KR20180042041A - Method for cutting steel member - Google Patents

Method for cutting steel member Download PDF

Info

Publication number
KR20180042041A
KR20180042041A KR1020160134610A KR20160134610A KR20180042041A KR 20180042041 A KR20180042041 A KR 20180042041A KR 1020160134610 A KR1020160134610 A KR 1020160134610A KR 20160134610 A KR20160134610 A KR 20160134610A KR 20180042041 A KR20180042041 A KR 20180042041A
Authority
KR
South Korea
Prior art keywords
oxide particles
cutting
gas
melting point
steel material
Prior art date
Application number
KR1020160134610A
Other languages
Korean (ko)
Other versions
KR102566415B1 (en
Inventor
정성욱
유재석
전유철
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to KR1020160134610A priority Critical patent/KR102566415B1/en
Publication of KR20180042041A publication Critical patent/KR20180042041A/en
Application granted granted Critical
Publication of KR102566415B1 publication Critical patent/KR102566415B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/08Cutting, scarfing, or desurfacing by applying flames by applying additional compounds or means favouring the cutting, scarfing, or desurfacing procedure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/10Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to cutting or desurfacing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/10Auxiliary devices, e.g. for guiding or supporting the torch
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2203/04

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Gas Burners (AREA)
  • Arc Welding In General (AREA)

Abstract

According to the present invention, a method for cutting a steel member sprays oxide particles when gas-cutting a steel member to form a resolidification portion including oxide particles on a cut surface. Specifically, the melting point of the oxide particles is higher than the melting point of the steel member. The oxide particles use at least one type of powder selected among Y_2O_3, MgO, Al_2O_3, Lu_2O_3, and HfO_2. The oxide particles use a particle size in a range of 5-20 microns. Accordingly, particle boundary growth is suppressed by oxides dispersed in a HAZ in proximity to a molten pool to reduce a CG-HAZ fraction. Consequently, degradation in mechanical properties (strength and toughness) of a welding part is prevented.

Description

강재 절단 방법{Method for cutting steel member}Method for cutting steel member [0002]

본 발명은 강재 절단 방법에 관한 것으로서, 보다 구체적으로는 후행 공정에서 용융용접이 있을 경우 열영향부의 결정립 조대화를 억제하여 열영향부의 강도 및 인성저하를 방지하는 강재 절단 방법에 관한 것이다.The present invention relates to a steel material cutting method, and more particularly, to a steel material cutting method that suppresses coarsening of crystal grains in a heat affected portion when molten welding is performed in a following process, thereby preventing the strength and toughness of the heat affected portion from deteriorating.

중공업 현장에서 가장 일반적인 강재 절단 방법은 가스 토치에 의한 절단이다. 산소 가스 절단은 절단에 필요한 에너지의 공급이 외부에서뿐 아니라 절단되는 재료의 연소에 의해 공급되므로 에너지 공급이 어려운 두꺼운 절판의 절단도 가능하다. 가스 토치는 가스 절단 시 사용하는 화염 분출기는 보통 아세틸렌 가스와 산소를 혼합하여 예열가스화염으로 분사하고 고압산소가스를 분사하여 슬래그를 불어 날리게 한다. 분출된 혼합가스는 점화에 의해 고온 가스 화염이 되고 피절단 강재의 두께 및 강종에 따라 아세틸렌이나 산소의 양을 조절하여 적절한 절단 속도에 맞추어 절단이 진행되도록 한다.The most common steel cutting method in heavy industry is cutting by gas torch. Oxygen gas cutting is possible because the supply of energy required for cutting is supplied not only from the outside but also from the burning of the material to be cut, so that the thick cut-out can be cut with difficult energy supply. The gas torch is used for gas cutting. The flame sprayer usually mixes acetylene gas and oxygen, injects it with preheating gas flame, and injects high pressure oxygen gas to blow off the slag. The gas mixture is ignited to become a hot gas flame and the amount of acetylene or oxygen is controlled according to the thickness and the type of the steel to be cut so that the cutting can be performed at an appropriate cutting speed.

다만, 가스 토치 절단을 거친 강재에 대하여 후속으로 용융용접을 수행하는 경우 열영향부에서 결정립 조대화로 강도 및 인성저하를 초래한다.However, when the steel material subjected to the gas torch cutting is subsequently subjected to the melting welding, the strength and toughness are degraded in the grain boundaries in the heat affected zone.

이러한 단점의 해소와 관련하여 한국 등록특허공보 제0553260호, 한국 등록특허공보 제362682호 등의 선행기술문헌을 참고할 수 있다.In connection with the resolution of these disadvantages, reference can be made to prior art documents such as Korean Patent Registration No. 0553260 and Korean Patent Registration No. 362682.

전자의 경우 산소차폐용 알곤가스를 현재 용접이 진행되고 있는 용접비드부 측으로 확산되도록 구성하여 고용화 열처리과정에 의한 용접비드부와 용접열 영향부의 용접응력 제거를 도모하고, 후자의 경우 미세조직을 베이나이트와 페라이트의 복합조직으로 하여 강도를 개선하고 미세한 TiN의 석출물과 Al2 O3ㆍMnO 복합산화물을 이용하여 용접열영향부의 인성을 개선한다.In the former case, the argon gas for shielding oxygen is diffused to the side of the welding bead where the welding is proceeding, so that the weld bead portion and the welded heat affected portion are removed by the welding heat treatment process. In the latter case, The composite structure of bainite and ferrite improves the strength and toughness of weld heat affected zone is improved by using fine TiN precipitates and Al 2 O 3 MnO complex oxide.

그러나, 일반적인 가스 토치 방식으로 절단된 강재에 상기한 선행기술문헌의 기술적 특징을 적용하더라도 열영향부 물성의 유의적 개선을 기대하기 미흡하다.However, even if the technical features of the prior art document are applied to a steel material cut by a general gas torch method, significant improvement in the properties of the heat affected zone is not expected.

1. 한국 등록특허공보 제0553260호 "스테인리스 강관의 연속 용접장치 및 용접방법" (공개일자 : 2005.03.15.)1. Korean Patent Registration No. 0553260 "Continuous Welding Device of Stainless Steel Pipe and Welding Method" (Published on Mar. 15, 2005) 2. 한국 등록특허공보 제0362682호 "용접열영향부 인성이 우수한 고강도 용접구조용 강재와 그 제조방법" (공개일자 : 2002.01.26.)2. Korean Patent Registration No. 0362682 entitled " High Strength Welding Structural Steels with Excellent Toughness at Welding Heat Affects and Method for Manufacturing the Same "(Published on Jan. 26, 2002).

상기와 같은 종래의 문제점들을 개선하기 위한 본 발명의 목적은, 기존 가스 토치 절단 시 토치 선단에서 ODS를 발생시키는 산화물 분말을 함께 분사함으로써, 절단면 내부의 재응고모재에 산화물 분말을 함께 분포시키는 것에 의해, 이어지는 공정인 용접 단계에서 HAZ부의 결정립 성장을 억제하여 용접부 물성 저하를 방지하는 강재 절단 방법을 제공하는 데 있다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art by providing an oxide powder generating ODS at the tip of a torch when the conventional gas torch is cut, And a steel material cutting method for preventing the grain growth of the HAZ portion from being suppressed in the subsequent welding step to prevent deterioration of the physical properties of the welded portion.

상기 목적을 달성하기 위하여, 강재 절단 방법으로서, 강재의 가스 절단 시 산화물 입자를 분사하여 절단면에 산화물 입자가 포함된 재응고부를 형성시키는 것을 특징으로 한다.In order to achieve the above object, the present invention is characterized in that, as a steel material cutting method, oxide particles are sprayed upon gas cutting of a steel material to form a receding portion including oxide particles on the cut surface.

본 발명의 세부 구성으로서, 상기 산화물 입자의 융점은 강재의 융점보다 높은 것을 특징으로 한다.In the detailed construction of the present invention, the melting point of the oxide particles is higher than the melting point of the steel material.

본 발명의 세부 구성으로서, 상기 산화물 입자는 Y2O3, MgO, Al2O3, Lu2O3, HfO2 중에서 선택되는 적어도 1종류의 분말을 사용하는 것을 특징으로 한다.In the detailed construction of the present invention, the oxide particles are characterized by using at least one kind of powder selected from Y 2 O 3 , MgO, Al 2 O 3 , Lu 2 O 3 and HfO 2 .

본 발명의 세부 구성으로서, 상기 산화물 입자는 5~20 micron 범위의 입도를 사용하는 것을 특징으로 한다.As a detailed configuration of the present invention, the oxide particles are characterized by using a particle size in the range of 5 to 20 microns.

본 발명의 세부 구성으로서, 상기 산화물 입자는 토치화구(30)의 외주면에 형성되는 보조분사구(45)를 통하여 별도의 경로로 분사되는 것을 특징으로 한다.The oxide particles are injected in a separate path through an auxiliary injection port 45 formed on the outer circumferential surface of the torch catching hole 30. [

이때, 상기 산화물 입자는 절단 방향을 기준으로 가스 절단 토치화구에서 분사되는 산소 가스의 전방에서 분사되며, 상기 보조분사구는 절단 방향에 대해 소정 각도의 경사각을 갖도록 배치되는 것을 특징으로 한다.In this case, the oxide particles are injected in front of the oxygen gas injected from the gas cutting torch mouth with reference to the cutting direction, and the auxiliary injection holes are arranged to have an inclination angle of a predetermined angle with respect to the cutting direction.

이상과 같이 본 발명에 의하면, 용융지에 근접한 HAZ에서 분산된 산화물에 의해 입계 성장이 억제되어 CG-HAZ 분율이 감소하고, 그 결과 용접부의 기계적 물성(강도 및 인성) 저하가 방지되는 효과가 있다.INDUSTRIAL APPLICABILITY As described above, according to the present invention, the grain boundary growth is suppressed by the oxides dispersed in the HAZ close to the fused paper, and the CG-HAZ fraction is reduced. As a result, the mechanical properties (strength and toughness)

도 1은 종래의 용접 방법에 의한 열영향을 나타내는 모식도와 그래프
도 2 및 도 3은 본 발명에 따른 용접 방법을 개략적으로 나타내는 모식도
도 4는 본 발명에 따른 용접 방법에 의한 열영향을 나타내는 모식도
1 is a schematic view showing a heat effect by a conventional welding method and a graph
2 and 3 are schematic views schematically showing a welding method according to the present invention.
Fig. 4 is a schematic view showing a thermal effect by the welding method according to the present invention

이하, 첨부된 도면에 의거하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 강재 절단 방법으로서, 강재의 가스 절단 시 산화물 입자를 분사하여 절단면에 산화물 입자가 포함된 재응고부를 형성함을 요체로 한다.The present invention is a steel material cutting method, in which oxide particles are sprayed upon gas cutting of a steel material to form a receding portion containing oxide particles on the cut surface.

도 1을 참조하면, 강재 등 모재(10)의 산소 가스 절단 시 토치화구에서 분출되는 고온의 예열 화염으로 발화온도(약 900℃)까지 가열되고, 화구의 중앙에서 분사되는 절단용 고압산소에 의한 연소로 인하여 고열이 발생되며, 이에 의해 생성되는 연소 생성물과 용융금속이 고압산소의 제트기류로 인하여 제거된다.Referring to FIG. 1, a high-temperature preheating flame emitted from a torch pipe during cutting of oxygen gas of a base material 10 such as a steel material is heated to the ignition temperature (about 900 ° C.) High heat is generated by the combustion, and the combustion products and molten metal produced by the combustion are removed by the jet stream of high-pressure oxygen.

도 1(a)는 화구의 연속적인 이동에 의해 좁은 홈 모양으로 강재를 제거한 절단면으로 개선부(13)를 생성한 상태를 예시한다. 이 과정에서 생성되는 산화철은 FeO, Fe2O3, Fe3O4 등이고, 이 산화 과정에서 발생하는 슬래그의 보편적 조성은 Fe 10~20%, FeO 45~55%, Fe2O3 20~45% 정도이다. 산소 절단에 의해 생성된 개선부(13)의 절단면은 재응고 모재 및 응고 산화물 층으로 구분되는 재응고부(15)를 형성한다. 두 부분은 절단 용융지의 용융부 및 반응부에서 생성되는 조직으로서, 산소 절단과 관련되어 특유의 흑갈색 광택을 띄고 있다.Fig. 1 (a) illustrates a state in which the improvement portion 13 is formed by cutting the steel material into a narrow groove shape by continuous movement of the pipe. In this process, the iron oxides produced are FeO, Fe 2 O 3 , Fe 3 O 4 and the like . The general composition of the slag generated in the oxidation process is 10 to 20% of Fe, 45 to 55% of FeO, 20 to 45 of Fe 2 O 3 %. The cut surface of the improvement portion 13 formed by oxygen cutting forms a re-impaction portion 15 that is divided into a re-solidification base material and a solidification oxide layer. The two parts are formed by the molten part of the cutting melting paper and the reaction part, and have a specific blackish brown gloss associated with the oxygen cutting.

도 1(b)와 같이 가스 절단을 거쳐 절단면에 재응고부(15)가 형성된 후 이어지는 용접 단계에서 가스 절단면인 개선부(13)가 용접부로 된다. 용접 시 개선부(13)로 용융지가 통과하면서 표면의 일부가 용접 용융지와 함께 용융된다. 도 1(c)와 같이 모재(10)의 내부에서는 용융지에서의 거리가 멀어짐에 따라 융점에 가까운 고온(HAZ, Heat Affected Zone, 열영향부)에서 점차 저온(BM, Base Metal, 모재)으로 변화하는 온도 구배를 보인다.As shown in Fig. 1 (b), after the re-impaction portion 15 is formed on the cut surface through gas cutting, the improvement portion 13, which is a gas cutting surface, is a weld portion in the succeeding welding step. A portion of the surface is melted together with the welding fusing paper while the welding paper passes through the improving portion 13 during welding. As shown in FIG. 1 (c), the inside of the base material 10 is gradually reduced in temperature (BM, base metal, base material) from a high temperature (HAZ, heat affected zone) close to the melting point It shows a changing temperature gradient.

그런데, 도 1(b)의 확대도와 같이 용접부의 입열량이 높으므로 일반적으로 용접부에 가까운 열영향부에서 고온에 의한 결정립 성장이 발생하게 되며, 결정립 성장에 의하여 조대 결정립(Coarse grains) 분율이 높을수록 HAZ에서의 재료 물성의 열화가 심해져서 강도 및 인성 저하 등의 문제를 야기한다. 도시에서 CG-HAZ는 조대 결정립 열영향부를 FG-HAZ는 미세 결정립 열영향부를 의미한다.1B, since the heat input amount of the welded portion is high, generally, the grain growth is caused by the high temperature in the heat affected zone close to the welded portion, and the coarse grains fraction is high due to the grain growth The deterioration of the physical properties of the resulting HAZ becomes severe, which causes problems such as strength and toughness deterioration. In the city, CG-HAZ refers to coarse grain heat affected zone, while FG-HAZ refers to fine grain heat affected zone.

본 발명에 따르면 모재의 가스 절단 시 절단면 내부에 산화물 입자를 분포시킨 재응고부(15)를 형성하여 추후 용접 시 용접부에 인접한 영역의 열영향부에서 결정립 성장을 억제한다. 도 2를 참조하면, 토치화구(30)의 절단 방향을 기준으로 할 때 반응부(11)의 전방으로 예열부(12)가 위치하고, 반응부(11)의 후방으로 드러그 라인의 형성과 슬래스의 배출이 진행된다.According to the present invention, a re-impregnation portion 15 in which oxide particles are distributed in a cut surface during gas cutting of the base material is formed to suppress grain growth in the heat affected portion in a region adjacent to the weld portion at the time of welding. 2, the preheating section 12 is positioned forward of the reaction section 11 with respect to the cutting direction of the torch tip section 30, and the formation of the drag line and the formation of the slag .

본 발명의 세부 구성으로서, 상기 산화물 입자의 융점은 강재의 융점보다 높은 것을 특징으로 한다.In the detailed construction of the present invention, the melting point of the oxide particles is higher than the melting point of the steel material.

본 발명에 의하면 절단면의 재응고부(15)에 산화물분산강화부(20)를 포함하며, 산화물분산강화부(20)는 통상 고온 구조재료에 적용되는 강화 방법인 ODS(Oxide Dispersion Strengthening)를 기반으로 한다. 이는 금속기지(일반적으로 철 또는 알루미늄)보다 높은 융점의 산화물(Oxides) 분말을 기지 내에 분산시킴으로써, 고온에서 입계 피닝(pinning) 효과에 의하여 결정립계 성장을 억제를 유발한다.(creep 억제 효과)According to the present invention, an oxide dispersion strengthening portion 20 is provided in a re-covering portion 15 of a cut surface and the oxide dispersion strengthening portion 20 is formed on the basis of ODS (Oxide Dispersion Strengthening) do. By dispersing oxides of higher melting point than metal base (generally iron or aluminum) in the matrix, grain boundary growth is suppressed by grain boundary pinning effect at high temperature (creep inhibition effect).

한편, 본 발명의 설명에서 모재(10)의 열영향부, 반응부(11), 예열부(12), 재응고부(15), 산화물분산강화부(20) 등은 특정 영역으로 한정되지 않고, 부분적으로 중복되는 영역을 포함할 수 있으며, 상호 명확하게 구분할 실익도 없다.In the description of the present invention, the heat affected zone, reaction unit 11, preheating unit 12, recoating unit 15, and oxide dispersion strengthening unit 20 of the base material 10 are not limited to specific areas, It may contain partially overlapping areas, and there is no benefit to distinguish between them.

본 발명의 세부 구성으로서, 상기 산화물 입자는 Y2O3, MgO, Al2O3, Lu2O3, HfO2 중에서 선택되는 적어도 1종류의 분말을 사용하는 것을 특징으로 한다. 본 발명에 사용 가능한 산화물은 강의 융점(섭씨 약 1500℃)보다 최소한 500℃ 이상 더 높은 융점의 산화물이 적당하다. 예를 들어, Y2O3 (~2500℃), MgO (~2800℃), Al2O3 (약 2050℃), Lu2O3 (약 2480℃), HfO2 (2900℃) 등이 있으며, 이러한 산화물은 1종류 또는 2종류 이상의 혼합물 형태로 사용할 수 있다.In the detailed construction of the present invention, the oxide particles are characterized by using at least one kind of powder selected from Y 2 O 3 , MgO, Al 2 O 3 , Lu 2 O 3 and HfO 2 . The oxides which can be used in the present invention are oxides having a melting point of at least 500 DEG C higher than the melting point of the steel (about 1500 DEG C). For example, there are Y 2 O 3 (~ 2500 ° C), MgO (~ 2800 ° C), Al 2 O 3 (about 2050 ° C), Lu 2 O 3 (about 2480 ° C), HfO 2 These oxides can be used singly or in the form of a mixture of two or more kinds.

본 발명의 세부 구성으로서, 상기 산화물 입자는 5~20 micron 범위의 입도를 사용하는 것을 특징으로 한다. 보편적인 경우의 CG-HAZ 결정립 크기가 100~500 micron인 점을 고려하여 효과적으로 결정립계를 피닝(pinning)하기 위한 크기로 선정되어야 한다. 5~20 micron 범위의 입도를 지닌 산화물 입자를 사용함이 적절하며, 이러한 입도 범위를 벗어나면 미세조직의 조절이 용이하지 않다.As a detailed configuration of the present invention, the oxide particles are characterized by using a particle size in the range of 5 to 20 microns. The size of CG-HAZ grains should be chosen to effectively pinning the grain boundaries in consideration of the size of 100 to 500 microns. It is appropriate to use oxide particles having a particle size in the range of 5 to 20 microns, and control of the microstructure is not easy when the particle size is outside this range.

본 발명의 세부 구성으로서, 상기 산화물 입자는 토치화구(30)의 외주면에 형성되는 보조분사구(45)를 통하여 별도의 경로로 분사하는 것을 특징으로 한다. 도 2에서 토치화구(30)가 중심의 절단가스분사구(35)와 그 주변의 예열가스분사구(32)에 더하여 보조분사구(45)를 구비하는 상태를 예시한다. 예열가스분사구(32)는 예열부(12)와 관련되고 절단가스분사구(35)는 반응부(11)와 관련된다. 보조분사구(45)는 토치화구(30)에서 절단가스분사구(35)의 전방으로 반응부(11)에 산화물 분말을 분사한다. 분사된 산화물은 절단면 내부의 재응고부(15)에 분산 분포되어 산화물분산강화부(20)를 형성한다.The oxide particles are injected in a separate path through an auxiliary injection port 45 formed on the outer circumferential surface of the torch catcher 30. [ 2 illustrates a state in which the torch tip 30 has an auxiliary jet opening 45 in addition to the central cutting gas jet opening 35 and the preheating gas jet opening 32 in the periphery thereof. The preheating gas jetting port 32 is associated with the preheating section 12 and the cutting gas jetting port 35 is associated with the reaction section 11. [ The auxiliary injection port 45 injects the oxide powder into the reaction part 11 in front of the cutting gas injection port 35 in the torch mouth 30. The injected oxide is dispersed and distributed in the re-absorption portion 15 inside the cut surface to form the oxide dispersion strengthening portion 20. [

이때, 상기 산화물 입자는 절단 방향을 기준으로 가스 절단 토치화구에서 분사되는 산소 가스의 전방에서 분사되며, 상기 보조분사구는 절단 방향에 대해 소정 각도의 경사각을 갖도록 배치되는 것을 특징으로 한다. 보조분사구(45)에서 분사되는 산화물이 절단가스분사구(35)의 절단산소 제트기류에 의해 슬래그에 섞여 배출되는 양이 최소화 되도록 도 2의 확대도처럼 보조분사구(45)가 양측으로 각각 45~70˚ 범위의 경사각(A)을 이루도록 배치된다.In this case, the oxide particles are injected in front of the oxygen gas injected from the gas cutting torch mouth with reference to the cutting direction, and the auxiliary injection holes are arranged to have an inclination angle of a predetermined angle with respect to the cutting direction. The auxiliary injection port 45 is divided into 45 to 70 parts as shown in the enlarged view of FIG. 2 so that the oxide injected from the auxiliary injection port 45 is mixed with the slag by the cutting oxygen jet stream of the cutting gas injection port 35, (A).

한편, 도 2의 상태를 기준으로 할 때 보조분사구(45)는 절단가스분사구(35)의 수직 중심축에 대하여 평행하지 않고 구배를 형성하는 것이 좋다.On the other hand, when the state of FIG. 2 is taken as a reference, it is preferable that the auxiliary jetting port 45 is formed not to be parallel to the vertical center axis of the cutting gas jetting port 35 but to form a gradient.

도 4를 참조하면, 이러한 과정을 통하여 모재(10)의 내부 재응고부(15)에 분산 분포된 산화물은 후속되는 공정인 용접 단계에서 용접부에 가장 근접한 HAZ 부에 확산분포하면서 결정립계 성장을 억제하는 역할을 한다. 용접 시 열영향부의 결정립 조대화가 산화물 입자에 의해 억제되면, 조대 결정립 분율이 감소하면서 용접 후 열영향부의 강도 및 인성 저하를 방지할 수 있다.Referring to FIG. 4, the oxides dispersed and distributed in the internal re-welding part 15 of the base material 10 through the above process are distributed in the HAZ part closest to the welded part in the subsequent welding step, . If the crystal grain coordination of the heat affected zone during welding is suppressed by the oxide particles, the coarse grain fraction can be reduced, and the strength and toughness of the heat affected zone after welding can be prevented.

본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음이 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. It is therefore intended that such variations and modifications fall within the scope of the appended claims.

10: 모재 11: 반응부
12: 예열부 13: 개선부
15: 재응고부 20: 산화물분산강화부
30: 토치화구 32: 예열가스분사구
35: 절단가스분사구 45: 보조분사구
10: Base material 11: Reaction part
12: preheating part 13: improvement part
15: re-absorption part 20: oxide dispersion strengthening part
30: torch 32: preheating gas nozzle
35: cutting gas jetting port 45: auxiliary jetting port

Claims (6)

강재 절단 방법으로서,
강재의 가스 절단 시 산화물 입자를 분사하여 절단면에 산화물 입자가 포함된 재응고부를 형성시키는 것을 특징으로 하는 강재 절단 방법.
As a steel material cutting method,
Wherein the oxide particles are sprayed upon gas cutting of the steel material to form a receding portion including the oxide particles on the cut surface.
청구항 1항에 있어서,
상기 산화물 입자의 융점은 강재의 융점보다 높은 것을 특징으로 하는 강재 절단 방법.
The method according to claim 1,
Wherein the melting point of the oxide particles is higher than the melting point of the steel material.
청구항 1에 있어서,
상기 산화물 입자는 Y2O3, MgO, Al2O3, Lu2O3, HfO2 중에서 선택되는 적어도 1종류의 분말을 사용하는 것을 특징으로 하는 강재 절단 방법.
The method according to claim 1,
Wherein at least one kind of powder selected from Y 2 O 3 , MgO, Al 2 O 3 , Lu 2 O 3 , and HfO 2 is used as the oxide particles.
청구항 1에 있어서,
상기 산화물 입자는 5~20 micron 범위의 입도를 사용하는 것을 특징으로 하는 강재 절단 방법.
The method according to claim 1,
Wherein the oxide particles have a particle size in the range of 5 to 20 microns.
청구항 1에 있어서,
상기 산화물 입자는 토치화구(30)의 외주면에 형성되는 보조분사구(45)를 통하여 별도의 경로로 분사되는 것을 특징으로 하는 강재 절단 방법.
The method according to claim 1,
Wherein the oxide particles are injected in a separate path through an auxiliary injection port (45) formed on an outer circumferential surface of the torch catcher (30).
청구항 5에 있어서,
상기 산화물 입자는 절단 방향을 기준으로 가스 절단 토치화구에서 분사되는 산소 가스의 전방에서 분사되며,
상기 보조분사구는 절단 방향에 대해 소정 각도의 경사각을 갖도록 배치되는 것을 특징으로 하는 강재 절단 방법.
The method of claim 5,
The oxide particles are injected in front of oxygen gas injected from the gas cutting torch mouth with reference to the cutting direction,
Wherein the auxiliary jet orifice is disposed so as to have an inclination angle of a predetermined angle with respect to the cutting direction.
KR1020160134610A 2016-10-17 2016-10-17 Method for cutting steel member KR102566415B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160134610A KR102566415B1 (en) 2016-10-17 2016-10-17 Method for cutting steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160134610A KR102566415B1 (en) 2016-10-17 2016-10-17 Method for cutting steel member

Publications (2)

Publication Number Publication Date
KR20180042041A true KR20180042041A (en) 2018-04-25
KR102566415B1 KR102566415B1 (en) 2023-08-14

Family

ID=62088548

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160134610A KR102566415B1 (en) 2016-10-17 2016-10-17 Method for cutting steel member

Country Status (1)

Country Link
KR (1) KR102566415B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102147042B1 (en) * 2019-10-25 2020-08-24 박현희 Convergence Cutting Device and Metod for Metal Cutting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990008175A (en) * 1995-06-28 1999-01-25 글라베르벨 Cutting method of refractory material
KR100362682B1 (en) 2000-07-14 2003-01-24 주식회사 포스코 High strength steel plate having superior toughness in weld heat-affected zone and Method for manufacturing the same
KR20030092940A (en) * 2002-05-31 2003-12-06 삼성중공업 주식회사 Shaped steel cutting machine and cutting method thereof
KR100553260B1 (en) 2003-09-09 2006-02-20 동아금속주름관(주) continuous welding apparatus of stainless steel pipe and welding method of the same
KR20130102461A (en) * 2010-05-03 2013-09-17 티센크루프 테일러드 블랑크스 게엠베하 Method for producing custom made, welded sheet steel products to be warm formed and corresponding welded product
KR20150060358A (en) * 2013-11-26 2015-06-03 삼성디스플레이 주식회사 An apparatus for cutting and enhancing a substrate and a method for cutting and enhancing a substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990008175A (en) * 1995-06-28 1999-01-25 글라베르벨 Cutting method of refractory material
KR100362682B1 (en) 2000-07-14 2003-01-24 주식회사 포스코 High strength steel plate having superior toughness in weld heat-affected zone and Method for manufacturing the same
KR20030092940A (en) * 2002-05-31 2003-12-06 삼성중공업 주식회사 Shaped steel cutting machine and cutting method thereof
KR100553260B1 (en) 2003-09-09 2006-02-20 동아금속주름관(주) continuous welding apparatus of stainless steel pipe and welding method of the same
KR20130102461A (en) * 2010-05-03 2013-09-17 티센크루프 테일러드 블랑크스 게엠베하 Method for producing custom made, welded sheet steel products to be warm formed and corresponding welded product
KR20150060358A (en) * 2013-11-26 2015-06-03 삼성디스플레이 주식회사 An apparatus for cutting and enhancing a substrate and a method for cutting and enhancing a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102147042B1 (en) * 2019-10-25 2020-08-24 박현희 Convergence Cutting Device and Metod for Metal Cutting

Also Published As

Publication number Publication date
KR102566415B1 (en) 2023-08-14

Similar Documents

Publication Publication Date Title
JP6062576B2 (en) Method of joining two blanks, blank and resulting product
US20160199939A1 (en) Hot wire laser cladding process and consumables used for the same
JPWO2008108450A1 (en) ERW steel pipe manufacturing method and high Si or high Cr content ERW steel pipe
CN113747994B (en) Welding flux for laser tailor-welding of coated steel plate and laser tailor-welding method
JP2007283363A (en) Method of manufacturing uoe steel pipe
Li et al. Effects of shielding gas on GMAW of 10Ni5CrMoV HSLA steel using high Cr-Ni austenitic wire
JP2013150992A (en) Build-up welding method by tig welding
KR20180042041A (en) Method for cutting steel member
KR102178729B1 (en) Method for welding steel material
CN108655532B (en) Cutting method of chromium-molybdenum stainless steel composite layer
JP5493666B2 (en) ERW steel pipe manufacturing method
KR101985582B1 (en) Production method for welded structure
JPH11104879A (en) Cutting nozzle with laser beam and cutting method with laser beam
JP2014176869A (en) Arc spot welding method and welding device
CN102581520A (en) Thin-layer slag protecting medicinal powder for welding high strength steel
TWI691677B (en) Oxygen burner and operation method thereof
KR960004752B1 (en) Method of welding surface-treated metallic work-pieces
JP4253433B2 (en) Gas cutting crater
JP2016147291A (en) Gas cutting burner
JPH09248497A (en) Method and apparatus for flame spraying of refractory
JP2008238242A (en) Joining method and plasma torch usable for this method
JP7256392B2 (en) Steel cutting method
JP7401731B2 (en) Steel material fusing equipment and steel material fusing method
JP2000141030A (en) Powder cutting device
JPS6123574A (en) Engine valve and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant