KR102089236B1 - Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same - Google Patents

Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same Download PDF

Info

Publication number
KR102089236B1
KR102089236B1 KR1020190047966A KR20190047966A KR102089236B1 KR 102089236 B1 KR102089236 B1 KR 102089236B1 KR 1020190047966 A KR1020190047966 A KR 1020190047966A KR 20190047966 A KR20190047966 A KR 20190047966A KR 102089236 B1 KR102089236 B1 KR 102089236B1
Authority
KR
South Korea
Prior art keywords
pps
polyphenylene sulfide
brominated
bpps
present
Prior art date
Application number
KR1020190047966A
Other languages
Korean (ko)
Other versions
KR20190045137A (en
Inventor
정호영
신동석
노현준
강경석
손원근
최진혁
Original Assignee
한국전력공사
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사, 전남대학교 산학협력단 filed Critical 한국전력공사
Priority to KR1020190047966A priority Critical patent/KR102089236B1/en
Publication of KR20190045137A publication Critical patent/KR20190045137A/en
Application granted granted Critical
Publication of KR102089236B1 publication Critical patent/KR102089236B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0286Chemical after-treatment
    • C08G75/029Modification with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • Y02E60/528

Abstract

본 발명은 양이온전도성고분자 및 그 제조방법에 대한 것으로, 보다 구체적으로는 방향족 탄화수소계 고분자인 폴리페닐렌설파이드(PPS)를 개질시켜 형성된 신규고분자물질 및 그 제조방법에 관한 것이다.The present invention relates to a cationically conductive polymer and a method for manufacturing the same, and more particularly, to a novel polymer material formed by modifying an aromatic hydrocarbon-based polymer, polyphenylene sulfide (PPS), and a method for manufacturing the same.

Description

폴리페닐렌설파이드 기반 브롬화 폴리페닐렌설파이드 및 그 제조방법{Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same}Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same}

본 발명은 양이온전도성고분자 및 그 제조방법에 대한 것으로, 보다 구체적으로는 방향족 탄화수소계 고분자인 폴리페닐렌설파이드(PPS)를 개질시켜 형성된 신규고분자물질 및 그 제조방법에 관한 것이다.The present invention relates to a cationically conductive polymer and a method for manufacturing the same, and more particularly, to a novel polymer material formed by modifying an aromatic hydrocarbon-based polymer, polyphenylene sulfide (PPS), and a method for manufacturing the same.

에너지 효율이나 친환경적인 새로운 2차 전지가 주목을 끌고 있는데, 특히, 풍력 등의 자연 에너지를 저장하기 위해 대형의 2차 전지가 강하게 요구 되고 있다. 그 중에서, 레독스 흐름전지는 충ㅇ방전 사이클 내성이나 안전성이 우수하기 때문에 대형 2차전지에 적합하다.Energy-efficient or eco-friendly new secondary batteries are attracting attention. In particular, large-sized secondary batteries are strongly required to store natural energy such as wind power. Among them, the redox flow battery is suitable for large-sized secondary batteries because of its excellent charge and discharge cycle resistance and safety.

현재 이온 교환막을 산업분야의 적용한 예로서는 탈염 및 정제를 위한 전기투석공정과 물 분해 전기 투석 공정 그리고 산성페액에서 산을 회수하는 확산투석 및 초 순수 생산을 위한 전기탈염공정 등을 들 수 있다. 특히 최근에 이온 교환막이 고분자 전해질 연료전지나 레독스 흐름전지의 우수한 성능을 나타낼 수 있는 가능성을 시사함에 따라 이온 교환막에 대한 관심 증가되고 있다.Examples of the current application of the ion exchange membrane to the industrial field include an electrodialysis process for desalination and purification, an electrolysis process for water decomposition, and a diffusion dialysis process for recovering acid from an acidic waste solution, and an electrolysis process for ultra pure production. In particular, interest in ion-exchange membranes has increased in recent years, suggesting the possibility that the ion-exchange membranes may exhibit excellent performance in polymer electrolyte fuel cells or redox flow cells.

한편, 연료전지에서 전기를 발생시키는 원리는 연료 극을 통해 연료를 공급하면 연료는 수소이온과 전자로 나눠지고, 수소이온은 전해질 막을 통해 공기 극에서 공급하는 산소와 결합하여 물을 생성한다. 상기 연료극의 연료에서 분리 되어진 전자는 외부회로를 통해 전류를 발생시키는 전기화학반응이 진행되어 전기와 열이 발생된다.On the other hand, the principle of generating electricity in the fuel cell is that when fuel is supplied through the fuel pole, the fuel is divided into hydrogen ions and electrons, and hydrogen ions combine with oxygen supplied from the air pole through the electrolyte membrane to produce water. The electrons separated from the fuel of the anode undergo an electrochemical reaction that generates current through an external circuit to generate electricity and heat.

상기의 연료전지 중에서 고분자 전해질 연료전지, 직접메탄올을 연료전지, 직접붕소수소화물연료전지는 전해질로 양이온 또는 수소이온전도 전해질막인 양이온 교환 막을 채용하게 된다. 여기서 직접붕소수소화물연료전지는 양이온 교환 막 및 음이온 교환 막을 모두 사용가능하다.Among the fuel cells, a polymer electrolyte fuel cell, a direct methanol fuel cell, and a direct boron hydride fuel cell employ a cation exchange membrane that is a cation or hydrogen ion conducting electrolyte membrane as an electrolyte. Here, the direct boron hydride fuel cell can use both a cation exchange membrane and an anion exchange membrane.

일반적으로, 레독스 흐름전지는 펌프의 순환에 따라서 황산 바나듐 용액중의 바나듐의 산화 환원반응을 일으키고 에너지를 얻는 전지로써, 레독스 흐름전지의 기본 구조는 전해액을 저장하는 탱크와 전해액을 순환시키는 펌프, 양극과 음극 및 두 전극 사이에 위치하는 고분자 전해질 막으로 구성된다. 고분자 전해질 막은 양극간의 이온 밸런스를 지키는 양이온 또는 음이온 교환막이 사용되고 있다.In general, a redox flow battery is a battery that causes an oxidation-reduction reaction of vanadium in a vanadium sulfate solution and obtains energy according to the circulation of a pump. The basic structure of a redox flow battery is a tank that stores the electrolyte and a pump that circulates the electrolyte , Consisting of a polymer electrolyte membrane located between the anode and cathode and the two electrodes. As the polymer electrolyte membrane, a cation or anion exchange membrane that maintains ion balance between the anodes is used.

전극 소재는 카본펠트 전극과 비활성 전극으로 구분되고, 활물질은 V, Fe, Cr, Cu, Ti, Mn 및 Sn등의 전의 금속을 가한 산성 수용액에 녹여 사용된다. 이때 사용되는 고분자막은 이온의 선택 투과성이 높은 것을 사용하는 것이 바람직하며, 상용화된 고분자막으로는 미국 듀폰사의 나피온(Nafion), 일본 아사이글라스사의 CMV, AMV, DMV등을 들 수 있다. 이들 중에서 화학적 안정성이 비교적 우수하고, 수소 이온 전도도가 높은 과불화수소계 고분자인 나피온이 성능이 우수하지만, 단가가 높고, 치수 안정성이 떨어지며, 투과도가 높다는 단점 때문에 본격적으로 널리 실용화되지 못하고 있다. 구체적으로는 충??방전 중에 바나듐 이온도 통하여 버리기 때문에, 전해액중의 활물질량이 감소하고 충ㅇ방전 사이클이 현저하게 악화해 버리며, 폐기시의 환경 부하가 크다는 문제점도 있다.The electrode material is divided into a carbon felt electrode and an inert electrode, and the active material is dissolved in an acidic aqueous solution containing all metals such as V, Fe, Cr, Cu, Ti, Mn, and Sn. At this time, it is preferable to use a polymer membrane having a high ion permeability, and commercially available polymer membranes include Nafion of DuPont, USA, CMV, AMV, and DMV of Asai Glass of Japan. Among them, Nafion, a polymer having relatively good chemical stability and high hydrogen ion conductivity, is a hydrogen perfluoride-based polymer, but has a high cost, poor dimensional stability, and high permeability. Specifically, since vanadium ions are also discarded during charging and discharging, there is also a problem that the amount of active material in the electrolyte decreases, the charge and discharge cycles deteriorate significantly, and the environmental load upon disposal is large.

