된 움직임 벡터 후보를 기초로 움직임 벡터 후보 리스트를 생성하고(S603), 생성된 움직임 벡터 후보 리스트를 이용하여, 움직임 벡터를 결정할 수 있다(S604). 이후, 복호화 장치는 움직임 벡터를 이용하여, 움직임 보상을 수행할 수 있다(S605).
도 7은 본 발명의 다른 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이고, 도 8은 본 발명의 다른 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 7을 참조하면, 부호화 장치는 머지 후보를 유도하고(S701), 유도된 머지 후보를 기초로 머지 후보 리스트를 생성할 수 있다. 머지 후보 리스트가 생성되면, 생성된 머지 후보 리스트를 이용하여 움직임 정보를 결정하고(S702), 결정된 움직임 정보를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다(S703). 이후, 부호화 장치는 움직임 보상에 관한 정보를 엔트로피 부호화할 수 있다(S704).
도 8을 참조하면, 복호화 장치는 부호화 장치로부터 수신한 움직임 보상에 관한 정보를 엔트로피 복호화하여(S801), 머지 후보를 유도하고(S802), 유도된 머지 후보를 기초로 머지 후보 리스트를 생성할수 있다. 머지 후보 리스트가 생성되면, 생성된 머지 후보 리스트를 이용하여 현재 블록의 움직임 정보를 결정할 수 있다(S803). 이후, 복호화 장치는 움직임 정보를 이용하여, 움직임 보상을 수행할 수 있다(S804).
여기서, 도 5 및 도 6는 도 4에서 설명한 AMVP 모드가 적용된 일 예일 수 있으며, 도 7 및 도 8은 도 4에서 설명한 머지 모드가 적용된 일 예일 수 있다.
이하에서, 도 5 및 도 6에서 도시된 각 단계를 설명한 후, 도 7 및 도 8에서 도시된 각 단계에 대해 설명하도록 한다. 다만, 움직임 보상 수행 단계(S504, S605, S703, S804) 및 엔트로피 부호화/복호화 단계(S505, S601, S704, S801)에 대한 설명은 통합하여 서술하도록 한다.
이하, 도 5 및 도 6에 도시된 각 단계에 대해 상세히 살펴보기로 한다.
먼저, 움직임 벡터 후보를 유도하는 단계에 대해 구체적으로 설명하기로 한다(S501, S602).
현재 블록에 대한 움직임 벡터 후보는 공간적 움직임 벡터 후보 또는 시간적 움직임 벡터 후보 중 적어도 하나를 포함할 수 있다.
현재 블록의 공간적 움직임 벡터는, 현재 블록 주변의 복원 블록으로부터 유도될 수 있다. 일 예로, 현재 블록 주변의 복원 블록의 움직임 벡터가 현재 블록에 대한 공간적 움직임 벡터 후보로 결정될 수 있다.
도 9는 현재 블록의 공간적 움직임 벡터 후보를 유도하는 예를 설명하기 위한 도면이다.
도 9를 참조하면, 현재 블록의 공간적 움직임 벡터 후보는 현재 블록(X)에 인접한 주변 블록들로부터 유도될 수 있다. 여기서, 현재 블록에 인접한 주변 블록은, 현재 블록의 상단에 인접한 블록(B1), 현재 블록의 좌측에 인접한 블록(A1), 현재 블록의 우측 상단 코너에 인접한 블록(B0), 현재 블록의 좌측 상단 코너에 인접한 블록(B2) 및 현재 블록의 좌측 하단 코너에 인접한 블록(A0) 중 적어도 하나를 포함할 수 있다. 한편, 현재 블록에 인접한 주변 블록은 정방형(square) 형태 또는 비정방형(non-square) 형태일 수 있다. 현재 블록에 인접한 주변 블록에 움직임 벡터가 존재하는 경우, 주변 블록의 움직임 벡터가 현재 블록의 공간적 움직임 벡터 후보로 결정될 수 있다. 주변 블록의 움직임 벡터가 존재하는지 여부 또는 주변 블록의 움직임 벡터가 현재 블록의 공간적 움직임 벡터 후보로서 이용가능한지 여부는, 주변 블록이 존재하는지 여부 또는 주변 블록이 화면 간 예측을 통해 부호화되었는지 여부 등을 기초로 판단될 수 있다. 이때, 주변 블록의 움직임 벡터가 존재하는지 여부 또는 주변 블록의 움직임 벡터가 현재 블록의 공간적 움직임 벡터 후보로 이용가능한지 여부는 소정의 우선 순위에 따라 결정될 수 있다. 일 예로, 도 9에 도시된 예에서, A0, A1, B0, B1 및 B2 위치의 블록 순서대로 움직임 벡터의 가용성이 판단될 수 있다.
현재 블록의 참조 영상과 움직임 벡터를 갖는 주변 블록의 참조 영상이 다른 경우, 주변 블록의 움직임 벡터를 스케일링(scaling)한 것을, 현재 블록의 공간적 움직임 벡터 후보로 결정할 수 있다. 여기서, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 현재 영상과 주변 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다. 일 예로, 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 현재 영상과 주변 블록이 참조하는 참조 영상 간의 거리의 비율에 따라 주변 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 공간적 움직임 벡터 후보가 유도될 수 있다.
한편, 현재 블록의 참조 영상 색인과 움직임 벡터를 갖는 주변 블록의 참조 영상 색인이 다른 경우, 주변 블록의 움직임 벡터를 스케일링한 것을, 현재 블록의 공간적 움직임 벡터 후보로 결정할 수 있다. 이경우에도, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 현재 영상과 주변 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다.
스케일링과 관련하여, 주변 블록의 움직임 벡터를 기 정의된 값을 갖는 참조 영상 색인에 의해 지시되는 참조 영상을 기반으로 스케일링하여 공간적 움직임 벡터 후보로 결정할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다. 일 예로, 현재 영상과 기 정의된 값을 갖는 참조 영상 색인에 의해 지시되는 현재 블록의 참조 영상 간의 거리 및 현재 영상과 기 정의된 값을 갖는 주변 블록의 참조 영상 간의 거리의 비율에 따라 주변 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 공간적 움직임 벡터 후보가 유도될 수 있다.
또한, 현재 블록의 부호화 파라미터 중 적어도 하나 이상에 기반하여 현재 블록의 공간적 움직임 벡터 후보를 유도할 수 있다.
현재 블록의 시간적 움직임 벡터 후보는, 현재 영상의 대응 위치 영상(Co-located picture)에 포함된 복원된 블록으로부터 유도될 수 있다. 여기서, 대응 위치 영상은, 현재 영상 이전에 부호화/복호화가 완료된 영상으로, 현재 영상과 상이한 시간적 순서를 갖는 영상일 수 있다.
도 10은 현재 블록의 시간적 움직임 벡터 후보를 유도하는 예를 설명하기 위한 도면이다.
도 10을 참조하면, 현재 영상의 대응 위치 영상(collocated picture)에서, 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 위부 위치를 포함하는 블록 또는 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 내부 위치를 포함하는 블록으로부터 현재 블록의 시간적 움직임 벡터 후보를 유도할 수 있다. 여기서, 시간적 움직임 벡터 후보는 대응 위치 블록의 움직임 벡터를 의미할 수 있다. 일 예로, 현재 블록(X)의 시간적 움직임 벡터 후보는 현재 블록과 공간적으로 동일한 위치에 대응하는 블록(C)의 좌측 하단 코너에 인접한 블록(H) 또는 블록 C의 중심점을 포함하는 블록(C3)으로부터 유도될 수 있다. 현재 블록의 시간적 움직임 벡터 후보를 유도하기 위해 사용되는 블록 H 또는 블록 C3 등을 '대응 위치 블록(collocated block)'이라 호칭할 수 있다.
또한, 부호화 파라미터 중 적어도 하나 이상에 기초하여, 시간적 움직임 벡터 후보, 대응 위치 영상, 대응 위치 블록, 예측 리스트 활용 플래그 및 참조 영상 색인 중 적어도 하나를 유도할 수도 있다.
현재 블록이 포함된 현재 영상과 현재 블록의 참조 영상 사이의 거리가 대응 위치 블록이 포함된 대응 위치 영상과 대응 위치 블록의 참조 영상 사이의 거리와 다를 경우, 현재 블록의 시간적 움직임 벡터 후보는 대응 위치 블록의 움직임 벡터를 스케일링함으로써 획득될 수 있다. 여기서, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다. 일 예로, 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리의 비율에 따라 대응 위치 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 시간적 움직임 벡터 후보가 유도될 수 있다.
다음으로, 유도된 움직임 벡터 후보를 기초로, 움직임 벡터 후보 리스트를 생성하는 단계에 대해 설명하기로 한다(S502, S503).
움직임 벡터 후보 리스트를 생성하는 단계는, 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가 혹은 제거하는 단계 및 조합된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가하는 단계를 포함할 수 있다.
유도된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가 혹은 제거하는 단계부터 살펴보면, 부호화 장치 및 복호화 장치는 움직임 벡터 후보의 유도 순서대로, 유도된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가할 수 있다.
움직임 벡터 후보 리스트 mvpListLX는 참조 영상 리스트 L0, L1, L2 및 L3에 대응하는 움직임 벡터 후보 리스트를 의미하는 것으로 가정한다. 예컨대, 참조 영상 리스트에 L0에 대응하는 움직임 벡터 후보 리스트는 mvpListL0라 호칭할 수 있다.
공간적 움직임 벡터 후보 및 시간적 움직임 벡터 후보 이외 소정 값을 갖는 움직임 벡터가 움직임 벡터 후보 리스트에 추가될 수도 있다. 일 예로, 움직임 벡터 리스트에 포함된 움직임 벡터 후보의 수가 최대 움직임 벡터 후보의 개수보다 작은 경우, 값이 0인 움직임 벡터를 움직임 벡터 후보 리스트에 추가할 수 있다.
다음으로 조합된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가하는 단계에 대해 살펴보기로 한다.
움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보의 수가 최대 움직임 벡터 후보의 수보다 작은 경우, 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중 적어도 하나 이상을 이용하여 조합된 움직임 벡터를 움직임 벡터 후보 리스트에 추가할 수 있다. 일 예로, 움직임 벡터 후보 리스트에 포함된 공간적 움직임 벡터 후보, 시간적 움직임 벡터 후보 및 제로 움직임 벡터 후보 중 적어도 하나 이상을 이용하여, 조합된 움직임 벡터 후보를 생성하고, 생성된 조합된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 포함할 수 잇다.
또는, 부호화 파라미터 중 적어도 하나 이상에 기반하여, 조합된 움직임 벡터 후보를 생성하거나, 부호화 파라미터 중 적어도 하나 이상에 기반하여, 조합된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가할 수도 있다.
다음으로, 움직임 벡터 후보 리스트로부터 예측된 움직임 벡터를 결정하는 단계에 대해 살펴보기로 한다(S503, S604).
움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중 움직임 벡터 후보 색인이 가리키는 움직임 벡터 후보를, 현재 블록에 대한 예측된 움직임 벡터로 결정할 수 있다.
부호화 장치는 움직임 벡터와 예측된 움직임 벡터 사이의 차분을 계산하여, 움직임 벡터 차분값을 산출할 수 있다. 복호화 장치는 예측된 움직임 벡터와 움직임 벡터 차분을 합하여 움직임 벡터를 산출할 수 있다.
한편, 도 5 및 도 6의 움직임 보상을 수행하는 단계(S504, S605) 및 움직임 보상에 관한 정보를 엔트로피 부호화/복호화하는 단계(S505, S601)는 도 7 및 도 8의 움직임 보상 수행 단계(S703, S804) 및 엔트로피 부호화/복호화 단계(S704, S801)와 통합하여 후술하도록 한다.
이하, 도 7 및 도 8에 도시된 각 단계에 대해 상세히 살펴보기로 한다.
먼저, 머지 후보를 유도하는 단계에 대해 구체적으로 설명하기로 한다(S701, 802).
현재 블록에 대한 머지 후보는 공간적 머지 후보, 시간적 머지 후보 또는 추가적인 머지 후보 중 적어도 하나를 포함할 수 있다. 여기서, 공간적 머지 후보를 유도한다는 것은 공간적 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다.
도 9를 참조하면, 현재 블록의 공간적 머지 후보는 현재 블록(X)에 인접한 주변 블록들로부터 유도될 수 있다. 현재 블록에 인접한 주변 블록은, 현재 블록의 상단에 인접한 블록(B1), 현재 블록의 좌측에 인접한 블록(A1), 현재 블록의 우측 상단 코너에 인접한 블록(B0), 현재 블록의 좌측 상단 코너에 인접한 블록(B2) 및 현재 블록의 좌측 하단 코너에 인접한 블록(A0) 중 적어도 하나를 포함할 수 있다.
현재 블록의 공간적 머지 후보를 유도하기 위해서, 현재 블록에 인접한 주변 블록이 현재 블록의 공간적 머지 후보 유도에 사용될 수 있는지 여부를 판단할 수 있다. 이때, 현재 블록에 인접한 주변 블록이 현재 블록의 공간적 머지 후보 유도에 사용될 수 있는 여부는 소정의 우선 순위에 따라 결정될 수 있다. 일 예로, 도 9에 도시된 예에서, A1, B1, B0, A0 및 B2 위치의 블록 순서대로 공간적 머지 후보 유도 가용성이 판단될 수 있다. 상기 가용성 여부 판단 순서를 기반으로 결정된 공간적 머지 후보를 현재 블록의 머지 후보 리스트에 순차적으로 추가할 수 있다.
도 11은 공간적 머지 후보가 머지 후보 리스트에 추가되는 예를 설명하기 위한 도면이다.
도 11을 참조하면, A1, B0, A0, B2 위치의 주변 블록으로부터 4개의 공간적 머지 후보가 유도된 경우, 머지 후보 리스트에 유도된 공간적 머지 후보가 순차적으로 추가될 수 있다.
또한, 부호화 파라미터 중 적어도 하나 이상에 기반하여 상기 공간적 머지 후보를 유도할 수 있다.
여기서, 공간적 머지 후보의 움직임 정보는 L0 및 L1의 움직임 정보뿐만 아니라 L2, L3 등 3개 이상의 움직임 정보를 가질 수 있다. 여기서, 참조 영상 리스트는 L0, L1, L2, L3 등 적어도 1개 이상을 포함할 수 있다.
다음으로, 현재 블록의 시간적 머지 후보를 유도하는 방법에 대해 설명하도록 한다.
현재 블록의 시간적 머지 후보는, 현재 영상의 대응 위치 영상(Co-located picture)에 포함된 복원된 블록으로부터 유도될 수 있다. 여기서, 대응 위치 영상은, 현재 영상 이전에 부호화/복호화가 완료된 영상으로, 현재 영상과 상이한 시간적 순서를 갖는 영상일 수 있다.
시간적 머지 후보를 유도한다는 것은 시간적 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다.
도 10을 참조하면, 현재 영상의 대응 위치 영상(collocated picture)에서, 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 위부 위치를 포함하는 블록 또는 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 내부 위치를 포함하는 블록으로부터 현재 블록의 시간적 머지 후보를 유도할 수 있다. 여기서, 시간적 머지 후보는 대응 위치 블록의 움직임 정보를 의미할 수 있다. 일 예로, 현재 블록(X)의 시간적 머지 후보는 현재 블록과 공간적으로 동일한 위치에 대응하는 블록(C)의 좌측 하단 코너에 인접한 블록(H) 또는 블록 C의 중심점을 포함하는 블록(C3)으로부터 유도될 수 있다. 현재 블록의 시간적 머지 후보를 유도하기 위해 사용되는 블록 H 또는 블록 C3 등을 '대응 위치 블록(collocated block)'이라 호칭할 수 있다.
블록 C의 외부 위치를 포함하는 블록 H로부터 현재 블록의 시간적 머지 후보를 유도할 수 있을 경우, 블록 H가 현재 블록의 대응 위치 블록으로 설정될 수 있다. 이 경우, 현재 블록의 시간적 머지 후보는 블록 H의 움직임 정보를 기초로 유도될 수 있다. 반면, 블록 H로부터 현재 블록의 시간적 머지 후보를 유도할 수 없을 경우, 블록 C의 내부 위치를 포함하는 블록 C3가 현재 블록의 대응 위치 블록으로 설정될 수 있다. 이 경우, 현재 블록의 시간적 머지 후보는 블록 C3의 움직임 정보를 기초로 유도될 수 있다. 만약, 블록 H 및 블록 C3로부터 현재 블록의 시간적 머지를 유도할 수 없는 경우라면(예컨대, 블록 H 및 블록 C3가 모두 화면 내 부호화된 경우), 현재 블록에 대한 시간적 머지 후보는 유도되지 않거나 또는 블록 H 및 블록 C3와는 다른 위치의 블록으로부터 유도될 수 있을 것이다.
다른 예로, 현재 블록의 시간적 머지 후보는 대응 위치 영상 내 복수의 블록으로부터 유도될 수도 있다. 일 예로, 블록 H 및 블록 C3로부터 현재 블록에 대한 복수의 시간적 머지 후보를 유도할 수도 있다.
도 12는 시간적 머지 후보가 머지 후보 리스트에 추가되는 예를 설명하기 위한 도면이다.
도 12를 참조하면, H1 위치의 대응 위치 블록으로부터 1개의 시간적 머지 후보가 유도된 경우, 머지 후보 리스트에 유도된 시간적 머지 후보를 추가할 수 있다.
현재 블록이 포함된 현재 영상과 현재 블록의 참조 영상 사이의 거리가 대응 위치 블록이 포함된 대응 위치 영상과 대응 위치 블록의 참조 영상 사이의 거리와 다를 경우, 현재 블록의 시간적 머지 후보의 움직임 벡터는 대응 위치 블록의 움직임 벡터를 스케일링함으로써 획득될 수 있다. 여기서, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다. 일 예로, 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리의 비율에 따라 대응 위치 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 시간적 머지 후보의 움직임 벡터가 유도될 수 있다.
또한, 현재 블록, 주변 블록 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기초하여 시간적 머지 후보, 대응 위치 영상, 대응 위치 블록, 예측 리스트 활용 플래그 및 참조 영상 색인 중 적어도 하나를 유도할 수도 있다.
공간적 머지 후보들 및 시간적 머지 후보들 중 적어도 하나 이상을 유도한 후에 유도된 머지 후보 순서대로 머지 후보 리스트에 추가하여 머지 후보 리스트를 생성할 수 있다.
다음으로, 현재 블록의 추가적인 머지 후보를 유도하는 방법에 대해 설명하도록 한다.
추가적인 머지 후보는 변경된 공간적 머지 후보(modified spatial merge candidate), 변경된 시간적 머지 후보(modified temporal merge candidate), 조합된 머지 후보(combined merge candidate), 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 의미할 수 있다. 여기서, 추가적인 머지 후보를 유도하는 것은 추가적인 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다.
변경된 공간적 머지 후보는 유도된 공간적 머지 후보의 움직임 정보 중 적어도 하나를 변경한 머지 후보를 의미할 수 있다.
변경된 시간적 머지 후보는 유도된 시간적 머지 후보의 움직임 정보 중 적어도 하나를 변경한 머지 후보를 의미할 수 있다.
조합된 머지 후보는 머지 후보 리스트에 존재하는 공간적 머지 후보, 시간적 머지 후보, 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보들의 움직임 정보 중 적어도 하나의 움직임 정보를 조합하여 유도되는 머지 후보를 의미할 수 있다.
또는, 조합된 머지 후보는 머지 후보 리스트에 존재하진 않지만 공간적 머지 후보 및 시간적 머지 후보 중 적어도 하나 이상을 유도할 수 있는 블록으로부터 유도된 공간적 머지 후보 및 유도된 시간적 머지 후보와 이를 기초로 생성된 변경된 공간적 머지 후보, 변경 시간적 머지 후보, 조합된 머지 후보 및 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나의 움직임 정보를 조합하여 유도되는 머지 후보를 의미할 수 있다.
또는, 복호화기에서 비트스트림으로부터 엔트로피 복호화한 움직임 정보를 이용하여 조합된 머지 후보를 유도할 수 있다. 이때, 부호화기에서 조합된 머지 후보 유도에 사용된 움직임 정보는 비트스트림에 엔트로피 부호화될 수 있다.
조합된 머지 후보는 조합 양예측 머지 후보를 의미할 수 있다. 조합 양예측 머지 후보는 양예측(bi-prediction)을 사용하는 머지 후보로 L0 움직임 정보와 L1 움직임 정보를 가지는 머지 후보를 의미할 수 있다.
소정의 움직임 정보 값을 가지는 머지 후보는 움직임 벡터가 (0, 0)인 제로 머지 후보를 의미할 수 있다. 한편, 소정의 움직임 정보 값을 가지는 머지 후보는 부호화 장치 및 복호화 장치에서 동일한 값을 사용하도록 기 설정될 수도 있다.
현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기반하여 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 유도 또는 생성할 수 있다. 또한, 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기반하여 머지 후보 리스트에 추가할 수 있다.
한편, 머지 후보 리스트의 크기는 현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터에 기반하여 결정될 수 있고, 부호화 파라미터에 기반하여 크기가 변경될 수 있다.
다음으로는, 생성된 머지 후보 리스트를 이용하여, 현재 블록의 움직임 정보를 결정하는 단계에 대해 구체적으로 설명하기로 한다(S702, S803).
부호화기는 움직임 추정(motion estimation)을 통하여 머지 후보 리스트 내의 머지 후보 중 움직임 보상에 이용되는 머지 후보를 결정하고, 결정된 머지 후보를 지시하는 머지 후보 색인(merge_idx)을 비트스트림에 부호화할 수 있다.
한편, 부호화기는 예측 블록을 생성하기 위하여 상술한 머지 후보 색인을 기초로 머지 후보 리스트에서 머지 후보를 선택하여 현재 블록의 움직임 정보를 결정할 수 있다. 여기서, 결정된 움직임 정보를 기초로 움직임 보상(motion compensation)을 수행하여 현재 블록의 예측 블록을 생성할 수 있다.
복호화기는 비트스트림 내의 머지 후보 색인을 복호화하여 머지 후보 색인이 지시하는 머지 후보 리스트 내의 머지 후보를 결정할 수 있다. 결정된 머지 후보는 현재 블록의 움직임 정보로 결정할 수 있다. 결정된 움직임 정보는 현재 블록의 움직임 보상에 사용된다. 이 때, 움직임 보상은 인터 예측(inter prediction)의 의미와 동일할 수 있다.
다음으로, 움직임 벡터 또는 움직임 정보를 이용하여, 움직임 보상을 수행하는 단계에 대해 살펴보기로 한다(S504, S605, S703, S804).
부호화 장치 및 복호화 장치는 예측된 움직임 벡터와 움직임 벡터 차분값을 이용하여 움직임 벡터를 산출할 수 있다. 움직임 벡터가 산출되면, 산출된 움직임 벡터를 이용하여, 화면 간 예측 또는 움직임 보상을 수행할 수 있다(S504, S605).
한편, 부호화 장치 및 복호화 장치는 결정된 움직임 정보를 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다(S703, S804). 여기서, 여기서, 현재 블록은 결정된 머지 후보의 움직임 정보를 가질 수 있다.
현재 블록은 예측 방향에 따라 최소 1개부터 최대 N개의 움직임 벡터를 가질 수 있다. 움직임 벡터를 이용하여, 최소 1개부터 최대 N개의 예측 블록을 생성하여, 현재 블록의 최종 예측 블록을 유도할 수 있다.
일 예로, 현재 블록이 1개의 움직임 벡터를 가질 경우, 상기 움직임 벡터(또는 움직임 정보)를 이용하여 생성된 예측 블록을, 현재 블록의 최종 예측 블록으로 결정할 수 있다.
반면, 현재 블록이 복수의 움직임 벡터(또는 움직임 정보)를 가질 경우, 복수의 움직임 벡터(또는 움직임 정보)를 이용하여 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다. 복수의 움직임 벡터(또는 움직임 정보)에 의해 지시되는 복수의 예측 블록 각각을 포함하는 참조 영상들은 서로 다른 참조 영상 리스트에 포함될 수도 있고, 동일한 참조 영상 리스트에 포함될 수도 있다.
일 예로, 공간적 움직임 벡터 후보, 시간적 움직임 벡터 후보, 소정의 값을 갖는 움직임 벡터 또는 조합된 움직임 벡터 후보 중 적어도 하나를 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다.
다른 예로, 기 설정된 움직임 벡터 후보 색인에 의해 지시되는 움직임 벡터 후보들을 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다. 또한, 기 설정된 움직임 벡터 후보 색인 범위에 존재하는 움직임 벡터 후보들을 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다.
각 예측 블록에 적용되는 가중치는 1/N (여기서, N은 생성된 예측 블록의 수)로 균등한 값을 가질 수 있다. 일 예로, 2개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/2 이고, 3개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/3이며, 4개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/4일 수 있다. 또는, 각 예측 블록마다 상이한 가중치를 부여하여, 현재 블록의 최종 예측 블록을 결정할 수도 있다.
가중치는 예측 블록별 고정된 값을 가져야 하는 것은 아니며, 예측 블록별 가변적 값을 가질 수도 있다. 이때, 각 예측 블록에 적용되는 가중치는 서로 동일할 수도 있고, 서로 상이할 수도 있다. 일 예로, 2개의 예측 블록이 생성된 경우, 2개의 예측 블록에 적용되는 가중치는 (1/2, 1/2)일뿐만 아니라, (1/3, 2/3), (1/4, 3/4), (2/5, 3/5), (3/8, 5/8) 등과 같이 블록별로 가변적이 값일 수 있다. 한편, 가중치는 양의 실수의 값 또는 음의 실수의 값일 수 있다. 일 예로, (-1/2, 3/2), (-1/3, 4/3), (-1/4, 5/4) 등과 같이 음의 실수의 값을 포함할 수 있다.
한편, 가변적 가중치를 적용하기 위해, 현재 블록을 위한 하나 또는 그 이상의 가중치 정보가 비트스트림을 통해 시그널링될 수도 있다. 가중치 정보는 예측 블록별로 각각 시그널링될 수도 있고, 참조 영상별로 시그널링될 수도 있다. 복수의 예측 블록이 하나의 가중치 정보를 공유하는 것도 가능하다.
부호화 장치 및 복호화 장치는 예측 블록 리스트 활용 플래그에 기초하여 예측된 움직임 벡터(또는 움직임 정보)의 이용 여부를 판단할 수 있다. 일 예로, 각 참조 영상 리스트 별로 예측 블록 리스트 활용 플래그가 제1 값인 1을 지시하는 경우, 부호화 장치 및 복호화 장치는 화면 간 예측 또는 움직임 보상을 수행하기 위하여 현재 블록의 예측된 움직임 벡터를 이용할 수 있다는 것을 나타내고, 제2 값인 0을 지시하는 경우, 부호화 장치 및 복호화 장치는 현재 블록의 예측된 움직임 벡터를 이용하여 화면 간 예측 또는 움직임 보상을 수행하지 않는 것을 나타낼 수 있다. 한편, 예측 블록 리스트 활용 플래그의 제1의 값은 0으로, 제2의 값은 1으로 설정될 수도 있다. 하기 수학식 1 내지 수학식 3은, 각각 현재 블록의 화면 간 예측 지시자가, PRED_BI, PRED_TRI 및 PRED_QUAD이고, 각 참조 영상 리스트에 대한 예측 방향이 단방향인 경우, 현재 블록의 최종 예측 블록을 생성하는 예를 나타낸다.
Figure pat00001
Figure pat00002
Figure pat00003
상기 수학식 1 내지 3에서, P_BI, P_TRI, P_QUAD는 현재 블록의 최종 예측 블록을 나타내고, LX(X=0, 1, 2, 3)은 참조 영상 리스트를 의미할 수 있다. WF_LX은 LX를 이용하여 생성된 예측 블록의 가중치 값을 나타내고, OFFSET_LX은 LX를 이용하여 생성된 예측 블록에 대한 오프셋 값을 나타낼 수 있다. P_LX는 현재 블록의 LX에 대한 움직임 벡터(또는 움직임 정보)를 이용하여 생성한 예측 블록을 의미한다. RF는 라운딩 팩터(Rounding factor)를 의미하고, 0, 양수 또는 음수로 설정될 수 있다. LX 참조 영상 리스트는 롱텀(long-term) 참조 영상, 디블록킹 필터(deblocking filter)를 수행하지 않은 참조 영상, 샘플 적응적 오프셋(sample adaptive offset)을 수행하지 않은 참조 영상, 적응적 루프 필터(adaptive loop filter)를 수행하지 않은 참조 영상, 디블록킹 필터 및 적응적 오프셋만 수행한 참조 영상, 디블록킹 필터 및 적응적 루프 필터만 수행한 참조 영상, 샘플 적응적 오프셋 및 적응적 루프 필터만 수행한 참조 영상, 디블록킹 필터, 샘플 적응적 오프셋 및 적응적 루프 필터 모두 수행한 참조 영상 중 적어도 하나를 포함할 수 있다. 이 경우, LX 참조 영상 리스트는 L2 참조 영상 리스트 및 L3 참조 영상 리스트 중 적어도 하나일 수 있다.
소정 참조 영상 리스트에 대한 예측 방향이 복수 방향인 경우에도, 예측 블록들의 가중합에 기초하여, 현재 블록에 대한 최종 예측 블록을 획득할 수 있다. 이때, 동일한 참조 영상 리스트로부터 유도된 예측 블록들에 적용되는 가중치는 동일한 값을 가질 수도 있고, 상이한 값을 가질 수도 있다.
복수의 예측 블록에 대한 가중치(WF_LX) 및 오프셋(OFFSET_LX) 중 적어도 하나는 엔트로피 부호화/복호화되는 부호화 파라미터일 수 있다. 다른 예로, 가중치 및 오프셋은 현재 블록 주변의 부호화/복호화된 주변 블록으로부터 유도될 수도 있다. 여기서, 현재 블록 주변의 주변 블록은, 현재 블록의 공간적 움직임 벡터 후보를 유도하기 위해 이용되는 블록 또는 현재 블록의 시간적 움직임 벡터 후보를 유도하기 위해 이용되는 블록 중 적어도 하나를 포함할 수 있다.
다른 예로, 가중치 및 오프셋은 현재 영상과 각 참조 영상들의 디스플레이 순서(POC)에 기초하여 결정될 수도 있다. 이 경우, 현재 영상과 참조 영상 사이의 거리가 멀수록, 가중치 또는 오프셋을 작은 값으로 설정하고, 현재 영상과 참조 영상 사이의 거리가 가까울수록 가중치 또는 오프셋을 큰 값으로 설정할 수 있다. 일 예로, 현재 영상과 L0 참조 영상의 POC 차이가 2인 경우, L0 참조 영상을 참조하여 생성된 예측 블록에 적용되는 가중치 값을 1/3으로 설정하는 반면, 현재 영상과 L0 참조 영상의 POC 차이가 1인 경우, L0 참조 영상을 참조하여 생성된 예측 블록에 적용되는 가중치 값을 2/3으로 설정할 수 있다. 위에 예시한 바와 같이, 가중치 또는 오프셋 값은 현재 영상과 참조 영상 사이의 디스플레이 순서 차와 반비례 관계를 가질 수 있다. 다른 예로, 가중치 또는 오프셋 값은 현재 영상과 참조 영상 사이의 디스플레이 순서 차와 비례 관계를 갖도록 하는 것 역시 가능하다.
다른 예로, 부호화 파라미터 중 적어도 하나 이상에 기반하여, 가중치 또는 오프셋 중 적어도 하나 이상을 엔트로피 부호화/복호화할 수도 있다. 또한 부호화 파라미터 중 적어도 하나 이상에 기반하여, 예측 블록들의 가중합을 계산할 수도 있다.
복수의 예측 블록의 가중합은 예측 블록 내의 일부 영역에서만 적용될 수 있다. 여기서, 일부 영역은 예측 블록 내의 경계에 해당하는 영역일 수 있다. 위와 같이 일부 영역에만 가중합을 적용하기 위하여, 예측 블록의 하위 블록(sub-block)단위로 가중합을 수행할 수 있다.
영역 정보가 지시하는 블록 크기의 블록 내부에서 더 작은 블록 크기의 하위 블록들에서는 동일한 예측 블록 또는 동일한 최종 예측 블록을 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영역 정보가 지시하는 블록 깊이의 블록 내부에서 더 깊은 블록 깊이의 하위 블록들에서는 동일한 예측 블록 또는 동일한 최종 예측 블록을 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다.
또한, 움직임 벡터 예측을 이용해서 예측 블록들의 가중합 계산 시, 움직임 벡터 후보 리스트 내에 존재하는 적어도 하나 이상의 움직임 벡터 후보를 이용해서 가중합을 계산하고 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 공간적 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 공간적 움직임 벡터 후보와 시간적 움직임 벡터 후보들로 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 조합된 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 특정한 움직임 벡터 후보 색인들을 가지는 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 특정한 움직임 벡터 후보 색인 범위 내에 존재하는 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
또한, 머지 모드를 이용해서 예측 블록들의 가중합 계산 시, 머지 후보 리스트 내에 존재하는 적어도 하나 이상의 머지 후보를 이용해서 가중합을 계산하고 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 공간적 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 공간적 머지 후보와 시간적 머지 후보들로 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 조합된 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 특정한 머지 후보 색인들을 가지는 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 특정한 머지 후보 색인 범위 내에 존재하는 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
부호화기 및 복호화기에서는 현재 블록에서 가지는 움직임 벡터/정보를 이용하여 움직임 보상을 수행할 수 있다. 이때, 움직임 보상의 결과인 최종 예측 블록은 적어도 하나 이상의 예측 블록을 이용해서 생성될 수 있다. 여기서, 현재 블록은 현재 부호화 블록(coding block), 현재 예측 블록(prediction block) 중 적어도 하나 이상을 의미할 수 있다.
현재 블록 내 경계에 해당하는 영역에 중첩된 블록 움직임 보상(Overlapped Block Motion Compensation)을 수행하여 최종 예측 블록을 생성할 수 있다.
현재 블록 내 경계에 해당하는 영역은 현재 블록의 주변 블록의 경계에 인접한 현재 블록 내의 영역일 수 있다. 여기서, 현재 블록 내 경계에 해당하는 영역은 현재 블록에서 상단 경계 영역, 좌측 경계 영역, 하단 경계 영역, 우측 경계 영역, 우측 상단 코너 영역, 우측 하단 코너 영역, 좌측 상단 코너 영역 및 좌측 하단 코너 영역 중 적어도 하나 이상을 포함할 수 있다. 또한, 현재 블록 내 경계에 해당하는 영역은 현재 블록의 예측 블록 내에서 일부분에 해당하는 영역일 수 있다.
상기 중첩된 블록 움직임 보상은 현재 블록 내 경계에 해당하는 예측 블록 영역과 현재 블록에 인접하게 부호화/복호화된 블록의 움직임 정보를 이용하여 생성된 예측 블록의 가중합을 계산하여 움직임 보상을 수행하는 것을 의미할 수 있다.
가중합은 현재 블록을 다수의 하위 블록(sub-block)으로 분할한 후 하위 블록 단위로 수행될 수 있다. 즉, 하위 블록 단위로 현재 블록에 인접하게 부호화/복호화된 블록의 움직임 정보를 이용하여 움직임 보상을 수행할 수 있다. 이때, 하위 블록은 서브 블록을 의미할 수도 있다.
또한, 가중합 계산에는 현재 블록의 움직임 정보를 이용해서 하위 블록 단위로 생성된 제1 예측 블록과 현재 블록에 공간적으로 인접한 주변 하위 블록의 움직임 정보를 이용해서 생성된 제2 예측 블록이 사용될 수 있다. 이때, 움직임 정보를 이용한다는 것은 움직임 정보를 유도한다는 의미일 수 있다. 그리고, 제1 예측 블록은 현재 블록 내 부호화/복호화 대상 하위 블록의 움직임 정보를 이용하여 생성된 예측 블록을 의미할 수 있다. 또한, 여기서 제2 예측 블록은 현재 블록 내에서 부호화/복호화 대상 하위 블록에 공간적으로 인접한 주변 하위 블록의 움직임 정보를 이용하여 생성된 예측 블록을 의미할 수도 있다.
제1 예측 블록과 제2 예측 블록의 가중합을 이용해서 최종 예측 블록이 생성될 수 있다. 즉, 중첩된 블록 움직임 보상은 현재 블록의 움직임 정보 외에 다른 블록의 움직임 정보를 함께 사용하여 최종 예측 블록을 생성할 수 있다.
또한, 향상된 움직임 벡터 예측(Advanced Motion Vector Prediction; AMVP), 머지 모드(merge mode), 어파인 움직임 보상 모드, 복호화기 움직임 벡터 유도 모드, 적응적 움직임 벡터 해상도 모드, 지역 조명 보상 모드, 양방향 광학 흐름 모드 중 적어도 하나 이상에 해당될 경우에 현재 예측 블록을 하위 블록으로 분할한 후 각 하위 블록 별로 중첩된 블록 움직임 보상을 수행할 수 있다.
여기서, 머지 모드인 경우, 향상된 시간적 움직임 벡터 예측(ATMVP; Advanced Temporal Motion Vector Predictor) 후보 및 공간적-시간적 움직임 벡터 예측(STMVP; Spatial-Temporal Motion Vector Predictor) 후보 중 적어도 하나 이상에 중첩된 블록 움직임 보상을 수행할 수 있다.
중첩된 블록 움직임 보상(Overlapped Block Motion Compensation)과 관련한 구체적인 설명은 도 13 내지 도 24에 기초하여 후술하도록 한다.
다음으로, 움직임 보상에 관한 정보를 엔트로피 부호화/복호화하는 과정에 대해 상세히 살펴보기로 한다(S505, S601, S704, S801).
부호화 장치는 움직임 보상에 관한 정보를 비트스트림을 통해 엔트로피 부호화하고, 복호화 장치는 비트스트림에 포함된 움직임 보상에 관한 정보를 엔트로피 복호화할 수 있다. 여기서, 엔트로피 부호화/복호화되는 움직임 보상에 관한 정보는, 화면 간 예측 지시자(Inter Prediction Indicator)(inter_pred_idc), 참조 영상 색인(ref_idx_l0, ref_idx_l1, ref_idx_l2, ref_idx_l3), 움직임 벡터 후보 색인(mvp_l0_idx, mvp_l1_idx, mvp_l2_idx, mvp_l3_idx), 움직임 벡터 차분(motion vector difference), 스킵 모드 사용 여부 정보(cu_skip_flag), 머지 모드 사용 여부 정보(merge_flag), 머지 색인 정보(merge_index), 가중치 값(wf_l0, wf_l1, wf_l2, wf_l3) 및 오프셋 값(offset_l0, offset_l1, offset_l2, offset_l3) 중 적어도 하나를 포함할 수 있다.
화면 간 예측 지시자는 현재 블록의 화면 간 예측으로 부호화/복호화되는 경우, 현재 블록의 화면 간 예측 방향 또는 예측 방향의 개수 중 적어도 하나를 의미할 수 있다. 일 예로, 화면 간 예측 지시자는, 단방향 예측을 지시하거나, 쌍방향 예측, 3개 방향 예측 또는 4개 방향 예측 등 복수 방향 예측을 지시할 수 있다. 화면 간 예측 지시자는 현재 블록이 예측 블록을 생성할 때 사용하는 참조 영상의 수를 의미할 수 있다. 또는, 하나의 참조 영상이 복수개의 방향 예측을 위해 이용될 수도 있다. 이 경우, M개의 참조 영상을 이용하여 N(N>M)개 방향 예측을 수행할 수 있다. 화면 간 예측 지시자는 현재 블록에 대한 화면 간 예측 또는 움직임 보상을 수행할 때 사용되는 예측 블록의 수를 의미할 수도 있다.
참조 영상 지시자는 현재 블록의 예측 방향의 수에 따라, 단방향(PRED_LX), 양방향(PRED_BI), 세방향(PRED_TRI), 네방향(PRED_QUAD) 또는 그 이상의 방향성을 지시할 수 있다.
예측 리스트 활용 플래그(prediction list utilization flag)는 해당 참조 영상 리스트를 이용하여 예측 블록을 생성하는지 여부를 나타낸다.
일 예로, 예측 리스트 활용 플래그가 제1 값인 1을 지시하는 경우, 해당 참조 영상 리스트를 이용하여 예측 블록을 생성할 수 있는 것을 나타내고, 제2 값인 0을 지시하는 경우, 해당 참조 영상 리스트를 이용하여 예측 블록을 생성하지 않는 것을 나타낼 수 있다. 여기서, 예측 리스트 활용 플래그의 제1 값은 0으로, 제2 값은 1로 설정될 수도 있다.
즉, 예측 리스트 활용 플래그가 제1 값을 지시할 때, 해당 참조 영상 리스트에 상응하는 움직임 정보를 이용하여 현재 블록의 예측 블록을 생성할 수 있다.
참조 영상 색인은 각 참조 영상 리스트에서 현재 블록이 참조하는 참조 영상을 특정할 수 있다. 각 참조 영상 리스트에 대해 1개 이상의 참조 영상 색인이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 1개 이상의 참조 영상 색인을 이용하여 움직임 보상을 수행할 수 있다.
움직임 벡터 후보 색인은 참조 영상 리스트 별 또는 참조 영상 색인 별로 생성된 움직임 벡터 후보 리스트에서 현재 블록에 대한 움직임 벡터 후보를 나타낸다. 움직임 벡터 후보 리스트별로 적어도 1개 이상의 움직임 벡터 후보 색인이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 적어도 1개 이상의 움직임 벡터 후보 색인을 이용하여 움직임 보상을 수행할 수 있다.
움직임 벡터 차분은 움직임 벡터와 예측된 움직임 벡터 사이의 차분값을 나타낸다. 현재 블록에 대해 참조 영상 리스트 또는 참조 영상 색인 별로 생성된 움직임 벡터 후보 리스트에 대해 1개 이상의 움직임 벡터 차분이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 1개 이상의 움직임 벡터 차분을 이용하여, 움직임 보상을 수행할 수 있다.
스킵 모드 사용 여부 정보(cu_skip_flag)는, 제 1의 값인 1을 가질 경우 스킵 모드 사용을 지시할 수 있으며, 제 2의 값인 0을 가질 경우 스킵 모드 사용을 지시하지 않을 수 있다. 스킵 모드 사용 여부 정보를 기반으로 스킵 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.
머지 모드 사용 여부 정보(merge_flag)는, 제 1의 값인 1을 가질 경우 머지 모드 사용을 지시할 수 있으며, 제 2의 값인 0을 가질 경우 머지 모드 사용을 지시하지 않을 수 있다. 머지 모드 사용 여부 정보를 기반으로 머지 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.
머지 색인 정보(merge_index)는 머지 후보 리스트(merge candidate list) 내 머지 후보(merge candidate)를 지시하는 정보를 의미할 수 있다.
또한, 머지 색인 정보는 머지 색인(merge index)에 대한 정보를 의미할 수 있다.
또한, 머지 색인 정보는 공간적/시간적으로 현재 블록과 인접하게 복원된 블록들 중 머지 후보를 유도한 블록을 지시할 수 있다.
또한, 머지 색인 정보는 머지 후보가 가지는 움직임 정보 중 적어도 하나 이상을 지시할 수 있다. 예를 들어, 머지 색인 정보는 제 1의 값인 0을 가질 경우 머지 후보 리스트 내 첫번째 머지 후보를 지시할 수 있으며, 제 2의 값인 1을 가질 경우 머지 후보 리스트 내 두번째 머지 후보를 지시할 수 있으며, 제 3의 값인 2를 가질 경우 머지 후보 리스트 내 세번째 머지 후보를 지시할 수 있다. 마찬가지로 제 4 내지 제N 값을 가질 경우 머지 후보 리스트 내 순서에 따라 값에 해당하는 머지 후보를 지시할 수 있다. 여기서 N은 0을 포함한 양의 정수를 의미할 수 있다.
머지 모드 색인 정보를 기반으로 머지 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.
현재 블록에 대한 움직임 보상 시 2개 이상의 예측 블록이 생성된 경우, 각 예측 블록에 대한 가중합(weighted sum)을 통해 현재 블록에 대한 최종 예측 블록이 생성될 수 있다. 가중합 연산시, 각 예측 블록에 대해 가중치 및 오프셋 중 적어도 하나 이상이 적용될 수 있다. 가중치(weighting factor) 또는 오프셋(offset) 등과 같이 가중합 연산에 이용되는 가중합 인자는, 참조 영상 리스트, 참조 영상, 움직임 벡터 후보 색인, 움직임 벡터 차분, 움직임 벡터, 스킵 모드 사용 여부 정보, 머지 모드 사용 여부 정보, 머지 색인 정보 중 적어도 하나의 개수만큼 또는 적어도 하나의 개수 이상 엔트로피 부호화/복호화될 수 있다. 또한, 각 예측 블록의 가중합 인자는 화면 간 예측 지시자에 기반하여 엔트로피 부호화/복호화될 수 있다. 여기서, 가중합 인자는 가중치 및 오프셋 중 적어도 하나를 포함할 수 있다.
움직임 보상에 관한 정보는, 블록 단위로 엔트로피 부호화/복호화될 수도 있고, 상위 레벨에서 엔트로피 부호화/복호화 될수도 있다. 일 예로, 움직임 보상에 관한 정보는, CTU, CU 또는 PU 등 블록 단위로 엔트로피 부호화/복호화되거나, 비디오 파라미터 세트(Video Parameter Set), 시퀀스 파라미터 세트(Sequence Parameter Set), 픽처 파라미터 세트(Picture Parameter Set), 적응 파라미터 세트(Adaptation Parameter Set) 또는 슬라이스 헤더(Slice Header) 등 상위 레벨에서 엔트로피 부호화/복호화될 수 있다.
움직임 보상에 관한 정보는 움직임 보상에 관한 정보와 움직임 보상에 관한 정보 예측값 사이의 차분값을 나타내는 움직임 보상에 관한 정보 차분값을 기초로 엔트로피 부호화/복호화될 수도 있다.
현재 블록의 움직임 보상에 관한 정보를 엔트로피 부호화/복호화하는 대신, 현재 블록 주변에 부호화/복호화된 블록의 움직임 보상에 관한 정보를 현재 블록의 움직임 보상에 관한 정보로 이용하는 것도 가능하다.
또한, 부호화 파라미터 중 적어도 하나 이상에 기반하여 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 유도할 수 있다.
또한, 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 부호화 파라미터 중 적어도 하나 이상에 기반하여 비트스트림으로부터 엔트로피 복호화할 수 있다. 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 부호화 파라미터 중 적어도 하나 이상에 기반하여 비트스트림에 엔트로피 부호화할 수 있다.
움직임 보상에 관한 정보는 움직임 벡터, 움직임 벡터 후보, 움직임 벡터 후보 색인, 움직임 벡터 차분값, 움직임 벡터 예측값, 스킵 모드 사용 여부 정보(skip_flag), 머지 모드 사용 여부 정보(merge_flag), 머지 색인 정보(merge_index), 움직임 벡터 해상도(motion vector resolution) 정보, 중첩된 블록 움직임 보상(overlapped block motion compensation) 정보, 지역 조명 보상(local illumination compensation) 정보, 어파인 움직임 보상(affine motion compensation) 정보, 복호화기 움직임 벡터 유도(decoder-side motion vector derivation) 정보, 양방향 광학 흐름(bi-directional optical flow) 정보 중 적어도 하나를 더 포함할 수 있다. 여기서, 복호화기 움직임 벡터 유도는 패턴 정합 움직임 벡터 유도(pattern matched motion vector derivation)을 의미할 수 있다.
움직임 벡터 해상도 정보는 움직임 벡터 및 움직임 벡터 차분값 중 적어도 하나 이상에 대해 특정 해상도를 사용하는지 여부를 나타내는 정보일 수 있다. 여기서, 해상도는 정밀도(precision)를 의미할 수 있다. 또한, 특정 해상도는 16-화소(16-pel) 단위, 8-화소(8-pel) 단위, 4-화소(4-pel) 단위, 정수-화소(integer-pel) 단위, 1/2-화소(1/2-pel) 단위, 1/4-화소(1/4-pel) 단위, 1/8-화소(1/8-pel) 단위, 1/16-화소(1/16-pel) 단위, 1/32-화소(1/32-pel) 단위, 1/64-화소(1/64-pel) 단위 중 적어도 하나로 설정될 수 있다.
중첩된 블록 움직임 보상 정보는 현재 블록의 움직임 보상 시 현재 블록 블록에 공간적으로 인접한 주변 블록의 움직임 벡터를 추가로 사용하여 현재 블록의 예측 블록의 가중합을 계산하는지 여부를 나타내는 정보일 수 있다.
지역 조명 보상 정보는 현재 블록의 예측 블록 생성 시 가중치 값 및 오프셋 값 중 적어도 하나를 적용하는지 여부를 나타내는 정보일 수 있다. 여기서, 가중치 값 및 오프셋 값 중 적어도 하나는 참조 블록을 기반으로 산출된 값일 수 있다.
어파인 움직임 보상 정보는 현재 블록에 대한 움직임 보상 시 어파인 움직임 모델(affine motion model)을 사용하는지 여부를 나타내는 정보일 수 있다. 여기서, 어파인 움직임 모델은 복수의 파라미터를 이용하여 하나의 블록을 다수의 하위 블록으로 분할하고, 대표 움직임 벡터들을 이용하여 분할된 하위 블록의 움직임 벡터를 산출하는 모델일 수 있다.
복호화기 움직임 벡터 유도 정보는 움직임 보상에 필요한 움직임 벡터를 복호화기에서 유도하여 사용하는지 여부를 나타내는 정보일 수 있다. 복호화기 움직임 벡터 유도 정보에 기초하여 움직임 벡터에 관한 정보는 엔트로피 부호화/복호화되지 않을 수 있다. 그리고, 복호화기 움직임 벡터 유도 정보가 복호화기에서 움직임 벡터를 유도하여 사용하는 것을 나타내는 경우, 머지 모드에 관한 정보가 엔트로피 부호화/복호화될 수 있다. 즉, 복호화기 움직임 벡터 유도 정보는 복호화기에서 머지 모드를 이용 여부를 나타낼 수 있다.
양방향 광학 흐름 정보는 픽셀 단위 혹은 하위 블록 단위로 움직임 벡터를 교정하여 움직임 보상을 수행하는지 여부에 나타내는 정보일 수 있다. 양방향 광학 흐름 정보에 기초하여 픽셀 단위 혹은 하위 블록 단위의 움직임 벡터는 엔트로피 부호화/복호화되지 않을 수 있다. 여기서, 움직임 벡터 교정은 블록 단위의 움직임 벡터를 픽셀 단위 혹은 하위 블록 단위로 움직임 벡터 값을 변경하는 것일 수 있다.
현재 블록은 움직임 보상에 관한 정보 중 적어도 하나를 이용하여 움직임 보상을 수행하고, 움직임 보상에 관한 정보 중 적어도 하나를 엔트로피 부호화/복호화할 수 있다.
움직임 보상과 관련한 정보를 엔트로피 부호화/복호화하는 경우, 절삭된 라이스(Truncated Rice) 이진화 방법, K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법, 제한된 K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법, 고정 길이(Fixed-length) 이진화 방법, 단항(Unary) 이진화 방법 또는 절삭된 단항(Truncated Unary) 이진화 방법 등의 이진화(Binarization) 방법이 이용될 수 있다.
움직임 보상에 관한 정보를 엔트로피 부호화/복호화할 때, 현재 블록 주변의 주변 블록의 움직임 보상에 관한 정보 또는 주변 블록의 영역 정보, 이전에 부호화/복호화된 움직임 보상에 관한 정보 또는 이전에 부호화/복호화된 영역 정보, 현재 블록의 깊이에 관한 정보 및 현재 블록의 크기에 관한 정보 중 적어도 하나 이상을 이용하여 문맥 모델(context model)을 결정할 수 있다.
또한, 움직임 보상에 관한 정보를 엔트로피 부호화/복호화할 때, 주변 블록의 움직임 보상에 관한 정보, 이전에 부호화/복호화된 움직임 보상에 관한 정보, 현재 블록의 깊이에 관한 정보 및 현재 블록의 크기에 관한 정보 중 적어도 하나 이상을 현재 블록의 움직임 보상에 관한 정보에 대한 예측값으로 사용하여 엔트로피 부호화/복호화를 수행할 수도 있다.
이하에서는, 중첩된 블록 움직임 보상(Overlapped Block Motion Compensation)과 관련한 구체적인 설명을 도 13 내지 도 24에 참고하여 설명하도록 한다.
도 13은 하위 블록 단위로 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 13을 참고하면, 빗금 친 블록은 중첩된 블록 움직임 보상이 적용되는 영역으로 현재 블록 내 경계에 해당하는 하위 블록 혹은 현재 블록 내 하위 블록일 수 있다. 또한, 굵은 선으로 표시된 블록은 현재 블록일 수 있다.
또한, 화살표는 인접한 주변 하위 블록의 움직임 정보를 현재 하위 블록의 움직임 보상에 사용한다는 의미일 수 있다. 여기서, 화살표 꼬리에 해당하는 위치는 1) 현재 블록에 인접한 주변 하위 블록 혹은 2) 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록을 의미할 수 있다. 또한, 화살표의 머리에 해당하는 위치는 현재 블록 내 현재 하위 블록을 의미할 수 있다.
빗금 친 블록에서는 제1 예측 블록과 제2 예측 블록의 가중합이 계산될 수 있다. 제1 예측 블록을 생성할 때 사용되는 움직임 정보는 현재 블록 내 현재 하위 블록에 대한 움직임 정보가 사용될 수 있다. 제2 예측 블록을 생성할 때 사용되는 움직임 정보는 현재 블록에 인접한 주변 하위 블록의 움직임 정보 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 정보 중 적어도 하나 이상이 사용될 수 있다.
또한, 부호화 효율 향상을 위하여, 제2 예측 블록 생성에 사용되는 움직임 정보는 현재 블록 내 현재 하위 블록의 위치를 기준으로 상단 블록, 좌측 블록, 하단 블록, 우측 블록, 우상단 블록, 우하단 블록, 좌상단 블록 및 좌하단 블록 중 적어도 하나 이상의 블록의 움직임 정보일 수 있다. 현재 하위 블록의 위치에 따라 이용 가능한 주변 하위 블록의 위치가 결정될 수 있다. 예를 들어, 현재 하위 블록이 상단 경계에 위치한 경우, 현재 하위 블록의 상단, 우상단 및 좌상단에 위치한 적어도 하나의 주변 하위 블록이 이용될 수 있다. 현재 하위 블록이 좌측 경계에 위치한 경우, 현재 하위 블록의 좌측, 좌상단 및 좌하단에 위치한 적어도 하나의 주변 하위 블록이 이용될 수 있다.
여기서, 현재 하위 블록의 위치를 기준으로 상단 블록, 좌측 블록, 하단 블록, 우측 블록, 우상단 블록, 우하단 블록, 좌상단 블록 및 좌하단 블록은 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 우상단 주변 하위 블록, 우하단 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록으로 명명될 수 있다.
한편, 계산 복잡도 감소를 위하여, 현재 블록에 인접한 주변 하위 블록 또는 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 벡터 크기에 따라 제2 예측 블록 생성에 사용하는 움직임 정보가 달라질 수 있다.
일 예로, 주변 하위 블록이 양방향으로 예측된 경우, L0와 L1 방향의 움직임 벡터들의 크기를 비교하여 크기가 큰 한쪽 방향의 움직임 정보만을 이용하여 제2 예측 블록을 생성할 수 있다.
다른 예로, 주변 하위 블록의 L0 및 L1 방향 움직임 벡터 중 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 큰 움직임 벡터만을 사용하여 제2 예측 블록을 생성할 수 있다. 여기서, 기 정의된 값은 0을 포함한 양의 정수일 수 있으며, 부호화기에서 복호화기로 시그널링되는 정보에 의하여 결정되거나 부호화기 및 복호화기에 동일하게 설정된 값일 수 있다.
또한, 계산 복잡도 감소를 위하여, 현재 하위 블록의 움직임 벡터 크기 및 방향에 따라 제2 예측 블록 생성에 사용하는 움직임 정보가 달라질 수 있다.
일 예로, 현재 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 크기를 비교한 후 x 성분의 절대값이 클 경우, 좌측 블록, 우측 블록의 움직임 정보 중 적어도 하나 이상을 이용하여 제2 예측 블록을 생성할 수 있다.
다른 예로, 현재 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 크기를 비교한 후 y 성분의 절대값이 클 경우, 상단 블록, 하단 블록의 움직임 정보 중 적어도 하나 이상을 이용하여 제2 예측 블록을 생성할 수 있다.
또 다른 예로, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 크거나 같을 경우, 좌측 블록, 우측 블록의 움직임 정보 중 적어도 하나 이상을 이용하여 제2 예측 블록을 생성할 수 있다. 여기서, 기 정의된 값은 0을 포함한 양의 정수일 수 있으며, 부호화기에서 복호화기로 시그널링되는 정보에 의하여 결정되거나 부호화기 및 복호화기에 동일하게 설정된 값일 수 있다.
또 다른 예로, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 크거나 같을 경우, 상단 블록, 하단 블록의 움직임 정보 중 적어도 하나 이상을 이용하여 제2 예측 블록을 생성할 수 있다. 여기서, 기 정의된 값은 0을 포함한 양의 정수일 수 있으며, 부호화기에서 복호화기로 시그널링되는 정보에 의하여 결정되거나 부호화기 및 복호화기에 동일하게 설정된 값일 수 있다.
한편, 하위 블록의 크기는 NxM을 가질 수 있고, 여기서 N과 M은 양의 정수일 수 있다. N과 M은 서로 동일하거나 상이할 수 있다. 예를 들어, 하위 블록 크기는 4x4 혹은 8x8일 수 있고, 하위 블록 크기 정보는 시퀀스 단위에서 엔트로피 부호화/복호화될 수 있다.
또한, 하위 블록의 크기는 현재 블록의 크기에 따라 결정될 수 있다. 예를 들어, 현재 블록의 크기가 K개의 샘플 이하인 경우, 4x4 하위 블록을 사용하고, 현재 블록의 크기가 K개의 샘플 보다 큰 경우, 8x8 하위 블록을 사용할 수 있다. 여기서 K는 양의 정수이며, 예를 들어 256일 수 있다.
여기서, 하위 블록의 크기에 대한 정보는 시퀀스 단위, 픽처 단위, 슬라이스 단위, 타일 단위, CTU 단위, CU 단위, PU 단위 중 적어도 하나 이상에서 엔트로피 부호화/복호화되어 사용될 수 있다. 또한, 하위 블록의 크기는 부호화기 및 복호화기에서 미리 정의된 크기를 사용할 수 있다.
하위 블록은 정사각형 형태 및 직사각형 형태 중 적어도 하나 이상일 수 있다. 예를 들어, 현재 블록이 정사각형 형태 혹은 직사각형 형태일 경우, 하위 블록은 정사각형 형태일 수 있다.
예를 들어 현재 블록이 직사각형 형태일 경우, 하위 블록은 직사각형 형태일 수 있다.
여기서, 하위 블록의 형태에 대한 정보는 시퀀스 단위, 픽처 단위, 슬라이스 단위, 타일 단위, CTU 단위, CU 단위, PU 단위 중 적어도 하나 이상에서 엔트로피 부호화/복호화되어 사용될 수 있다. 또한, 하위 블록의 형태는 부호화기 및 복호화기에서 미리 정의된 형태를 사용할 수 있다.
도 14는 대응 위치 블록의 하위 블록의 움직임 정보를 이용하여 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다. 부호화 효율 향상을 위하여, 대응 위치 영상 혹은 참조 영상 내에서 현재 블록과 공간적으로 동일한 위치에 대응되는 대응 위치 하위 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.
도 14를 참고하면, 대응 위치 블록 내에서 현재 블록과 시간적으로 인접한 하위 블록의 움직임 정보를 현재 하위 블록의 중첩된 블록 움직임 보상에 사용할 수 있다. 여기서, 화살표 꼬리에 해당하는 위치는 대응 위치 블록 내 하위 블록을 의미할 수 있다. 또한, 화살표의 머리에 해당하는 위치는 현재 블록 내 현재 하위 블록을 의미할 수 있다.
또한, 상기와 같이 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보, 현재 블록에 공간적으로 인접한 주변 하위 블록의 움직임 정보, 현재 블록 내에서 현재 하위 블록에 공간적으로 인접한 주변 하위 블록 중 적어도 하나 이상의 움직임 정보를 제2 예측 블록 생성에 사용할 수 있다.
도 15는 참조 블록의 경계 영역에 인접한 블록의 움직임 정보를 이용하여 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다. 부호화 효율 향상을 위하여, 현재 블록의 움직임 벡터 및 참조 영상 색인 중 적어도 하나 이상을 이용하여 참조 영상 내 참조 블록을 식별하고, 식별된 참조 블록의 경계에 인접한 이웃 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다. 여기서, 이웃 블록은 참조 블록의 하단 경계 영역 또는 우측 경계 영역에 위치하는 하위 블록에 인접하게 부호화/복호화된 블록을 포함할 수 있다.
도 15를 참고하면, 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보를 현재 하위 블록의 중첩된 블록 움직임 보상에 사용할 수 있다.
또한, 상기와 같이 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보, 현재 블록에 공간적으로 인접한 주변 하위 블록의 움직임 정보, 현재 블록 내에서 현재 하위 블록에 공간적으로 인접한 주변 하위 블록 중 적어도 하나 이상의 움직임 정보를 제2 예측 블록 생성에 사용할 수 있다.
한편, 부호화 효율 향상을 위하여, 머지 후보 리스트에 포함된 머지 후보들 중 적어도 하나 이상의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다. 여기서, 머지 후보 리스트는 화면 간 예측 모드 중 머지 모드에서 이용되는 리스트일 수 있다.
일 예로, 머지 후보 리스트 내 공간적 머지 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.
다른 예로, 머지 후보 리스트 내 시간적 머지 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.
또 다른 예로, 머지 후보 리스트 내 조합된 머지 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.
또는, 부호화 효율 향상을 위하여, 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보들 중 적어도 하나 이상의 움직임 벡터를 제2 예측 블록 생성에 사용되는 움직임 벡터로 사용할 수 있다. 여기서, 움직임 벡터 후보 리스트는 화면 간 예측 모드 중 AMVP 모드에서 이용되는 리스트일 수 있다.
일 예로, 움직임 벡터 후보 리스트 내 공간적 움직임 벡터 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.
다른 예로, 움직임 벡터 후보 리스트 내 시간적 움직임 벡터 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.
상술한 머지 후보 및 움직임 벡터 후보 중 적어도 하나 이상을 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 때, 중첩된 블록 움직임 보상이 적용되는 영역을 달리할 수 있다. 중첩된 블록 움직임 보상이 적용되는 영역은 블록의 일측 경계에 인접한 영역(즉, 블록 경계에 위치한 하위 블록) 또는 블록 경계에 인접하지 않는 영역(즉, 블록 경계에 위치하지 않은 하위 블록) 등으로 설정될 수 있다.
이 경우, 블록 경계에 인접하지 않은 영역에 중첩된 블록 움직임 보상은 머지 후보 및 움직임 벡터 후보 중 적어도 하나를 제2 예측 블록에 사용되는 움직임 정보로 이용할 수 있다.
일 예로, 공간적 머지 후보 혹은 공간적 움직임 벡터 후보의 움직임 정보를 이용하여, 블록 경계에 인접하지 않은 영역에 중첩된 블록 움직임 보상을 수행할 수 있다.
다른 예로, 시간적 머지 후보 혹은 시간적 움직임 벡터 후보의 움직임 정보를 이용하여, 블록 경계에 인접하지 않은 영역에 중첩된 블록 움직임 보상을 수행할 수 있다.
또 다른 예로, 공간적 머지 후보 혹은 공간적 움직임 벡터 후보의 움직임 정보를 이용하여, 블록의 하단 경계 영역 및 우측 경계 영역에 중첩된 블록 움직임 보상을 수행할 수 있다.
또 다른 예로, 시간적 머지 후보 혹은 시간적 움직임 벡터 후보의 움직임 정보를 이용하여, 블록의 하단 경계 영역 및 우측 경계 영역에 중첩된 블록 움직임 보상을 수행할 수 있다.
또한, 부호화 효율 향상을 위하여, 머지 후보 리스트 혹은 움직임 벡터 후보 리스트 내 특정 위치 블록으로부터 유도된 움직임 정보는 특정 영역에 대한 중첩된 블록 움직임 보상시 사용될 수 있다.
일 예로, 상기 머지 후보 리스트 혹은 움직임 벡터 후보 리스트 내에 현재 블록을 기준으로 우상단 블록에서 유도된 움직임 정보가 포함된 경우, 해당 움직임 정보를 블록의 우측 경계 영역의 중첩된 블록 움직임 보상 시 사용할 수 있다.
다른 예로, 상기 머지 후보 리스트 혹은 움직임 벡터 후보 리스트 내에 현재 블록을 기준으로 좌하단 블록에서 유도된 움직임 정보가 포함된 경우, 해당 움직임 정보를 블록의 하단 경계 영역의 중첩된 블록 움직임 보상 시 사용할 수 있다.
도 16은 하위 블록 그룹 단위로 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다. 계산 복잡도 감소를 위하여, 하위 블록 기반 중첩된 블록 움직임 보상은 여러 하위 블록을 합한 하나 이상의 블록 단위에서 수행될 수 있다. 이때, 여러 하위 블록을 합한 블록 단위는 하위 블록 그룹 단위를 의미할 수 있다.
도 16를 참고하면, 빗금 친 영역에서 각각 구분되는 영역은 하위 블록 그룹을 의미할 수 있다. 또한, 화살표는 인접한 주변 하위 블록의 움직임 정보를 현재 하위 블록 그룹의 움직임 보상에 사용한다는 의미일 수 있다. 여기서, 화살표 꼬리에 해당하는 위치는 1) 현재 블록에 인접한 주변 하위 블록, 2) 현재 블록에 인접한 주변 하위 블록 그룹 혹은 3) 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록을 의미할 수 있다. 또한, 화살표의 머리에 해당하는 위치는 현재 블록 내 현재 하위 블록 그룹을 의미할 수 있다.
하위 블록 그룹에서는 제1 예측 블록과 제2 예측 블록의 가중합이 계산될 수 있다. 제1 예측 블록을 생성할 때 사용되는 움직임 정보는 현재 블록 내 현재 하위 블록 그룹에 대한 움직임 정보가 사용될 수 있다. 여기서, 현재 블록 내 현재 하위 블록 그룹에 대한 움직임 정보는 하위 블록 그룹에 포함되는 하위 블록에 대한 움직임 정보의 평균값, 중간값, 최소값, 최대값, 혹은 가중합 중 어느 하나일 수 있다. 그리고, 제2 예측 블록을 생성할 때 사용되는 움직임 정보는 현재 블록에 인접한 주변 하위 블록의 움직임 정보, 현재 블록에 인접한 주변 하위 블록 그룹의 움직임 정보 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 정보 중 적어도 하나 이상이 사용될 수 있다. 여기서, 현재 블록에 인접한 주변 하위 블록 그룹의 움직임 정보는 주변 하위 블록 그룹에 포함되는 하위 블록에 대한 움직임 정보의 평균값, 중간값, 최소값, 최대값, 혹은 가중합 중 어느 하나일 수 있다.
여기서, 하위 블록 그룹 단위는 현재 블록 내에 적어도 하나 이상 존재할 수 있으며, 하위 블록 그룹 단위의 가로 크기는 현재 하위 블록의 가로 크기와 동일하거나 작을 수 있다. 또한, 하위 블록 그룹 단위의 세로 크기는 현재 하위 블록의 세로 크기와 동일하거나 작을 수 있다. 또한, 현재 블록 내 상단 경계에 위치한 하위 블록들 및 현재 블록 내 좌측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 중첩된 블록 움직임 보상이 수행될 수 있다.
한편, 현재 블록의 하단 경계 및 우측 경계에 인접한 블록은 부호화/복호화되지 않았으므로, 현재 블록 내 하단 경계에 위치한 하위 블록들 및 현재 블록 내 우측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 중첩된 블록 움직임 보상이 수행되지 않을 수 있다. 또는, 현재 블록의 하단 경계 및 우측 경계에 인접한 블록은 부호화/복호화되지 않았으므로, 현재 블록 내 하단 경계에 위치한 하위 블록들 및 현재 블록 내 우측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 현재 하위 블록의 상단 블록, 좌측 블록, 좌상단 블록, 좌하단 블록, 우상단 블록 중 적어도 하나 이상의 움직임 정보를 이용하여 중첩된 블록 움직임 보상을 수행할 수 있다.
또한, 현재 블록이 머지 모드이고, 향상된 시간적 움직임 벡터 예측 후보 및 공간적-시간적 움직임 벡터 예측 후보 중 적어도 하나 이상인 경우, 현재 블록 내 하단 경계에 위치한 하위 블록들 및 현재 블록 내 우측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 중첩된 블록 움직임 보상이 수행되지 않을 수 있다.
또한, 현재 블록이 복호화기 움직임 벡터 유도 모드 또는 어파인 움직임 보상 모드인 경우, 현재 블록 내 하단 경계에 위치한 하위 블록들 및 현재 블록 내 우측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 중첩된 블록 움직임 보상이 수행되지 않을 수 있다.
한편, 중첩된 블록 움직임 보상은 현재 블록의 각 색 성분(color component)들 중 적어도 하나 이상에 대해 수행될 수 있다. 이때, 색 성분은 휘도 성분과 색차 성분 등 중 적어도 하나 이상을 포함할 수 있다.
또한, 중첩된 블록 움직임 보상은 현재 블록의 화면 간 예측 지시자에 따라 수행될 수 있다. 즉, 현재 블록이 단방향 예측, 쌍방향 예측, 3개 방향 예측, 4개 방향 예측 등 중 적어도 하나 이상일 경우에 수행될 수 있다. 또한, 현재 블록이 단방향 예측일 경우에만 수행될 수 있다. 또한, 현재 블록이 쌍방향 예측일 경우에만 수행될 수 있다.
도 17은 중첩된 블록 움직임 보상에 사용되는 움직임 정보의 개수의 일 예를 설명하기 위한 도면이다.
제2 예측 블록 생성에 사용되는 움직임 정보는 최대 K개일 수 있다. 즉, 최대 K개의 제2 예측 블록이 생성되어 중첩된 블록 움직임 보상에 사용될 수 있다. 여기서 K개는 0을 포함한 양의 정수일 수 있으며, 예를 들어, 1, 2, 3, 4일 수 있다.
예를 들어, 현재 블록에 인접한 주변 하위 블록의 움직임 정보를 이용해서 제2 예측 블록들을 생성할 때, 상단 블록과 좌측 블록 중 적어도 하나 이상을 이용하여 최대 2개의 움직임 정보를 유도할 수 있다. 또한, 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 정보를 이용해서 제2 예측 블록들을 생성할 때, 상단 블록, 좌측 블록, 하단 블록, 우측 블록, 좌상단 블록, 우상단 블록, 좌하단 블록 및 우하단 블록 중 적어도 하나 이상을 이용하여 최대 4개의 움직임 정보를 유도할 수 있다. 이때, 움직임 정보를 유도한다는 의미는 유도된 움직임 정보를 이용하여 제2 예측 블록을 생성한 후 중첩된 블록 움직임 보상에 사용하는 것을 의미할 수 있다.
도 17를 참고하면, 부호화 효율 향상을 위하여, 현재 블록 내 상단 경계에 위치한 하위 블록들 및 현재 블록 내 좌측 경계에 위치한 하위 블록들 중 적어도 하나에 해당하는 경우 제2 예측 블록 생성에 사용되는 움직임 정보를 최대 3개까지 유도할 수 있다. 즉, 3-연결성(3-connectivity)를 사용하여 제2 예측 블록 생성에 사용되는 움직임 정보를 유도할 수 있다.
일 예로, 현재 블록 내에서 상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 상단 블록, 주변 좌상단 블록, 주변 우상단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다.
또한, 현재 블록 내에서 좌측 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 좌측 블록, 주변 좌상단 블록, 주변 좌하단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다.
또한, 현재 블록 내에서 좌상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 상단 블록, 주변 좌측 블록, 주변 좌상단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다.
또한, 현재 블록 내에서 우상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 상단 블록, 주변 좌상단 블록, 주변 우상단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다.
또한, 현재 블록 내에서 좌하단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 좌측 블록, 주변 좌상단 블록, 주변 좌하단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다.
한편, 부호화 효율 향상을 위하여, 현재 블록 내 상단 경계에 위치한 하위 블록들 및 현재 블록 내 좌측 경계에 위치한 하위 블록들 중 적어도 하나에 해당하지 않는 경우, 제2 예측 블록 생성에 사용되는 움직임 정보를 최대 8개까지 유도할 수 있다. 즉, 8-연결성(8-connectivity)를 사용하여 제2 예측 블록 생성에 사용되는 움직임 정보를 유도할 수 있다.
예를 들어, 현재 블록 내 현재 하위 블록들은 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록인 주변 상단 블록, 주변 좌측 블록, 주변 하단 블록, 주변 우측 블록, 주변 좌상단 블록, 주변 좌하단 블록, 주변 우하단 블록, 주변 우상단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다.
한편, 대응 위치 영상 내 대응 위치 하위 블록에서도 제2 예측 블록 생성에 사용되는 움직임 정보를 유도할 수 있다. 또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록에서도 제2 예측 블록 생성에 사용되는 움직임 정보를 유도할 수 있다.
또한, 부호화 효율 향상을 위하여, 움직임 벡터의 크기 혹은 방향에 따라 제2 예측 블록 생성에 사용되는 움직임 정보의 개수를 결정할 수 있다.
예를 들어, 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 J 보다 같거나 클 경우, 움직임 정보의 개수로 최대 L개를 사용할 수 있다. 반대로, 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 J보다 작을 경우, 움직임 정보의 개수로 최대 P개를 사용할 수 있다. 이때, J, L, P는 0을 포함한 양의 정수일 수 있다. L과 P는 다른 값인 것이 바람직하나, 같은 값을 가질 수도 있다.
또한, 현재 블록이 머지 모드이며, 향상된 시간적 움직임 벡터 예측 후보 및 공간적-시간적 움직임 벡터 예측 후보 중 적어도 하나 이상인 경우, 제2 예측 블록 생성에 사용되는 움직임 정보는 최대 K개 일 수 있다. 여기서 K개는 0을 포함한 양의 정수일 수 있으며, 예를 들어, 4일 수 있다.
또한, 현재 블록이 복호화기 움직임 벡터 유도 모드인 경우, 제2 예측 블록 생성에 사용되는 움직임 정보는 최대 K개 일 수 있다. 여기서 K개는 0을 포함한 양의 정수일 수 있으며, 예를 들어, 4일 수 있다.
또한, 현재 블록이 어파인 움직임 보상 모드인 경우, 제2 예측 블록 생성에 사용되는 움직임 정보는 최대 K개 일 수 있다. 여기서 K개는 0을 포함한 양의 정수일 수 있으며, 예를 들어, 4일 수 있다.
도 18 및 도 19는 제2 예측 블록 생성에 사용되는 움직임 정보의 유도 순서를 설명하기 위한 도면이다. 제2 예측 블록 생성에 사용되는 움직임 정보는 부호화기 및 복호화기에서 미리 정해진 소정의 순서대로 유도될 수 있다.
도 18를 참고하면, 현재 하위 블록의 위치를 기준으로 상단 블록, 좌측 블록, 하단 블록, 우측 블록 순서대로 움직임 정보가 유도될 수 있다.
도 19를 참고하면, 부호화 효율 향상을 위하여, 현재 하위 블록의 위치에 기반하여 제2 예측 블록 생성에 사용되는 움직임 정보 유도 순서가 결정될 수 있다.
일 예로, 현재 블록 내에서 상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 상단 블록, 2) 주변 좌상단 블록, 3) 주변 우상단 블록 순서대로 움직임 정보를 유도할 수 있다.
또한, 현재 블록 내에서 좌측 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 좌측 블록, 2) 주변 좌상단 블록, 3) 주변 좌하단 블록 순서대로 움직임 정보를 유도할 수 있다.
또한, 현재 블록 내에서 좌상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 상단 블록, 2) 주변 좌측 블록, 3) 주변 좌상단 블록 순서대로 움직임 정보를 유도할 수 있다.
또한, 현재 블록 내에서 우상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 상단 블록, 2) 주변 좌상단 블록, 3) 주변 우상단 블록 순서대로 움직임 정보를 유도할 수 있다.
또한, 현재 블록 내에서 우하단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 좌측 블록, 2) 주변 좌상단 블록, 3) 주변 좌하단 블록 순서대로 움직임 정보를 유도할 수 있다.
도 19의 예와 같이, 현재 블록 내 현재 하위 블록들은 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록인 1) 주변 상단 블록, 2) 주변 좌측 블록, 3) 주변 하단 블록, 4) 주변 우측 블록, 5) 주변 좌상단 블록, 6) 주변 좌하단 블록, 7) 주변 우하단 블록, 8) 주변 우상단 블록 순서대로 움직임 정보를 유도할 수 있다. 한편, 도 19에 도시된 것과 다른 순서로 움직임 정보가 유도될 수도 있다.
한편, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보는 현재 하위 블록에 공간적으로 인접한 주변 하위 블록보다 낮은 순위로 유도될 수 있다. 또한, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보는 현재 하위 블록에 공간적으로 인접한 주변 하위 블록보다 높은 순위로 유도될 수도 있다.
또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보는 현재 하위 블록에 공간적으로 인접한 주변 하위 블록보다 낮은 순위로 유도될 수 있다. 또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보는 현재 하위 블록에 공간적으로 인접한 주변 하위 블록보다 높은 순위로 유도될 수 있다.
현재 블록에 인접한 주변 하위 블록 또는 현재 블록 내의 현재 하위 블록에 인접한 주변 하위 블록의 움직임 정보는 특정 조건을 만족할 경우에만 제2 예측 블록 생성에 사용되는 움직임 정보로 유도할 수 있다.
일 예로, 현재 블록에 인접한 주변 하위 블록 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록 중 적어도 하나 이상이 존재할 경우, 존재하는 주변 하위 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 유도할 수 있다.
다른 예로, 현재 블록에 인접한 주변 하위 블록 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록 중 적어도 하나 이상이 화면 간 예측 모드인 경우, 화면 간 예측 모드인 적어도 하나의 주변 하위 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 유도할 수 있다. 반면, 현재 블록에 인접한 주변 하위 블록 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록 중 적어도 하나 이상이 화면 내 예측 모드인 경우, 해당 블록에 움직임 정보가 존재하지 않으므로, 화면 내 예측 모드인 적어도 하나의 주변 하위 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 유도하지 않을 수 있다.
한편, 현재 블록에 인접한 주변 하위 블록 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록 중 적어도 하나 이상의 화면 간 예측 지시자가 L0 예측, L1 예측, L2 예측, L3 예측, 단방향 예측, 양방향 예측, 3개 방향 예측, 4개 방향 예측 중 적어도 하나 이상을 지시하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도되지 않을 수 있다.
한편, 제2 예측 블록 생성에 사용되는 화면 간 예측 지시자가 제1 예측 블록 생성에 사용되는 화면 간 예측 지시자와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.
또한, 제2 예측 블록 생성에 사용되는 움직임 벡터가 제1 예측 블록 생성에 사용되는 움직임 벡터와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.
또한, 제2 예측 블록 생성에 사용되는 참조 영상 색인이 제1 예측 블록 생성에 사용되는 참조 영상 색인과 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.
또한, 제2 예측 블록 생성에 사용되는 움직임 벡터 및 참조 영상 색인 중 적어도 하나가 제1 예측 블록 생성에 사용되는 움직임 벡터 및 참조 영상 색인 중 적어도 하나와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.
또한, 복잡도 감소를 위하여, 제1 예측 블록 생성에 사용되는 화면 간 예측 지시자가 단방향 예측을 지시하는 경우, 제2 예측 블록 생성에 사용되는 L0 및 L1 예측 방향에 대한 움직임 벡터 및 참조 영상 색인 중 적어도 하나가 제1 예측 블록 생성에 사용되는 움직임 벡터 및 참조 영상 색인 중 적어도 하나와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.
또한, 복잡도 감소를 위하여, 제1 예측 블록 생성에 사용되는 화면 간 예측 지시자를 기반으로, 화면 간 예측 지시자가 양방향 예측을 지시하는 경우, 제2 예측 블록 생성에 사용되는 L0 및 L1 예측 방향에 대한 움직임 벡터 및 참조 영상 색인의 조합 중 적어도 하나가 제1 예측 블록 생성에 사용되는 L0 및 L1 예측 방향에 대한 움직임 벡터 및 참조 영상 색인의 조합 중 적어도 하나와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.
또한, 복잡도 감소를 위하여, 제2 예측 블록 생성에 사용되는 움직임 정보 중 적어도 하나 이상이 제1 예측 블록 생성에 사용되는 움직임 정보 중 적어도 하나 이상과 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.
도 20은 현재 하위 블록의 참조 영상의 POC 및 주변 하위 블록의 참조 영상의 POC를 비교하여 제2 예측 블록 생성에 사용가능한 움직임 정보인지 여부를 결정하는 일 예를 설명하기 위한 도면이다.
도 20을 참고하면, 복잡도 감소를 위하여, 현재 하위 블록의 참조 영상의 POC 및 주변 하위 블록의 참조 영상의 POC가 동일한 경우, 현재 하위 블록의 움직임 정보는 현재 하위 블록의 제2 예측 블록 생성에 사용될 수 있다.
한편, 복잡도 감소를 위하여, 도 20의 예와 같이, 제2 예측 블록 생성에 사용되는 참조 영상의 POC가 제1 예측 블록 생성에 사용되는 참조 영상의 POC와 동일하지 않은 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.
구체적으로, 제2 예측 블록 생성에 사용되는 참조 영상의 POC가 제1 예측 블록 생성에 사용되는 참조 영상의 POC와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 벡터를 제1 예측 블록 생성에 사용되는 참조 영상 혹은 참조 영상의 POC를 기반으로 움직임 벡터 스케일링을 하여, 제2 예측 블록 생성에 사용되는 움직임 벡터로 유도할 수 있다.
도 21은 제1 예측 블록과 제2 예측 블록의 가중합 계산시 가중치 적용의 일 실시 예를 설명하기 위한 도면이다.
제1 예측 블록과 제2 예측 블록의 가중합 계산 시에 블록 내 샘플 위치에 따라 행 별 혹은 열 별로 서로 다른 가중치가 사용될 수 있다. 그리고, 제1 예측 블록과 제2 예측 블록 내에서 서로 동일한 위치에 해당하는 샘플들 간의 가중합이 계산될 수 있다. 이때, 최종 예측 블록의 생성을 위한 가중합 계산 시, 가중치 및 오프셋 중 적어도 하나 이상을 이용할 수 있다.
여기서, 가중치는 0보다 작은 음수 및 0보다 큰 양수일 수 있다. 그리고, 오프셋은 0, 0보다 작은 음수 및 0보다 큰 양수일 수 있다.
한편, 제1 예측 블록과 제2 예측 블록의 가중합 계산 시에 각 예측 블록 별로 모든 샘플 위치에서 동일한 가중치가 사용될 수 있다.
도 21을 참고하면, 제1 예측 블록에는 각 행 별 혹은 각 열 별로 {3/4, 7/8, 15/16, 31/32} 등의 가중치가 사용될 수 있고 제2 예측 블록에는 각 행 별 혹은 열 별로 {1/4, 1/8, 1/16, 1/32} 등의 가중치가 사용될 수 있다. 이때, 상기 가중치는 동일한 행에 속하는 샘플 위치 혹은 동일한 열에 속하는 샘플 위치에서 서로 동일한 가중치를 사용할 수 있다.
각 가중치는 현재 하위 블록의 경계에 인접할수록 큰 값의 가중치가 사용될 수 있다. 또한, 각 가중치는 하위 블록 내 모든 샘플에 적용될 수 있다.
도 21의 (a), (b), (c) 및 (d)는 주변 상단 블록의 움직임 정보, 주변 하단 블록의 움직임 정보, 주변 좌측 블록의 움직임 정보 및 주변 우측 블록의 움직임 정보를 이용하여 제2 예측 블록을 생성한 예시를 각각 나타낼 수 있다. 여기서, 상단 제2 예측 블록, 하단 제2 예측 블록, 좌측 제2 예측 블록 및 우측 제2 예측 블록은 주변 상단 블록의 움직임 정보, 주변 하단 블록의 움직임 정보, 주변 좌측 블록의 움직임 정보 및 주변 우측 블록의 움직임 정보에 기초하여 생성된 제2 예측 블록을 의미할 수 있다.
도 22는 제1 예측 블록과 제2 예측 블록의 가중합 계산시 블록 내 샘플 위치에 따라 서로 다른 가중치 적용되는 실시 예를 설명하기 위한 도면이다. 부호화 효율 향상을 위하여, 제1 예측 블록과 제2 예측 블록의 가중합 계산 시에 블록 내 샘플 위치에 따라 서로 다른 가중치가 사용될 수 있다. 즉, 현재 하위 블록에 공간적으로 인접한 블록들의 위치에 따라 서로 다른 가중치로 가중합을 계산할 수 있다. 또한, 제1 예측 블록과 제2 예측 블록 내에서 서로 동일한 위치에 해당하는 샘플들 간의 가중합이 계산될 수 있다.
도 22를 참고하면, 제1 예측 블록에는 각 샘플 위치 별로 {1/2, 3/4, 7/8, 15/16, 31/32, 63/64, 127/128, 255/256, 511/512, 1023/1024} 등의 가중치가 사용될 수 있고, 제2 예측 블록에는 각 샘플 위치 별로 {1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024} 등의 가중치가 사용될 수 있다. 여기서, 상단 제2 예측 블록, 좌측 제2 예측 블록, 하단 제2 예측 블록 및 우측 제2 예측 블록 중 적어도 하나 이상에서 사용되는 가중치 값은 좌상단 제2 예측 블록, 좌하단 제2 예측 블록, 우하단 제2 예측 블록, 우상단 제2 예측 블록 중 적어도 하나 이상에서 사용되는 가중치 값보다 클 수 있다.
한편, 상단 제2 예측 블록, 좌측 제2 예측 블록, 하단 제2 예측 블록, 우측 제2 예측 블록 중 적어도 하나 이상에서 사용되는 가중치 값은 좌상단 제2 예측 블록, 좌하단 제2 예측 블록, 우하단 제2 예측 블록, 우상단 제2 예측 블록 중 적어도 하나 이상에서 사용되는 가중치 값과 동일할 수 있다.
또한, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록에 대한 가중치는 모든 샘플 위치에서 동일할 수 있다.
또한, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록의 가중치는 제1 예측 블록의 가중치와 동일할 수 있다.
또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록에 대한 가중치는 모든 샘플 위치에서 동일할 수 있다.
또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록의 가중치는 제1 예측 블록의 가중치와 동일할 수 있다.
한편, 계산 복잡도 감소를 위하여, 상기 가중치는 현재 블록에 인접한 주변 하위 블록 또는 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 벡터 크기에 따라 가중치 값이 달라질 수 있다.
예를 들어, 주변 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 클 경우, 현재 하위 블록의 가중치로 {1/2, 3/4, 7/8, 15/16}을 사용할 수 있다. 반면, 주변 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 작을 경우, 현재 하위 블록의 가중치로 {7/8, 15/16, 31/32, 63/64}을 사용할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.
또한, 계산 복잡도 감소를 위하여, 상기 가중치는 현재 하위 블록의 움직임 벡터 크기 혹은 움직임 벡터 방향에 따라 가중치 값이 달라질 수 있다.
예를 들어, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 같거나 클 경우, 좌측 및 우측 주변 하위 블록의 가중치로 {1/2, 3/4, 7/8, 15/16}을 사용할 수 있다. 반면, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 작을 경우, 좌측 및 우측 주변 하위 블록의 가중치로 {7/8, 15/16, 31/32, 63/64}을 사용할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.
예를 들어, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 같거나 클 경우, 상단 및 하단 주변 하위 블록의 가중치로 {1/2, 3/4, 7/8, 15/16}을 사용할 수 있다. 반면, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 작을 경우, 상단 및 하단 주변 하위 블록의 가중치로 {7/8, 15/16, 31/32, 63/64}을 사용할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.
예를 들어, 현재 하위 블록의 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 클 경우, 현재 하위 블록의 가중치로 {1/2, 3/4, 7/8, 15/16}을 사용할 수 있다. 반면, 현재 하위 블록의 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 작을 경우, 현재 하위 블록의 가중치로 {7/8, 15/16, 31/32, 63/64}을 사용할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.
한편, 가중합 계산은 하위 블록 내 모든 샘플 위치에서 수행되지 않고, 각 블록 경계에 인접한 K개의 행(row)/열(column)에 위치한 샘플에 수행될 수 있다. 이때, K는 0을 포함한 양의 정수일 수 있으며, 예를 들어 1 혹은 2일 수 있다.
또한, 현재 블록의 크기가 NxM 미만일 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 또한, 현재 블록이 하위 블록으로 분할되어 움직임 보상이 수행될 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있으며, 예를 들어 1 혹은 2일 수 있다. 또한, N과 M은 양의 정수일 수 있으며, 예를 들어 N과 M은 4 또는 8 이상일 수 있다. N과 M은 서로 동일하거나 상이할 수도 있다.
또한, 현재 블록의 색 성분에 기반하여, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, K는 0을 포함한 양의 정수일 수 있으며, 예를 들어 1 혹은 2일 수 있다. 또한, 현재 블록이 휘도 성분인 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 또한, 현재 블록이 색차 성분인 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.
또한, 현재 블록이 머지 모드이며, 향상된 시간적 움직임 벡터 예측 후보 및 공간적-시간적 움직임 벡터 예측 후보 중 적어도 하나 이상인 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.
또한, 현재 블록이 복호화기 움직임 벡터 유도 모드인 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 또한, 현재 블록이 어파인 움직임 보상 모드인 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, K는 0을 포함한 양의 정수일 수 있으며, 예를 들어 1 혹은 2일 수 있다.
한편, 계산 복잡도 감소를 위하여, 현재 블록의 하위 블록의 크기에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.
예를 들어, 현재 블록의 하위 블록의 크기가 4x4인 경우, 각 블록 경계에 인접한 1개, 2개, 3개, 혹은 4개의 행/열에 위치한 샘플들에 대해서 가중합이 계산될 수 있다. 또한, 현재 블록의 하위 블록의 크기가 8x8인 경우, 각 블록 경계에 인접한 1개, 2개, 3개, 4개, 5개, 6개, 7개, 혹은 8개의 행/열에 위치한 샘플들에 대해서 가중합이 계산될 수 있다. 이때, K는 0을 포함한 양의 정수이며, 최대 값으로 하위 블록의 행/열 개수만큼 가질 수 있다.
또한, 계산 복잡도 감소를 위하여, 하위 블록 내에서 각 블록 경계에 인접한 고정된 1개 혹은 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.
또한, 계산 복잡도 감소를 위하여, 제2 예측 블록 생성에 사용되는 움직임 정보 개수에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있다.
예를 들어, 움직임 정보 개수가 기 정의된 값보다 작을 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.
또한, 움직임 정보 개수가 기 정의된 값보다 같거나 클 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.
또한, 계산 복잡도 감소를 위하여, 현재 블록의 화면 간 예측 지시자에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. K는 0을 포함한 양의 정수일 수 있다.
예를 들어, 화면 간 예측 지시자가 단방향 예측인 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 또한, 화면 간 예측 지시자가 양방향 예측인 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.
또한, 계산 복잡도 감소를 위하여, 현재 블록의 참조 영상의 POC에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있다.
예를 들어, 현재 영상의 POC와 참조 영상의 POC의 차분이 기 정의된 값보다 작은 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 현재 영상의 POC와 참조 영상의 POC의 차분이 기 정의된 값보다 같거나 클 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.
또한, 계산 복잡도 감소를 위하여, 현재 블록에 인접한 주변 하위 블록 또는 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 벡터 크기에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있다.
예를 들어, 주변 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 클 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 주변 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 작을 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.
또한, 계산 복잡도 감소를 위하여, 현재 하위 블록의 움직임 벡터 크기 혹은 움직임 벡터 방향에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있다.
예를 들어, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 같거나 클 경우, 좌측 및 우측 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 작을 경우, 좌측 및 우측 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.
예를 들어, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 같거나 클 경우, 상단 및 하단 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 작을 경우, 상단 및 하단 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.
예를 들어, 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 클 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 작을 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.
도 23은 중첩된 블록 움직임 보상시 소정의 순서대로 제1 예측 블록과 제2 예측 블록의 가중합이 누적 계산되는 일 실시 예를 설명하는 도면이다. 부호화기 및 복호화기에서 미리 정해진 소정의 순서대로 제1 예측 블록과 제2 예측 블록의 가중합이 계산될 수 있다.
도 23을 참고하면, 현재 하위 블록에 인접한 상단 블록, 좌측 블록, 하단 블록, 우측 블록 순서대로 움직임 정보가 유도될 수 있고, 유도된 움직임 정보를 이용해서 제2 예측 블록이 생성되어, 제1 예측 블록과 제2 예측 블록의 가중합이 계산될 수 있다. 상기 소정의 순서대로 가중합 계산 시, 가중합은 상기 순서대로 누적되어 최종 예측 블록을 생성할 수 있다.
도 23과의 예와 같이, 제1 예측 블록과 1) 상단 블록의 움직임 정보를 이용해 생성된 제2 예측 블록의 가중합이 계산되어 제1 가중합 결과 블록이 생성될 수 있고, 상기 생성된 제1 가중합 결과 블록과 2) 좌측 블록의 움직임 정보를 이용해 생성된 제2 예측 블록의 가중합이 계산되어 제2 가중합 결과 블록이 생성될 수 있고, 상기 생성된 제2 가중합 결과 블록과 3) 하단 블록의 움직임 정보를 이용해 생성된 제2 예측 블록의 가중합이 계산되어 제3 가중합 결과 블록이 생성될 수 있고, 상기 생성된 제3 가중합 결과 블록과 4) 우측 블록의 움직임 정보를 이용해 생성된 제2 예측 블록의 가중합이 계산되어 최종 예측 블록을 생성할 수 있다.
한편, 제2 예측 블록 생성에 사용되는 움직임 정보 유도 순서와 제1 예측 블록과 제2 예측 블록의 가중합 계산 시의 제2 예측 블록의 가중합 계산 순서는 서로 다를 수도 있다.
도 24는 중첩된 블록 움직임 보상시 제1 예측 블록과 제2 예측 블록의 가중합이 계산되는 일 실시 예를 설명하는 도면이다. 부호화 효율 향상을 위하여, 가중합 계산 시, 가중합이 누적되지 않고 제1 예측 블록과 상단 블록, 좌측 블록, 하단 블록, 우측 블록의 움직임 정보 중 적어도 하나 이상을 이용해 생성된 제2 예측 블록들의 가중합이 순서에 상관없이 계산될 수 있다.
이때, 상단 블록, 좌측 블록, 하단 블록, 우측 블록의 움직임 정보 중 적어도 하나 이상을 이용해 생성된 제2 예측 블록들은 서로 동일한 가중치를 가질 수 있다. 또한, 상기 제2 예측 블록에 사용되는 가중치와 제1 예측 블록에 사용되는 가중치는 서로 동일할 수 있다.
도 24를 참고하면, 제1 예측 블록과 제2 예측 블록들의 개수만큼 저장 공간을 할당하고, 최종 예측 블록 생성 시 제2 예측 블록들 간에 서로 동일한 가중치로 제1 예측 블록과 가중합을 계산할 수 있다.
또한, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록도 제1 예측 블록과 가중합이 계산될 수 있다.
현재 블록의 크기가 K개 샘플 이하인 경우에 해당 현재 블록에 대한 중첩된 블록 움직임 보상 수행 여부 정보를 엔트로피 부호화/복호화할 수 있다. 이때, K는 양의 정수일 수 있고, 예를 들어 256일 수 있다.
또한, 현재 블록의 크기가 K개 샘플보다 클 경우 혹은 특정 화면 간 예측 모드 (예를 들어, 머지 모드 혹은 향상된 움직임 벡터 예측 모드)에 해당 현재 블록에 대한 중첩된 블록 움직임 보상 수행 여부 정보를 엔트로피 부호화/복호화하지 않고 기본적으로 중첩된 블록 움직임 보상을 수행할 수 있다.
부호화기에서는 움직임 예측 단계에서 현재 블록의 경계에 해당하는 영역의 원본 신호에 제2 예측 블록을 감산한 후 움직임 예측을 수행할 수 있다. 이때, 제2 예측 블록 감산 시, 제2 예측 블록과 원본 신호에 가중합을 계산할 수 있다.
중첩된 블록 움직임 보상이 사용되지 않는 현재 블록에 대해서는 DCT(Discrete Cosine Transform) 기반 변환들과 DST(Discrete Sine Transform) 기반 변환들을 수직/수평 변환에 적용하는 향상된 다중 변환(Enhanced Multiple Transform)을 적용하지 않을 수 있다. 즉, 중첩된 블록 움직임 보상이 사용되는 현재 블록에 대해서만 향상된 다중 변환을 적용할 수 있다.
도 25는 본 발명의 일 실시 예에 따른 영상 복호화 방법을 설명하는 흐름도이다.
도 25를 참고하면, 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성할 수 있다(S2510).
그리고, 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성할 수 있다(S2520). 여기서, 상기 주변 하위 블록은, 상기 현재 블록에 시간적으로 대응되는 대응 위치 블록의 하위 블록의 주변 하위 블록을 포함할 수 있다.
한편, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 대응 위치 블록의 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
또한, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 블록의 머지 리스트 및 움직임 벡터 리스트 중 적어도 하나에 포함된 움직임 정보를 이용하여 제2 예측 블록을 생성할 수 있다.
한편, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역 중 적어도 하나에 포함되는 경우에만, 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
한편, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 좌측 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하고, 상기 현재 하위 블록이 상기 현재 블록의 상단 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌상단 주변 하위 블록 및 우하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
한편, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 좌상단 주변 하위 블록, 좌하단 주변 하위 블록, 우하단 주변 하위 블록 및 우상단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
한편, 상기 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 소정의 순서에 기초하여 유도하고, 상기 유도된 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.
그리고, 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성할 수 있다(S2530).
이 경우, 상기 제2 예측 블록을 생성시 사용된 주변 하위 블록의 위치에 따라 상기 제1 예측 블록 및 상기 제2 예측 블록의 샘플별 가중치를 다르게 적용하여 가중합을 수행할 수 있다.
한편, 최종 예측 블록을 생성하는 단계(S2530)는, 상기 현재 하위 블록의 제2 예측 블록이 복수 개인 경우, 상기 현재 블록의 제1 예측 블록과 상기 현재 하위 블록의 제2 예측 블록간의 가중합을 동시에 합산하여 상기 최종 예측 블록을 생성할 수 있다.
도 25의 영상 복호화 방법의 각 단계는 본 발명에 따른 영상 부호화 방법에도 동일하게 적용될 수 있다.
한편, 본 발명에 따른 영상 부호화 방법에 의해 생성된 비트스트림은 기록매체에 저장될 수 있다.
상기의 실시예들은 부호화기 및 복호화기에서 같은 방법으로 수행될 수 있다.
상기 실시예를 적용하는 순서는 부호화기와 복호화기에서 상이할 수 있고, 상기 실시예를 적용하는 순서는 부호화기와 복호화기에서 동일할 수 있다.
휘도 및 색차 신호 각각에 대하여 상기 실시예를 수행할 수 있고, 휘도 및 색차 신호에 대한 상기 실시예를 동일하게 수행할 수 있다.
본 발명의 상기 실시예들이 적용되는 블록의 형태는 정방형(square) 형태 혹은 비정방형(non-square) 형태를 가질 수 있다.
본 발명의 상기 실시예들은 부호화 블록, 예측 블록, 변환 블록, 블록, 현재 블록, 부호화 유닛, 예측 유닛, 변환 유닛, 유닛, 현재 유닛 중 적어도 하나의 크기에 따라 적용될 수 있다. 여기서의 크기는 상기 실시예들이 적용되기 위해 최소 크기 및/또는 최대 크기로 정의될 수도 있고, 상기 실시예가 적용되는 고정 크기로 정의될 수도 있다. 또한, 상기 실시예들은 제1 크기에서는 제1의 실시예가 적용될 수도 있고, 제2 크기에서는 제2의 실시예가 적용될 수도 있다. 즉, 상시 실시예들은 크기에 따라 복합적으로 적용될 수 있다. 또한, 본 발명의 상기 실시예들은 최소 크기 이상 및 최대 크기 이하일 경우에만 적용될 수도 있다. 즉, 상기 실시예들을 블록 크기가 일정한 범위 내에 포함될 경우에만 적용될 수도 있다.
예를 들어, 현재 블록의 크기가 8x8 이상일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 4x4일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이하일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이상이고 64x64 이하일 경우에만 상기 실시예들이 적용될 수 있다.
본 발명의 상기 실시예들은 시간적 계층(temporal layer)에 따라 적용될 수 있다. 상기 실시예들이 적용 가능한 시간적 계층을 식별하기 위해 별도의 식별자(identifier)가 시그널링되고, 해당 식별자에 의해 특정된 시간적 계층에 대해서 상기 실시예들이 적용될 수 있다. 여기서의 식별자는 상기 실시예가 적용 가능한 최하위 계층 및/또는 최상위 계층으로 정의될 수도 있고, 상기 실시예가 적용되는 특정 계층을 지시하는 것으로 정의될 수도 있다. 또한, 상기 실시예가 적용되는 고정된 시간적 계층이 정의될 수도 있다.
예를 들어, 현재 영상의 시간적 계층이 최하위 계층일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 영상의 시간적 계층 식별자가 1 이상인 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 영상의 시간적 계층이 최상위 계층일 경우에만 상기 실시예들이 적용될 수 있다.
본 발명의 상기 실시예들이 적용되는 슬라이스 종류(slice type)이 정의되고, 해당 슬라이스 종류에 따라 본 발명의 상기 실시예들이 적용될 수 있다.
상술한 실시예들에서, 방법들은 일련의 단계 또는 유닛으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예는 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.
이상 설명된 본 발명에 따른 실시예들은 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (20)

  1. 영상 복호화 방법에 있어서,
    현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계;
    현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계; 및
    상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함하는 영상 복호화 방법.
  2. 제1항에 있어서,
    상기 주변 하위 블록은,
    상기 현재 블록에 시간적으로 대응되는 대응 위치 블록의 하위 블록의 주변 하위 블록을 포함하는 것을 특징으로 하는 영상 복호화 방법.
  3. 제2항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 대응 위치 블록의 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 복호화 방법.
  4. 제1항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 블록의 머지 리스트 및 움직임 벡터 리스트 중 적어도 하나에 포함된 움직임 정보를 이용하여 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 복호화 방법.
  5. 제1항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역 중 적어도 하나에 포함되는 경우에만, 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성을 특징으로 하는 영상 복호화 방법.
  6. 제1항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 좌측 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하고,
    상기 현재 하위 블록이 상기 현재 블록의 상단 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌상단 주변 하위 블록 및 우하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 복호화 방법.
  7. 제1항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 좌상단 주변 하위 블록, 좌하단 주변 하위 블록, 우하단 주변 하위 블록 및 우상단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 복호화 방법.
  8. 제1항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 소정의 순서에 기초하여 유도하고, 상기 유도된 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 복호화 방법.
  9. 제1항에 있어서,
    상기 최종 예측 블록을 생성하는 단계는,
    상기 제2 예측 블록을 생성시 사용된 주변 하위 블록의 위치에 따라 상기 제1 예측 블록 및 상기 제2 예측 블록의 샘플별 가중치를 다르게 적용하여 가중합을 수행하는 것을 특징으로 하는 영상 복호화 방법.
  10. 제1항에 있어서,
    상기 최종 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록의 제2 예측 블록이 복수 개인 경우, 상기 현재 블록의 제1 예측 블록과 상기 현재 하위 블록의 제2 예측 블록간의 가중합을 동시에 합산하여 상기 최종 예측 블록을 생성하는 것을 특징으로 하는 영상 복호화 방법.
  11. 영상 부호화 방법에 있어서,
    현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계;
    현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계; 및
    상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함하는 영상 부호화 방법.
  12. 제11항에 있어서,
    상기 주변 하위 블록은,
    상기 현재 블록에 시간적으로 대응되는 대응 위치 블록의 하위 블록의 주변 하위 블록을 포함하는 것을 특징으로 하는 영상 부호화 방법.
  13. 제12항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 대응 위치 블록의 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 부호화 방법.
  14. 제11항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 블록의 머지 리스트 및 움직임 벡터 리스트 중 적어도 하나에 포함된 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 부호화 방법.
  15. 제11항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역 중 적어도 하나에 포함되는 경우에만, 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성을 특징으로 하는 영상 부호화 방법.
  16. 제11항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 좌측 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하고,
    상기 현재 하위 블록이 상기 현재 블록의 상단 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌상단 주변 하위 블록 및 우하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 부호화 방법.
  17. 제11항에 있어서,
    상기 제2 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 좌상단 주변 하위 블록, 좌하단 주변 하위 블록, 우하단 주변 하위 블록 및 우상단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하는 것을 특징으로 하는 영상 부호화 방법.
  18. 제11항에 있어서,
    상기 최종 예측 블록을 생성하는 단계는,
    상기 제2 예측 블록을 생성시 사용된 주변 하위 블록의 위치에 따라 상기 제1 예측 블록 및 상기 제2 예측 블록의 샘플별 가중치를 다르게 적용하여 가중합을 수행하는 것을 특징으로 하는 영상 부호화 방법.
  19. 제11항에 있어서,
    상기 최종 예측 블록을 생성하는 단계는,
    상기 현재 하위 블록의 제2 예측 블록이 복수 개인 경우, 상기 현재 블록의 제1 예측 블록과 상기 현재 하위 블록의 제2 예측 블록간의 가중합을 동시에 합산하여 상기 최종 예측 블록을 생성하는 것을 특징으로 하는 영상 부호화 방법.
  20. 기록 매체에 있어서,
    현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계;
    현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계; 및
    상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함하는 영상 부호화 방법으로 생성된 비트스트림을 저장하는 기록 매체.
KR1020170160141A 2016-11-29 2017-11-28 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 KR20180061042A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210083433A KR102390452B1 (ko) 2016-11-29 2021-06-25 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160159903 2016-11-29
KR1020160159903 2016-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210083433A Division KR102390452B1 (ko) 2016-11-29 2021-06-25 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Publications (1)

Publication Number Publication Date
KR20180061042A true KR20180061042A (ko) 2018-06-07

Family

ID=62241587

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020170160141A KR20180061042A (ko) 2016-11-29 2017-11-28 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020210083433A KR102390452B1 (ko) 2016-11-29 2021-06-25 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020220047699A KR102511581B1 (ko) 2016-11-29 2022-04-18 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230033436A KR102619133B1 (ko) 2016-11-29 2023-03-14 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230190100A KR20240005637A (ko) 2016-11-29 2023-12-22 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Family Applications After (4)

Application Number Title Priority Date Filing Date
KR1020210083433A KR102390452B1 (ko) 2016-11-29 2021-06-25 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020220047699A KR102511581B1 (ko) 2016-11-29 2022-04-18 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230033436A KR102619133B1 (ko) 2016-11-29 2023-03-14 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230190100A KR20240005637A (ko) 2016-11-29 2023-12-22 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Country Status (3)

Country Link
KR (5) KR20180061042A (ko)
CN (6) CN116781894A (ko)
WO (1) WO2018101700A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115049674A (zh) * 2022-08-17 2022-09-13 南通万格环境科技有限公司 基于大数据的工业污水处理方法及系统
WO2023200228A1 (ko) * 2022-04-12 2023-10-19 한국전자통신연구원 영상 부호화/복호화를 위한 방법, 장치 및 기록 매체
WO2023200101A1 (ko) * 2022-04-15 2023-10-19 삼성전자 주식회사 영상 부호화/복호화 방법 및 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039408A1 (en) 2018-08-24 2020-02-27 Beijing Bytedance Network Technology Co., Ltd. Overlapped block motion compensation using temporal neighbors
CN110944205A (zh) 2018-09-23 2020-03-31 北京字节跳动网络技术有限公司 8参数仿射模式
CN113794884B (zh) * 2019-08-23 2022-12-23 杭州海康威视数字技术股份有限公司 一种编解码方法、装置及其设备
CN112004096A (zh) * 2020-07-20 2020-11-27 浙江大华技术股份有限公司 角度模式帧间预测方法、编码器及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101491107B (zh) * 2006-07-07 2012-07-18 艾利森电话股份有限公司 一种对图像元素组进行解码的方法及其相关的编码器、解码器
JPWO2008084817A1 (ja) * 2007-01-09 2010-05-06 株式会社東芝 画像符号化と復号化の方法及び装置
KR101408698B1 (ko) * 2007-07-31 2014-06-18 삼성전자주식회사 가중치 예측을 이용한 영상 부호화, 복호화 방법 및 장치
KR101043758B1 (ko) * 2009-03-24 2011-06-22 중앙대학교 산학협력단 영상 부호화 장치 및 방법, 영상 복호화 장치 및 그 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 기록매체
CN102484699B (zh) * 2009-06-23 2015-11-25 法国电信 对图像进行编码和解码的方法、用于编码和解码的对应装置
US20120300850A1 (en) * 2010-02-02 2012-11-29 Alex Chungku Yie Image encoding/decoding apparatus and method
KR20110135471A (ko) * 2010-06-11 2011-12-19 (주)휴맥스 블록 병합을 이용한 영상 부호화/복호화 장치 및 방법
KR101791242B1 (ko) * 2010-04-16 2017-10-30 에스케이텔레콤 주식회사 영상 부호화/복호화 장치 및 방법
PL3457689T3 (pl) * 2010-05-25 2020-12-28 Lg Electronics Inc. Nowy tryb predykcji planarnej
KR101263090B1 (ko) * 2010-11-08 2013-05-09 성균관대학교산학협력단 다단계 예측을 이용한 영상 부/복호화 방법 및 이러한 방법을 사용하는 부/복호화 장치
US9462272B2 (en) * 2010-12-13 2016-10-04 Electronics And Telecommunications Research Institute Intra prediction method and apparatus
KR101934277B1 (ko) * 2011-11-28 2019-01-04 에스케이텔레콤 주식회사 개선된 머지를 이용한 영상 부호화/복호화 방법 및 장치
CN110809157B (zh) * 2012-01-18 2023-05-02 韩国电子通信研究院 视频解码装置、视频编码装置和传输比特流的方法
KR101638875B1 (ko) * 2012-11-27 2016-07-22 경희대학교 산학협력단 머지를 기반으로 한 복호화 방법 및 장치
EP3089452A4 (en) * 2013-12-26 2017-10-25 Samsung Electronics Co., Ltd. Inter-layer video decoding method for performing subblock-based prediction and apparatus therefor, and inter-layer video encoding method for performing subblock-based prediction and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023200228A1 (ko) * 2022-04-12 2023-10-19 한국전자통신연구원 영상 부호화/복호화를 위한 방법, 장치 및 기록 매체
WO2023200101A1 (ko) * 2022-04-15 2023-10-19 삼성전자 주식회사 영상 부호화/복호화 방법 및 장치
CN115049674A (zh) * 2022-08-17 2022-09-13 南通万格环境科技有限公司 基于大数据的工业污水处理方法及系统
CN115049674B (zh) * 2022-08-17 2022-12-13 南通万格环境科技有限公司 基于大数据的工业污水处理方法及系统

Also Published As

Publication number Publication date
KR20220050871A (ko) 2022-04-25
KR102619133B1 (ko) 2023-12-29
KR20210082421A (ko) 2021-07-05
CN116781894A (zh) 2023-09-19
KR20230038691A (ko) 2023-03-21
CN110024402A (zh) 2019-07-16
WO2018101700A1 (ko) 2018-06-07
CN116896630A (zh) 2023-10-17
KR20240005637A (ko) 2024-01-12
CN110024402B (zh) 2023-08-22
KR102390452B1 (ko) 2022-04-22
CN116915980A (zh) 2023-10-20
CN116915981A (zh) 2023-10-20
CN116896631A (zh) 2023-10-17
KR102511581B1 (ko) 2023-03-21

Similar Documents

Publication Publication Date Title
KR102625959B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102400160B1 (ko) 영상 부호화/복호화 방법 및 이를 위한 기록 매체
KR102472399B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102328179B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20230070182A (ko) 영상 부호화/복호화 방법 및 장치
KR20180134764A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102651158B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20180007345A (ko) 영상 부호화/복호화 방법 및 이를 위한 기록 매체
KR102619133B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20180040088A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20200034639A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application