KR20180052208A - Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same - Google Patents

Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same Download PDF

Info

Publication number
KR20180052208A
KR20180052208A KR1020160149248A KR20160149248A KR20180052208A KR 20180052208 A KR20180052208 A KR 20180052208A KR 1020160149248 A KR1020160149248 A KR 1020160149248A KR 20160149248 A KR20160149248 A KR 20160149248A KR 20180052208 A KR20180052208 A KR 20180052208A
Authority
KR
South Korea
Prior art keywords
brominated
polyphenylene sulfide
bpps
pps
sulfonated
Prior art date
Application number
KR1020160149248A
Other languages
Korean (ko)
Other versions
KR101995039B1 (en
Inventor
정호영
신동석
노현준
강경석
손원근
최진혁
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020160149248A priority Critical patent/KR101995039B1/en
Publication of KR20180052208A publication Critical patent/KR20180052208A/en
Application granted granted Critical
Publication of KR101995039B1 publication Critical patent/KR101995039B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0286Chemical after-treatment
    • C08G75/029Modification with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • Y02E60/528
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to polyphenylene sulfide-based brominated polyphenylene sulfide, a method for manufacturing the same, brominated and sulfonated polyphenylene sulfide using the same, and a method for manufacturing the same. According to an embodiment of the present invention, the method for manufacturing brominated polyphenylene sulfide comprises a dissolution step and a bromination step. According to the present invention, the polyphenylene sulfide-based brominated polyphenylene sulfide, the method for manufacturing the same, the brominated and sulfonated polyphenylene sulfide using the same, and the method for manufacturing the same can provide excellent chemical stability.

Description

폴리페닐렌설파이드 기반 브롬화 폴리페닐렌설파이드, 그 제조방법, 이를 이용한 브롬화 및 슬폰화 폴리페닐렌설파이드 및 그 제조방법{Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same}TECHNICAL FIELD The present invention relates to a polyphenylene sulfide-based brominated polyphenylene sulfide, a process for producing the same, a brominated and sulfonated polyphenylene sulfide using the same, and a process for producing the same. the same}

본 발명은 양이온전도성고분자 및 그 제조방법에 대한 것으로, 보다 구체적으로는 방향족 탄화수소계 고분자인 폴리페닐렌설파이드(PPS)를 개질시켜 형성된 신규고분자물질 및 그 제조방법에 관한 것이다.TECHNICAL FIELD The present invention relates to a cationic conductive polymer and a method for producing the same, and more particularly, to a novel polymer material formed by modifying polyphenylene sulfide (PPS), which is an aromatic hydrocarbon polymer, and a method for producing the same.

에너지 효율이나 친환경적인 새로운 2차 전지가 주목을 끌고 있는데, 특히, 풍력 등의 자연 에너지를 저장하기 위해 대형의 2차 전지가 강하게 요구 되고 있다. 그 중에서, 레독스 흐름전지는 충ㅇ방전 사이클 내성이나 안전성이 우수하기 때문에 대형 2차전지에 적합하다.New secondary batteries, which are energy efficient and environmentally friendly, have attracted attention. In particular, large secondary batteries are strongly required to store natural energy such as wind power. Among them, Redox flow cells are suitable for large secondary batteries because they are excellent in charge cycle resistance and safety.

현재 이온 교환막을 산업분야의 적용한 예로서는 탈염 및 정제를 위한 전기투석공정과 물 분해 전기 투석 공정 그리고 산성페액에서 산을 회수하는 확산투석 및 초 순수 생산을 위한 전기탈염공정 등을 들 수 있다. 특히 최근에 이온 교환막이 고분자 전해질 연료전지나 레독스 흐름전지의 우수한 성능을 나타낼 수 있는 가능성을 시사함에 따라 이온 교환막에 대한 관심 증가되고 있다.Current applications of ion exchange membranes in industry include electrodialysis for desalting and purification, electrodialysis for water degradation, diffusion dialysis for recovering acids from acidic papermaking, and electrodemulsion for ultra pure water production. Particularly recently, interest in ion exchange membranes has increased as the ion exchange membrane shows the possibility of exhibiting excellent performance of a polymer electrolyte fuel cell or a redox flow cell.

한편, 연료전지에서 전기를 발생시키는 원리는 연료 극을 통해 연료를 공급하면 연료는 수소이온과 전자로 나눠지고, 수소이온은 전해질 막을 통해 공기 극에서 공급하는 산소와 결합하여 물을 생성한다. 상기 연료극의 연료에서 분리 되어진 전자는 외부회로를 통해 전류를 발생시키는 전기화학반응이 진행되어 전기와 열이 발생된다.On the other hand, the principle of generating electricity in the fuel cell is that when the fuel is supplied through the fuel electrode, the fuel is divided into hydrogen ions and electrons, and hydrogen ions combine with oxygen supplied from the air electrode through the electrolyte membrane to generate water. The electrons separated from the fuel of the fuel electrode proceed to an electrochemical reaction that generates a current through an external circuit to generate electricity and heat.

상기의 연료전지 중에서 고분자 전해질 연료전지, 직접메탄올을 연료전지, 직접붕소수소화물연료전지는 전해질로 양이온 또는 수소이온전도 전해질막인 양이온 교환 막을 채용하게 된다. 여기서 직접붕소수소화물연료전지는 양이온 교환 막 및 음이온 교환 막을 모두 사용가능하다.Among the above fuel cells, a polymer electrolyte fuel cell, direct methanol as a fuel cell, and a direct boron hydride fuel cell adopt a cation exchange membrane as a cation or a hydrogen ion conductive electrolyte membrane as an electrolyte. Here, the direct boron hydride fuel cell can use both a cation exchange membrane and an anion exchange membrane.

일반적으로, 레독스 흐름전지는 펌프의 순환에 따라서 황산 바나듐 용액중의 바나듐의 산화 환원반응을 일으키고 에너지를 얻는 전지로써, 레독스 흐름전지의 기본 구조는 전해액을 저장하는 탱크와 전해액을 순환시키는 펌프, 양극과 음극 및 두 전극 사이에 위치하는 고분자 전해질 막으로 구성된다. 고분자 전해질 막은 양극간의 이온 밸런스를 지키는 양이온 또는 음이온 교환막이 사용되고 있다.In general, a redox flow cell is a cell that generates redox reaction of vanadium in a vanadium sulfate solution according to circulation of a pump and obtains energy. The basic structure of a redox flow battery is a tank for storing an electrolyte and a pump , An anode and a cathode, and a polymer electrolyte membrane located between the two electrodes. As the polymer electrolyte membrane, a cation or anion exchange membrane for keeping ion balance between the positive and negative electrodes is used.

전극 소재는 카본펠트 전극과 비활성 전극으로 구분되고, 활물질은 V, Fe, Cr, Cu, Ti, Mn 및 Sn등의 전의 금속을 가한 산성 수용액에 녹여 사용된다. 이때 사용되는 고분자막은 이온의 선택 투과성이 높은 것을 사용하는 것이 바람직하며, 상용화된 고분자막으로는 미국 듀폰사의 나피온(Nafion), 일본 아사이글라스사의 CMV, AMV, DMV등을 들 수 있다. 이들 중에서 화학적 안정성이 비교적 우수하고, 수소 이온 전도도가 높은 과불화수소계 고분자인 나피온이 성능이 우수하지만, 단가가 높고, 치수 안정성이 떨어지며, 투과도가 높다는 단점 때문에 본격적으로 널리 실용화되지 못하고 있다. 구체적으로는 충??방전 중에 바나듐 이온도 통하여 버리기 때문에, 전해액중의 활물질량이 감소하고 충ㅇ방전 사이클이 현저하게 악화해 버리며, 폐기시의 환경 부하가 크다는 문제점도 있다.The electrode material is divided into a carbon felt electrode and an inactive electrode. The active material is dissolved in an acidic aqueous solution containing a metal such as V, Fe, Cr, Cu, Ti, Mn and Sn. As the polymer membrane used herein, it is preferable to use a polymer having a high ion selectivity. Examples of commercially available polymer membranes include Nafion manufactured by DuPont of America, CMV, AMV and DMV of Asagi Glass, Japan. Of these, Nafion, which is relatively high in chemical stability and high in hydrogen ion conductivity, is superior in performance but has not been widely practically used because of its disadvantage of high unit cost, poor dimensional stability, and high permeability. Concretely, since the vanadium ions are also thrown away during the charging and discharging, the amount of active material in the electrolytic solution is decreased, the charging and discharging cycle is remarkably deteriorated, and the environmental load at the time of disposal is large.

이러한 기존 상용화 고분자막의 문제점들을 해결하기 위해 상대적으로 투과도가 낮은 새로운 탄화수소계 수소이온 전도성 물질에 대한 연구가 활발히 진행되고 있으며, 대표적인 예로 폴리이미드(polyimide), 폴리에테르에 테르케톤(polyetheretherketone), 폴리에테르술폰(polyethersulfone), 폴리벤지이미다졸 (polybenzimidazole) 등이 있다.In order to solve the problems of the conventional commercialized polymer membrane, researches on a new hydrocarbon-based proton conductive material having a relatively low permeability have been actively conducted. Typical examples thereof include polyimide, polyetheretherketone, Polyethersulfone, polybenzimidazole, and the like.

하지만 이러한 탄화수소계 고분자 전해질 막 역시 수화시 함수량이 높아 치수 안정성이 떨어질 뿐만 아니라, 막/ 전극 계면 안정성이 낮아 레독스 흐름 전지(RFB)의 우수한 성능을 구현하기 어려운 문제점이 있으며, 이를 개선하기 위한 이온 전도성 및 투과도 특성이 향상된 고분자 전해질 막이 개발될 필요성이 있다. 더불어 수 처리 장치, 특히 내구성 향상을 위해 양이온 고분자 기술 개발이 시급히 요구되고 있는 실정이다.However, such a hydrocarbon-based polymer electrolyte membrane also has a problem of low dimensional stability due to high moisture content at the time of hydration and low membrane / electrode interface stability, which makes it difficult to realize excellent performance of a redox flow cell (RFB) A polymer electrolyte membrane having improved conductivity and permeability characteristics needs to be developed. In addition, the development of water treatment equipment, particularly cationic polymer technology, is urgently required to improve durability.

본 발명자는 상기와 같은 문제점을 해결하기 위해 연구 노력한 결과, 폴리페닐렌설파이드(PPS)를 기반으로 술폰화고분자를 제조하는 기술을 개발함으로써 본 발명을 완성하였다. As a result of efforts to solve the above problems, the present inventors have completed the present invention by developing a technique for producing a sulfonated polymer based on polyphenylene sulfide (PPS).

따라서, 본 발명의 목적은 PPS를 개질시켜 형성된 PPS 기반 술폰화고분자 및 그 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a PPS-based sulfonated polymer formed by modifying PPS and a method for producing the same.

본 발명의 다른 목적은 PPS 기반 술폰화고분자를 제조하기 위한 중간체인 브롬화 폴리페닐렌설파이드(bPPS) 및 그 제조방법을 제공하는 것이다. Another object of the present invention is to provide brominated polyphenylene sulfide (bPPS), which is an intermediate for producing a PPS-based sulfonated polymer, and a method for producing the same.

본 발명의 또 다른 목적은 PPS 기반 술폰화고분자를 포함하여 상용화된 고분자막 대비 가격경쟁력의 확보와 동시에 치수안정성, 기계적, 열적 및 화학적 안정성이 우수한 양이온전도성고분자전해질막을 제공하는 것이다.It is still another object of the present invention to provide a cation-conductive polymer electrolyte membrane including a PPS-based sulfonated polymer, which is superior in cost competitiveness compared to a commercialized polymer membrane, and is excellent in dimensional stability, mechanical, thermal and chemical stability.

본 발명의 또 다른 목적은 양이온전도성 고분자전해질막을 포함함으로써 상용화된 막과 동등 이상의 수준을 유지하는 양이온전도성 교환막을 포함함으로써 구동시 안정성 또한 우수하여 시스템의 장기 안정성이 크게 개선될 수 있는 에너지저장장치 및 수처리장치를 제공하는 것이다.Still another object of the present invention is to provide an energy storage device and a method of manufacturing the same, which can improve the long-term stability of the system by including a cation conductive exchange membrane which maintains a level equal to or higher than that of the compatibilized membrane by including a cation- And a water treatment apparatus.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

상술된 본 발명의 목적을 달성하기 위해, 본 발명은 하기 [화학식1]로 표시되는 브롬화 폴리페닐렌설파이드를 제공한다.In order to achieve the object of the present invention described above, the present invention provides a brominated polyphenylene sulfide represented by the following formula (1).

[화학식1][Chemical Formula 1]

Figure pat00001
Figure pat00001

여기서, n 및 m은 몰분율로서 0보다 큰 실수이다. Where n and m are real numbers greater than zero as a mole fraction.

또한, 본 발명은 폴리페닐렌설파이드(PPS)를 용해시켜 PPS용액을 준비하는 용해단계; 및 상기 PPS용액에 포함된 PPS를 브롬화하는 브롬화단계;를 포함하는 브롬화 폴리페닐렌설파이드 제조방법을 제공한다.The present invention also provides a method for producing a PPS solution, comprising: a dissolving step of dissolving polyphenylene sulfide (PPS) to prepare a PPS solution; And a step of brominating PPS contained in the PPS solution by brominating the brominated polyphenylene sulfide.

바람직한 실시예에 있어서, 상기 브롬화단계는 상기 PPS용액에 브롬화전구체물질을 첨가하여 반응시키는 반응단계 및 상기 반응물로부터 브롬화 폴리페닐렌설파이드(bPPS)를 얻는 단계를 포함하여 수행된다. In a preferred embodiment, the bromination step is carried out comprising a reaction step of adding a brominated precursor material to the PPS solution and reacting, and obtaining brominated polyphenylene sulfide (bPPS) from the reactant.

바람직한 실시예에 있어서, 상기 브롬화전구체물질은 N-브로모숙신이미드(NBS)이다. In a preferred embodiment, the brominated precursor material is N-bromosuccinimide (NBS).

바람직한 실시예에 있어서, 상기 용해단계는 상기 PPS를 1-클로로나프탈렌 및 황산과 반응시켜 수행된다.In a preferred embodiment, the dissolving step is performed by reacting the PPS with 1-chloronaphthalene and sulfuric acid.

또한, 본 발명은 하기 [화학식2]로 표시되는 브롬화 및 술폰화 폴리페닐렌설파이드를 제공한다.The present invention also provides brominated and sulfonated polyphenylene sulfides represented by the following formula (2).

[화학식2](2)

Figure pat00002
Figure pat00002

여기서, n, m 및 L은 몰분율로서 0보다 큰 실수이다. Where n, m, and L are real numbers greater than zero as a mole fraction.

또한, 본 발명은 bPPS를 용해시켜 bPPS용액을 준비하는 용해단계; 및 상기 bPPS용액에 포함된 bPPS를 술폰화하는 술폰화단계;를 포함하는 브롬화 및 술폰화 폴리페닐렌설파이드 제조방법을 제공한다.The present invention also provides a method for producing a bPPS solution, comprising dissolving bPPS to prepare a bPPS solution; And sulfonating the bPPS contained in the bPPS solution. The present invention also provides a method for producing a brominated and sulfonated polyphenylene sulfide.

바람직한 실시예에 있어서, 상기 술폰화단계는 상기 bPPS용액에 술폰화전구체물질을 첨가하여 반응시키는 반응단계 및 상기 반응물로부터 브롬화 및 술폰화 폴리페닐렌설파이드(bsPPS)를 얻는 단계를 포함하여 수행된다. In a preferred embodiment, the sulfonation step is carried out comprising a reaction step in which the sulfonated precursor material is added to the bPPS solution and reacted, and the step of obtaining brominated and sulfonated polyphenylene sulfide (bsPPS) from the reactant.

바람직한 실시예에 있어서, 상기 술폰화전구체물질은 할로겐화술폰산이다.In a preferred embodiment, the sulfonated precursor material is a halogenated sulfonic acid.

바람직한 실시에 있어서, 상기 할로겐화술폰산은 ClSO3H, (CH3)3SiSO3Cl, (CF3)3SiSO3Cl로 구성된 그룹에서 선택되는 하나 이상이다. In a preferred embodiment, the halogenated sulfonic acid is at least one selected from the group consisting of ClSO 3 H, (CH 3 ) 3 SiSO 3 Cl, (CF 3 ) 3 SiSO 3 Cl.

바람직한 실시예에 있어서, 상기 용해단계는 상기 bPPS를 클로로포름과 반응시켜 수행된다. In a preferred embodiment, the dissolution step is performed by reacting the bPPS with chloroform.

또한 본 발명은 상술된 브롬화 및 술폰화 폴리페닐렌설파이드(bsPPS) 또는 상술된 어느 하나의 제조방법으로 제조된 bsPPS를 포함하는 양이온고분자전해질막을 제공한다.The present invention also provides a cationic polyelectrolyte membrane comprising the above-described brominated and sulfonated polyphenylene sulfide (bsPPS) or bsPPS prepared by any one of the above-described production methods.

또한, 본 발명은 상술된 양이온고분자전해질막을 포함하는 에너지저장장치를 제공한다.The present invention also provides an energy storage device comprising the above-described cationic polymer electrolyte membrane.

바람직한 실시예에 있어서, 상기 에너지저장장치는 레독스흐름전지이다. In a preferred embodiment, the energy storage device is a redox flow cell.

또한 본 발명은 상술된 양이온고분자전해질막을 포함하는 수처리장치를 제공한다.The present invention also provides a water treatment apparatus comprising the cationic polyelectrolyte membrane described above.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명의 PPS 기반 술폰화고분자는 PPS를 개질시켜 형성되는데, 특히 브롬화 폴리페닐렌설파이드(bPPS)는 PPS 기반 술폰화고분자를 제조하기 위한 중간체로서 이를 통해 PPS의 술폰화효율을 현저하게 향상시킬 수 있다. First, the PPS-based sulfonated polymer of the present invention is formed by modifying PPS. Particularly, brominated polyphenylene sulfide (bPPS) is an intermediate for preparing a PPS-based sulfonated polymer, thereby remarkably improving the sulfonation efficiency of PPS .

또한, 본 발명의 양이온전도성고분자전해질막에 의하면 PPS 기반 술폰화고분자를 포함하여 상용화된 고분자막 대비 가격경쟁력의 확보와 동시에 치수안정성, 기계적, 열적 및 화학적 안정성이 우수하다. In addition, according to the cationic conductive polymer electrolyte membrane of the present invention, cost competitiveness against commercialized polymer membranes including PPS-based sulfonated polymers is secured, and dimensional stability, mechanical, thermal and chemical stability are excellent.

또한, 본 발명의 에너지저장장치 및 수처리장치에 의하면 양이온전도성 고분자전해질막을 포함함으로써 상용화된 막과 동등 이상의 수준을 유지하는 양이온전도성 교환막을 포함함으로써 구동시 안정성 또한 우수하여 시스템의 장기 안정성이 크게 개선될 수 있다.In addition, according to the energy storage device and the water treatment device of the present invention, since the cationic conductive exchange membrane that includes the cation-conductive polymer electrolyte membrane and maintains a level equal to or higher than that of the compatibilized membrane is included, stability during driving is also excellent, .

본 발명의 이러한 기술적 효과는 이상에서 언급한 범위만으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 실시를 위한 구체적 내용의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 효과 역시 당연히 포함된다.Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Of course.

도 1은 공지된 바나듐계 레독스 흐름전지의 개략도이다.
도 2은 PPS 기반의 브롬화 폴리페닐렌설파이드(bPPS)를 제조하는 공정개략도이다.
도 3은 bPPS로부터 bsPPS 고분자를 제조하는 공정개략도이다.
도 4는 PPS, bPPS, bsPPS의 FT-IR을 측정한 결과그래프이다.
1 is a schematic diagram of a known vanadium redox flow cell.
2 is a schematic view of a process for producing PPS-based brominated polyphenylene sulfide (bPPS).
3 is a schematic view of a process for producing a bsPPS polymer from bPPS.
4 is a graph showing FT-IR of PPS, bPPS, and bsPPS measured.

본 발명에서 사용하는 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprising" or "having ", and the like, are intended to specify the presence of stated features, integers, steps, operations, elements, parts, or combinations thereof, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, parts, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the meaning of the context in the relevant art and, unless expressly defined in the present invention, are to be interpreted as an ideal or overly formal sense Do not.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals used to describe the present invention throughout the specification denote like elements.

본 발명의 기술적 특징은 PPS를 개질시켜 형성된 PPS 기반 술폰화고분자 및 PPS 기반 술폰화고분자를 제조하기 위한 중간체로서 이를 통해 PPS의 술폰화효율을 현저하게 향상시킬 수 있는 브롬화 폴리페닐렌설파이드(bPPS)에 있다. 즉 본 발명의 신규 PPS 기반 술폰화고분자가 포함된 양이온고분자전해질막은 낮은 활물질 투과도와 양이온 전도성 및 내구성 유지되어 레독스흐름전지 및 수처리장치에 매우 적합한 특성을 갖기 때문이다.A technical feature of the present invention is to provide an intermediate for preparing a PPS-based sulfonated polymer and a PPS-based sulfonated polymer formed by modifying PPS, thereby providing brominated polyphenylene sulfide (bPPS) capable of remarkably improving the sulfonation efficiency of PPS, . That is, the cationic polyelectrolyte membrane containing the novel PPS-based sulfonated polymer of the present invention maintains low active material permeability, cation conductivity, and durability, and has characteristics suitable for redox flow cells and water treatment apparatuses.

실시예 1Example 1

도 2에 도시된 공정조건에 따라 다음과 같이 반응을 수행하여 bPPS를 얻었다.According to the process conditions shown in FIG. 2, the following reaction was carried out to obtain bPPS.

1. PPS 용해단계1. PPS lysis step

반응기 온도를 210℃로 설정하고 PPS 2.5g에 1-클로로나프탈렌 36g, 황산 6g를 투입하고 약 240분 정도 교반기로 강하게 교반하고 반응기 온도를 138℃로 냉각을 시켰다.36 g of 1-chloronaphthalene and 6 g of sulfuric acid were added to 2.5 g of PPS, the mixture was vigorously stirred with a stirrer for about 240 minutes, and the reactor temperature was cooled to 138 캜.

2. PPS 브롬화단계2. PPS bromination step

(1) NBS 9.8g와 개시제로 아조비스이소뷰티로니드릴(Azobisisobutyronitrile, 이하 'AIBN') 0.115g을 첨가하고 약 3.5시간 동안 반응을 시켰다.(1) 9.8 g of NBS and 0.115 g of azobisisobutyronitrile (hereinafter referred to as 'AIBN') as a initiator were added and reacted for about 3.5 hours.

(2) 유기용매를 증발시키기 위해 반응기 온도를 138℃를 유지시키고, 3시간 더 반응을 시켰다.(2) The reactor temperature was maintained at 138 占 폚 for evaporating the organic solvent, and the reaction was further continued for 3 hours.

(3) 반응이 완료된 후, 상온으로 냉각하고 반응물을 벤젠(Benzne) 500ml에 침전시켰다.(3) After completion of the reaction, the reaction mixture was cooled to room temperature and the reaction product was precipitated in 500 ml of benzene.

(4) 상기 침전물을 이소프로필 알코올(Isopropyl alcohol, 이하 'IPA')에 넣어 다시 침전한 후 여러 번 세척을 하였다.(4) The precipitate was precipitated again in isopropyl alcohol (IPA) and then washed several times.

(5) 세척이 완료된 생성물을 80℃로 유지되는 건조기에서 5시간 동안 건조하여 bPPS 제조하였다.(5) The washed product was dried in a dryer maintained at 80 캜 for 5 hours to produce bPPS.

실시예 2Example 2

도 3에 도시된 공정조건에 따라 다음과 같이 반응을 수행하여 bsPPS를 얻었다.The following reaction was carried out according to the process conditions shown in FIG. 3 to obtain bsPPS.

1. bPPS 용해단계1. bPPS lysis step

삼구 반응구에 실시예1에서 제조된 bPPS 2.5g 및 Chloroform 42g을 첨가하였다. 2.5 g of the bPPS prepared in Example 1 and 42 g of chloroform were added to the three-neck reaction vessel.

2. bPPS 슬폰화단계2. bPPS Sphoning step

(1) 뷰렛을 활용하여 클로로술포릭산(Chlorosulfuric acid) 2.68g을 상기 반응구에 30분동안 적화하여 첨가하였다.(1) Using burette, 2.68 g of chlorosulfuric acid was added to the reaction vessel for 30 minutes and added.

(2) 138℃에서 4시간 동안 교반하면서 반응시켰다. 그 후, 상온으로 냉각하고 DI Water 세척하였다. (2) The reaction was carried out with stirring at 138 DEG C for 4 hours. After that, it was cooled to room temperature and DI water was washed.

(3) 세척이 완료된 생성물을 80℃로 유지되는 건조기에서 5시간 동안 건조하여 bsPPS 제조하였다.(3) The washed product was dried in a dryer maintained at 80 캜 for 5 hours to produce bsPPS.

실험예Experimental Example

실시예1에서 제조된 bPPS 및 실시예2에서 제조된 bsPPS의 브롬화 및 술폰화여부를 확인하고자 대조군으로서 PPS를 사용하여 FT-IR로 분석하고 그 결과를 도 4에 도시하였다.The bPPS prepared in Example 1 and the bsPPS prepared in Example 2 were analyzed by FT-IR using PPS as a control group in order to confirm the bromination and sulphonation. The results are shown in Fig.

FT-IR 데이터 분선 결과를 보여주는 도 4로부터 bPPS는 브롬기가, bsPPS는 술포닐기와 브롬기가 bsPPS내에 도입된 것을 알 수 있다.From FIG. 4 showing the result of FT-IR data analysis, it can be seen that bPPS is introduced into the bromine group, and bsPPS is introduced into the bsPPS with the sulfonyl group and the bromine group.

즉, bPPS와 PPS 피크를 비교하면, 1,300cm-1 근처에서 새로운 피크가 형성된 것을 볼 때 C-O-C 결합이 페닐링에 있는 브롬인 것을 보여주며 이것으로 브롬화 되었음을 알 수 있기 때문이다. That is, comparing bPPS and PPS peaks shows that a COC bond is bromine in the phenyl ring, indicating that a new peak is formed near 1,300 cm -1 , indicating that it is brominated.

또한, bsPPS와 PPS 피크는 비교하면 1,030, 650cm-1 근처에서 ??SO2- Stretching vibration, SO3H 그룹의 Stretching vibration에 의한 관능기 의한 새로운 피크가 형성된 것을 알 수 있는데, 이것이 술폰화를 입증한다. Further, when the bsPPS and the PPS peaks are compared, it can be seen that a new peak due to the functional group due to the SO 2 -stretching vibration and the stretching vibration of the SO 3 H group is formed near 1,030 and 650 cm -1 , which proves sulfonation .

따라서, PPS를 개질시켜 술폰화 고분자를 얻기 어려운 상황에서, 본 발명의 bPPS 및 bsPPS는 PPS의 브롬화를 통해 매우 효율적으로 술폰화시킬 수 있음을 보여준다. Therefore, in a situation where it is difficult to modify a PPS to obtain a sulfonated polymer, the bPPS and bsPPS of the present invention can be sulfonated very efficiently through bromination of PPS.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

Claims (15)

하기 [화학식1]로 표시되는 브롬화 폴리페닐렌설파이드.
[화학식1]
Figure pat00003

여기서, n 및 m은 몰분율로서 0보다 큰 실수이다.
A brominated polyphenylene sulfide represented by the following formula (1).
[Chemical Formula 1]
Figure pat00003

Where n and m are real numbers greater than zero as a mole fraction.
폴리페닐렌설파이드(PPS)를 용해시켜 PPS용액을 준비하는 용해단계; 및
상기 PPS용액에 포함된 PPS를 브롬화하는 브롬화단계;를 포함하는 브롬화 폴리페닐렌설파이드 제조방법.
A dissolving step of dissolving polyphenylene sulfide (PPS) to prepare a PPS solution; And
And brominating the PPS contained in the PPS solution to bromine the brominated polyphenylene sulfide.
제 2 항에 있어서,
상기 브롬화단계는 상기 PPS용액에 브롬화전구체물질을 첨가하여 반응시키는 반응단계 및 상기 반응물로부터 브롬화 폴리페닐렌설파이드(bPPS)를 얻는 단계를 포함하여 수행되는 것을 특징으로 하는 브롬화 폴리페닐렌설파이드 제조방법.
3. The method of claim 2,
Wherein the bromination step is performed by adding a brominated precursor material to the PPS solution, and reacting the brominated polyphenylene sulfide and the brominated polyphenylene sulfide to obtain brominated polyphenylene sulfide (bPPS) from the reactant.
제 3 항에 있어서,
상기 브롬화전구체물질은 N-브로모숙신이미드(NBS)인 것을 특징으로 하는 브롬화 폴리페닐렌설파이드 제조방법.
The method of claim 3,
Wherein the brominated precursor material is N-bromosuccinimide (NBS).
제 2 항에 있어서,
상기 용해단계는 상기 PPS를 1-클로로나프탈렌 및 황산과 반응시켜 수행되는 것을 특징으로 하는 브롬화 폴리페닐렌설파이드 제조방법.
3. The method of claim 2,
Wherein the dissolving step is carried out by reacting the PPS with 1-chloronaphthalene and sulfuric acid.
하기 [화학식2]로 표시되는 브롬화 및 술폰화 폴리페닐렌설파이드.
[화학식2]
Figure pat00004

여기서, n, m 및 L은 몰분율로서 0보다 큰 실수이다.
Brominated and sulfonated polyphenylene sulfides represented by the following formula (2).
(2)
Figure pat00004

Where n, m, and L are real numbers greater than zero as a mole fraction.
bPPS를 용해시켜 bPPS용액을 준비하는 용해단계; 및
상기 bPPS용액에 포함된 bPPS를 술폰화하는 술폰화단계;를 포함하는 브롬화 및 술폰화 폴리페닐렌설파이드 제조방법.
a dissolving step of dissolving bPPS to prepare a bPPS solution; And
And sulfonating the bPPS contained in the bPPS solution to form a sulfonated polyphenylene sulfide.
제 7 항에 있어서,
상기 술폰화단계는 상기 bPPS용액에 술폰화전구체물질을 첨가하여 반응시키는 반응단계 및 상기 반응물로부터 브롬화 및 술폰화 폴리페닐렌설파이드(bsPPS)를 얻는 단계를 포함하여 수행되는 것을 특징으로 하는 브롬화 및 술폰화 폴리페닐렌설파이드 제조방법.
8. The method of claim 7,
Wherein the sulfonation step is carried out comprising a reaction step of adding a sulfonated precursor material to the bPPS solution and reacting and a step of obtaining brominated and sulfonated polyphenylene sulfide (bsPPS) from the reactant. Lt; / RTI >
제 8 항에 있어서,
상기 술폰화전구체물질은 할로겐화술폰산인 것을 특징으로 하는 브롬화 및 술폰화 폴리페닐렌설파이드 제조방법.
9. The method of claim 8,
Wherein the sulfonated precursor material is a halogenated sulfonic acid. ≪ RTI ID = 0.0 > 11. < / RTI >
제 9 항에 있어서,
상기 할로겐화술폰산은 ClSO3H, (CH3)3SiSO3Cl, (CF3)3SiSO3Cl로 구성된 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 브롬화 및 술폰화 폴리페닐렌설파이드 제조방법.
10. The method of claim 9,
Wherein the halogenated sulfonic acid is at least one selected from the group consisting of ClSO 3 H, (CH 3 ) 3 SiSO 3 Cl, and (CF 3 ) 3 SiSO 3 Cl.
제 7 항에 있어서,
상기 용해단계는 상기 bPPS를 클로로포름과 반응시켜 수행되는 것을 특징으로 하는 브롬화 및 술폰화 폴리페닐렌설파이드 제조방법.
8. The method of claim 7,
Wherein said dissolving step is carried out by reacting said bPPS with chloroform.
제 6 항의 브롬화 및 술폰화 폴리페닐렌설파이드(bsPPS) 또는 제 7 항 내지 제 11 항 중 어느 한 항의 제조방법으로 제조된 bsPPS를 포함하는 양이온고분자전해질막.
A cationic polyelectrolyte membrane comprising the brominated and sulfonated polyphenylene sulfide (bsPPS) of claim 6 or the bsPPS produced by the process of any one of claims 7 to 11.
제 12 항의 양이온고분자전해질막을 포함하는 에너지저장장치.
An energy storage device comprising the cationic polymer electrolyte membrane of claim 12.
제 13 항에 있어서,
상기 에너지저장장치는 레독스흐름전지인 것을 특징으로 하는 에너지저장장치.
14. The method of claim 13,
Wherein the energy storage device is a redox flow battery.
제 12 항의 양이온고분자전해질막을 포함하는 수처리장치.12. A water treatment apparatus comprising the cationic polymer electrolyte membrane of claim 12.
KR1020160149248A 2016-11-10 2016-11-10 Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same KR101995039B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160149248A KR101995039B1 (en) 2016-11-10 2016-11-10 Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160149248A KR101995039B1 (en) 2016-11-10 2016-11-10 Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190047966A Division KR102089236B1 (en) 2019-04-24 2019-04-24 Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same

Publications (2)

Publication Number Publication Date
KR20180052208A true KR20180052208A (en) 2018-05-18
KR101995039B1 KR101995039B1 (en) 2019-07-01

Family

ID=62453780

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160149248A KR101995039B1 (en) 2016-11-10 2016-11-10 Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same

Country Status (1)

Country Link
KR (1) KR101995039B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102442677B1 (en) * 2021-10-28 2022-09-13 대창이엔지 주식회사 Sealer composition for coating surface and injecting into joint and crack part of asphalt concrete road and constructing method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077413A (en) * 2002-03-25 2003-10-01 스미또모 가가꾸 고오교오 가부시끼가이샤 Aromatic polymer, method for producing the same and uses thereof
JP2005113051A (en) * 2003-10-09 2005-04-28 Kaneka Corp Sulfonic acid group-containing polyphenylene sulfide powder
KR101494289B1 (en) * 2014-08-20 2015-02-17 전남대학교산학협력단 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077413A (en) * 2002-03-25 2003-10-01 스미또모 가가꾸 고오교오 가부시끼가이샤 Aromatic polymer, method for producing the same and uses thereof
JP2005113051A (en) * 2003-10-09 2005-04-28 Kaneka Corp Sulfonic acid group-containing polyphenylene sulfide powder
KR101494289B1 (en) * 2014-08-20 2015-02-17 전남대학교산학협력단 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102442677B1 (en) * 2021-10-28 2022-09-13 대창이엔지 주식회사 Sealer composition for coating surface and injecting into joint and crack part of asphalt concrete road and constructing method using the same

Also Published As

Publication number Publication date
KR101995039B1 (en) 2019-07-01

Similar Documents

Publication Publication Date Title
Xi et al. Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery
Shi et al. Polymer electrolyte membranes for vanadium redox flow batteries: fundamentals and applications
Chen et al. Synthesis and properties of novel sulfonated poly (arylene ether sulfone) ionomers for vanadium redox flow battery
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
Bhushan et al. High-performance membrane for vanadium redox flow batteries: Cross-linked poly (ether ether ketone) grafted with sulfonic acid groups via the spacer
JP5740030B2 (en) Copolymer of sulfonated polyethersulfone containing hydroxy group and method for producing the same, polymer electrolyte membrane for fuel cell, and membrane electrode assembly including the same
CN107394240B (en) Preparation method and application of sulfonated polyaryletherketone ion exchange membrane
US20070048579A1 (en) Development of novel proton-conductive polymers for proton exchange membrane fuel cell (PEMFC) technology
Cai et al. Proton exchange membranes containing densely alkyl sulfide sulfonated side chains for vanadium redox flow battery
Zhang et al. Sulfonated poly (ether ether ketone) membrane for quinone-based organic flow batteries
Yoon et al. Synthesis and characterization of sulfonated poly (arylene ether sulfone) ionomers incorporating perfluorohexylene units for DMFC membranes
ul Imaan et al. In-situ preparation of PSSA functionalized ZWP/sulfonated PVDF composite electrolyte as proton exchange membrane for DMFC applications
JP6698148B2 (en) Fluorine-based nanocomposite membrane containing polyhedral oligomeric silsesquioxane having a proton donor and a proton acceptor, and method for producing the same
KR101646661B1 (en) Method for Manufacturing Enhanced Ion Exchange Membrane and for Application of the same
KR101995039B1 (en) Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same
US20170200962A1 (en) Nanocomposite membrane comprising polyhedral oligomeric silsesquioxane having sulfonic acid groups and method for manufacturing the same
KR102089236B1 (en) Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same
Cai et al. Preparation and properties of sulfonated poly (aryl ether sulfone) s proton exchange membranes based on amino graft for vanadium flow battery
KR102105662B1 (en) Sulfonated polyphenylene sulfide electrolyte membrane and process for producing the same
KR20160091154A (en) Vanadium Redox flow battery comprising sulfonated polyetheretherketone membrane
KR20150142885A (en) Sulfonated polyphenylene polymer containing n-methylisatin
KR101785012B1 (en) Ion-exchnage Membrane
CN115746560B (en) Amphiphilic alcohol self-assembly induced sulfonated polybenzimidazole ion exchange composite membrane and preparation method thereof
KR102608992B1 (en) Anion conducting polymer having rigid main-chain with functional side-chain and preparation method thereof
CN110010942B (en) Composite proton exchange membrane and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
A107 Divisional application of patent
GRNT Written decision to grant