KR20180042056A - Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst - Google Patents

Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst Download PDF

Info

Publication number
KR20180042056A
KR20180042056A KR1020160134657A KR20160134657A KR20180042056A KR 20180042056 A KR20180042056 A KR 20180042056A KR 1020160134657 A KR1020160134657 A KR 1020160134657A KR 20160134657 A KR20160134657 A KR 20160134657A KR 20180042056 A KR20180042056 A KR 20180042056A
Authority
KR
South Korea
Prior art keywords
compound
metal organic
zinc
catalyst
containing metal
Prior art date
Application number
KR1020160134657A
Other languages
Korean (ko)
Other versions
KR101855297B1 (en
Inventor
박대원
장종산
Original Assignee
부산대학교 산학협력단
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단, 한국화학연구원 filed Critical 부산대학교 산학협력단
Priority to KR1020160134657A priority Critical patent/KR101855297B1/en
Priority to PCT/KR2017/002115 priority patent/WO2018074675A1/en
Publication of KR20180042056A publication Critical patent/KR20180042056A/en
Application granted granted Critical
Publication of KR101855297B1 publication Critical patent/KR101855297B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates

Abstract

The present invention relates to a preparation method of a five-membered ring carbonate compound, the preparation method comprising making carbon dioxide and an epoxy compound react with each other under relatively mild reaction conditions by using a metal organic framework that is a novel zinc-containing porous coordination compound as a catalyst. A zinc-containing metal organic framework compound is a porous coordination compound which is synthesized by using zincfluoride tetrahydrate and titaniumisopropoxide as a metal source forming a framework, and using 1,2,4-triazole as an organic compound. Since ZnTi(taz) which is the zinc-containing metal organic framework compound according to the present invention has a regular structure and a large surface area, and is a stable porous catalyst, the zinc-containing metal organic framework compound according to the present invention enables the five-membered ring carbonate compound to be synthesized at a high yield under relatively low pressure and temperature conditions. Further, the zinc-containing metal organic framework compound according to the present invention has advantages that, when using the zinc-containing metal organic framework compound as the catalyst in a synthesis reaction of the five-membered ring carbonate compound, zinc and titanium atom can be easily interacted with oxygen atom of an epoxy compound as Lewis acid, and nitrogen atom of triazole promotes adsorption of carbon dioxide to obtain excellent reactivity.

Description

신규한 아연 함유 금속유기골격체 화합물 및 이를 촉매로 사용한 5원환 탄산염 화합물의 제조방법{Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst}[0001] The present invention relates to a novel zinc-containing metal organic skeleton compound and a 5-membered cyclic carbonate compound using the same as a catalyst.

본 발명은 신규한 다공성 배위화합물인 아연 함유 금속유기골격체(metal organic frameworks)를 촉매로 이용하여 이산화탄소와 에폭시화합물을 낮은 온도와 압력 조건하에서 5원환 탄산염 화합물을 용이하게 합성시킬 수 있는 것을 특징으로 하는 신규한 아연 함유 금속유기골격체 화합물 및 이를 촉매로 사용한 5원환 탄산염 화합물의 제조방법에 관한 것이다.The present invention is characterized in that carbon dioxide and an epoxy compound can be easily synthesized in a 5-membered ring carbonate compound under low temperature and pressure conditions by using zinc-containing metal organic frameworks as a catalyst, which is a novel porous coordination compound Containing metal organic skeleton compound and a process for producing a 5-membered cyclic carbonate compound using the same as a catalyst.

일반적으로 이산화탄소를 유기합성의 원료로 사용하는 기술은 오래전부터 연구되어 왔으며, 특히 에폭시화합물과 이산화탄소를 반응시켜 5원환 탄산염 화합물을 합성하는 기술은 기능성 고분자 재료의 단량체 제조 측면에서 많은 관심을 끌고 있다.In general, the technique of using carbon dioxide as a raw material for organic synthesis has been studied for a long time. Especially, a technique of synthesizing a 5-membered ring carbonate compound by reacting an epoxy compound with carbon dioxide attracts much attention in terms of manufacturing monomers for functional polymer materials.

종래에는 5원환 탄산염 화합물을 높은 수율로 얻기 위해서 디올(diol)과 포스겐(phosgene)을 사용하는 방법을 이용하였으나 포스겐의 유독성으로 인해 취급하기가 곤란하여 공정상 많은 어려움이 따른다. 그러므로 안전한 조건에서 5원환 탄산염 화합물을 높은 수율로 합성하는 방법이 절실히 요구되고 있는 실정이다.Conventionally, diol and phosgene are used in order to obtain a 5-membered ring carbonate compound in a high yield, but it is difficult to handle due to the toxicity of phosgene, which causes a lot of difficulties in the process. Therefore, a method for synthesizing a 5-membered ring carbonate compound at a high yield under a safe condition is desperately required.

한편, 5원환 탄산염 화합물을 고수율로 합성하는 방법의 기술들을 보면, 특허문헌 1에는 알킬아민, 디알킬아민, 트리에틸아민 등의 아민류를 촉매로 사용하여 이산화탄소와 에틸렌 옥사이드 또는 프로필렌 옥사이드로부터 에틸렌 카보네이트 또는 프로필렌 카보네이트를 합성하는 방법이 개시되어 있다. 그러나 이러한 합성반응의 조건은 반응압력이 34 기압 이상, 반응온도가 100~400 ℃로 반응조건이 높은 편이다.On the other hand, Patent Literature 1 discloses a technique of synthesizing a 5-membered ring carbonate compound at a high yield by using amines such as alkylamine, dialkylamine, triethylamine, etc. as a catalyst to convert carbon dioxide and ethylene oxide or propylene oxide into ethylene carbonate Or propylene carbonate is disclosed. However, the conditions of the synthesis reaction are higher than the reaction pressure of 34 atm and the reaction temperature of 100 ~ 400 ° C.

또한 비특허문헌 1에서 소가(K. Soga) 등은 유기금속 화합물인 ZnEt2, AlCl3, Ti(OBu)4 등을 촉매로 사용하여 40 기압, 120~180 ℃에서 프로필렌 옥사이드와 이산화탄소를 3일 동안 반응시켜 분자량 1800~3600 정도의 폴리프로필렌 카보네이트를 합성하였다고 보고한 것이 알려져 있다.In addition, there is a cow in the Non-Patent Document 1 (K. Soga) 3 and the like propylene oxide and carbon dioxide from the organic metal compound, ZnEt 2, AlCl 3, Ti ( OBu) 4 , such as the use as a catalyst of 40 atm, 120 ~ 180 ℃ Day to produce a polypropylene carbonate having a molecular weight of about 1800 to 3600.

비특허문헌 2에서 키하라(N. Kihara) 등은 폴리글리시틸 메타크릴레이트를 기상의 이산화탄소와 120~160 ℃에서 반응시켜 폴리[(2-옥소-1,3-디옥소란-4-일)메틸 메타크릴레이트)](이하, '폴리 DOMA'라 함)를 합성하였다고 보고한 것이 알려져 있으며, 또한 비특허문헌 3에서 폴리글리시딜 메타크릴레이트와 상압의 이산화탄소를 알칼리 금속 할로겐 화합물인 NaI와 트리페닐포스핀 혼합한 것을 촉매로 사용하여 100 ℃에서 반응시켜 폴리DOMA를 얻었다는 보고도 알려져 있다.In Non-Patent Document 2, N. Kihara et al. Have reported that polyglycidyl methacrylate reacts with gaseous carbon dioxide at 120-160 ° C to form poly [(2-oxo-1,3-dioxolan- (Hereinafter referred to as " poly (DOMA) ") was synthesized. In addition, in Non-Patent Document 3, polyglycidyl methacrylate and carbon dioxide at normal pressure were replaced with an alkali metal halide compound It is also known that a mixture of NaI and triphenylphosphine is used as a catalyst and reacted at 100 ° C to obtain poly DOMA.

또한 비특허문헌 4에서 니시쿠보(T. Nishikubo) 등은 스티렌, 디비닐벤젠, 비닐벤젠클로라이드를 동시에 공중합시켜 제조한 폴리스티렌에 4급 염화암모늄 혹은 4급 염화인염을 부착시겨 촉매로 사용하고, 톨루엔을 용매로 사용하여 상압, 80 ℃에서 이산화탄소와 페닐글리시딜 에테르를 24 시간 동안 반응시킨 결과 페녹시메틸 에틸렌 카보네이트의 수율을 30~95% 얻은 것으로 알려져 있지만 이 경우에도 촉매의 구조가 너무 조밀하여 확산저항을 유발함으로써 반응물이 촉매의 활성점에 접근하기가 어렵게 되므로 반응수율이 낮고 반응에 장시간이 소요되는 단점이 있었다.Also, in Non-Patent Document 4, T. Nishikubo et al. Used polystyrene prepared by co-copolymerizing styrene, divinylbenzene and vinylbenzene chloride simultaneously with quaternary ammonium chloride or quaternary ammonium chloride salt as a catalyst , And toluene was used as a solvent and carbon dioxide and phenylglycidyl ether were reacted at 80 ° C for 24 hours. As a result, it was known that the yield of phenoxymethylethylene carbonate was 30 to 95% It is difficult to access the active sites of the catalyst by densifying the catalysts by densifying the catalysts and thus the reaction yield is low and the reaction takes a long time.

한편, 비특허문헌 5에서 선(J. Sun) 등은 촉매의 수산기(hydroxyl group)의 수소결합(hydrogen bonding)은 할로겐 음이온과 상승효과(synergistic effect)에 의해 이산화탄소와 에폭시화합물의 부가반응에서 에폭시화합물의 고리열림(ring opening)을 촉진시켜 반응성이 증가한다고 보고하였다. On the other hand, J. Sun et al. In Non-Patent Document 5 discloses that the hydrogen bonding of the hydroxyl group of the catalyst is caused by the synergistic effect with the halogen anion in the addition reaction of carbon dioxide and the epoxy compound, It is reported that the reactivity is increased by promoting the ring opening of the compound.

본 발명자는 상기와 같은 문제점을 개선하고자 상이동 촉매의 제조방법 및 이 방법에 의해 제조되는 촉매를 이용한 5원환 탄산염 화합물을 연구 개발하여 특허문헌 2에 알려진 바와 같은 기술을 이미 특허 등록을 받은바 있지만 상기 특허의 경우에는 5원환 탄산염 화합물의 합성 시 촉매 회수의 어려움이 있어 재사용이 용이하지 않은 단점이 있었다.The inventor of the present invention has developed a process for preparing a phase transfer catalyst and a 5-membered cyclic carbonate compound using the catalyst prepared by the process, and has already patented a technology as disclosed in Patent Document 2 In the case of the above patent, there is a disadvantage in that it is difficult to recover the catalyst during the synthesis of the 5-membered ring carbonate compound, and thus reuse is not easy.

또한 본 발명자는 이온성 액체 촉매를 이용한 5원환 탄산염화합물의 제조방법에 관한 기술로서, 특허문헌 3과 같이 엠씨엠-41(Mobil Composition of Matter No 41)에 이온성 액체 촉매가 담지된 하이브리드 엠씨엠-41 촉매를 이용한 5원환 탄산염화합물의 제조방법과, 특허문헌 4와 같이 다공성 무정형 실리카에 담지된 이온성 액체 촉매를 이용한 5원환 탄산염 화합물의 제조방법을 개발하여 특허 등록한 바 있지만, 상기의 특허문헌들과 같이 엠씨엠-41 또는 다공성 무정형 실리카의 담체를 사용할 경우 담체의 제조 과정이 복잡하고 제조원가가 비싼 단점이 있었다.The present inventor has also proposed a process for producing a 5-membered cyclic carbonate compound using an ionic liquid catalyst, which is a hybrid MCM-41 having an ionic liquid catalyst supported on a mobile composition of Matter No. 41 A method for producing a 5-membered ring carbonate compound using a catalyst and a method for producing a 5-membered ring carbonate compound using an ionic liquid catalyst supported on porous amorphous silica as in Patent Document 4 have been developed and patented. However, When MCM-41 or a porous amorphous silica carrier is used, the manufacturing process of the carrier is complicated and the production cost is high.

전술한 바와 같은 종래의 에폭시화합물과 이산화탄소의 부가반응에는 주로 값비싼 유기금속 촉매를 이용하거나 또는 상이동 촉매로서 4급 암모늄염 촉매를 액체 상태로 사용하였기 때문에 반응 후 촉매의 분리와 회수가 어려워 공정상의 비용이 많이 드는 문제점이 있고, 그리고 니시쿠보(T. Nishikubo) 등의 방법에 따라 제조된 촉매의 경우에도 반응물에 대한 확산저항이 심하고 안정성이 낮아 수율이 저하되는 등의 문제점이 있다.Since the conventional addition reaction between the epoxy compound and carbon dioxide as described above is mainly carried out using an expensive organometallic catalyst or a quaternary ammonium salt catalyst in a liquid state as a phase transfer catalyst, it is difficult to separate and recover the catalyst after the reaction, There is a problem in that it is costly, and even in the case of a catalyst prepared according to the method of T. Nishikubo et al., The diffusion resistance to the reactant is high and the stability is low and the yield is lowered.

그리고 본 발명자는 금속의 종류, 금속 클러스터 여부와 유기물의 종류 및 배위결합정도에 따라 금속과 유기물간의 조합이 무한에 가까울 정도로 가능하고, 안정성이 우수하고 표면적이 매우 넓은 다공성 물질인 금속유기골격체(metal organic frameworks, 이하 'MOF'라 한다.) 중에서 아연함유 금속유기골격체인 Zn2(HIP)2(bipy)(H2O)2.H2O(이하, 'ZnHIPbipy'라 한다.) 금속유기골격체 촉매를 이용하여 5원환 탄산염 화합물을 합성시키는 기술을 개발하여 이미 특허문헌 5로 특허 등록을 받은 바 있다. The inventors of the present invention have found that the combination of metal and organic material can be close to infinite depending on the kind of metal, whether or not the metal is clusters, the kind of organic material, and the degree of coordination, and the metal organic skeleton metal organic frameworks, hereinafter referred to as 'MOF'.) zinc-containing metal-organic backbone chain Zn 2 (in HIP) 2 (bipy) (H 2 O) 2 is referred to .H 2 O (hereinafter, 'ZnHIPbipy'.) metalorganic A technology for synthesizing a 5-membered ring carbonate compound using a skeletal catalyst has been developed and has already been patented as Patent Document 5. [

또한, 본 발명자는 아연-글루타메이트 금속유기골격체 촉매를 이용하여 5원환 탄산염 화합물을 합성시키는 기술을 개발하여 이미 특허문헌 6으로 특허 등록을 받은 바 있다.        The present inventors have also developed a technology for synthesizing a 5-membered ring carbonate compound using a zinc-glutamate metal organic skeletal catalyst and have already been patented in Patent Document 6.

참고로 본 발명에 적용되는 다공성 무기배위화합물인 MOF는 1995년 Metal-Organic Framework라고 처음으로 명명하고 학문적으로 가치를 부여한 사람은 UCLA의 오마르 야기(Omar M. Yaghi)와 아리조나 주립대의 마이클 오키프(Michael O'Keeffe)이다. For reference, MOF, which is a porous inorganic coordination compound applied to the present invention, was first named Metal-Organic Framework in 1995 and granted scholarly value to Omar M. Yaghi of UCLA and Michael O. Michael of Arizona State University O'Keeffe).

MOF는 첫째, 세공의 크기를 수 Å에서부터 3 nm에 이르기까지 다양화할 수 있고 둘째, 제올라이트처럼 용매나 템플레이트(template)를 제거하여도 MOF 뼈대가 무너지지 않는 특성이 있어서 다공체로의 응용이 쉬울 뿐만 아니라 셋째, 유기물이 포함되었음에도 불구하고 열적인 안정도가 300~400 ℃에 이르러 고온 촉매로의 가능성을 지니고 있다. MOF can be used for various purposes such as: first, the pore size can be varied from several angstroms to 3 nm; second, since the MOF skeleton does not collapse even when a solvent or a template is removed like zeolite, Third, although organic matter is contained, the thermal stability reaches 300 ~ 400 ℃, which is a possibility of high temperature catalyst.

본 발명자는 이미 특허 등록을 받은 특허문헌 6에서 사용하는 아연함유 금속유기골격체인 [Zn(L-Glutamate)(H2O)].2H2O 금속유기골격체와는 성분과 구조, 그리고 성능이 상이한 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물을 수열 합성법에 의해 제조하고, 이를 촉매로 사용하여 오원환 탄산염 화합물을 합성함으로써 본 발명을 완성하게 되었다. The present inventors have found that the composition, structure and performance of the zinc-containing metal organic skeleton [Zn (L-Glutamate) (H 2 O)] 2H 2 O metal organic skeleton used in Patent Document 6, The present inventors have completed the present invention by preparing a zinc-containing metal organic skeleton compound as a new porous coordination compound by hydrothermal synthesis and synthesizing a biodegradable carbonate compound using the same as a catalyst.

특허문헌 1 : 미국 등록특허공보 제2773881호(1956년 12월 11일 등록) 글리콜카보네이트Patent Document 1: United States Patent Publication No. 2773881 (registered on December 11, 1956) Glycol carbonate 특허문헌 2 : 대한민국 등록특허공보 제10-239222호(2000. 1. 15 등록) 상이동촉매의 제조방법 및 이 방법에 의해 제조되는 촉매를 이용한 5원환 탄산염 화합물의 제조방법Patent Document 2: Korean Patent Registration No. 10-239222 (Registered on January 15, 2000) Method for producing phase transfer catalyst and method for producing 5-membered cyclic carbonate compound using catalyst produced by this method 특허문헌 3 : 대한민국 등록특허공보 제10-0911494호(2009. 08. 11 등록) 엠씨엠-41에 이온성 액체 촉매가 담지된 하이브리드 엠씨엠-41 촉매의 제조방법과 이를 이용한 5원환 탄산염화합물의 제조방법Patent Document 3: Korean Patent Registration No. 10-0911494 (Registered on Aug. 11, 2009) Manufacturing Method of Hybrid MCM-41 Catalyst Containing Ionic Liquid Catalyst on MCM-41 and Production Method of 5-membered Ring Carbonate Compound Using the Same 특허문헌 4 : 대한민국 등록특허공보 제10-0999360호(2010. 12. 09 등록) 다공성 무정형 실리카에 담지된 이온성 액체 촉매의 제조방법과 이를 이용한 5원환 탄산염 화합물의 제조방법Patent Document 4: Korean Patent Publication No. 10-0999360 (registered on December 09, 2010) Method for producing ionic liquid catalyst supported on porous amorphous silica and method for producing 5-membered ring carbonate compound using the same 특허문헌 5 : 대한민국 등록특허공보 제10-1536351호(2015. 07. 07 등록) 아연함유 금속유기골격체를 촉매로 사용한 5원환 탄산염 화합물의 제조방법Patent Document 5: Korean Patent Registration No. 10-1536351 (Registered on May 27, 2007) Preparation of 5-membered cyclic carbonate compound using zinc-containing metal organic skeleton as a catalyst 특허문헌 6 : 대한민국 등록특허공보 제10-1635756호(2016. 06. 28 등록) 아연-글루타메이트 금속유기골격체를 촉매로 사용한 5원환 탄산염 화합물의 제조방법Patent Document 6: Korean Patent Registration No. 10-1635756 (Registered on Jun. 28, 2016) Method for producing 5-membered ring carbonate compound using zinc-glutamate metal organic skeleton as a catalyst

비특허문헌 1 : Polymerization of propylene carbonate[(K. Soga 등, J. Polymer Science: Polymer Chemistry Edition, 15 (1997) 219]Non-Patent Document 1: Polymerization of propylene carbonate [(K. Soga et al., J. Polymer Science: Polymer Chemistry Edition, 15 (1997) 219] 비특허문헌 2 : Solid-state catalytic incorporation of carbon dioxide into oxirane-polymer. Conversion of poly(glycidyl methacrylate) to carbonate-polymer under atomospheric pressure[N. Kihara 등, J. Chemical Society: Chemical Communication, (1994) 937]Non-Patent Document 2: Solid-state catalytic incorporation of carbon dioxide into oxirane-polymer. Conversion of poly (glycidyl methacrylate) to carbonate-polymer under atomospheric pressure [N. Kihara et al., J. Chemical Society: Chemical Communication, (1994) 937] 비특허문헌 3 : Incorporation of Carbon Dioxide into Poly(glycidyl methacrylate)[N. Kihara 등, Macromolecules, 25 (1992) 4824]Non-Patent Document 3: Incorporation of Carbon Dioxide into Poly (glycidyl methacrylate) [N. Kihara et al., Macromolecules, 25 (1992) 4824] 비특허문헌 4 : Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide[T. Nishikubo 등, J. Polymer Science, 31 (1993) 939]Non-Patent Document 4: Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide [T. Nishikubo et al., J. Polymer Science, 31 (1993) 939] 비특허문헌 5 : Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J. Sun 등, Green Chem., 14 (2012) 14]Non-Patent Document 5: Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J. Sun et al., Green Chem., 14 (2012) 14]

상기와 같은 문제점을 극복하기 위하여 본 발명은 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물을 촉매로 사용하여 온화한 반응조건에서 높은 수율로 5원환 탄산염 화합물을 용이하게 제조하는 것을 특징으로 하는 신규한 아연 함유 금속유기골격체 화합물 및 이를 촉매로 사용한 5원환 탄산염 화합물 제조방법을 제공하는 것을 과제로 한다. In order to overcome the above-described problems, the present invention provides a process for producing a 5-membered ring carbonate compound with a high yield under mild reaction conditions by using a zinc-containing metal organic skeleton compound as a novel porous coordination compound, One Zinc-containing metal organic skeleton compound and a method for producing a 5-membered cyclic carbonate compound using the same as a catalyst.

그리고, 본 발명은 상기 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물에서 골격을 이루는 금속원으로 불화아연수화물(zincfluoride tetrahydrate)과 타이타늄이소프로폭사이드(titaniumisopropoxide)를 선택하고, 유기물질로 1,2,4-트리아졸(1,2,4-triazole) 을 사용하여 수열 합성법에 의해 제조하는 것을 특징으로 하는 신규한 아연 함유 금속유기골격체 화합물 및 이를 촉매로 사용한 5원환 탄산염 화합물 제조방법을 제공하는 것을 다른 과제로 한다. The present invention also relates to a novel porous coordination compound, such as zinc Zincfluoride tetrahydrate and titanium isopropoxide are selected as the metal constituting the skeleton in the metal-containing organic skeleton compound and 1,2,4-triazole (1,2,4 -triazole) according to the present invention. zinc Containing metal organic skeleton compound and a method for producing a 5-membered cyclic carbonate compound using the same as a catalyst.

이와 같이, 본 발명에서 개발한 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물은 유기물질로 1,2,4-트리아졸(1,2,4-triazole)을 사용하여 제조된 3차원 구조를 가지는 물질이며, 본 발명에 따른 금속유기골격체 화합물은 5원환 탄산염 화합물의 합성 반응에 촉매로 사용하면 아연과 타이타늄 원자가 루이스산(Lewis acid)으로 에폭시화합물의 산소 원자가 쉽게 상호작용을 할 수 있고, 트리아졸의 질소 원자는 이산화탄소의 흡착을 촉진하여 반응성이 우수한 것이 특징이다. As described above, the zinc-containing metal organic skeleton compound, which is a novel porous coordination compound developed in the present invention, has a three-dimensional structure (2, 4-triazole) When the metal organic skeleton compound according to the present invention is used as a catalyst for the synthesis reaction of a 5-membered ring carbonate compound, zinc and a titanium atom The oxygen atom of the epoxy compound can easily interact with Lewis acid, and the nitrogen atom of the triazole promotes the adsorption of carbon dioxide, thereby being excellent in reactivity.

상기의 과제를 해결하기 위한 본 발명은 골격을 이루는 금속원으로 불화아연수화물(zincfluoride tetrahydrate)과 타이타늄이소프로폭사이드(titaniumisopropoxide)를 사용하고, 유기화합물로 1,2,4-트리아졸(1,2,4-triazole)을 사용하여 합성한 것을 특징으로 하는 다공성 배위화합물인 아연 함유 금속유기골격체 화합물을 과제 해결 수단으로 한다.In order to solve the above-mentioned problems, the present invention provides a method of manufacturing a semiconductor device, which comprises using zincfluoride tetrahydrate and titaniumisopropoxide as a metal source constituting a skeleton and 1,2,4-triazole (1, 2,4-triazole), which is a porous coordination compound, is used as a solution to the problem.

상기 아연 함유 금속유기골격체 화합물은 아래 [화학식 1]의 화합물의 구조단위가 반복되어 3차원 망상 구조를 갖는 것을 특징으로 한다.The zinc-containing metal organic skeleton compound is characterized in that the structural unit of the compound of the following formula (1) is repeated to have a three-dimensional network structure.

[화학식 1][Chemical Formula 1]

[Zn4(TiO6)x(TiF6)y(1,2,4-triazole)z][Zn 4 (TiO 6 ) x (TiF 6 ) y (1, 2, 4-triazole) z ]

상기에서, In the above,

x : 0.4~1.2x: 0.4 to 1.2

y : 0.1~0.3y: 0.1 to 0.3

z : 30~38z: 30 ~ 38

그리고 본 발명은 금속원인 불화아연수화물과 타이타늄이소프로폭사이드를 증류수에 용해시킨 다음 구조형성 유기화합물인 1,2,4-트리아졸과 혼합하여 수열 반응시켜 합성하는 것을 특징으로 하는 다공성 배위화합물인 아연 함유 금속유기골격체 화합물의 제조방법을 과제의 다른 해결 수단으로 한다.The present invention relates to a porous coordination compound which is obtained by dissolving zinc fluoride metal and titanium isopropoxide in distilled water and then hydrothermally reacting with 1,2,4-triazole, which is a structure- The method for producing a zinc-containing metal organic skeleton compound is another solution to the problem.

또한, 본 발명은 아연 함유 금속유기골격체 화합물을 촉매로 사용하여 이산화탄소와 에폭시화합물을 카르보닐화반응시키는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법을 과제의 또 다른 해결 수단으로 한다.The present invention further provides a method for producing a 5-membered ring carbonate compound, which comprises carbonylating carbon dioxide and an epoxy compound using a zinc-containing metal organic skeleton compound as a catalyst.

이상의 과제 해결 수단에 의한 본 발명은 구조가 규칙적이고 안정한 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물을 수열 합성법으로 제조하고 이 촉매를 사용하여 5원환 탄산염 화합물을 합성함으로써, 본 발명에 따른 아연 함유 금속유기골격체 화합물은 구조가 규칙적이고 표면적이 크며 안정한 다공성 촉매이므로 비교적 낮은 압력과 낮은 온도 조건에서 높은 수율로 5원환 탄산염 화합물을 합성할 수 있고, 5원환 탄산염 화합물의 합성 반응에 촉매로 사용할 경우 종래 특허문헌 5의 단일 금속을 함유한 Zn(HIP)bipy 금속유기골격체 촉매보다 산소 원자가 금속 원자에 훨씬 더 쉽게 상호작용을 할 수 있고, 트리아졸의 질소 원자는 이산화탄소의 흡착을 촉진하여 반응성이 우수한 것이 장점이다. According to the present invention, a zinc-containing metal organic skeleton compound, which is a novel porous coordination compound having a stable and stable structure, is prepared by a hydrothermal synthesis method and a 5-membered ring carbonate compound is synthesized using the catalyst, Since the zinc-containing metal organic skeleton compound has a regular structure and a large surface area and is a stable porous catalyst, it is possible to synthesize a 5-membered ring carbonate compound with a high yield under relatively low pressure and low temperature conditions, The oxygen atom can interact with the metal atom much more easily than the Zn (HIP) bipy metal organic skeleton catalyst containing a single metal of the conventional patent document 5, and the nitrogen atom of the triazole promotes the adsorption of carbon dioxide It is an advantage that it is excellent in reactivity.

도 1은 본 발명의 바람직한 실시예에 따른 아연 함유 금속유기골격체 화합물의 골격구조를 나타낸 도면.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing the skeletal structure of a zinc-containing metal organic skeleton compound according to a preferred embodiment of the present invention. FIG.

이하, 본 발명의 바람직한 실시예에 따른 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물 및 이를 촉매로 이용한 5원환 탄산염 화합물의 제조방법을 상세히 설명하며, 본 발명의 기술적 특징과 직접적으로 연관되지 않는 요소의 구체적인 기술적 구성 및 작용에 대한 설명은 생략하고, 본 발명과 관련되는 기술적 구성만을 간략하게 설명하였다.      Hereinafter, a zinc-containing metal organic skeleton compound, which is a novel porous coordination compound according to a preferred embodiment of the present invention, and a method for producing a 5-membered ring carbonate compound using the same as a catalyst will be described in detail and not directly related to the technical features of the present invention The description of the specific technical structure and operation of the elements that are not shown in the drawings is omitted and only the technical structure related to the present invention is briefly described.

본 발명에 따른 신규한 아연 함유 다공성 배위화합물인 금속유기골격체 화합물은 아래 [화학식 1]로 표기되는 구조단위에 의해 3차원 구조를 가지는 것을 특징으로 한다.The novel zinc-containing porous coordination compound according to the present invention is characterized in that the metal organic skeleton compound has a three-dimensional structure by a structural unit represented by the following formula (1).

[화학식 1][Chemical Formula 1]

[Zn4(TiO6)x(TiF6)y(1,2,4-triazole)z][Zn 4 (TiO 6 ) x (TiF 6 ) y (1, 2, 4-triazole) z ]

상기에서, In the above,

x : 0.4~1.2x: 0.4 to 1.2

y : 0.1~0.3y: 0.1 to 0.3

z : 30~38z: 30 ~ 38

이와 같이, 본 발명에서 상기 [화학식 1]로 표기되는 신규한 아연 함유 금속유기골격체 화합물{[Zn4(TiO6)x(TiF6)y(1,2,4-triazole)z]}(이하, 'ZnTi(taz)'라 한다)은 다공성 배위화합물로서, 상기 [화학식 1]의 구조단위가 반복되어 3차원 망상 구조를 갖는화합물로서, 상기 [화학식 1]의 화합물을 정제하여 측정한 정제 화학 조성물의 구성성분비는 아래 [표 1]에 기재된 바와 같다. Thus, in the present invention, a novel zinc-containing metal organic skeleton compound {[Zn 4 (TiO 6 ) x (TiF 6 ) y (1,2,4-triazole) z ] (Hereinafter referred to as ZnTi (taz)) is a porous coordination compound, which is a compound having a three-dimensional network structure in which the structural unit of the above formula (1) is repeated and the compound of the above formula The composition ratios of the chemical compositions are as shown in Table 1 below.

상기 [화학식 1]에서 한정한 X, Y, Z는 상기에서 한정한 수치의 범위에만 반드시 제한되지 아니하고, ZnTi(taz)의 합성 시 사용하는 화합물인 불화아연수화물과 타이타늄이소프로폭사이드 및 1,2,4-트리아졸의 사용량 또는 반응조건에 따라 한정되는 것으로, 제조자의 필요에 따라 적절히 조정되어질 수 있다.X, Y, and Z defined in the above formula (1) are not necessarily limited to the above-defined numerical ranges, and zinc fluoride, a compound used in the synthesis of ZnTi (taz), titanium isopropoxide, 2,4-triazole, or the reaction conditions, and can be appropriately adjusted according to the needs of the manufacturer.

본 발명에 따른 신규한 다공성 배위화합물인 ZnTi(taz)는 골격을 이루는 금속원으로 불화아연수화물(zincfluoride tetrahydrate)과 타이타늄이소프로폭사이드(titaniumisopropoxide)를 선택하고, 유기화합물로 1,2,4-트리아졸(1,2,4-triazole)을 사용하여 수열 합성법에 의해 제조한다. ZnTi (taz), a novel porous coordination compound according to the present invention, can be prepared by selecting zincfluoride tetrahydrate and titaniumisisopropoxide as the metal constituting the skeleton and 1,2,4- Is prepared by hydrothermal synthesis method using triazole (1,2,4-triazole).

금속원인 불화아연수화물 3 mmol, 타이타늄이소프로폭사이드 1.0~3 mmol을 50~70 mL의 증류수에 녹인 후 구조형성 유기물질인 1,2,4-트리아졸 3~6 mmol과 혼합한 후 합성 온도 140~150 ℃에서 60~72 시간 동안 수열 합성법으로 제조된 생성물을 여과하고 증류수와 메탄올로 충분히 세척을 한 다음 120~140 ℃에서 10~20 mmHg의 진공 압력으로 12~14 시간 동안 진공 건조하여 제조한다.After dissolving 3 mmol of metal fluoride zinc hydrate and 1.0-3 mmol of titanium isopropoxide in 50-70 mL of distilled water, the mixture was mixed with 3-6 mmol of 1,2,4-triazole, which is a structure-forming organic material, The product prepared by hydrothermal synthesis at 140 to 150 ° C for 60 to 72 hours was filtered, thoroughly washed with distilled water and methanol, and vacuum dried at 120 to 140 ° C under a vacuum pressure of 10 to 20 mmHg for 12 to 14 hours to prepare do.

상기에서 합성조건이 불화아연수화물에 대한 타이타늄이소프로폭사이드의 양과 구조형성 유기물질 1,2,4-트리아졸의 혼합량 및 증류수의 사용량이 상기에서 한정한 범위를 벗어날 경우에는 ZnTi(taz) 금속유기골격체 화합물의 수율이 감소할 우려가 있다.When the synthesis conditions are such that the amount of titanium isopropoxide to zinc fluoride hydrate, the amount of the 1,2,4-triazole-based organic material to be mixed and the amount of distilled water to be used are out of the range defined above, ZnTi (taz) metal There is a fear that the yield of the organic skeletal compound decreases.

또한 수열 합성법에 의한 ZnTi(taz) 금속유기골격체 화합물의 합성 시 상기에서 한정한 반응조건 미만이 될 경우에는 ZnTi(taz) 금속유기골격체 화합물의 수율이 감소할 우려가 있고, 상기에서 한정한 반응조건을 초과할 경우에는 생성물이 분해하거나 수율이 감소할 우려가 있다.In addition, when the synthesis conditions of the ZnTi (taz) metal organic skeleton compound by hydrothermal synthesis are less than the above-described reaction conditions, the yield of the ZnTi (taz) metal organic skeleton compound may decrease. If the reaction conditions are exceeded, the product may be decomposed or the yield may decrease.

반응 후 합성된 생성물은 필터 여과 등과 같은 통상적인 방법에 의해 여과한 다음 증류수와 메탄올로 충분히 세척을 한 다음 120~140 ℃에서 10~20 mmHg의 압력으로 진공건조 시킨다.After the reaction, the synthesized product is filtered by a conventional method such as filter filtration, washed thoroughly with distilled water and methanol, and vacuum-dried at 120 to 140 ° C under a pressure of 10 to 20 mmHg.

이때 진공건조 조건이 상기에서 한정한 조건 미만이 될 경우에는 생성된 금속유기골격체가 충분하게 건조되지 않을 우려가 있고, 상기에서 한정한 조건을 초과할 경우에는 급격한 건조로 생성물이 유실될 우려가 있다. At this time, when the vacuum drying condition is less than the conditions defined above, there is a fear that the produced metal organic skeleton may not be sufficiently dried. If the conditions are limited, the product may be lost by rapid drying .

한편, 본 발명은 상기 [화학식 1]로 표기되는 구조단위에 의해 3차원 구조를 가지는 신규한 다공성 배위화합물인 아연 함유 금속유기골격체 화합물인 ZnTi(taz)를 촉매로 사용하여 이산화탄소와 에폭시화합물을 부가반응시켜 5원환 탄산염 화합물이 제조되어진다. On the other hand, the present invention relates to a novel porous coordination compound having a three-dimensional structure by the structural unit represented by the above-mentioned formula (1) by using ZnTi (taz) which is a zinc-containing metal organic skeleton compound as a catalyst, An addition reaction is carried out to produce a 5-membered ring carbonate compound.

특히, 본 발명은 이산화탄소와 에폭시화합물만을 사용하여 5원환 탄산염 화합물 제조 반응을 시키며, 추가의 용매를 사용하지 않는 것이 특징이다.Particularly, the present invention is characterized in that only a carbon dioxide and an epoxy compound are used to carry out a reaction for producing a five-membered ring carbonate compound, and no additional solvent is used.

본 발명에서 이산화탄소와 에폭시화합물을 부가 반응시키며, 이때 첨가하는 촉매는 상기 [화학식 1]로 표기되는 신규한 아연 함유 다공성 배위화합물인 ZnTi(taz) 금속유기골격체 화합물이다. In the present invention, carbon dioxide and an epoxy compound are subjected to an addition reaction, and the catalyst to be added at this time is a novel zinc (Taz) < / RTI > metal-organic skeleton compound.

상기 ZnTi(taz) 금속유기골격체 화합물을 촉매로 사용하여 5원환 탄산염 화합물의 제조 시 에폭시화합물 대 금속유기골격체 화합물의 mol비가 100 대 0.5~5의 비율로 첨가한다. 상기에서 첨가하는 촉매의 양이 0.5 미만이 될 경우에는 이산화탄소와 에폭시화합물이 충분히 반응하지 아니하여 미반응의 에폭시화합물이 반응물 내에 잔류할 우려가 있고, 촉매의 양이 5를 초과할 경우에는 반응물과 촉매의 혼합이 좋지 않아 촉매 활성이 감소할 우려가 있다.The molar ratio of the epoxy compound to the metal organic skeleton compound is added in the ratio of 100 to 0.5 to 5 in the production of the 5-membered ring carbonate compound using the ZnTi (taz) metal organic skeleton compound as a catalyst. If the amount of the added catalyst is less than 0.5, the carbon dioxide and the epoxy compound do not sufficiently react with each other, and the unreacted epoxy compound may remain in the reactant. When the amount of the catalyst exceeds 5, The mixing of the catalyst is poor and the catalytic activity may decrease.

상기에서 조촉매로 테트라부틸암모늄브롬화물(tetrabutylammonium bromide, 이하, 'TBAB'라 한다)을 ZnTi(taz) 대 TBAB의 mol비가 1대 1~3의 비율로 첨가한다. 첨가하는 조촉매인 TBAB의 양이 1 미만이 될 경우에는 이산화탄소와 에폭시화합물이 충분히 반응하지 아니하여 미반응의 에폭시화합물이 반응물 내에 잔류할 우려가 있고, 조촉매인 TBAB의 양이 3을 초과할 경우에는 반응물과 촉매의 혼합이 좋지 않아 촉매 활성이 감소할 우려가 있다.Tetrabutylammonium bromide (hereinafter referred to as TBAB) is added as a cocatalyst at a molar ratio of ZnTi (taz) to TBAB of 1: 1 to 3: 1. When the amount of the TBAB, which is a co-catalyst to be added, is less than 1, the carbon dioxide and the epoxy compound do not sufficiently react and the unreacted epoxy compound may remain in the reactant. When the amount of TBAB as the co- The mixture of the reactant and the catalyst is poor and the catalytic activity may decrease.

상기에서 에폭시화합물 합성의 반응조건은 반응온도가 80~150 ℃, 이산화탄소의 압력이 0.8~1.6 MPa 의 조건에서 4~20 시간 반응시키는 것이 바람직하며, 반응조건이 상기에서 한정한 범위 미만이 될 경우에는 생성물의 수율이 감소할 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 생성물이 분해하거나 수율이 감소할 우려가 있다.The reaction conditions for the synthesis of the epoxy compound are preferably a reaction at a reaction temperature of 80 to 150 ° C and a pressure of carbon dioxide of 0.8 to 1.6 MPa for 4 to 20 hours. If the reaction conditions are less than the above- , There is a possibility that the yield of the product is decreased. If it exceeds the range defined above, the product may be decomposed or the yield may decrease.

그리고, 본 발명은 5원환 탄산염 화합물의 합성 시 사용하는 이산화탄소의 사용량은 에폭시화합물의 mol비와 동일한 mol비가 소요된다. 본 발명에 있어서는 반응기 내에 충진시킨 이산화탄소는 반응기 내에 가압 충진시킨 상태가 되므로 이산화탄소의 mol수는 특별히 한정되지 아니하며, 이때 이산화탄소와 반응시키고자 하는 에폭시화합물은 반응기 내에 충진된 이산화탄소의 mol수를 고려하여 반응기 내에 적절히 공급하면 된다.In the present invention, the amount of carbon dioxide used in the synthesis of the 5-membered ring carbonate compound is in the same molar ratio as the molar ratio of the epoxy compound. In the present invention, the number of moles of carbon dioxide is not particularly limited since the carbon dioxide charged in the reactor is pressurized and filled in the reactor. The number of moles of carbon dioxide charged in the reactor is determined by considering the number of moles of carbon dioxide As shown in FIG.

상기 에폭시화합물은 에폭사이드 유도체로서, 프로필렌옥사이드, 알릴글리시딜 에테르, 부틸글리시딜에테르, 페닐글리시딜에테르, 글리시딜메타클리레이트, 비닐싸이클로헥센옥사이드 중에서 1종을 선택하여 사용하는 것이 바람직하다.The epoxy compound is an epoxide derivative selected from the group consisting of propylene oxide, allyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, glycidyl methacrylate and vinylcyclohexene oxide desirable.

따라서 본 발명에 따라 제조한 아연 함유 다공성 배위화합물인 ZnTi(taz)를 촉매로 사용하여 5원환 탄산염 화합물을 합성 시 높은 수율을 얻을 수 있는 것이 특징이다. Therefore, the zinc (Taz), which is a porous coordination compound, is used as a catalyst, a high yield can be obtained when a 5-membered ring carbonate compound is synthesized.

상기 ZnTi(taz) 촉매는 구조가 규칙적이고 결정도가 높은 배위화합물로서 ZnTi(taz)는 산성과 염기성을 동시에 가지며, 반응성과 안정성이 우수하여 5원환 탄산염 화합물의 합성 반응에 촉매로 사용할 경우 종래의 아연 함유 금속유기골격체 촉매보다 아연과 타이타늄 원자가 루이스산(Lewis acid)으로 에폭시화합물의 산소 원자가 아연과 타이타늄 원자에 훨씬 더 쉽게 상호작용을 할 수 있고, 이산화탄소가 트리아졸의 질소 원자에 더 잘 흡착될 수 있어서 반응성이 우수한 것이 특징이다. The ZnTi (taz) catalyst is a coordination compound having a high degree of structure and high crystallinity. ZnTi (taz) has both acidity and basicity and is excellent in reactivity and stability. When used as a catalyst for synthesis reaction of a 5-membered ring carbonate compound, Containing metal organic skeleton catalyst, zinc and titanium atoms are more likely to interact with zinc and titanium atoms in the epoxy compound with Lewis acid, and carbon dioxide is more likely to be adsorbed to the nitrogen atom of the triazole And is excellent in reactivity.

이하 실시예를 통하여 본 발명을 구체적으로 설명하기로 한다. 단, 본 발명의 범위가 이들 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the scope of the present invention is not limited to these examples.

1. ZnTi(taz) 금속유기골격체 화합물의 제조1. Preparation of ZnTi (taz) metal-organic skeleton compound

아연 함유 다공성 배위화합물인 ZnTi(taz) 금속유기골격체 촉매는 먼저, 금속 원인 불화아연수화물 3 mmol, 타이타늄이소프로폭사이드 1 mmol을 50 mL의 증류수에 녹인 구조형성 유기물질 1,2,4-트리아졸 6 mmol과 혼합한 후 합성 온도 140 ℃에서 72 시간 동안 수열 합성법으로 제조된 생성물을 천천히 상온까지 냉각하고 여과한 후에 증류수와 메탄올로 충분히 세척을 한 다음 140℃, 20 mmHg의 진공상태에서 12 시간 동안 건조를 하여 최종적으로 흰색의 고체인 ZnTi(taz)를 제조하였다.zinc (Taz) metal organic framework catalyst, which is a porous coordination compound, was first prepared by dissolving 3 mmol of a metal fluoride zinc hydrate and 1 mmol of titanium isopropoxide in 50 mL of distilled water, After mixing with 6 mmol of the sol, the product prepared by hydrothermal synthesis at a synthesis temperature of 140 ° C was slowly cooled to room temperature, filtered, washed thoroughly with distilled water and methanol, and then vacuum dried at 140 ° C and 20 mmHg for 12 hours Lt; RTI ID = 0.0 > (taz) < / RTI >

[ZnTi(taz)의 구조 분석][Structural analysis of ZnTi (taz)] [

ZnTi(taz)의 구조 분석은 포항공과대학교 부설 포항가속기센터의 빔라인 9B에서 λ = 1.4862Å인 단색화 방사선을 사용하여 얻어지는 싱크로트론 분말(Synchrotron powder) X 선 회절(XRD) 측정에 의해 구조 분석을 하였다.Structural analysis of ZnTi (taz) was performed by Synchrotron powder X-ray diffraction (XRD) measurement obtained by using monochromatic radiation at λ = 1.4862 Å at Beamline 9B of Pohang Accelerator Center, POSTECH.

수직 스캔 회절분석기(vertical scan diffractometer)의 검출기 팔(detector arm)은 7 세트의 소예 슬릿(Soller slits), 평면 창 (111) 크리스탈 분석기, 산란방지 칸막이 및 섬광 검출기로 구성되어 있으며, 각 세트는 20°씩 떨어져 있다.The detector arm of the vertical scan diffractometer consists of 7 sets of Soller slits, a flat window (111) crystal analyzer, a scattering barrier and a flash detector, each set consisting of 20 Deg.

데이터는 단계 크기(step size)를 0.01°로 하고, 범위가 4.0~124°인 2θ를 통해 다음 디텍터 뱅크(detector bank)에 대한 중첩을 2°로 하여, 실온의 평판모드에서 수집하였다.Data were collected in a plateau mode at room temperature with a step size of 0.01 ° and an overlap of 2 ° over the next detector bank over 2θ with a range of 4.0 to 124 °.

회절 패턴은 풀프로프(Fullprof) 프로그램 제품군에 구현된 DICVOL04 program을 사용하여 인덱싱하였고, 르 바이(Le Bail) 정제(refinement)는 다른 정제를 위한 프로파일 매개변수를 얻기 위해 수행하였다.The diffraction pattern was indexed using the DICVOL04 program implemented in the Fullprof program suite and Le Bail refinement was performed to obtain profile parameters for the other tablets.

본 발명의 바람직한 실시예에 따른 ZnTi(taz)에 대한 구조분석결과는 아래 [표 1]에 기재된 내용과 같다.The structural analysis results of ZnTi (taz) according to the preferred embodiment of the present invention are as shown in Table 1 below.

분석 항목Analysis item ZnTi(taz)ZnTi (taz) 정제 화학 조성물(Refined chemical composition)Refined chemical composition 'C225.86F24N338.79O56Ti8Zn64''C 225.86 F 24 N 338.79 O 56 Ti 8 Zn 64 ' 결정계(Crystal system)Crystal system 입방(Cubic)Cubic 공간군(Space group)Space group F 4 3 2 F 4 3 2 셀 변수(Cell parameters)Cell parameters a (Å)a (A) 17.07037(7)17.07037 (7) 셀 부피(Cell volume) (Å3)Cell volume (Å 3 ) 4974.26(4)4974.26 (4) 회절 기하도형배열(Diffraction geometry) Diffraction geometry 반사(Reflection)Reflection X-ray 원(X-ray source)X-ray source (X-ray source) 싱크로트론방사(Synchrotron radiation) (l=1.4862Å)Synchrotron radiation (l = 1.4862 A) 2q scan range (°)2q scan range (°) 4-124 4-124 Scan step size (°)Scan step size (°) 0.010.01 데이터 수집 온도(Data collection temperature) (K)Data collection temperature (K) 298298 기여 반사의 수(Number of contributing reflections)Number of contributing reflections 285285 매개변수의 수(Number of parameters)Number of parameters 4545 프로파일 기능(Profile function)Profile function Pseudo-VoigtPseudo-Voigt Rp (%)Rp (%) 12.1712.17 Rwp(%)Rwp (%) 18.6618.66 Rexp(%)R exp (%) 3.173.17 GOFGOF 5.955.95

본 발명에 따른 ZnTi(taz)의 구조는 포항공과대학교 부설 포항가속기센터에서 분석한 ZnTi(taz) 샘플을 상기 [표 1]의 분석결과를 기초로 구조를 예측한 결과 첨부된 도면인 도 1에 도시된 바와 같은 단위구조를 갖는 3차원 구조의 금속유기골격체 화합물로서, 상기 단위구조들이 결합되어 전체적으로는 3차원 망상구조를 갖는다. 도 1에 도시된 화합물에서 적색은 산소, 회색은 아연, 청색은 질소, 흑색은 탄소를 나타내며, 도 1에 도시하지 아니한 원소인 타이타늄 원자는 TiO6 형태로 세공 안에 존재하고, 불소 원자는 산소 원자의 일부와 치환된 형태로 존재하는 것으로 추정된다.The structure of the ZnTi (taz) according to the present invention is obtained by predicting the structure of the ZnTi (taz) sample analyzed by the Pohang Accelerator Center at POSTECH based on the analysis result of Table 1, As the metal organic skeleton compound having a three-dimensional structure having the unit structure as shown, the unit structures are combined to have a three-dimensional network structure as a whole. In the compound shown in Figure 1 is oxygen, the red, gray is zinc, and blue are the titanium atomic elements other than those illustrated in nitrogen, black represents carbon, Figure 1 is a TiO 6 And the fluorine atom is presumed to exist in a substituted form with a part of the oxygen atom.

2. ZnTi(taz)를 촉매로 사용한 5원환 탄산염 화합물의 제조2. Preparation of 5-membered cyclic carbonate compound using ZnTi (taz) as a catalyst

(실시예 1)(Example 1)

아연 함유 다공성 배위화합물의 금속유기골격체 화합물인 ZnTi(taz)의 촉매 0.2 mmol을 사용하고 조촉매 TBAB 0.6 mmol을 사용하여 비교적 낮은 온도인 80 ℃를 유지하며, 용량이 1 L인 반응기 내에 낮은 압력인 1.0 MPa의 압력의 반응조건이 되게 이산화탄소를 충진한 다음 용매를 사용하지 않고, 에폭시화합물인 프로필렌옥사이드(PO) 40 mmol을 이산화탄소와 4 시간 동안 부가반응시켜 5원환 탄산염 화합물인 프로필렌 카보네이트(PC)를 합성하였다. zinc 0.2 mmol of a catalyst of ZnTi (taz), which is a metal organic skeleton compound of a porous coordination compound containing 0.6 mmol of cocatalyst TBAB, was maintained at a relatively low temperature of 80 ° C and a low pressure Propylene carbonate (PC), which is a 5-membered cyclic carbonate compound, was added to the reaction system by using 40 mmol of propylene oxide (PO), which is an epoxy compound, with carbon dioxide for 4 hours, Were synthesized.

(비교예 1~4)(Comparative Examples 1 to 4)

비교예 1 내지 4는 상기 실시예 1과 동일한 방법에 의해 5원환 탄산염 화합물인 프로필렌 카보네이트(PC)의 합성반응을 진행하되, 비교예 1~4은 아래 [표 2], [표 3] 및 [표 6]에 기재된 내용과 같이, 반응온도, 반응시간 및 담체의 종류를 한정하였다. In Comparative Examples 1 to 4, the synthesis reaction of propylene carbonate (PC) as a 5-membered ring carbonate compound was carried out in the same manner as in Example 1, and Comparative Examples 1 to 4 were carried out as in Table 2, Table 3, As shown in Table 6, the reaction temperature, the reaction time, and the kind of the carrier were defined.

(실시예 1~5 및 비교예 1)(Examples 1 to 5 and Comparative Example 1)

실시예 2 내지 5 및 비교예 1은 실시예 1과 동일한 조건으로 반응을 수행하되, 반응온도만을 변화시켜 PC의 수율을 측정한 결과를 아래 [표 2]에 나타내었다.In Examples 2 to 5 and Comparative Example 1, the reaction was carried out under the same conditions as in Example 1, and the yield of PC was measured by changing only the reaction temperature, and the results are shown in Table 2 below.

구분division 반응온도 (℃)Reaction temperature (캜) PC 수율 (%)PC yield (%) 비교예 1Comparative Example 1 6060 8989 실시예 1 Example 1 8080 9494 실시예 2 Example 2 100100 9797 실시예 3 Example 3 120120 9898 실시예 4 Example 4 140140 97 97 실시예 5 Example 5 150150 9494

상기 [표 2]에서 알 수 있는 바와 같이, 실시예 1 내지 5는 반응온도 80~150 ℃의 범위 내에서는 PC 수율이 94% 이상이었고 120 ℃에서 최대값을 나타내었다. 이것은 온도가 너무 높으면 PC가 올리고머로 전환되는 부반응이 진행되기 때문이다.As can be seen from Table 2, in Examples 1 to 5, the PC yield was 94% or more at a reaction temperature of 80 to 150 ° C, and the maximum value was obtained at 120 ° C. This is because if the temperature is too high, a side reaction in which PC is converted to an oligomer proceeds.

(실시예 6~8 및 비교예 2)(Examples 6 to 8 and Comparative Example 2)

실시예 6 내지 8 및 비교예 2는 실시예 1과 동일한 조건으로 반응을 수행하되, 반응시간만을 변화시켜 PC의 수율을 측정한 결과를 아래 [표 3]에 나타내었다. 아래 [표 3]은 반응 시간의 변화에 따른 PC의 수율을 나타낸 것이다.In Examples 6 to 8 and Comparative Example 2, the reaction was carried out under the same conditions as in Example 1, but the yield of PC was measured by changing only the reaction time, and the results are shown in Table 3 below. [Table 3] shows the yield of PC according to the change of reaction time.

구분division 반응시간 (시간)Reaction time (hours) PC 수율 (%)PC yield (%) 비교예 2Comparative Example 2 3 3 8282 실시예 1Example 1 4 4 9494 실시예 6 Example 6 1212 9797 실시예 7Example 7 1616 9797 실시예 8 Example 8 2020 9797

상기 [표 3]에서 알 수 있는 바와 같이, 반응 시간이 4 시간 이후 12 시간까지 꾸준히 증가한다. 그러나 12시간 이상에서는 거의 일정한 수율을 나타내어 평형반응에 도달한 것으로 판단된다.As shown in Table 3, the reaction time steadily increases from 4 hours to 12 hours. However, the equilibrium reaction was reached when the yield was almost constant over 12 hours.

(실시예 9~12)(Examples 9 to 12)

실시예 9 내지 12는 실시예 1과 동일한 조건으로 반응을 수행하되, 이산화탄소 압력만을 변화시켜 반응을 수행하여 PC의 수율을 측정한 결과를 아래 [표 4]에 나타내었다. 아래 [표 4]는 이산화탄소 압력에 따른 PC 의 수율을 나타낸 것이다.In Examples 9 to 12, the reaction was carried out under the same conditions as in Example 1, but the reaction was carried out by changing only the carbon dioxide pressure, and the yield of PC was measured. The results are shown in Table 4 below. [Table 4] shows the yield of PC according to the carbon dioxide pressure.

구분division 이산화탄소 압력 (MPa)Carbon dioxide pressure (MPa) PC 수율 (%)PC yield (%) 실시예 9Example 9 0.80.8 9393 실시예 10Example 10 1.21.2 9797 실시예 11Example 11 1.41.4 9898 실시예 12Example 12 1.61.6 9595

상기 [표 4]에서 알 수 있는 바와 같이, 이산화탄소 압력이 1.4 MPa까지 증가할수록 PC의 수율은 증가하였다. 그러나 1.6 MPa에서는 다소 감소하였다. 이것은 고압에서는 PO와 촉매와의 접촉이 원활하지 않은 희석효과에 의한 것으로 판단된다. As can be seen in Table 4, the PC yield increased as the carbon dioxide pressure increased to 1.4 MPa. However, it decreased slightly at 1.6 MPa. It is believed that this is due to the dilution effect that the contact between the PO and the catalyst is not smooth at high pressure.

(실시예 13~16)(Examples 13 to 16)

실시예 13 내지 16은 실시예 1과 동일한 조건으로 반응을 수행하되, 사용한 에폭사이드 종류를 변화시켜 5원환 탄산염 화합물을 제조하고, 에폭시화합물의 변화에 따른 5원환 탄산염 화합물의 수율을 아래 [표 5]에 나타내었다.In Examples 13 to 16, the reaction was carried out under the same conditions as in Example 1 except that the type of the epoxide used was changed to prepare a 5-membered ring carbonate compound, and the yield of the 5-membered ring carbonate compound according to the change of the epoxy compound was evaluated ].

구분division 에폭사이드Epoxide 5원환 탄산염의 수율 (%)Yield of 5-membered carbonates (%) 실시예 1Example 1 프로필렌옥사이드Propylene oxide 9494 실시예 13Example 13 부틸글리시딜에테르Butyl glycidyl ether 9494 실시예 14Example 14 페닐글리시딜에테르Phenyl glycidyl ether 9696 실시예 15Example 15 알릴글리시딜에테르Allyl glycidyl ether 9797 실시예 16Example 16 비닐싸이클로헥센옥사이드Vinylcyclohexene oxide 9292

상기 [표 5]에 나타난 바와 같이, 본 발명의 촉매는 여러 가지 형태의 에폭사이드와 이산화탄소의 부가반응에 효율적임을 알 수 있다.As shown in Table 5, it can be seen that the catalyst of the present invention is effective in the addition reaction of various types of epoxide with carbon dioxide.

(비교예 3, 4)(Comparative Examples 3 and 4)

비교예 3 및 4는 실시예 1과와 동일한 조건으로 반응을 수행하되, ZnTi(taz) 금속유기골격체 촉매 대신에 실리카 또는 알루미나에 테트라부틸암모늄브로마이드 이온성 액체를 담지시켜 얻은 촉매를 사용하여 PC를 합성한 후, 촉매에 따른 PC 수율을 측정하여 아래 [표 6]에 나타내었다. Comparative Examples 3 and 4 were carried out under the same conditions as in Example 1 except that a catalyst obtained by carrying a tetrabutylammonium bromide ionic liquid on silica or alumina instead of a ZnTi (taz) The yield of PC according to the catalyst was measured and shown in Table 6 below.

구분division 담체carrier PC 수율 (%)PC yield (%) 비교예 3Comparative Example 3 SiO2 SiO 2 7373 비교예 4Comparative Example 4 γ-Al2O3 γ-Al 2 O 3 6262

상기 [표 6]으로부터 알 수 있는 바와 같이, 실리카나 알루미나 담체에 테트라부틸암모늄브로마이드 이온성 액체를 담지시켜 얻은 촉매를 사용하는 경우에는 본 발명에 따른 ZnTi(taz) 금속유기골격체 화합물의 촉매에 비해 PC의 수율이 훨씬 떨어졌다.As can be seen from the above Table 6, when a catalyst obtained by supporting a tetrabutylammonium bromide ionic liquid on a silica or alumina carrier is used, the catalyst of the ZnTi (taz) metal organic skeleton compound according to the present invention The yield of PC was much lower than that of PC.

따라서, 상기 실시예를 통해 살펴본 바와 같이 본 발명에 따라 제조된 배위화합물 ZnTi(taz) 금속유기골격체 촉매는 반응성과 안정성이 우수하고, 비교적 온화한 반응조건에서 높은 수율로 카보네이트를 합성할 수 있음이 확인되었다.Therefore, as shown in the above examples, the coordination compound ZnTi (taz) metal organic skeleton catalyst prepared according to the present invention is excellent in reactivity and stability and can be synthesized at a high yield under relatively mild reaction conditions .

상기에서 설명 드린 본 발명은 상기의 구성에 의해서만 반드시 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다.The present invention described above is not necessarily limited to the above configuration, and various substitutions, modifications, and changes may be made without departing from the technical spirit of the present invention.

Claims (7)

골격을 이루는 금속원으로 불화아연수화물(zincfluoride tetrahydrate)과 타이타늄이소프로폭사이드(titaniumisopropoxide)를 사용하고, 유기화합물로 1,2,4-트리아졸(1,2,4-triazole)을 사용하여 합성한 것을 특징으로 하는 다공성 배위화합물인 아연 함유 금속유기골격체 화합물.
Synthesis was carried out using zincfluoride tetrahydrate and titaniumisopropoxide as the metal constituting the skeleton and 1,2,4-triazole as the organic compound. Which is a porous coordination compound, Containing metal organic skeleton compound.
제 1항에 있어서,
상기 아연 함유 금속유기골격체 화합물은 아래 [화학식 1]의 화합물의 구조단위가 반복되어 3차원 망상 구조를 갖는 것을 특징으로 하는 다공성 배위화합물인 아연 함유 금속유기골격체 화합물.

[화학식 1]
[Zn4(TiO6)x(TiF6)y(1,2,4-triazole)z]
상기에서,
x : 0.4~1.2
y : 0.1~0.3
z : 30~38
The method according to claim 1,
The zinc Containing metal organic skeleton compound is a porous coordination compound having a three-dimensional network structure in which the structural unit of the compound represented by the formula (1) below is repeated.

[Chemical Formula 1]
[Zn 4 (TiO 6 ) x (TiF 6 ) y (1, 2, 4-triazole) z ]
In the above,
x: 0.4 to 1.2
y: 0.1 to 0.3
z: 30 ~ 38
금속원인 불화아연수화물과 타이타늄이소프로폭사이드를 증류수에 용해시킨 다음 구조형성 유기화합물인 1,2,4-트리아졸과 혼합하여 수열 반응시켜 합성하는 것을 특징으로 하는 다공성 배위화합물인 아연 함유 금속유기골격체 화합물의 제조방법.
Characterized in that it is synthesized by hydrothermal reaction by mixing zinc halide hydrate and titanium isopropoxide in distilled water and mixing with 1,2,4-triazole, which is a structure-forming organic compound. Lt; / RTI >
청구항 1 또는 청구항 2 중 어느 한 항에 따른 아연 함유 금속유기골격체 화합물을 촉매로 사용하여 이산화탄소와 에폭시화합물을 카르보닐화반응시키는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
A method for producing a five-membered ring carbonate compound, characterized in that carbon dioxide and an epoxy compound are subjected to a carbonylation reaction using a zinc-containing metal organic skeleton compound according to any one of claims 1 or 2 as a catalyst.
제 4항에 있어서,
상기 카르보닐화반응은 반응온도가 80~150 ℃, 이산화탄소의 압력이 0.8~1.6 MPa의 조건에서 4~20 시간 반응시키는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
5. The method of claim 4,
Wherein the carbonylation reaction is carried out at a reaction temperature of 80 to 150 ° C and a carbon dioxide pressure of 0.8 to 1.6 MPa for 4 to 20 hours.
제 4항에 있어서,
상기 금속유기골격체 화합물의 첨가량은 에폭시화합물 대 금속유기골격체 화합물의 mol비가 100 대 0.5~5인 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
5. The method of claim 4,
Wherein the amount of the metal organic skeleton compound added is such that the molar ratio of the epoxy compound to the metal organic skeleton compound is 100 to 0.5 to 5.
제 4항에 있어서,
상기 에폭시화합물은 에폭사이드 유도체로서, 알릴글리시딜 에테르, 부틸글리시딜에테르, 페닐글리시딜에테르, 프로릴렌옥사이드, 비닐싸이클로헥센 옥사이드 중에서 1종을 선택하는 것을 특징으로 하는 5원환 탄산염 화합물의 제조방법.
5. The method of claim 4,
Wherein the epoxy compound is an epoxide derivative selected from the group consisting of allyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, propylene oxide, and vinylcyclohexene oxide. Gt;
KR1020160134657A 2016-10-17 2016-10-17 Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst KR101855297B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160134657A KR101855297B1 (en) 2016-10-17 2016-10-17 Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst
PCT/KR2017/002115 WO2018074675A1 (en) 2016-10-17 2017-02-27 Novel zinc-containing metal organic framework compound, and method for preparing five-membered cyclic carbonate compound using same as catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160134657A KR101855297B1 (en) 2016-10-17 2016-10-17 Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst

Publications (2)

Publication Number Publication Date
KR20180042056A true KR20180042056A (en) 2018-04-25
KR101855297B1 KR101855297B1 (en) 2018-06-08

Family

ID=62018924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160134657A KR101855297B1 (en) 2016-10-17 2016-10-17 Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst

Country Status (2)

Country Link
KR (1) KR101855297B1 (en)
WO (1) WO2018074675A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200020395A (en) * 2018-08-17 2020-02-26 충남대학교산학협력단 Metal complex catalysts for selective formation of cyclic carbonates and process for preparing cyclic carbonate using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112742481A (en) * 2021-01-13 2021-05-04 山东建筑大学 Preparation method and application of high-stability solid acid based on metal organic framework

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773881A (en) 1953-02-09 1956-12-11 Union Carbide & Carbon Corp Glycol carbonates
KR100239222B1 (en) 1997-12-08 2000-01-15 대한민국 Phase transfer catalyst and preparation of 5-membered cyclic carbonate compound using the catalyst
KR100911494B1 (en) 2008-01-16 2009-08-11 부산대학교 산학협력단 Preparation of immobilized ionic liquid catalyst on mesoporous hybrid MCM-41 and its use for the synthesis of five member cyclic carbonates
KR100999360B1 (en) 2008-11-10 2010-12-09 부산대학교 산학협력단 Preparation of immobilized ionic liquid catalyst on porous amorphous silica and its use for the synthesis of five-membered cyclic carbonates
KR101536351B1 (en) 2013-12-17 2015-07-13 부산대학교 산학협력단 Method of preparation of five-membered cyclic carbonates by using the zinc containing metal organic frameworks as catalysts
KR101635756B1 (en) 2015-04-13 2016-07-20 부산대학교 산학협력단 Method of preparation of five-membered cyclic carbonates by using the zinc-glutamate metal organic frameworks as catalysts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150007484A (en) * 2013-07-11 2015-01-21 서울과학기술대학교 산학협력단 Novel Zn-MOF compounds, and carbon dioxide sorption and heterogeneous catalysts for transesterification comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773881A (en) 1953-02-09 1956-12-11 Union Carbide & Carbon Corp Glycol carbonates
KR100239222B1 (en) 1997-12-08 2000-01-15 대한민국 Phase transfer catalyst and preparation of 5-membered cyclic carbonate compound using the catalyst
KR100911494B1 (en) 2008-01-16 2009-08-11 부산대학교 산학협력단 Preparation of immobilized ionic liquid catalyst on mesoporous hybrid MCM-41 and its use for the synthesis of five member cyclic carbonates
KR100999360B1 (en) 2008-11-10 2010-12-09 부산대학교 산학협력단 Preparation of immobilized ionic liquid catalyst on porous amorphous silica and its use for the synthesis of five-membered cyclic carbonates
KR101536351B1 (en) 2013-12-17 2015-07-13 부산대학교 산학협력단 Method of preparation of five-membered cyclic carbonates by using the zinc containing metal organic frameworks as catalysts
KR101635756B1 (en) 2015-04-13 2016-07-20 부산대학교 산학협력단 Method of preparation of five-membered cyclic carbonates by using the zinc-glutamate metal organic frameworks as catalysts

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CrystEngComm, Vol.15, pp.9336-9339 (2013) *
J. Am. Chem. Soc., vol.138, pp.2142-2145 (2016.02.05.) *
비특허문헌 1 : Polymerization of propylene carbonate[(K. Soga 등, J. Polymer Science: Polymer Chemistry Edition, 15 (1997) 219]
비특허문헌 2 : Solid-state catalytic incorporation of carbon dioxide into oxirane-polymer. Conversion of poly(glycidyl methacrylate) to carbonate-polymer under atomospheric pressure[N. Kihara 등, J. Chemical Society: Chemical Communication, (1994) 937]
비특허문헌 3 : Incorporation of Carbon Dioxide into Poly(glycidyl methacrylate)[N. Kihara 등, Macromolecules, 25 (1992) 4824]
비특허문헌 4 : Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide[T. Nishikubo 등, J. Polymer Science, 31 (1993) 939]
비특허문헌 5 : Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J. Sun 등, Green Chem., 14 (2012) 14]

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200020395A (en) * 2018-08-17 2020-02-26 충남대학교산학협력단 Metal complex catalysts for selective formation of cyclic carbonates and process for preparing cyclic carbonate using the same

Also Published As

Publication number Publication date
KR101855297B1 (en) 2018-06-08
WO2018074675A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
Subramanian et al. Catalytic non-redox carbon dioxide fixation in cyclic carbonates
EP0926165B1 (en) Catalyst component comprising magnesium, titanium, a halogen and a electron donor, its preparation and use
KR101536351B1 (en) Method of preparation of five-membered cyclic carbonates by using the zinc containing metal organic frameworks as catalysts
KR100999360B1 (en) Preparation of immobilized ionic liquid catalyst on porous amorphous silica and its use for the synthesis of five-membered cyclic carbonates
KR100911494B1 (en) Preparation of immobilized ionic liquid catalyst on mesoporous hybrid MCM-41 and its use for the synthesis of five member cyclic carbonates
KR102235012B1 (en) Heterogeneous Organic Catalyst Based on Imidazoline and Method of Preparing Cyclic Carbonate Using the Same
KR101855297B1 (en) Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst
Ravi et al. Organic sulphonate salts tethered to mesoporous silicas as catalysts for CO 2 fixation into cyclic carbonates
Bresciani et al. Metal N, N-dialkylcarbamates as easily available catalytic precursors for the carbon dioxide/propylene oxide coupling under ambient conditions
Munoz-Hernandez et al. Six-coordinate aluminium cations: characterization, catalysis, and theory
Liao et al. Synergistic catalysis of hypercrosslinked ionic polymers with multi-ionic sites for conversion of CO2 to cyclic carbonates
KR101825671B1 (en) Method of preparation of five-membered cyclic carbonates by using the copper-aspartate-bisimidazole metal organic frameworks as catalysts
KR101368349B1 (en) Method of preparation of glycerol carbonate by using the metal organic frameworks as catalysts
KR101635756B1 (en) Method of preparation of five-membered cyclic carbonates by using the zinc-glutamate metal organic frameworks as catalysts
KR20200098929A (en) Heterogeneous Catalyst Complex for Carbon dioxide Conversion and the Method for Producing the same
CN111185239B (en) CO (carbon monoxide)2Preparation method and application of epoxidation fixed catalyst
KR101545257B1 (en) Method of preparation of glycerol carbonate by using the zirconium containing metal organic frameworks as catalysts
Feng et al. Catalytic performance of Co 1, 3, 5-benzenetricarboxylate in the conversion of CO 2 to cyclic carbonates
KR101430259B1 (en) Method for preparation of five-membered cyclic carbonate by using immobilized ionic liquid on a biopolymer cellulose as catalyst
CN108295901B (en) CO (carbon monoxide)2Cycloaddition co-catalyst and application thereof in cycloaddition reaction
KR102627604B1 (en) Novel zinc metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst
KR102592489B1 (en) Mass manufacturing method of metal-organic polyhedra and metal-organic polyhedra manufactured using the same
KR20170048739A (en) Method of preparation of five-membered cyclic carbonates by using the copper-aspartate-bipyridine metal organic frameworks as catalysts
KR20160013721A (en) Method for preparation of five-membered cyclic carbonate from carbon dioxide and epoxide by using alkanolamine as catalyst
KR102485203B1 (en) Ionic metal-organic frameworks catalysts and fabrication method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right