이러한 기존 상용화 고분자막의 문제점들을 해결하기 위해 상대적으로 투과도가 낮은 새로운 탄화수소계 수소이온 전도성 물질에 대한 연구가 활발히 진행되고 있으며, 대표적인 예로 폴리이미드(polyimide), 폴리에테르에 테르케톤(polyetheretherketone), 폴리에테르술폰(polyethersulfone), 폴리벤지이미다졸 (polybenzimidazole) 등이 있다.In order to solve the problems of the existing commercially available polymer membranes, research into new hydrocarbon-based conductive materials having relatively low permeability has been actively conducted, and examples thereof include polyimide, polyetheretherketone, and polyether. Polyethersulfone, polybenzimidazole, and the like.

하지만 이러한 탄화수소계 고분자 전해질 막 역시 수화시 함수량이 높아 치수 안정성이 떨어질 뿐만 아니라, 막/ 전극 계면 안정성이 낮아 레독스 흐름 전지(RFB)의 우수한 성능을 구현하기 어려운 문제점이 있으며, 이를 개선하기 위한 이온 전도성 및 투과도 특성이 향상된 고분자 전해질 막이 개발될 필요성이 있다. 더불어 수 처리 장치, 특히 내구성 향상을 위해 양이온 고분자 기술 개발이 시급히 요구되고 있는 실정이다.However, these hydrocarbon-based polymer electrolyte membranes also have a high water content during hydration, resulting in poor dimensional stability, and low membrane / electrode interface stability, making it difficult to realize excellent performance of a redox flow battery (RFB), and ion to improve them There is a need to develop a polymer electrolyte membrane with improved conductivity and permeability characteristics. In addition, development of cationic polymer technology is urgently required to improve water treatment devices, especially durability.

본 발명자는 상기와 같은 문제점을 해결하기 위해 연구 노력한 결과, 폴리페닐렌설파이드(PPS)를 기반으로 술폰화고분자를 제조하는 기술을 개발함으로써 본 발명을 완성하였다. The present inventor completed the present invention by developing a technique for preparing sulfonated polymers based on polyphenylene sulfide (PPS) as a result of research efforts to solve the above problems.

따라서, 본 발명의 목적은 PPS를 개질시켜 형성된 PPS 기반 술폰화고분자 및 그 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a PPS-based sulfonated polymer formed by modifying PPS and a method for manufacturing the same.

본 발명의 다른 목적은 PPS 기반 술폰화고분자를 제조하기 위한 중간체인 브롬화 폴리페닐렌설파이드(bPPS) 및 그 제조방법을 제공하는 것이다. Another object of the present invention is to provide a brominated polyphenylene sulfide (bPPS), which is an intermediate for producing a PPS-based sulfonated polymer, and a method for manufacturing the same.

본 발명의 또 다른 목적은 PPS 기반 술폰화고분자를 포함하여 상용화된 고분자막 대비 가격경쟁력의 확보와 동시에 치수안정성, 기계적, 열적 및 화학적 안정성이 우수한 양이온전도성고분자전해질막을 제공하는 것이다.Another object of the present invention is to provide a cationic conductive polymer electrolyte membrane having excellent dimensional stability, mechanical, thermal, and chemical stability while securing price competitiveness compared to a commercially available polymer membrane including a PPS-based sulfonated polymer.

본 발명의 또 다른 목적은 양이온전도성 고분자전해질막을 포함함으로써 상용화된 막과 동등 이상의 수준을 유지하는 양이온전도성 교환막을 포함함으로써 구동시 안정성 또한 우수하여 시스템의 장기 안정성이 크게 개선될 수 있는 에너지저장장치 및 수처리장치를 제공하는 것이다.Another object of the present invention is to include a cation-conducting polymer electrolyte membrane, including a cation-conducting exchange membrane that maintains a level equal to or higher than that of a commercially available membrane. It is to provide a water treatment device.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the objects mentioned above, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.

상술된 본 발명의 목적을 달성하기 위해, 본 발명은 하기 [화학식1]로 표시되는 브롬화 폴리페닐렌설파이드를 제공한다.In order to achieve the object of the present invention described above, the present invention provides a brominated polyphenylene sulfide represented by the following [Formula 1].

[화학식1][Formula 1]

Figure 112019042346711-pat00001
Figure 112019042346711-pat00001

여기서, n 및 m은 몰분율로서 0보다 큰 실수이다. Here, n and m are real numbers greater than 0 as a mole fraction.

또한, 본 발명은 폴리페닐렌설파이드(PPS)를 용해시켜 PPS용액을 준비하는 용해단계; 및 상기 PPS용액에 포함된 PPS를 브롬화하는 브롬화단계;를 포함하는 브롬화 폴리페닐렌설파이드 제조방법을 제공한다.In addition, the present invention is a dissolution step of preparing a PPS solution by dissolving polyphenylene sulfide (PPS); It provides a brominated polyphenylene sulfide production method comprising; and a bromination step of brominating the PPS contained in the PPS solution.

바람직한 실시예에 있어서, 상기 브롬화단계는 상기 PPS용액에 브롬화전구체물질을 첨가하여 반응시키는 반응단계 및 상기 반응물로부터 브롬화 폴리페닐렌설파이드(bPPS)를 얻는 단계를 포함하여 수행된다. In a preferred embodiment, the bromination step is performed by adding a brominated precursor material to the PPS solution to react and obtaining a brominated polyphenylene sulfide (bPPS) from the reactant.

바람직한 실시예에 있어서, 상기 브롬화전구체물질은 N-브로모숙신이미드(NBS)이다. In a preferred embodiment, the brominated precursor material is N-bromosuccinimide (NBS).

바람직한 실시예에 있어서, 상기 용해단계는 상기 PPS를 1-클로로나프탈렌 및 황산과 반응시켜 수행된다.In a preferred embodiment, the dissolving step is carried out by reacting the PPS with 1-chloronaphthalene and sulfuric acid.

또한, 본 발명은 상술된 브롬화 폴리페닐렌설파이드(bPPS) 또는 상술된 어느 하나의 제조방법으로 제조된 bPPS를 포함하는 양이온고분자전해질막을 제공한다.In addition, the present invention provides a cationic polymer electrolyte membrane comprising a brominated polyphenylene sulfide (bPPS) or bPPS prepared by any one of the above-described manufacturing methods.

또한, 본 발명은 상술된 양이온고분자전해질막을 포함하는 에너지저장장치를 제공한다.In addition, the present invention provides an energy storage device including the cationic polymer electrolyte membrane described above.

바람직한 실시예에 있어서, 상기 에너지저장장치는 레독스흐름전지이다.In a preferred embodiment, the energy storage device is a redox flow battery.

또한, 본 발명은 상술된 양이온고분자전해질막을 포함하는 수처리장치를 제공한다.In addition, the present invention provides a water treatment device comprising the cationic polymer electrolyte membrane described above.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명의 PPS 기반 술폰화고분자는 PPS를 개질시켜 형성되는데, 특히 브롬화 폴리페닐렌설파이드(bPPS)는 PPS 기반 술폰화고분자를 제조하기 위한 중간체로서 이를 통해 PPS의 술폰화효율을 현저하게 향상시킬 수 있다. First, the PPS-based sulfonated polymer of the present invention is formed by modifying PPS. In particular, brominated polyphenylene sulfide (bPPS) is an intermediate for preparing PPS-based sulfonated polymers, thereby significantly improving the sulfonation efficiency of PPS. I can do it.

또한, 본 발명의 양이온전도성고분자전해질막에 의하면 PPS 기반 술폰화고분자를 포함하여 상용화된 고분자막 대비 가격경쟁력의 확보와 동시에 치수안정성, 기계적, 열적 및 화학적 안정성이 우수하다. In addition, the cationic conductive polymer electrolyte membrane of the present invention is excellent in dimensional stability, mechanical, thermal and chemical stability while securing price competitiveness compared to commercially available polymer membranes including PPS-based sulfonated polymers.

또한, 본 발명의 에너지저장장치 및 수처리장치에 의하면 양이온전도성 고분자전해질막을 포함함으로써 상용화된 막과 동등 이상의 수준을 유지하는 양이온전도성 교환막을 포함함으로써 구동시 안정성 또한 우수하여 시스템의 장기 안정성이 크게 개선될 수 있다.In addition, according to the energy storage device and the water treatment device of the present invention, a cationic conductive exchange membrane that maintains a level equal to or higher than that of a commercially available membrane by including a cationic conductive polymer electrolyte membrane is also excellent in stability during operation, thereby greatly improving long-term stability of the system. You can.

본 발명의 이러한 기술적 효과는 이상에서 언급한 범위만으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 실시를 위한 구체적 내용의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 효과 역시 당연히 포함된다.The technical effects of the present invention are not limited to the above-mentioned ranges, and even if not explicitly mentioned, the effects of the invention that can be recognized by those skilled in the art from the description of specific contents for carrying out the invention described below are also Of course it is included.

도 1은 공지된 바나듐계 레독스 흐름전지의 개략도이다.
도 2은 PPS 기반의 브롬화 폴리페닐렌설파이드(bPPS)를 제조하는 공정개략도이다.
도 3은 bPPS로부터 bsPPS 고분자를 제조하는 공정개략도이다.
도 4는 PPS, bPPS, bsPPS의 FT-IR을 측정한 결과그래프이다.
1 is a schematic diagram of a known vanadium-based redox flow battery.
Figure 2 is a process schematic diagram for producing a brominated polyphenylene sulfide (bPPS) based on PPS.
3 is a process schematic diagram of manufacturing a bsPPS polymer from bPPS.
4 is a graph showing the results of measuring FT-IR of PPS, bPPS, and bsPPS.

본 발명에서 사용하는 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, terms such as “include” or “have” are intended to indicate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, or that one or more other features or It should be understood that the existence or addition possibilities of numbers, steps, actions, components, parts or combinations thereof are not excluded in advance.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. Terms, such as those defined in a commonly used dictionary, should be interpreted as having meanings consistent with meanings in the context of related technologies, and are not to be interpreted as ideal or excessively formal meanings unless explicitly defined in the present invention. Does not.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. The same reference numerals used to describe the present invention throughout the specification indicate the same components.

본 발명의 기술적 특징은 PPS를 개질시켜 형성된 PPS 기반 술폰화고분자 및 PPS 기반 술폰화고분자를 제조하기 위한 중간체로서 이를 통해 PPS의 술폰화효율을 현저하게 향상시킬 수 있는 브롬화 폴리페닐렌설파이드(bPPS)에 있다. 즉 본 발명의 신규 PPS 기반 술폰화고분자가 포함된 양이온고분자전해질막은 낮은 활물질 투과도와 양이온 전도성 및 내구성 유지되어 레독스흐름전지 및 수처리장치에 매우 적합한 특성을 갖기 때문이다.The technical feature of the present invention is an intermediate for preparing PPS-based sulfonated polymers formed by modifying PPS and PPS-based sulfonated polymers, through which brominated polyphenylene sulfide (bPPS) capable of significantly improving the sulfonation efficiency of PPS Is in That is, the new PPS-based sulfonated polymer of the present invention is because the cationic polymer electrolyte membrane has low active material permeability and cationic conductivity and durability, and thus has properties suitable for redox flow batteries and water treatment devices.

실시예 1Example 1

도 2에 도시된 공정조건에 따라 다음과 같이 반응을 수행하여 bPPS를 얻었다.According to the process conditions shown in Figure 2, bPPS was obtained by performing the reaction as follows.

1. PPS 용해단계1. PPS dissolution step

반응기 온도를 210℃로 설정하고 PPS 2.5g에 1-클로로나프탈렌 36g, 황산 6g를 투입하고 약 240분 정도 교반기로 강하게 교반하고 반응기 온도를 138℃로 냉각을 시켰다.The reactor temperature was set to 210 ° C, 1-chloronaphthalene 36g and sulfuric acid 6g were added to PPS 2.5g, and the mixture was stirred vigorously for about 240 minutes, and the reactor temperature was cooled to 138 ° C.

2. PPS 브롬화단계2. PPS bromination stage

(1) NBS 9.8g와 개시제로 아조비스이소뷰티로니드릴(Azobisisobutyronitrile, 이하 'AIBN') 0.115g을 첨가하고 약 3.5시간 동안 반응을 시켰다.(1) 9.8 g of NBS and 0.115 g of azobisisobutyronitrile (hereinafter referred to as 'AIBN') as an initiator were added and reacted for about 3.5 hours.

(2) 유기용매를 증발시키기 위해 반응기 온도를 138℃를 유지시키고, 3시간 더 반응을 시켰다.(2) In order to evaporate the organic solvent, the reactor temperature was maintained at 138 ° C., and the reaction was further performed for 3 hours.

(3) 반응이 완료된 후, 상온으로 냉각하고 반응물을 벤젠(Benzne) 500ml에 침전시켰다.(3) After the reaction was completed, it was cooled to room temperature and the reaction was precipitated in 500 ml of benzene.

(4) 상기 침전물을 이소프로필 알코올(Isopropyl alcohol, 이하 'IPA')에 넣어 다시 침전한 후 여러 번 세척을 하였다.(4) The precipitate was put in isopropyl alcohol (hereinafter referred to as 'IPA') to precipitate again, and then washed several times.

(5) 세척이 완료된 생성물을 80℃로 유지되는 건조기에서 5시간 동안 건조하여 bPPS 제조하였다.(5) bPPS was prepared by drying the product after washing for 5 hours in a dryer maintained at 80 ° C.

실시예 2Example 2

도 3에 도시된 공정조건에 따라 다음과 같이 반응을 수행하여 bsPPS를 얻었다.According to the process conditions shown in Figure 3, bsPPS was obtained by performing the reaction as follows.

1. bPPS 용해단계1. bPPS dissolution step

삼구 반응구에 실시예1에서 제조된 bPPS 2.5g 및 Chloroform 42g을 첨가하였다. To the three-necked reaction, 2.5 g of bPPS prepared in Example 1 and 42 g of Chloroform were added.

2. bPPS 슬폰화단계2. bPPS sulfonation stage

(1) 뷰렛을 활용하여 클로로술포릭산(Chlorosulfuric acid) 2.68g을 상기 반응구에 30분동안 적화하여 첨가하였다.(1) 2.68 g of chlorosulfuric acid was added dropwise to the reaction mixture for 30 minutes using a burette.

(2) 138℃에서 4시간 동안 교반하면서 반응시켰다. 그 후, 상온으로 냉각하고 DI Water 세척하였다. (2) The mixture was reacted with stirring at 138 ° C for 4 hours. Then, it was cooled to room temperature and washed with DI Water.

(3) 세척이 완료된 생성물을 80℃로 유지되는 건조기에서 5시간 동안 건조하여 bsPPS 제조하였다.(3) bsPPS was prepared by drying the product after washing for 5 hours in a dryer maintained at 80 ° C.

실험예Experimental Example

실시예1에서 제조된 bPPS 및 실시예2에서 제조된 bsPPS의 브롬화 및 술폰화여부를 확인하고자 대조군으로서 PPS를 사용하여 FT-IR로 분석하고 그 결과를 도 4에 도시하였다.In order to check whether the bPPS prepared in Example 1 and the bsPPS prepared in Example 2 were brominated and sulfonated, PPS was used as a control and analyzed by FT-IR, and the results are shown in FIG. 4.

FT-IR 데이터 분선 결과를 보여주는 도 4로부터 bPPS는 브롬기가, bsPPS는 술포닐기와 브롬기가 bsPPS내에 도입된 것을 알 수 있다.It can be seen from FIG. 4 that shows the results of FT-IR data analysis that bPPS is a bromine group, bsPPS is a sulfonyl group, and a bromine group is introduced into the bsPPS.

즉, bPPS와 PPS 피크를 비교하면, 1,300cm-1 근처에서 새로운 피크가 형성된 것을 볼 때 C-O-C 결합이 페닐링에 있는 브롬인 것을 보여주며 이것으로 브롬화 되었음을 알 수 있기 때문이다. That is, when comparing the bPPS and PPS peaks, it can be seen that the COC bond is bromine in the phenyl ring when the new peak is formed near 1,300 cm -1 , indicating that it has been brominated.

또한, bsPPS와 PPS 피크는 비교하면 1,030, 650cm-1 근처에서 ??SO2- Stretching vibration, SO3H 그룹의 Stretching vibration에 의한 관능기 의한 새로운 피크가 형성된 것을 알 수 있는데, 이것이 술폰화를 입증한다. In addition, when comparing the bsPPS and PPS peaks, it can be seen that a new peak was formed by a functional group due to ?? SO 2 -Stretching vibration, Stretching vibration of the SO 3 H group near 1,030, 650 cm -1 , which proves sulfonation. .

따라서, PPS를 개질시켜 술폰화 고분자를 얻기 어려운 상황에서, 본 발명의 bPPS 및 bsPPS는 PPS의 브롬화를 통해 매우 효율적으로 술폰화시킬 수 있음을 보여준다. Accordingly, it is shown that in a situation in which it is difficult to obtain a sulfonated polymer by modifying PPS, the bPPS and bsPPS of the present invention can be sulfonated very efficiently through bromination of PPS.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.The present invention has been shown and described with reference to preferred embodiments as described above, but is not limited to the above-described embodiments and is within the scope of the present invention to those skilled in the art to which the present invention pertains. By this, various changes and modifications will be possible.

Claims (9)

하기 [화학식1]로 표시되는 브롬화 폴리페닐렌설파이드.
[화학식1]
Figure 112019042346711-pat00002

여기서, n 및 m은 몰분율로서 0보다 큰 실수이다.
Brominated polyphenylene sulfide represented by the following [Formula 1].
[Formula 1]
Figure 112019042346711-pat00002

Here, n and m are real numbers greater than 0 as a mole fraction.
폴리페닐렌설파이드(PPS)를 용해시켜 PPS용액을 준비하는 용해단계; 및
상기 PPS용액에 포함된 PPS를 브롬화하는 브롬화단계;를 포함하는 브롬화 폴리페닐렌설파이드 제조방법.
A dissolution step of preparing a PPS solution by dissolving polyphenylene sulfide (PPS); And
Brominated polyphenylene sulfide production method comprising a; bromination step of brominating the PPS contained in the PPS solution.
제 2 항에 있어서,
상기 브롬화단계는 상기 PPS용액에 브롬화전구체물질을 첨가하여 반응시키는 반응단계 및 상기 반응물로부터 브롬화 폴리페닐렌설파이드(bPPS)를 얻는 단계를 포함하여 수행되는 것을 특징으로 하는 브롬화 폴리페닐렌설파이드 제조방법.
According to claim 2,
The bromination step is a method of producing a brominated polyphenylene sulfide, characterized in that it comprises a step of reacting by adding a brominated precursor to the PPS solution and obtaining a brominated polyphenylene sulfide (bPPS) from the reactant.
제 3 항에 있어서,
상기 브롬화전구체물질은 N-브로모숙신이미드(NBS)인 것을 특징으로 하는 브롬화 폴리페닐렌설파이드 제조방법.
The method of claim 3,
The brominated precursor material is N-bromosuccinimide (NBS) method for producing brominated polyphenylene sulfide.
제 2 항에 있어서,
상기 용해단계는 상기 PPS를 1-클로로나프탈렌 및 황산과 반응시켜 수행되는 것을 특징으로 하는 브롬화 폴리페닐렌설파이드 제조방법.
According to claim 2,
The dissolving step is a brominated polyphenylene sulfide production method characterized in that the PPS is carried out by reacting with 1-chloronaphthalene and sulfuric acid.
제 1 항의 브롬화 폴리페닐렌설파이드(bPPS) 또는 제 2 항 내지 제 5 항 중 어느 한 항의 제조방법으로 제조된 bPPS를 포함하는 양이온고분자전해질막.
A cationic polymer electrolyte membrane comprising the brominated polyphenylene sulfide (bPPS) of claim 1 or bPPS prepared by the method of any one of claims 2 to 5.
제 6 항의 양이온고분자전해질막을 포함하는 에너지저장장치.
An energy storage device comprising the cationic polymer electrolyte membrane of claim 6.
제 7 항에 있어서,
상기 에너지저장장치는 레독스흐름전지인 것을 특징으로 하는 에너지저장장치.
The method of claim 7,
The energy storage device is an energy storage device characterized in that the redox flow battery.
제 6 항의 양이온고분자전해질막을 포함하는 수처리장치.A water treatment device comprising the cationic polymer electrolyte membrane of claim 6.
KR1020190047966A 2019-04-24 2019-04-24 Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same KR102089236B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190047966A KR102089236B1 (en) 2019-04-24 2019-04-24 Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190047966A KR102089236B1 (en) 2019-04-24 2019-04-24 Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160149248A Division KR101995039B1 (en) 2016-11-10 2016-11-10 Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same

Publications (2)

Publication Number Publication Date
KR20190045137A KR20190045137A (en) 2019-05-02
KR102089236B1 true KR102089236B1 (en) 2020-03-16

Family

ID=66581786

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190047966A KR102089236B1 (en) 2019-04-24 2019-04-24 Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same

Country Status (1)

Country Link
KR (1) KR102089236B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494289B1 (en) * 2014-08-20 2015-02-17 전남대학교산학협력단 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4106983B2 (en) * 2002-03-25 2008-06-25 住友化学株式会社 Aromatic polymer, production method thereof and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494289B1 (en) * 2014-08-20 2015-02-17 전남대학교산학협력단 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite

Also Published As

Publication number Publication date
KR20190045137A (en) 2019-05-02

Similar Documents

Publication Publication Date Title
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
Shi et al. Polymer electrolyte membranes for vanadium redox flow batteries: fundamentals and applications
Xi et al. Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery
Chen et al. Synthesis and properties of novel sulfonated poly (arylene ether sulfone) ionomers for vanadium redox flow battery
EP2490279A1 (en) Aromatic polymer ion exchange membrane and its complex membrane and its application for acidic electrolyte flow energy storage battery
CN105453321B (en) Flow battery with the hydrated ion exchange membrane for possessing maximum waters cluster size
CN102949943B (en) Hybrid inorganic-organic sulfonated poly aryl ether ketone PEM and preparation method thereof
CN107394240B (en) Preparation method and application of sulfonated polyaryletherketone ion exchange membrane
JP4861608B2 (en) Composite electrolyte membrane and fuel cell employing the same
WO2016095237A1 (en) N1-substituted imidazole compound, and alkaline anion exchange membrane and preparation
Zhang et al. Sulfonated poly (ether ether ketone) membrane for quinone-based organic flow batteries
CN107383404A (en) A kind of preparation method of fluorine-containing branched sulphonated polyimides proton conductive membrane
JP6599991B2 (en) POLYMER ELECTROLYTE MEMBRANE, ELECTROCHEMICAL AND FLOW CELL CONTAINING THE SAME, METHOD FOR PRODUCING POLYMER ELECTROLYTE MEMBRANE, AND ELECTROLYTE SOLUTION FOR FLOW Batteries
Adeniran et al. Recent advances in aqueous redox flow battery research
KR101952920B1 (en) Polyphenylene-based anion exchange material, preparation method thereof and uses thereof
JP6698148B2 (en) Fluorine-based nanocomposite membrane containing polyhedral oligomeric silsesquioxane having a proton donor and a proton acceptor, and method for producing the same
KR102089236B1 (en) Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same
KR101995039B1 (en) Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same
Cai et al. Preparation and properties of sulfonated poly (aryl ether sulfone) s proton exchange membranes based on amino graft for vanadium flow battery
CN102863636B (en) Method for preparing fluorine-containing polyarylether composite anion-exchange membrane by in-situ polymerization process
KR20160006819A (en) Sulfonated nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with sulfonic acid group and Method of preparing the same
KR20160091154A (en) Vanadium Redox flow battery comprising sulfonated polyetheretherketone membrane
KR102105662B1 (en) Sulfonated polyphenylene sulfide electrolyte membrane and process for producing the same
Ban et al. Efficient and durable vanadium flow batteries enabled by high-performance fluorinated poly (aryl piperidinium) membranes
Williams et al. Leveraging sulfonated poly (ether ether ketone) for superior performance in zinc iodine redox flow batteries

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant