KR20180040670A - 전기수술 발전기 및 방법 - Google Patents

전기수술 발전기 및 방법 Download PDF

Info

Publication number
KR20180040670A
KR20180040670A KR1020187007296A KR20187007296A KR20180040670A KR 20180040670 A KR20180040670 A KR 20180040670A KR 1020187007296 A KR1020187007296 A KR 1020187007296A KR 20187007296 A KR20187007296 A KR 20187007296A KR 20180040670 A KR20180040670 A KR 20180040670A
Authority
KR
South Korea
Prior art keywords
power
output
electrode
generator
cutting
Prior art date
Application number
KR1020187007296A
Other languages
English (en)
Inventor
더글러스 엠. 매카써
존 에프. 바차
알버트 솔뵈르
크리스토퍼 토치
크리스천 에이. 모세
Original Assignee
코비디엔 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코비디엔 아게 filed Critical 코비디엔 아게
Publication of KR20180040670A publication Critical patent/KR20180040670A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0266Pointed or sharp biopsy instruments means for severing sample
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/149Probes or electrodes therefor bow shaped or with rotatable body at cantilever end, e.g. for resectoscopes, or coagulating rollers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00853Material properties low friction, hydrophobic and corrosion-resistant fluorocarbon resin coating (ptf, ptfe, polytetrafluoroethylene)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2215Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having an open distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00333Breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00625Vaporization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00767Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • A61B2018/00922Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device by switching or controlling the treatment energy directly within the hand-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00988Means for storing information, e.g. calibration constants, or for preventing excessive use, e.g. usage, service life counter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1213Generators therefor creating an arc
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1266Generators therefor with DC current output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/142Electrodes having a specific shape at least partly surrounding the target, e.g. concave, curved or in the form of a cave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/144Wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1465Deformable electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1475Electrodes retractable in or deployable from a housing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Pathology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Electromagnetism (AREA)
  • Surgical Instruments (AREA)

Abstract

본원 발명은 전기수술 기구의 절단 필라멘트(즉, 절단 전극)에 전달된 전력을 조절하는데 사용되는 RF 전력 발생기 및 피드백 제어 시스템에 관한 것이다. 전기수술 기구는 전달된 에너지를 사용하여 조직 덩어리를 절제하여 그 내부의 표적 조직에 접근하기 위한 절단 아크를 형성한다. 상기 기구는 절제된 조직 덩어리로부터 표적 조직을 절제하기 위해 표적 조직 주위에 배스킷 모양의 리셉터클을 형성한다. 기구가 리셉터클을 형성함에 따라서 조직을 제거한 노출된 필라멘트의 길이가 변한다.

Description

전기수술 발전기 및 방법
<관련 응용 분야에 대한 상호 참조>
본 출원은 2015년 8월 13일 출원된 "전기수술 발전기 및 방법"이라는 제목의 미국 가출원 제62/204,807호 및 2015년 8월 13일자로 출원되고, "가변 강도 캡처 요소를 갖는 전기수술 방법 및 장치"를 우선권 주장의 기초로 하고, 양자의 출원은 모두 본원에 참고에 의해 편입된다.
<연방정부 후원 연구에 관한 성명>
해당 사항 없음.
<기술분야>
본 발명은 일반적으로 전기수술 발전기(electrosurgical generator)에 관한 것으로, 보다 상세하게는 전기수술 기구의 절단 전극(cutting electrode)에 전달되는 전력을 조절하는데 사용되는 피드백 제어에 관한 것이다.
전기수술은 조직을 절단, 절제 또는 응고시키기 위해서, 고주파 RF 에너지를 수술 부위에 적용하는 것을 포함한다 일부 응용예에서, 전기수술 기구는 전달된 에너지를 사용하여 조직 덩어리를 절제하여 표적 조직에 접근하기 위해 절단 아크(cutting arc)를 형성한다. 일부 RF 발생기는 다양한 작동 조건하에서 절단 아크를 유지하기 위해 RF 에너지 출력을 조절한다. 하나의 예에서, 절단 전극에 전달된 전력은 측정된 조직 임피던스(tissue impedence)에 기초하여 조절될 수 있다.
본 발명은 전기수술 기구의 절단 필라멘트(즉, 절단 전극)에 전달된 전력을 조절하는데 사용되는 RF 전력 발생기 및 피드백 제어 시스템에 관한 것이다. 전기수술 기구는 전달된 에너지를 사용하여 조직 덩어리를 절제하여 그 내부의 표적 조직에 접근하기 위해 절단 아크를 형성한다. 상기 기구는 절제된 조직 덩어리로부터 표적 조직을 절제하기 위해 표적 조직 주위에 배스킷 모양의 리셉터클(receptacle)을 형성한다. 기구가 리셉터클을 형성할 때, 조직을 제거하는 노출된 필라멘트의 길이가 변한다. 이러한 목적을 위해서, 본원에서 설명된 RF 전력 발생기는 노출된 필라멘트의 길이를 따라서 균일한 전력 밀도를 유지하기 위해 기구의 전개(deployment) 중에 전달되는 총 전력을 변화시키도록 구성된다.
특정 실시예에서, 기술된 기술은 전기수술 기구의 절단 필라멘트에 전달된 평균 실제 전력( "평균 유효-전력"이라고도 함)을 측정하는 위상-각 측정 회로 (phase-angle measurement circuit)를 포함하여, 유리하게 노출된 절단 필라멘트 전체에 걸쳐서 균일한 실제 전력밀도의 출력을 가능하게 한다. 조직을 절제할 때, 전달되는 전력의 역률(power factor)이 크게 변동하여, 잘못된 전력 판독값이 발생할 수 있다. 위상 각 측정 회로 및 피드백 제어는 절단 필라멘트의 노출된 길이에 걸쳐서 균일한 실제 전력 밀도를 유지하기 위해 그러한 변동을 보상할 수 있게한다.
특정 실시예에서, 설명된 기술은 표적 조직의 평균 조직 임피던스와 일치하도록 출력 전력을 튜닝하는 임피던스 로드 판별 회로(discriminator circuit)를 포함한다. 임피던스 로드 판별 회로는 소정의 범위의 임피던스 사이의 환자 로드로 전달되는 전력이 동일해지도록 허용하는 저대역필터 역할을 한다.
특정 실시예에서, 전기수술 기구는 예컨대, 10 ㎜, 12 ㎜, 15 ㎜, 20 ㎜, 30 ㎜ 등의 서로 상이한 사이즈의 캡처를 갖도록 구성되는 하나 이상의 타입의 캡처 요소를 부착가능하게 수용할 수 있은 핸들 요소를 포함한다. 각각의 캡처 요소는 캡처 요소의 타입을 정의하는 식별자(identifier)에 의해 코딩될 수 있다. 캡처 요소가 핸들 요소에 부착되면, 핸들 요소는 식별자를 조사하여, RF 발생기에 기구의 타입의 식별을 제공할 수 있다. 이렇게 함으로써 RF 발생기가 부착된 캡처 요소에 대해 원하는 전원 프로파일을 자동적으로 선택할 수 있도록 허용한다.
하나의 양상에서, 본 발명은 전극 아암(electrode arm)에 결합된 절단 전극(cutting electrode)을 보관 위치로부터 전개된 위치로 연장시키도록 구성된 하나 이상의 연장가능한 전극 아암을 갖는 절제 봉(excising wand)으로서, 여기서 상기 전극 아암의 연장 중에, 상기 절단 전극은 RF 에너지에 의해 전원인가되어, 전극 아암이 표적 조직을 둘러싸는 리셉터클을 형성하기 위해서 표적 조직 근위의 조직을 절단하도록 구성되는 절제 봉(excising wand); 및 상기 절제 봉에 작동가능하게 연결되고 출력을 갖는 RF 발생기를 포함하는 전기수술 시스템으로서, 상기 RF 발생기는, 전원 회로; 상기 절단 전극을 통한 전류 흐름의 측정과 관련된 전류 감지 출력을 갖는 전류 모니터링 회로; 상기 절단 전극에 인가된 전위의 측정과 관련된 전압 감지 출력을 갖는 전압 모니터링 회로; 및 상기 전류 감지 출력 및 상기 전압 감지 출력에 적어도 부분적으로 기초하여 차동 위상 각(differential phase angle)을 결정함으로써 상기 RF 에너지의 출력 전력을 측정하고, 각각 하나 이상의 상이한 봉 타입과 관련된, 복수의 제어설정들로부터 상기 절제 봉에 대한 하나의 제어 설정을 선택하고, 및 결정된 출력 전력과 선택된 제어 설정의 비교에 기초하여 절단 전극에 출력된 RF 에너지를 조정하도록 구성되는 제어기를 포함하는 전기수술 시스템을 포함한다.
특정한 실시예에서, 상기 제어기는 조직을 절단할 때 절단 전극이 균일한 전력 밀도를 갖도록 상기 절단 전극으로 출력된 상기 RF 에너지를 조정하도록 구성된다.
특정한 실시예에서, 상기 전압 모니터링 회로는 상기 RF 발생기에서의 출력에서 순시 전압의 실효값(root-mean square)을 측정하도록 구성된다.
특정한 실시예에서, 상기 전류 모니터링 회로는 상기 RF 발생기의 출력에서 순시 전류의 실효값을 측정하도록 구성된다.
특정한 실시예에서, 상기 RF 발생기는: 상기 절단 전극(예컨대, RF 발생기의 출력에)에 인가된 상기 RF 에너지의 평균 전력의 측정과 관련된 전력 감지 출력을 갖는 전력 모니터링 회로를 포함한다.
특정한 실시예에서, 상기 차동 위상 각(θZ)은, 아래 수식에 의해 산출된다:
Figure pct00001
상기 식에서, POUT(t)는 RF 발생기의 출력에서의 평균 전력(예컨대, RF 발생기의 출력 또는 절단 전극에서)의 측정치이고,
Figure pct00002
은 절단 전극에 인가된 전위(예컨대, RF 발생기의 출력 또는 절단 전극에서)의 실효값 측정치(root-mean square measurement)이며; 및
Figure pct00003
는 절단 전극을 통과하는 전류 흐름의 실효값 측정치이다.
특정한 실시예에서, 상기 제어기는, 하기 수식에 기초해서 상기 절단 전극에 출력된 RF 에너지를 조정하도록 구성된다:
Figure pct00004
상기 식에서,
VRMS는 전위(예컨대, RF 발생기의 출력 또는 절단 전극에서)의 실효값(RMS) 측정치이며, Z는 부하 임피던스(예컨대, 절단 전극 또는 조직의)이며, 및 θZ는 측정된 차동 위상 각이다.
특정한 실시예에서, 상기 전극 아암들에 의해 형성된 리셉터클은 약 10 ㎜ 내지 30 ㎜의 최대 캡처 직경을 갖는다.
특정한 실시예에서, 상기 전극 아암들에 의해 형성된 리셉터클은 약 12 ㎜ 보다 큰 최대 캡처 직경을 갖는다.
특정한 실시예에서, 상기 RF 발생기는: 상기 절제 봉의 신호 라인에 대한 인터페이스로서, 상기 신호 라인은 상기 절제 봉 내에 수용되는 식별 부재(identification element)(저항, 캐패시터, 집적회로(IC) 데이터 모듈)에 결합되는 인터페이스; 및 각각의 절제 봉이 관련된 제어 설정을 갖는 절제 봉 타입들의 목록을 내부에 저장한 메모리(예컨대, 룩업 테이블)를 포함한다.
특정한 실시예에서, 상기 제어기는 상기 신호 라인으로부터 수신된 신호에 기초하여 부착된 절제 봉의 제어 설정을 선택하도록 구성된다.
특정한 실시예에서, 주어진 절제 봉 타입의 제어 설정은, 각각의 절제 봉 타입의 절단 전극으로 출력되는 이산 전력 곡선(discrete power curve)을 포함한다.
특정한 실시예에서, 상기 이산 전력 곡선은, 아크 개시를 위한 출력 전압; 아크 개시를 위한 출력 시간; 소프트-스타트 출력 전력(예컨대, 시상수 값); 및 전력 프로파일 정의(power profile definition)(예컨대, N-포인트 곡선, 각 포인트는 시간 및 전력값 포함)으로 구성되는 군에서 선택되는 멤버를 포함한다.
다른 양상에서, 본 발명의 기술은 RF 발생기에 의해서 생성된 RF 에너지에 의해서 절제 봉의 절단 전극에 전원을 인가하는 단계(예컨대, 여기서 절제 봉은 예를 들어, 사람의 수술 부위로부터의 피하 표적 조직을 절제하도록 구성됨); 절제 봉의 전극 아암을 보관된 위치에서 전개된 위치로 연장하는 단계로서, 여기서 상기 전극 암은 상기 절단 전극에 연결되고, 연장으로 인해서 절단 전극이 표적 조직 근위의 조직을 절단하여 캡처된 표적 조직 둘레에 리셉터클을 형성하도록 하는 단계; 전압 감지 회로(예컨대 직접 또는 간접적으로 RF 발생기 또는 절단 전극에 연결된)를 통해서 상기 RF 발생기의 전압 출력(예컨대, 순시 전압)을 측정하는 단계; 전류 센서 회로(예컨대, 직접 또는 간접적으로 RF 발생기 또는 절단 전극에 연결된)를 통해서 상기 RF 발생기(예컨대, 여기서 전압 출력 및 전류 출력은 동시에 측정됨)의 전류 출력(예컨대, 순시 전류)을 측정하는 단계; 및
상기 전압 출력 및 상기 전류 출력으로부터 유도된 차동 위상 각 측정치과 상기 절제 봉과 관련되고, 각각 하나 이상의 서로 다른 봉 타입과 연관된 복수의 제어설정들로부터 선택된 하나의 제어 설정치의 비교에 기초하여, 상기 RF 발생기에 의해 생성된 상기 RF 에너지를, 프로세서에, 의해 조정하는 단계를 포함한다.
특정한 실시예에서, 상기 전력 출력은, 프로세서를 통해서, 상기 절단 전극에 대해 일정한 실제 전력 밀도를 유지하도록 조정된다,
특정한 실시예에서, 상기 RF 발생기에 의한 전력 출력은 하기 수식으로 주어진다:
Figure pct00005
상기 식에서,
VRMS는 출력 AC 전압의 유효값(예컨대, DC-균등 값)이고; Z는 표적 조직의 임피던스이며; 및 θZ는 표적 조직의 임피던스의 위상 각이다.
특정한 실시예에서, 상기 측정된 전류 출력은 상기 RF 발생기의 순시 전류 출력이고, 및 여기서 상기 측정된 전압 출력은 상기 RF 발생기의 순시 전압 출력이다.
특정한 실시예에서, 상기 전압 출력 및 상기 전류 출력은 동시에 측정된다.
특정한 실시예에서, 상기 방법은 전력 모니터링 회로(예컨대, 직접적으로 또는 간접적으로 RF 발생기 또는 절단 전극에 연결된)를 통해서 RF 발생기에 의한 전력 출력(예컨대, 순시 전력 출력)을 측정하는 단계를 포함한다.
특정한 실시예에서, 상기 차동 위상 각, θZ을 하기 수식에 의해서 산출된다.
Figure pct00006
상기 식에서,
POUT(t)는 평균 전력(예컨대, RF 발생기 또는 절단 전극의 출력에서)의 측정치이고;
Figure pct00007
은 절단 전극에 인가된 전위의 실효값 측정치(root-mean square measurement)이며; 및
Figure pct00008
는 절단 전극에 전달되는 전류 흐름의 실효값 측정치이다.
특정한 실시예에서, 상기 방법은, 전력 감지 회로를 통해서, 상기 RF 발생기의 전력 출력을 측정하는 단계; 및 상기 프로세서에 의해, 상기 전압 출력, 상기 전류 출력 및 상기 전력 출력으로부터 구한 차동 위상 각 값에 기초하여 상기 RF 에너지의 상기 전력 출력을 조정하는 단계를 포함한다.
특정한 실시예에서, 전극 아암들에 의해 형성된 리셉터클은 10 ㎜, 12 ㎜, 15 ㎜, 20 ㎜ 및 30 ㎜로 이루어진 군으로부터 선택되는 최대 캡처 직경을 갖는다.
특정한 실시예에서, 전극 아암들에 의해 형성된 리셉터클은 약 12 ㎜ 보다 큰 최대 캡처 직경을 갖는다.
특정한 실시예에서, 상기 방법은 RF 발생기가 절제 봉에 작동가능하게 연결될 때 절제 봉의 봉 크기(예컨대, 레지스턴스 값, 캐패시턴스 값, 또는 메시지에 기초하여)를 자동으로 확인하는 단계; 및 관련 절제 봉 사이즈의 확인에 기초하여 RF 에너지의 출력 전력을 조정하는 단계를 포함한다.
특정한 실시예에서, 상기 출력 전력은 상기 전극 아암에 의해 형성된 상기 리셉터클의 크기에 기초하여 선택될 수 있다.
특정한 실시예에서, 본 발명의 기술은 전기수술의 절단 전극을 보관 위치로부터 전개된 위치로 연장시켜 표적 조직(예컨대, 피하 표적 조직)을 캡처해서 추출하도록 구성된 전기수술 기구(예컨대, 절제 봉)에 작동가능하게 연결되도록 구성되는 RF 발생기를 포함하는 전기수술 시스템으로서, 상기 RF 발생기는; 상기 전기수술 기구의 신호 라인에 대한 인터페이스로서, 여기서 상기 신호 라인은 상기 전기수술 기구 내에 수용된 식별 부재(identification element)(예컨대, 저항, 캐패시터, 또는 집적회로(IC) 데이터 모듈)에 결합되는 인터페이스; 각각의 제어 설정이 절제 봉의 봉 크기 특성(예컨대, 12 ㎜ 절제 봉, 15 ㎜ 절제 봉, 20 ㎜ 절제 봉 및 30 ㎜ 절제 봉)과 관련되는, 전기수술 기구 타입의 제어와 관련되는 복수의 제어설정들을 내부에 저장한 메모리(예컨대, 룩업 테이블); 및 신호 라인을 통해 수신된 신호(예를 들어, 전압 측정치, 전류 측정치, 레지스턴스 측정치, 주파수 측정치, 또는 데이터 메세지)에 기초하여 부착된 전기수술 기구에 대한 복수의 제어설정들으로부터 하나의 제어 설정을 선택하도록 구성되는 제어기를 포함하는 전기수술 시스템을 포함한다.
특정 실시예에서, 각각의 이산 전력 곡선은, 아크 개시를 위한 출력 전압; 아크 개시를 위한 출력 시간; 소프트-스타트 출력 전력(예컨대, 시상수 값); 및 전력 프로파일 정의(예컨대, N-포인트 곡선, 각 포인트는 시간 및 전력값 포함)로 구성되는 군에서 선택되는 멤버를 포함한다.
상기 식별 부재는 저항, 커패시터, 및 집적 회로(IC) 데이터 모듈로 구성되는 그룹으로부터 선택되는 멤버이다.
특정한 실시예에서, 상기 복수의 제어설정들은 룩업 테이블에 저장된다.
특정한 실시예에서, 각각의 제어 설정은 하나 또는 양자의 최대 캡처 직경 및 전극 아암 크기로 특징지워지는 전기수술 기구 타입과 관련된다.
특정한 실시예에서, 상기 전기수술 기구는 RF 발생기의 인터페이스에 탈착 가능하게 부착되도록 구성된다.
특정한 실시예에서, 상기 전기수술 기구는 일회용으로 구성된다.
특정한 실시예에서, 상기 전기수술 기구는 다중 용도로 구성된다.
특정한 실시예에서, 상기 식별자(identifier)는 저항을 포함하고, 상기 인터페이스는 상기 신호 라인에 전위를 인가하여 상기 식별 부재의 저항을 측정하도록 구성된다.
다른 양상에서, 본 발명의 기술은 메모리를 통해서, 전기수술 기구 타입들(예컨대, 병소 절제 장치) 및 그의 대응하는 제어 설정들의 저장된 목록을 제공하는 단계로서, 각각의 전기수술 기구 타입은 전기수술 기구의 특징적인 크기와 관련되는 단계; RF 발생기의 리셉터클을 통해서, 부착된 전기수술 기구에 커넥터를 수용하는 단계로서, 상기 커넥터는 적어도 전력선, 접지선, 인터페이스 선을 포함하는 단계; 상기 인터페이스 라인을 통해서, 상기 전기수술 기구(예컨대, 전류 신호, 전압 신호, 데이터 신호의 인가에 의해서)의 타입과 관련되는 식별자 신호(identifier signal)를 검색하는 전기수술 기구를 조사하는 단계; 프로세서에 의해서, 검색된 식별자 신호에 기초하여, 상기 메모리로부터 제어 설정을 검색하는 단계; 및 상기 프로세서에 의해서, 상기 제어 설정을 상기 전기수술 시스템의 제어기에 적용하는 단계를 포함하는, 전기수술 시스템의 제어방법(예컨대, 전기수술 시스템의 제어 구성의 자동 선택을 위한)에 관한 것이다.
특정한 실시예에서, 상기 조사 단계는: 상기 인터페이스 라인에 전위를 인가하는 단계(여기서, 측정치는 전기수술 기구에 수용된 저항의 측정된 저항값에 대응됨); 및 상기 인터페이스 라인을 통해서 그 결과로서 생기는 전류를 측정하는 단계로서, 여기서 상기 측정은 상기 전기수술 기구에 수납된 저항의 측정된 저항에 대응하는 단계를 포함한다.
특정한 실시예에서, 상기 전기수술 기구의 타입은 각각의 최대 캡처 직경 및 전극 아암 크기 중 하나 또는 양자에 의해서 특징지워진다.
특정한 실시예에서, 본 발명의 기술은 전기수술 시스템(예컨대, 조직 임피던스 보상 기능을 갖는)을 포함하는데, 상기 전기수술 시스템은 전극 아암에 결합된 절단 전극을 보관 위치로부터 전개된 위치로 슬라이딩 가능하게 연장시키도록 구성된 하나 이상의 연장가능한 전극 아암을 갖는 절제 봉으로서, 여기서 상기 전극 아암의 연장 중에, 상기 절단 전극은 RF 에너지에 의해 전원인가되고, 전극 아암들이 표적 조직 근위의 조직을 절단하여 표적 조직을 둘러싸는 리셉터클을 형성하도록 구성되는 절제 봉; 및 상기 절단 전극에 작동가능하게 결합된 RF 발생기를 포함하며, 상기 RF 발생기는, 상기 전극 아암들의 연장 시에 상기 절단 전극에 전력을 출력하는 전원 회로(예컨대, 스위칭 전력 회로); 및 절단 전극이 절단하는 동안에 일정한 전력 밀도를 유지하도록, 절단되는 조직의 변화하는 임피던스를 보상하도록 구성된 임피던스 판별 회로(impedance discriminator circuit)를 포함한다.
특정한 실시예에서, 상기 임피던스 판별 회로는 조직에 전달된 전력을 정규화(고임피던스 조직으로부터 저임피던스 조직으로, 또는 그 반대로)함으로써 절단되는 조직의 변화하는 임피던스를 보상한다.
특정한 실시예에서, 상기 임피던스 판별 회로는 조직의 변화하는 임피던스가 약 50 내지 약 1800 Ω의 범위 내에서 변화하도록 정규화하도록 구성된다.
특정한 실시예에서, 상기 임피던스 판별 회로는 임피던스 매칭 네트워크(예컨대, 저대역 통과 필터)를 포함한다.
특정한 실시예에서, 상기 임피던스 매칭 네트워크는 약 1800 Ω에서 저감쇠 보드 응답(underdamped Bode response)을 갖는다.
특정한 실시예에서, 상기 저대역 통과 필터는 버터워스 필터(Butterworth filter)를 포함한다.
특정한 실시예에서, 상기 저대역 통과 필터는 후단 필터 네트워크(post filter network)를 포함한다.
특정한 실시예에서, 상기 저대역 통과 필터는 3차 저대역 통과 필터를 포함한다.
특정한 실시예에서, 상기 전력 회로는 RF 초퍼 회로 및 탱크 회로로 구성되는 군에서 선택되는 멤버를 포함한다.
특정한 실시예에서, 상기 임피던스 판별 회로는 수동 필터 회로를 포함한다.
특정한 실시예에서, 상기 임피던스 판별 회로는 능동 필터 회로를 포함한다.
다른 양상에서, 본 발명의 기술은 수술 부위로부터 피하 표적 조직을 추출하도록 구성된 절제 봉의 연장가능한 전극 아암에 연결된 절단 전극에, RF 에너지에 의해서, 전원을 인가하는 단계; 상기 전극 아암을 보관 위치로부터 전개된 위치로 연장하는 단계로서, 상기 보관 위치로부터 상기 전개된 위치로 연장되는 동안에, 전극 암이, 전개된 위치에 있을 때, 표적 조직을 추출하기 위해서, 상기 표적 조직에 인접한 인근 조직을 절단하여 리셉터클을 형성하도록 구성되는 단계; 및 임피던스 판별 회로를 통해서 출력된 RF 에너지를 필터링하여 약 50 내지 1800 Ω의 범위에 걸쳐 상기 절단 전극에 전달되는 전력을 정규화하는 단계를 포함하는 방법에 관한 것이다.
특정한 실시예에서, 상기 필터링하는 단계는 1800 Ω에서 저감쇠 보드 응답을 갖는다.
특정한 실시예에서, 상기 필터링은 3차 저대역 통과 필터로부터의 결과이다.
도 1은 일 실시예에 따른 예시적인 전력 제어 시스템의 도면이다.
도 2a 내지도 2d는 일 실시예에 따른 구동 보드(drive board) 및 그 내부의 다양한 요소들을 도시한 도면이다.
도 3은 FPGA 제어 스킴의 예시도이다.
도 4는 본 발명의 일 실시예에 따른 RF 발생기 구성의 예시도이다.
도 5는 예시적인 RF 초퍼 드라이버의 도면이다.
도 6은 예시적인 실시예에 따른 예시적인 임피던스 판별 회로를 도시한다.
도 7은 환자 저항 및 주파수에 대한 후단 필터의 전압 전달의 의존성을 설명하는 3D 플롯이다.
도 8은 일정한 범위의 조직 임피던스에 대한 전력 변화의 플롯이다.
도 9는 일 실시예에 따른 위상-각 측정 회로(phase-angle measurement circuit)를 도시한다.
도 10 및 도 11은 순시 전류 및 전압 측정치를 평균 전류 및 전압 측정치로 변환하기 위해 사용되는 변환기 회로의 예를 도시한다.
도 12, 도 13 및 도 14는 평균 전압, 전류 및 전력 측정을 위한 차동 출력 신호를 제공하는 예시적인 후 처리 회로(post processing circuit)를 도시한다.
도 15는 일 실시예에 따른 전기수술 시스템의 사시도이다.
도 16은 도 15에 도시된 전기수술 기구의 분해도이다.
도 17은 전개되는 단계에서 균일한 폭을 갖는 캡처 요소를 갖는 예시적인 전기수술 장치의 프로브를 도시한 도면이다.
도 18은 도 17의 캡처 요소들의 상세도이다.
도 19는 예시적인 실시예의 다양한 강성을 갖는 캡처 요소들을 갖는 캡처 요소 어셈블리의 개략적인 평면도이다.
도 20은 도 19의 캡처 요소 어셈블리의 캡처 요소의 작은 구멍 구조(eyelet structure)의 상세도이다.
도 21은 예시적인 실시예에 따른 도 19의 캡처 부품 어셈블리의 다른 평면도이다.
도 22는 도 21의 캡처 요소 어셈블리의 캡처 요소의 가요성 중간 영역의 단면의 상세 측면도이다.
도 23은 도 21의 캡처 요소 어셈블리의 베이스 영역의 도면이다.
도 24는 도 21의 캡처 요소 어셈블리의 탈출 탭(break-out tab)의 도면이다.
도 25a 및 도 25b는 도 16의 프로브 내에 사전 조립되도록 구성된 예시적인 캡처 요소 어셈블리의 도면이다.
도 26은 캡처 요소가 전개된 상태를 도시한 전기수술 기구의 정면도이다.
도 27은 캡처 요소가 전개된 상태의 전기수술 기구의 정면도이다.
도 28a, 도 28b 및 도 28c는 캡처 절차의 시퀀스를 도시한다.
도 29는 도 16에 일부 부분들이 분리된 도시된 전기수술 기구의 핸들 요소의 일부 절제 단면도이다.
도 30은 캡처 요소의 최종 전개 단계에서 요소의 방향을 나타내는 도 17의 전기수술 기구의 일례의 부분 단면도이다.
도 31은 도 15의 전기수술 기구의 예시적인 전달 요소(delivery component)의 전방 영역(forward region)의 도면이다.
도 32는 인공물 영역(artifact region)을 도시하는 도 15의 전기수술 기구의 전방 영역의 측면도이다.
도 33은 십자형 전구체 전극(cruciform type precursor electrode)의 정면도이다.
도 34는 블레이드 타입 전구체와 조합된 도 37의 전기수술 기구의 전방 영역의 부분도이다.
도 35는 도 34의 전기수술 기구의 전방 영역의 도면이다.
도 36은 일 실시예에 따른 전기수술 기구를 동작시키는 방법의 다이어그램이다.
도 37 및 도 38은 전기수술 기구의 모터 전류 유입을 도시하는 도면이다.
본 발명은 균일한 절단 아크를 생성하도록 구성된 전기수술 기구용 RF 전력 발생기를 포함한다. 특정 실시예에서, 예시된 RF 발생기는 적어도 직경 30 mm(예를 들어, 12 mm, 15 mm, 20 mm 또는 30 mm) 까지의 조직 절제를 위한 전기수술 기구에 의해 생성된 절단 아크들의 실질적으로 균일한 전력 밀도 유지를 가능하게 한다. 적어도 30mm 폭의 조직 부피의 전기수술 절제는 유익하며, 일부 실시예에서, 진단 목적 이외의, 예를 들어 치료로서, 예를 들어, 종양들 및 기타 불필요한 조직들과 같은 조직들의 절제에 필수적이다. 본원에서 구체적으로 예시된 것은 그의 연장 길이를 따라 다양한 강성을 갖는 스트럿(strut) 설계이다. 스트럿은 전기수술 장치의 프로브 부분 내부에 전개된 핑거-형 부속 장치로, 전개 과정을 통하여 절단 케이블을 운반한다. 스트럿은 보관 위치에서 전개 위치로 연장될 때 배스킷-형 리셉터클(basket-like receptacle)의 일부를 형성한다.
일부 실시예들에서, 각각의 스트럿은 오목한 영역을 형성하여, 보다 넓은 전방 영역 다음에 더 좁은 중간 영역을 제공하여 긴 모래 시계와 유사한 형상을 형성한다. 상이한 폭을 갖는 스트럿 대신에 또는 스트럿과 조합하여, 스트럿들은 그의 연장 길이를 따라 스트럿의 강성을 변화시키기 위해 상이한 탄성 모듈러스 특성들(예를 들어, 영률)을 갖는 2 개 이상의 재료들로 제조될 수 있다. 유사하게, 상이한 폭들을 갖는 것 이외에도, 스트럿의 두께가 스트럿 연장부의 길이를 따라 변화하여 스트럿의 강성을 변화시킬 수 있다.
본원에는 적어도 약 30 밀리미터 폭의 조직 부피의 절제(resection) 및/또는 절개(excision)를 위한 전기수술 봉(wand)이 기재된다. 본 명세서에 예시된 스트럿은 전폭 시작 섹션(full width initial section) 및 좁은 중간 섹션을 갖는다. 스트럿의 전폭 시작 섹션(스트럿의 "전방 섹션"이라고도 함)은 강성 활성 섹션을 형성하여, 스트럿이 봉 장치의 중심 축선으로부터 바깥쪽으로 의도된 궤도(예를 들어, 약 45도)로 전개되도록 보장한다. 더 좁은 중간 섹션은 전폭 초기 부분 다음의 연장 영역(extention region)에 대응한다. 좁은 섹션은 배스킷이 닫힐 때 둥근 만곡부(bend)를 유도하는 것으로 관찰된다. 전폭 시작 섹션은 좁은 중간 섹션보다 강성이다. 일부 실시예에서, 전폭 시작 섹션은 스트럿의 가장 강성인 섹션이다. 예시된 설계는 최대 배스킷 직경 및 균일한 형상을 갖는 봉 성능을 제공한다.
예시된 실시예에서, 전폭 시작 섹션은 길이가 약 0.550 인치이고 폭이 약 0.120 인치이다. 전폭 섹션은 일부 실시예들에서 약 0.051 인치 폭의 더 좁은 중간 섹션으로 전이한다. 예시된 실시예에서, 스트럿은 약 4 밀(mils)(0.004 인치) 두께로, 스트럿이 균일한 단면을 가지며 폭이 약 0.080 인치인 두께가 3 밀(0.003 인치)인 특정 10 mm 내지 20 mm 장치들의 스트럿과 유사한 강성을 갖는다. 예시된 스트럿들은 의료-등급 17-7 PH, 조건 C(Condition C), 스테인리스 강으로 제조되며 두께는 약 4 밀(0.004 인치)이다.
일부 실시예들에서, 중간 영역에서 스트럿의 동등한 강성을 유지하면서 예시된 스트럿의 길이를 증가시킴으로써 더 큰 직경-크기를 갖는 캡처 요소들이 사용될 수 있다. 동등한 스트럿 강성에 대하여, 스트럿은 빔 이론(beam theory)과 일치하여 확장될 수 있는데, 상기 빔 이론에서 강성은 식 1에 따라, 스트럿의 폭에 선형적으로 연관되고, 스트럿의 두께와 세제곱으로 연관되며, 스트럿의 길이와 세제곱으로 연관된다.
강성 = f[b,h3,l3], (식 1)
상기 식에서,
b는 스트럿의 폭, h는 스트럿의 두께, 1은 스트럿의 길이이다. 절제 부피의 크기가 증가함에 따라, 절제하는 동안 더 많은 조직을 절단하기 위해 고 출력 전력이 필요하다. 이를 위해, 고 전력 출력은 조직의 전기적 특성들의 가변성을 고려하여, 장치의 불완전한 전개를 야기할 수 있는 실속(stalls) 또는 과전류/과전력 발생 가능성을 증가시킨다. 개시된 기술은, 다른 것들 중에서도, 절단 아크에 전달된 평균 실제-전력의 측정을 제공하여, 절단 필라멘트의 노출된 길이에 걸쳐 전달되는 보다 균일한 실제-전력을 유지할 수 있게 한다. 또한, 개시된 기술은 표적 조직의 평균 조직 임피던스와 일치하도록 출력 전력을 조정하는 것을 추가로 제공한다. 이러한 특징들은, 특히, 제어를 불안정하게 하거나, 의도하지 않은 방식으로 조직을 손상시키거나, 기구를 손상시킬 수 있는 국부적 전력 변동이 발생할 가능성을 줄인다.
개시된 기술은 개선된 전력 제어 방식에 대한 피드백으로서 향상된 출력 감지 신호들을 사용하는 것을 포함한다. 일부 실시예에서, 제어 시스템은 봉 절단 케이블의 노출된 길이 전체에 걸쳐 균일한 실제 전력 밀도를 유지한다. 간단히 말하면, 절단 케이블 길이가 증가할 때에는 전력이 증가하고, 배스킷이 가깝게 오무려지는 동안에는, 절단 케이블 길이가 감소하면서 전력이 감소한다.
도 1은 일 실시예에 의한 예시적인 전력 제어 시스템을 도시한 도면이다. 개시된 기술은 절제 장치 프로브의 절단 전극에 전달되는 전력을 조절하도록 작동하는 피드백 제어 시스템을 포함한다. 장치의 목적은 병리학에 의한 분석을 위한 조직 시료를 제거하는 것이므로, 프로브에 의해 캡처된 조직은 RF 절제를 통한 제거 작용에 의해 손상될 수 없다. 최적의 출력 전력 레벨을 결정하는 것이 이의 요구 사항이다: 절단에 사용되는 전력이 너무 많으면 시료가 파괴되고, 전달되는 전력이 너무 적으면 조직이 불완전하게 캡처되거나 시료 크기가 작아진다. 절단 전극의 노출 길이가 전개 시간에 따라 변하기 때문에, 절단 전극에 전달되는 총 전력은 전극 와이어의 길이를 따라 전력 밀도를 보존하기 위하여 변경되어야 한다.
절단 전극에 일정한 전력 밀도를 전달하는 것이 바람직하지만, 최적 전력 전달 함수 P(t)를 변경하는 다른 요인들이 존재한다. 첫째, 최소 절단 기계 저항(전극 항력(electrode drag))을 유지하기 위하여 플라즈마가 절단 전극 주위에 존재하여야 한다. 이 플라즈마는 전극 와이어 둘레의 국부 온도가 인접 조직을 기화시키기에 충분히 높도록 절단 전극 둘레의 열을 국한시켜, 절단의 기계적 저항을 감소시킨다. 기계적 항력의 감소는 보다 구형의 시료를 생성하는 경향이 있고 또한 시료 크기를 증가시키는 경향이 있다. 플라즈마 존재의 다른 이점은 절단된 혈관이 소작될(cauterized) 가능성이 높으며, 따라서 수술 후 부종이 감소한다는 것이다. 둘째, 프로브의 스트럿은 주변 조직에 용량 결합(capacitively coupled)되어 있다. 이러한 기생 캐패시턴스는 주변 조직으로의 누출을 통해 전달 전극으로의 전력 손실을 초래한다. 셋째, 그리고 마지막으로, 스트럿들이 서로 오무려지는(purse) 캡처 주기의 말기에, 전달되는 전력은 전극 둘레가 최소값(그러나 0은 아님)으로 감소함에 따라 남은 갭을 극복할만큼 충분히 커야 한다. 조직 시료를 완전히 떼어내려면 남은 갭의 평면 내에 있는 모든 조직을 기화시키기에 충분한 전력이 있어야 한다. 플라즈마(또는 아크) 개시, 스트럿 캐패시턴스와 관련된 누출 및 조직 박리 전력의 필요성으로 인하여, 전력 전달 함수는 이러한 요인들을 고려하여 수정되어야 한다.
아크 개시 작동 단계 동안, 짧은 시간(예를 들어, 500 ms 미만) 동안, 제어기는 절단에 대하여 이상적인 것으로 고려되는 것보다 훨씬 높은 전력 레벨을 출력하여 전극 주위에 플라즈마를 형성한다. 이 기간 동안에, 전극에 인접한 세포 내액 및 세포 외액은 증발점까지 열을 축적한다. 이 증기는 이온화되어 전도성 플라즈마를 형성한다. 플라즈마가 전극 주변에 형성되면, RF 발생기에 의해 나타나는 전기 임피던스에 기여한다(예를 들어, 저항 및 캐패시턴스를 추가). 플라즈마는 이러한 용어가 비록 부정확한 용어이지만, 일반적으로 음의 임피던스로 알려진 전기적 특성들을 갖는다. 플라즈마의 전도도가 플라즈마 내의 이온 밀도에 의존하기 때문에, 전류의 증가는 열의 증가를 야기하며, 이는 결국 더 많은 이온을 생성하여 아크 양단의 전압 강하를 초래한다. 이러한 비선형 거동은 특히 아크가 없는 상태와 아크가 존재하는 상태 사이에서의 전이 중에 전력 전달의 제어를 복잡하게 한다. 이러한 전이 중에 제어 시스템을 안정화시키기 위하여 제어기는 "소프트-스타트(soft-start)" 상태를 사용한다. 소프트-스타트 알고리즘은 두 가지 기능을 동시에 수행한다: 1) 아크 개시로부터 절단 단계로 전달되는 전력을 지수적으로 감소시킨다, 및 2) PID 제어기 이득을 점진적으로 증가시켜 이득이 점진적으로 증가되어 절단 단계 동안 전력 전달 오류를 감소시킨다.
제어기가 절단 상태로 전이됨에 따라, 전력 출력은 사용중인 특정 프로브 용으로 설계된 프로파일에 점진적으로 접근한다. 전술한 바와 같이, 조직 시료 무결성을 보존하기 위하여, 캡처 주기 전체에 걸쳐 전극 와이어의 길이를 따라 실질적으로 일정한 전력 밀도를 유지하는 것이 바람직하다. 그러나, 또한 전술한 바와 같이, 프로브 스트럿 캐패시턴스는 주위 조직으로 전력을 누출시키므로, 캡처 주기의 말기에 전달되는 전력은 이상적인 절단 수준으로부터 조직 시료를 완전히 떼어낼 수 있을 정도로 상승되어야 한다. 노출 전극 길이만의 함수로 출발하여, 전력 전달 함수는 이전에 수집된 경험적 증거에 기초하여 근사화될 수 있다. 그 후, 함수는 목표 전력 출력(즉, 전력 프로파일 또는 전력 곡선)(302)을 얻기 위하여 성능 트레이드-오프(trade-offs)에 따라 수정되거나 수정되지 않을 수 있다. 주어진 프로브 크기 및 기하 구조에 대한 최적 전력 프로파일의 설계를 위하여, 개시된 기술은 사용자가 단계들(phases) 및 세그먼트들(segments)에서 목표 전력 전달 함수에 관한 정보를 입력하는 보간 방식(interpolation scheme)을 사용할 수 있고, 이어서 목록에서 목표 수학적 보간법 유형을 선택한다. 정보 필드가 사용자에 의해 변경됨에 따라, 시스템은 제안된 전력 출력 프로파일을 그래프 형태로 수정한다. 이후에 사용자는 전력 프로파일이 최적화될 때까지 반복적으로 데이터를 "조정(massage)" 할 수 있다. 사용자가 설정할 수 있는 전력 출력 사양은 다음과 같다: 아크 개시 동안의 RF 발생기 프로그램 전압, 아크 개시 단계의 지속 시간, 시상수 형태의 소프트 스타트 사양(예: 반감기와 유사), 4점 전력 프로파일 정의(예: 시간 및 전력) 및 보간 방식 타입(예: 구분적 선형(Piecewise Linear), 스플라인(Spline), 큐빅 허미트(Cubic Hermite) 또는 라그랑주(Lagrange)).
전력 제어 소프트웨어, RF 발생기 및 데이터 획득 보드는 함께 절단 전극(예를 들어, 핸들(12))에 전달된 총 전력을 조절하도록 작동하는 피드백 제어 시스템을 형성한다. 특히, 특정 실시예들에서, 소프트웨어는 1kHz PID-타입 제어기(300)를 실행시킨다. 피드백 루프의 메인 센서는 RF 발생기에 위치한 아날로그 멀티플라이어(analog multiplier)(324)이다. RF 발생기는 절단 전극에 전달된 출력 전압 및 출력 전류를 샘플링하도록 연결된 2개의 변압기들(320, 322)을 포함한다. 순시 전력은 전류와 전압 신호들의 곱이다. 그러나 순시 전력은 양(전달된) 및 음(반사된)일 수 있는 시간 변화 함수(반사로 인하여) 이다. 특정 실시예들에서, 전달된 평균 전력을 제어하여, 아날로그 멀티플라이어의 출력이 저역-통과 필터(LPF)(332)에 의해 저역-통과 필터링되는 것이 바람직하다. 이 신호(Psense)(330)는 데이터 획득 보드상의 A/D 컨버터(342)에 의해 샘플링되고, 출력 전력을 프로그래밍된 전력 프로파일(302)과 비교하는, PID 제어기로 공급된다. PID 제어기(300)의 출력(310)은 RF 발생기의 출력 레벨을 설정하는데 사용된다. 그러나, PID 제어기의 출력은 전력을 기준으로 하고 RF 발생기(DC-DC-CMD)의 제어 신호는 발생기 출력 전압을 설정하기 때문에, 제어 시스템의 비선형성을 피하기 위하여 제곱근 함수 선형화기(square-root function linearizer)(308)가 사용될 수있다. 이 비선형성은 출력 전력이 출력 전압의 제곱에 비례하고 로드 임피던스에 반비례한다는 사실에 기인한다.
Figure pct00009
(식 1)
선형화기(308)는 제어 시스템의 안정성을 증가시켜, 더 큰 정밀도를 제공한다. 최종적으로, RF 발생기의 출력 전력은 임피던스 매칭 네트워크(336) 추가에 의해 로드 임피던스 변화에 대한 감도가 감소된다.
제어부는 전기수술 기구(12)에 전달된 전력을 조절하는 PID 제어기(300)를 포함한다. 일부 실시예들에서, PID 제어기(300)는 전달된 전력의 센서 측정값(예를 들어, 344)에 대하여 목표 전력 출력 기준(302)을 비교한다. 일부 실시예들에서, 목표 전력 출력(302)은, 장치(예를 들어, 기구(12))의 각각의 타입(예를 들어, 캡처 크기)에 대해 특이적이고 테일러된(tailored) 순방향 피드백 요소의 일부이다. 목표 전력 출력(302)은, 일부 실시예들에서, 메모리(303)에 저장되고, 일부 실시예들에서는, 전력 제어의 상이한 단계들(예를 들어, 아크 개시 단계 동안, 초기 절단 단계 동안, 중간 절단 단계 동안, 및 최종 절단 단계 동안)에 대한 전력 출력 레벨을 포함한다.
일부 실시예들에서, 목표 전력 출력(302)(본원에서는 대안으로 제어 설정, 전력 프로파일 및 전력 곡선으로 지칭됨)은 프로브 타입에 따라 인덱싱된 전력 출력의 라이브러리(예를 들어, 룩-업 테이블(look-up table) 내)(303)에 저장된다. 일부 실시예들에서, 목표 전력 출력은 캡처 기구의 크기에 따라 인덱싱된다. 일부 실시예들에서, 프로브 타입은 기구의 자동 식별을 위하여 각각의 프로브 내에 수용된 코딩 식별자(301)에 따라 결정된다.
봉들(wands)은 각각 제어기에 대한 이들의 타입을 정의하는, 봉들과 연관된 식별자(301)를 갖는다. 이는 여러 방법들로 수행될 수 있는데, 가장 간단한 방법은 제어기에 의해 모니터링되는 신호 라인의 각각의 프로브 크기에 개별 저항기를 추가하는 것이다. 식별자(301)는 대안으로 또는 추가로 캐패시터 및/또는 집적 회로(IC) 데이터 모듈을 포함할 수 있다. 제어기 로직은 각각의 봉 타입에 동조된 전력 출력 곡선을 할당한다. 각각의 봉은 다른 직경의 조직을 캡처하고 최대 개방시 케이블의 노출 길이가 상이하다. 전력 곡선과 같은 제어 설정은 각각의 프로브에 대하여 최적화된다. 일부 실시예들에서, 각각의 프로브 타입에 대하여 최적화된 전력 곡선의 사용은 캡처하는 동안 균일하거나 실질적으로 균일한 전력 밀도를 유지하는데 유용할 수 있다. 일 실시예에서, 이산 전력 곡선(302)은 하나 이상의 아크 개시를 위한 출력 전압, 아크 개시를 위한 출력 시간, 소프트-스타트(soft-start) 출력 전력(예를 들어, 시상수 값) 및 대안으로 단순히 전력 프로파일 정의 또는 전력 곡선(예를 들어, 각각의 포인트가 시간 및 전력값을 포함하는 n포인트 곡선)으로 지칭되는, 전력 프로파일 정의를 포함할 수 있다.
일 실시예에서, 메모리(303)에 저장된 복수의 전력 프로파일 정의들 또는 전력 곡선들(302) 중 하나 이상은 제1 시간 간격 동안 양의 기울기(즉, 목표 전력값 증가시킴), 제1 시간 간격 다음의 제2 시간 간격 동안 실질적으로 제로 기울기(즉, 실질적으로 일정한 전력값), 및 제2 시간 간격 다음의 제3 시간 간격 동안 음의 기울기(즉, 전력값 감소)를 갖는다. 다른 실시예들에서, 하나 이상의 이러한 전력 곡선의 음의 기울기 부분은 생략될 수 있고 전력은 발생기가 꺼질때까지 비교적 일정한 레벨로 유지될 수 있다. 일부 실시예들에서, 각각의 독특한 봉 타입은 대응하는 독특한 전력 곡선(예를 들어, 고유 전력값 및/또는 고유 전력 곡선 형상 및/또는 각각의 전력 제어 단계에 대한 지속시간)을 가질 수 있고, 다른 실시예들에서, 하나 이상의 상이한 봉 타입들은 동일한 전력 곡선(예를 들어, 동일한 전력값 및/또는 동일한 전력 곡선 형상 및/또는 각각의 전력 제어 단계에 대한 지속시간)을 공유할 수 있다.
RF 발생기에 의해 수용되도록 구성된 핸들(12)의 커넥터는 전력선, 접지선 및 인터페이스 라인(305)을 포함할 수 있다. 동작시, 제어기는 인터페이스 라인(305)을 통하여 기구 타입과 관련된, 식별자 신호를 검색하기 위하여 기구를 조사(interrogate)할 수 있다. 일 실시예에서, 식별자(301)는 저항기를 포함하고, 조사(interrogation)는 인터페이스 라인에 전위를 인가하고 인터페이스 라인을 통해 결과적인 전류를 측정하여 저항기의 저항값을 측정하는 것을 포함한다.
도 2A는 본 발명의 일 실시예에 따른 구동 보드의 상부 레벨 블록도를 제공한다. RF V & I 트랜스듀서(transducer)(202)는, 도 2b에 도시된 바와 같이, RF 출력 회로로부터 감지 신호들을 수신하고, RMS 전압 및 전류에 비례하는 전압을 생성한다. 트랜스듀서(202)는 3 개의 입력 HVV, HV1+ 및 HVI을 갖는다. HVV는 0 내지 12V의 범위이고, RF 발생기의 정류된 AC 출력이며, 특정 실시예에서 40 : 1만큼 스텝 다운(stepped down)된다. HVI + 및 HVI -는 특정 실시예에서 200 : 1로 스텝 다운되어 전류 변환기에 연결된다. 트랜스듀서 회로(202)는 2 개의 출력 VOUT 및 IOUT를 생성한다. VOUT은 ADC의 입력 범위와 일치하도록 스케일링된, RMS RF 전압에 비례하는 전압이다. 유사하게, IOUT는 ADC 입력 범위와 일치하도록 스케일링된, RMS RF 전류에 비례하는 전류이다.
제어 블록(204)이 도 2a, 도 2c 및 도 2d에 도시된다. 제어 블록은 RF 출력을 제어하고 핸드셋(handset)을 모니터링한다. 도 2d에 도시된 제어 블록은, 도 2a 및 도 2c에 도시된 것과 약간 상이한데, 도 2d의 제어 블록은 추가 세부 사항을 보여준다.
제어 블록 내의 FPGA는 일부 실시예에서, 몇몇 상부 레벨 과제들을 수행한다. 이러한 과제는 RF 제어, 모터 상태 신호 발생 및 고전압 전류 발생 및 전압 오류 발생을 포함할 수 있다.
도 3은 예시적인 FPGA 제어 스킴을 도시한다. 단계 1302(파워 온 리셋)에서, 모든 저항 등은 사라지고 FPGA는 알려진 상태로 리셋된다. 이 상태는 즉시 리셋 상태(1304)를 대기하는 것으로 이동한다. 리셋 상태(1304)를 대기하는 동안, FPGA는 핸드셋이 리셋되기를 기다린다. 이는 MOTOR_REV_STALL이 표명될(asserted) 때까지 대기하는 것에 의해 핸드셋을 감지한다. 이것이 발생하면 FPGA는 프라임 상태(primed state)(1306)로 이동한다.
프라임 상태(1306) 동안, FPGA는 ENABLE 신호가 표명되기를 대기하고 있다. 이는 RF 시퀀스의 개시를 신호한다. ENABLE 신호가 검출되면, FPGA는 개시 상태(1308)로 이동한다.
개시 상태(308)에서, FPGA는 250 ms와 같은 일정 기간 동안 고정 전압(예를 들어, 2.7 V로 설정된 VPROG)을 요구함으로써 RF 아크를 점화시킨다. 이러한 기간(예를 들어, 250ms) 이후에, FPGA는 전력 제어 상태(1310)로 이동한다. ENABLE이 낮아지면, FPGA는 리셋 상태(1304)를 대기하는 상태로 복귀한다.
전력 제어 상태(1310)에서, 제2 기간(예를 들어, 800ms) 동안, FPGA는 PI 제어 루프를 사용하여 발생기의 출력 전력을 제어한다. RF 출력 전력은 IOUT과 VOUT을 곱하여 산출한다. 목표 전력 레벨은 HI_PWR_SELECT 핀에 연결된 점퍼(jumper)를 사용하여 선택될 수 있다. RF 전력은 RF 전압을 조정하는 VPROG를 변경하여 제어된다. 제2 기간(예를 들어, 800ms) 이후에, FPGA는 전압 제어 상태(1312)로 이동한다. 전압 제어 상태(1312)의 설정 포인트는 전력 제어 상태(1310)가 남아있을 때 RF 출력 전압으로 설정된다. ENABLE이 낮아지면, FPGA는 리셋 상태(1304)를 대기하는 상태로 복귀한다.
FPGA는 PI 제어 루프를 사용하여 발생기의 출력 전압을 제어한다. 목표 전압은 전력 제어 상태(1310)가 종료되었을 때의 RF 출력 전압이다. RF 전압은 RF 전압을 조정하는 VPROG를 변경하여 제어한다. ENABLE이 낮아지면 FPGA는 일시 정지 상태(1314)로 이동한다.
일시 정지 상태(1314)에서, FPGA는, 핸드셋이 리셋(MOTOR REV STALL이 어서트 된다)되어 프라임 상태(1306)로 이동하거나 캡처가 재개시되는 것을 대기한다(ENABLE Hi). 이것이 발생하면, FPGA는 재-개시 상태(1316)로 이동한다.
재-개시 상태(1316)에서, FPGA는 250ms와 같은 일정 기간 동안 설정 전압(2.7V로 설정된 VPROG)을 요구함으로써 RF 아크를 점화시킨다. 이 기간(예를 들어, 250ms) 이후에, FPGA는 전압 제어 상태(1312)로 이동한다.
전압 및 전력 제어 모두 매우 유사한 제어 루프에 의해 처리된다. 루프를 통과할 때마다 다음이 발생한다: 설정 포인트로부터 피드백 측정값을 차감, 제어 상수로 응답값(answer)을 곱함, 전류 루프 출력에 응답값을 추가, VOUT을 루프 출력과 동일하게 설정.
전압 제어 상태(1312)에서, 설정 포인트 및 피드백 측정값은 모두 Vrms이고 출력은 볼트이다. 전력 제어 상태(1310)에서, 세트 포인트 및 피드백 측정값은 모두 와트 단위이다
일부 실시예들에서, FPGA는 과전류 및/또는 과전력 안전 차단 기능만을 구현하고/구현하거나 초퍼 회로에 게이트 구동 신호들을 제공한다.
도 4는 일 실시예에 의한 RF 발생기 구조를 도시한 도면이다. 동기식 DC-DC 전력 컨버터(400), RF 초퍼 드라이버(402), 후단 필터 임피던스 판별기(404), 및 RF 전압, 전류 및 평균 전력 모니터링 회로(406)에 대한 설명이 이하 제공된다.
동기식 DC-DC 전력 컨버터
동기식 DC-DC 컨버터(4400)의 주요 기능은 "DC-DC-CMD"로 칭해지는 신호를 생성하는 "디지털 제어기(Digital Controller)"의 명령하에 DC 전압을 생성하는 것이다. 이 신호는 RF 초퍼(4402) 변압기의 1차측에 인가되는 "DC-DC-IN"이라고 칭해지는 출력 DC 전압을 생성한다. 따라서, 동기식 DC-DC 출력 전압은 로드시 최종 출력 RF 전압 진폭을 변조한다.
특정 실시예들에서, DC 전압 이득은 +10에서 +15까지(예를 들어, +14.1 또는 +12)이며, 이는 디지털 제어기로부터의 DC 아날로그 명령 전압(0 VDC에서 + 5 VDC)이 0 VDC 부터 + 60 VDC 중 어디에서나 동기식 DC-DC 출력 전압을 생성한다는 것을 의미한다(상위 DC 전압은 도 4에 도시된 AC-DC 컨버터로부터 외부로 인가되는 DC 전압에 따라 결정된다). 상술된 바와 같이, 이 전압은 일차로 태핑된 RF 초퍼 변압기 중앙에 인가된다.
다양한 DC 전압 출력을 생성하는데 사용되는 펄스 폭 변조 스킴은 고전압 하프-브릿지 드라이버 집적회로(IC)(예: Linear Technology LTC3703)를 사용하여 적용된다. 특정 실시예들에서, 이 IC는 DC-DC 변환 프로세스를 완전히 차단하는 내장형 셧다운 비트(built-in shutdown bit)를 가지며, 출력시 고 임피던스 상태를 제공한다. DC-DC 제어 전압 및 셧다운 비트는 도 4에 도시된다. 전술한 바와 같이, 특정 실시예들에서, LT 하프-브릿지 드라이버 IC(LT half-bridge driver IC)는 170KHz 로직 레벨 신호에 동기화되어 RF 초퍼 및 DC-DC 컨버터 단계들 사이에 임의의 비트 주파수들을 제거한다.
특정 실시예들에서, 유사한 서브 시스템 기능은 풀 브리지 스위치(full bridge switch)로도 알려진 H-스위치 토폴로지(H-Switch topology)를 사용한다. 다른 실시예들에서, 하프-브리지 토폴로지가 사용되고, "RF 초퍼 드라이버의" 발진기로부터 170KHz로 동기-고정된(sync-locked) 고정 주파수 TCXO 발진기에 의해 구동된다. 특정 실시예들에서, 동기식 DC-DC 전력 변압기(4400)는 초과 컨버터 로드 하에서 컨버터에 대한 손상을 방지하기 위하여 저항기에 의해 설정된 퓨즈 입력(fused input)과 DC 전류 제한을 통합한다.
RF 초퍼 드라이버
도 5는 예시적인 RF 초퍼 드라이버(5000)를 도시한 도면이다. 특정 실시예들에서, RF 초퍼 드라이버는 도 5에 도시된 바와 같이 푸시-풀 토폴로지(push-pull topology)이다. 일반적으로, 2개의 부가적인 디지털 전압 레벨 신호들은 MOSFET Q1 및 Q2를 ON 및 OFF로 교대로 스위칭한다. 이 스위칭 작동은 "가변 DC-DC 컨버터 출력 전압"으로부터 변압기 T1의 2차 와인딩(secondary winding)까지 +VDC 전위(도 5의 VDC의 극성 참고)를 교대로 인가한다. 와인딩에 대한 1차-대-2차 권선비(turns ratio)가 1 : 6 이므로, 교류 +VDC는 2차 또는 "후단 필터(To Post Filter)" 측에 VDC 크기 AC 구형파(square wave)를 6배(예를 들어, ± 6배) 증폭시킨다. RF 초퍼 로직 드라이브는 교대 펄스 구동 신호들 Phase-1과 Phase-2 사이에 요구되는 데드 타임(dead time)(예를 들어, 200 나노초)을 제공하여 두 개의 MOSFET이 동시에 ON 되지 않고, T1의 토로이드 코어(toroid core)가 포화되지 않도록 한다.
후단 필터 임피던스 판별기
다시 도 1을 참조하면, 후-처리 필터 임피던스 판별 회로(336)(또한, 도 4에서 4404로 도시됨)가 도시된다. 임피던스 로드 판별 회로(336)는 상이한 임피던스의 조직을 절제할 때 절단 필라멘트에 전달되는 전력을 정규화하여 전력을 동일하게 유지한다. 이 정규화는 표적 조직의 평균 조직 임피던스와 일치하도록 출력 전력을 조정한다.
일부 실시예들에서, 임피던스 판별기(336)는 저역 통과 필터링 및 임피던스 로드 판별을 포함하는, RF 전력 발생기(334)의 PWM 출력(318)에 2개의 개별적인, 그러나 관련된 기능들을 제공하는데 이용된다. 저역 통과 필터는 출력에서 구형파와 연관되어 생기는 고차 홀수 고조파들(higher order odd harmonics)을 최소화화여, PWM 발생기 회로(336)에 의해 생성된 입력 구형파로부터 기구(12)로의 사인파 출력을 생성한다.
도 6은 일 실시예에 의한 예시적인 임피던스 판별 회로(6000)를 도시한다. 이 단계는 도 6에 도시된 RF 초퍼 트랜스포머의 2차측으로부터 발생하는 340 KHz 구형파에 2개의 개별적인, 그러나 관련된 기능들, 즉: 저역 통과 필터링 및 임피던스 로드 판별을 제공한다. 저역 통과 필터는 출력시 RF 340 KHz 구형파와 연관되어 생기는 고차 홀수 고조파들, 즉 3f, 5f, 7f 등을 간단하게 최소화한다.
환자 로드 판별 기능은 어떤 종류의 저역 통과 필터가 선택되었는지의 결과이다. 이 경우 버터워스(Butterworth) 저역 통과가 R39에서 1800Ω의 감쇠 보드 응답(under damped Bode response)으로 선택되었다. 이러한 모델링된 환자 저항은 다수의 실험실 실험들로부터 50 내지 1800Ω으로 추정되었다. 더 높은 환자 저항 모델에서의 위상 변화는 도 6에서 C18로 도시된 바와 같이 약 300 피코 패럿(pico farads, pF)± 20 % 가 되는 조직 캐패시턴스(tissue capacitance)를 나타낸다.
도 6에 도시된 출력 회로에 대한 간단한 라플라스(Laplace) 전달 함수 모델을 유도하면, 소스를 전압원으로, 환자에 대한 출력 전압은 저항, R39로 모델링되는 것으로 가정할 수 있고, 우리는 다음과 같은 전달 함수를 갖는다:
H := 0.4·1024 R39(0.300274·1016 s R39 + 0.4·1024 R39 + 0.1000200000 1026 + 0.5480001605 1011 s2 R39 + 321. s3 R39 + 0.1070000000 1013 s2 + 0.4000005350 1020 s) (식 2)
식 2로부터 3차 저역 통과 함수가 관찰된다. 3D 플롯은 도 7에 도시된 바와 같이 환자 저항 및 주파수에 대한 후단 필터의 전압 전달의 의존성을 나타낸다.
또한, 도 6에 인덕터(LI6, L17) 및 캐패시터(CI6)를 포함하는 RF 출력 필터가 도시된다. 일부 실시예들에서, 캐패시터(C16)는 상대적으로 높은 정격 전력을 달성하기 위해 하나 이상의 폴리프로필렌 캐패시터를 포함할 수 있다는 것을 알 수 있다.
도 7은 높은 환자 저항에서, 피킹 함수(peaking function)가 약 500Ω 또는 그 이하의 환자 저항에 대하여 극적인 것을 나타낸다. 이러한 역동성은, 높은 임피던스 조직(예를 들어, 지방 조직)에서 제거하고 갑자기 낮은 임피던스 조직(예를 들어, 골격 또는 결합 조직)을 만날 때의 영향을 최소화하는데 바람직한 것이다. 예를 들어, 판별 회로가 없다면, RF 발생기가 고 임피던스 조직(예를 들어, 약 1800Ω의 값을 가짐)을 제거하는 동안에 100와트를 출력하는 경우, 이어서 보다 낮은 임피던스 조직(예를 들어, 약 50Ω의 값을 가짐)을 만나면, 전력은 이어서 100W에서 3600W로 증가한다. 이러한 전력 밀도의 폭증은 프로브에 손상을 줄 위험이 있다. 프로브 상의 저저항 접촉점(대개 루프 와이어 상의 일부 비교적 작은 영역)에서 전력 밀도가 폭증함에 따라서 와이어/프로브 어셈블리는 거의 파손된다.
임피던스 판별기를 사용하여, 의도된 임피던스 범위 사이(예를 들어, 약 50 내지 약 1800Ω 사이)로 환자 로드에 전달되는 전력은 그 범위에 전체에 걸쳐 거의 동일하게 유지된다. 도 8은 조직 임피던스 범위에 대한 전력 변화를 도시한다. 도시된 바와 같이, 전달된 전력 변화는 의도된 임피던스 범위에 걸쳐서 일정하게 유지된다.
또한, 후단 필터 네트워크 토폴로지는 전달된 RF 환자 전력이 더 높은 환자 임피던스에서의 전력보다 감소되도록 설계될 수 있다. 전력 강하 계수는 실험적으로 결정될 수 있다. 예를 들어, 공격적인 임피던스 판별로 인한, 너무 큰 전력 감소는 저-임피던스 조직 플라즈마 점화의 손실을 초래할 수 있으며, 그 결과 조직을 제거하는데 아크가 효과적이지 않을 수 있다.
RF 평균 전압, 전류 및 전력 모니터링 및 위상-각 측정
상술한 바와 같이, 일부 실시예들에서, 실제 전력의 위상 각 측정이 본 발명의 제어기에 의해 사용되어, 출력 전력을 조정하고 절단 아크에 대한 균일한 실제 전력 밀도를 가능하게 한다. 위상-각 측정은 하기 식 3에서 "각도 Z"로 표시되는, 차동 위상 각 계산을 가능하게 한다.
Figure pct00010
(식 3)
차동 위상 각은 두 개의 파형들, 즉 전달된 전류의 정현파와 전달된 전압의 정현파 사이의 상대 위상 또는 시간 지연을 측정한 것이다. 이 위상 각은 한 방향으로의 에너지의 순 전달을 감소시킨다.
조직을 제거할 때, 전달된 전력의 역률(즉, 작업에 사용되는 실제 전력 비율과 저장된 겉보기 전력 비율)은 다양한 조직들의 임피던스 변화에 따라 크게 달라질 수 있다는 것이 관찰되었는데, 이는 잘못된 전력 판독 및 제어를 초래한다. 차동 위상 각(각 Z)은 절단 아크에 전달되는 평균-실제 전력을 목표 전력 레벨로 유지하는데 사용할 수 있는 전류 파형과 전압 파형 사이에 상대 위상 오프셋을 제공한다. 차동 위상 각( Z)은 식 4에 도시된 바와 같이, θ로 표현될 수 있으며, 일부 실시예들에서, 실효값 전류 측정치
Figure pct00011
및 실효값 전압 측정치
Figure pct00012
로부터 유도된 위상-각 측정값에 의해 결정된다.
Figure pct00013
(식 4)
다시 도 1을 참조하면, 일부 실시예들에서, 실효값 전류 측정치(326) 및 실효값 전압 측정치(328)는 출력 포트(340)에서 기구에 연결된 변압기들(320 및 322)을 통해 측정되고 실효값들로 변환된다. 전달된 평균 전력(Psense)에 대응하는 전력 피드백 측정치(344)는 전압 변환기(Vsense) 및 전류 변환기(Isense)의 출력(326 ', 328')을 사용하여 측정된다. 측정치들(326 '및 328')은 멀티플라이어(324)를 통해, v(t) xi(t)로 결합되고, 저역 통과 필터(332)를 통해 필터링되어, 평균 전력 출력(330)을 생성한다. 일부 실시예들에서, 단극 2.5 kHz 저역 통과 필터가 사용된다. 평균 전력 출력(330)은 일부 실시예들에서 아날로그-디지털 변압기(ADC)(342)를 통해 캡처된다. PID 제어기(300)는 측정된 캡처 평균 전력(Psense)(344)을 목표 전력 프로파일(302)과 비교하고, 이에 따라 RF 발생기의 출력 레벨을 적절하게 설정한다. 달리 말하면, 제어기(300)는 각각이 상이한 타입의 봉과 관련된, 저장된 다수의 제어 설정들로부터, 식별되고 부착된 봉(12)에 대하여, 메모리(303)에 저장된 제어 설정(예를 들어, 전력 곡선)(302)을 선택하고, 측정된 출력 전력(344)을 제어 설정(302)과 비교하여 이에 따라 전달된 RF 에너지를 조정한다.
도 1에 도시된 바와 같이, PID 제어기(300)의 출력(310)은 제곱근 함수 선형화기(308)에 의해 수신된다. 이러한 제어 토폴로지에서, 비-선형성이 발생할 수 있는데, 이는 RF 발생기(DC-DC-CMD)의 제어 신호가 전압으로 설정되어 있는 반면에, PID 제어기의 출력(310)이 전력에 대한 기준이기 때문이다. 이 비-선형성은 출력 전력이 출력 전압의 제곱에 비례하지만 로드 임피던스에 반비례하기 때문에 발생한다. 식 3에 기재된 바와 같이 선형화기(308)는 비선형 출력이 생기는 것을 방지한다.
도면부호 312로 도시된, 디지털 신호로서의 출력은 디지털-아날로그 변압기(DAC)(314)를 통해 아날로그 명령(VPROG)(316)으로 변환되고, 예를 들어 RF 초퍼 회로에서, PWM 발생기(334)를 통해 PWM 신호들로 변환된다. PWM 발생기(334)의 출력(318)은 포스트-필터/임피던스 매칭 네트워크(336)에 의해 필터링되어, 사인파로서, 고주파 전류 및 전압 출력(340)을 전기수술 장치(12)에 제공한다.
지방 조직을 제거할 때, 전달된 전력의 역률은 고전도성 매체에서 거의 1(unity)에서 0.30으로 떨어질 수 있으며, 간단한
Figure pct00014
결과로부터 잘못된 판독 결과가 발생할 수 있다. 이러한 전달 전력 판독값들은 실제 전달 RF 전력보다 항상 훨씬 높게 판독된다(2 : 1 정도)
전달되는 실제 RF 전력을 측정하려면 위상 각을 알아야 한다. 일부 실시예들에서, 위상각 및 실제 RF 전력 정보의 사용은 봉 절단 케이블(wand cutting cable)의 노출된 길이에 걸쳐서 균일한 실제 전력 밀도를 유지하는 제어를 가능하게 할 수 있다.
도 9는 일 실시예에 의한 위상-각 측정 회로를 도시한다. 구체적으로, 도 9는 RF 출력 전압 및 전류 감지 변환기들(320, 322)로 구현된 위상-각 측정 회로를 도시한다. 변압기들은 환자 로드 포트에서 시간-기반 실시간 RF 전압 및 전류 파형들을 획득하도록 구성된다. 사용된 자기 소자는 전압 파형과 전류 파형 사이의 크기 및 위상 모두에 관하여 우수한 신호 무결성을 제공하는 것으로 관찰된다.
도 9에서 RF 전압 감지 및 전류 감지 식들은 식 5 및 6으로 제공된다.
Figure pct00015
(식 5)
Figure pct00016
(식 6)
일부 실시예들에서,
Figure pct00017
Figure pct00018
에 대한 식들이 오프셋 조정으로 아날로그 멀티플라이어 IC(324)(도 1) 내에 제공되어 PSENSE를 결정한다. 멀티플라이어(Multiplier(t)로 표시됨)의 출력은 식 7로 제공된다.
Figure pct00019
(식 7)
일부 실시예들에서, 식(7)으로부터의 멀티플라이어의 결과는 이후 저역 통과 필터(예를 들어, 322)를 통해 필터링되어 전력 출력의 평균값, PSENSE를 결정한다. 식 8에 나타낸 바와 같이, 출력은 5의 이득으로 곱해져서 최종 시간-평균 전력식인 Final Multiplier(t)를 생성한다.
Figure pct00020
(식 8)
식 8에서의 VOFFSET은 보정을 통해 누락될 수 있는 DC 오차값을 나타낸다. 이를 위해 VOFFSET 에 대한 항은 식 9에 나타난 바와 같이, 식 8을 단순화할 수 있도록 거의 제로로 조정될 수 있다.
Figure pct00021
(식 9)
따라서 최종 결과는 평균 실제 전력(와트)이 1/60로 축소되는 것이다. 이 계산은 전류 및 전압에 대한 RMS 값들과 함께 디지털 제어기(300)로 전달된다. 일부 실시예들에서, 전류 및 전압( RVSENSE (t) RFISENSE (t))에 대한 RMS 값은 예를 들어, 모델 번호 No.LTC1968CMS8인, 시그마-델타 RMS 변압기 ICs(Sigma-Delta RMS Converter ICs)에서 결정된다. 차동 위상 각은 식 10에 표시된 식을 사용하여 디지털 제어기 내의 이러한 입력들을 사용하여 계산될 수 있다.
Figure pct00022
(식 10)
따라서, 차동 위상 각(θ)은 식 11과 같이 계산될 수 있다.
Figure pct00023
(식 11)
특정 실시예들에서, 위상각을 알아내는 것이 필수적인데, 이는 사용자가 지방 조직을 제거할 때, 고전도성 매개체에서 역률이 거의 1에서 0.30으로 떨어질 수 있으며, 이에 의해 간단한 결과로부터 환자 전력 판독 오류가 발생할 수 있기 때문이다. 이러한 전달 전력 판독값들은 실제 전달 RF 전력보다 항상 훨씬 높게 판독된다(2 : 1 정도).
도 10 및 도 11은 각각
Figure pct00024
Figure pct00025
을 RMS 값,
Figure pct00026
Figure pct00027
로 변환하기 위한 예시적인 변환 회로들(350 및 351)을 도시한다. 회로들(350 및 351)은 예를 들어 모델 번호 LTC1968CMS8(Linear Technology 사)인 시그마-델타 RMS 변압기 ICs를 사용한다.
도 12 및 도 13은 회로들(353 및 355)의
Figure pct00028
Figure pct00029
출력들에 대한 차동 출력들을 제공하기 위한 예시적인 후 처리 회로들(353, 355)을 도시한다. 회로(353 및 355)로부터의 출력은 A/D 변압기를 통해 변환되고 FPGA-기반 제어기에 입력된다. 차동 출력들은 회로(353 및 355)의 출력 신호들을 A/D 변압기의 입력 범위로 포맷한다. 도 14는 평균 전력 출력,
Figure pct00030
에 대한 예시적인 차동 출력을 도시한다. 일부 실시예들에서, 16-비트 ADC가 신호들을 샘플링하는데 사용된다. 전압 및 전류 측정들에 대한 신호 특성들의 상세한 내용은 표 1에 제공된다.
신호 I/O 레벨 설명
HV_V 입력 0-12V RF 발생기의 정류된 AC 출력, 40:1로 스텝 다운. 4.4V @ 1000Vp-p.
병렬 w/100 pF으로 송신 임피던스 1.5 KΩ
HV_I+ 입력 최대 전류=
10mA rms
200 : 1의 스텝 다운으로 전류 변환기에 연결된 HV_I+ 및 HV_I-
HV_I- 입력 최대 전류=
10mA rms
VOUT 출력 TBD ADC의 입력 범위와 일치하도록 조정된, RMS RF 전압에 비례하는 전압.
필요 대역폭 0-100 Hz
IOUT 출력 TBD ADC의 입력 범위와 일치하도록 조정된, RMS RF 전류에 비례하는 전압.
필요 대역폭 0-100 Hz
개시된 기술은 예를 들어, 각각의 출원 내용이 전체적으로 본원에 참고로 포함되는, 미국등록특허 제6,740,079호 및 미국등록특허 제6,923,804호에 개시된, 다른 예시적인 전기수술 발전기들에 추가로 사용될 수 있다. 도 15는 본원에 예시된(도 19 참조) 스트럿(20)을 사용할 수 있는 핸드헬드(handheld) 캡처 장치(12)를 구비한 예시적인 전기수술 시스템(10)을 도시한다. 일부 실시예들에서, 캡처 장치(12)("봉"이라고도 함)는 도 16에 도시된 바와 같이, 일회용 단일-사용 전달 요소(16)("프로브"라고도 함)와 부착 가능하게 결합하는 재사용 가능한 손잡이 요소(14)를 포함한다. 일부 실시예들에서, 스트럿(20)은, 균일한 폭의 스트럿(20A)을 도시하는 도 17 및 도 18에 도시된 바와 같이, 전달 요소(16)의 전방 팁으로부터 작동되는 전달 요소(16)의 길이를 따라 연장된다. 도 19에 도시되는, 본원에 예시된 스트럿(20)은, 스트럿의 강성 전방 섹션을 형성하고 더 좁은 중간 섹션(354)에 선행하는 전폭 시작 섹션(352)을 포함한다.
도 19에 도시된 바와 같이, 일부 실시예들에서, 전방 섹션(352) 및 중간 섹션(354)은 베이스(356)를 통해 연결되어 단일 연속 구조를 형성한다. 일부 실시예들에서, 전방 영역(352)은 더 좁은 중간 영역(354)으로 전이되어 오목부들(360 및 360 ')을 형성한다. 오목한 섹션들(360, 360 ')은 스트럿(20)의 약쪽 측면에 위치되어, 스트럿은 긴 모래 시계와 다소 유사하다. 30mm의 최대 직경 캡처 폭을 제공하기 위하여 전달 요소(16) 내로 조립될 수 있는 스트럿(20)에 대한 예시적인 수치들이 도 19 및 21에 제공된다.
일부 실시예에서, 각각의 스트럿(20)은, 그의 전방 팁에 도 20에서 362A, 362B로 도시된, 하나 이상의 작은 구멍인 아일렛(eyelet)을 포함한다. 일부 실시예에서, 하나 이상의 전기수술 필라멘트들( "절단 케이블(250)"이라고도 함)은 각각의 스트럿(strut) 상의 전방 아일렛(362A)을 통해서 연장되도록 이용되고, 이어서 근방의 스트럿의 제2 아일렛(362B)에서 묶인다. 결과적으로, 절단 케이블들(250)이 전원인가될 때, 절단 케이블들(250) 및 스트럿들(20)은, 예를 들어, 도 26 및 도 27에 도시된 절단 아크면을 형성한다. 일부 실시예에서, 제1 아일렛(362A)은 전개 과정 중에 절단면의 확장 및 수축을 허용하기 위해 절단 케이블(250)이 제1 아일렛을 통과하도록 허용한다(도 26 및 도 27 참조). 일부 실시예에서, 제1 아일렛 (362A) 및 제2 아일렛은 상이한 크기이다. 다른 실시예에서, 아일렛들(362A 및 362B)은 동일한 크기이다.
일부 실시예에서, 절단 케이블(250)은 단극(mono-polar) 전기수술 절단 전류로 조직을 절단하기 위한 5 개의 작은 직경의 와이어 케이블들로 구성된다. 절단 케이블(250)은 일부 실시예에서, 절단 케이블(250)은, 표적 조직의 둘레를 절개하고 캡처할 수 있도록 하기 위해서, 절단/캡처 요소의 원위 단부에 가깝게 오무려지도록 구성된다.
도 26을 참조하면, 도면 부호 250-254로 도시된 절단 케이블의 초기 배향은, 케이블들(250-254)이 전방 영역(34)의 표면(276)을 가로 질러 당겨지는 것으로 나타난다. 도시된 바와 같이, 케이블들(250-254)은 스트럿들(280-284)로 도시된 각 각의 스트럿(20) 상에서 제2 아일렛(362B)을 통해서 당겨지고, 근방의 스트럿 상에서 제1 아일렛(362A)에 묶인다. 이와 관련하여, 케이블(250)은 스트럿(280)의 제2 아일렛을 통해 연장하고 스트럿(282)의 제1 아일렛에 묶인다. 마찬가지로, 케이블(251)은 스트럿(281)의 제2 아일렛을 통해 연장하고 스트럿(282)의 제2 아일렛에 묶인다; 케이블(252)은 스트럿(282)의 제2 아일렛을 통해서 연장되고 스트럿(283)의 제1 아일렛에 묶인다; 케이블(253)은 스트럿(283)의 제2아일렛을 통해서 연장하고 스트럿(284)의 제1 아일렛에 묶인다: 케이블(254)은 스트럿(284)의 제2 아일렛을 통해서 연장하고, 스트럿(280)의 제1 아일렛에 묶인다.
스트럿(20) 및 도 28a, 도 28b 및 도 28c에 도시된 절단 케이블(250)의 예시적인 전개 순서가 도 1 및 도 2에 도시되어 있다. 도 28A에 도시된 바와 같이, 전개 과정의 개시 이후에, 스트럿들(20)(즉, 캡처 요소들)은 축방향 성분 및 방사상 확장 성분을 갖는 궤도(예컨대, 약45도 궤도)로 전방으로 연장된다(즉, 제1 연장). 일부 실시예에서, 스트럿들(20)은 스트럿들(20)의 더 강성인 균일한-폭의 전방 영역(352)에 대응하는 제1 영역을 따라서 프로브(즉, 세장형 샤프트)로부터 연장한다. 섹션(352)의 더 강한 영역은 스트럿들(20)이 의도된 궤도로 균일한 방식으로 일정하게 연장되도록 허용한다.
이어서, 도 28b 및 도 28c에 도시된 바와 같이, 스트럿들(20)의 오목한 영역(354)에 대응되는 제2 강성 영역을 따라서, 수축 영역에서 캡처 요소에 대한 절단 케이블들의 수축(예, 정지)에 의해서 하나 이상의 캡처 요소들 및 하나 이상의 절단 케이블들이 안쪽으로 연장한다. 캡처 요소들 및 절단 전극들은, 도 28b에 도시된 바와 같이, 방사상 확장 성분을 갖는 방향으로 여전히 연장할 수 있다. 도 28c에 도시된 바와 같이, 장치의 최대 직경 캡처 크기를 한정하는 타원형 경로를 따르는 위치 다음에, 캡처 요소들 및 절단 전극들은 축방향 성분 및 방사상 수축 성분을 갖는 전방으로 이동한다(즉, 제2 연장). 제2 강성 영역은, 봉 성능에 최대의 배스킷 직경과 현재까지 가능한 가장 균일한 형상을 제공하는 것으로 관찰된, 강성의 감소(제1 강성 영역에 비하여)를 제공한다.
제1 축방향 성분 및 방사상 확장 성분을 갖는 제1 연장은 복수의 캡처 요소들 및 하나 이상의 전기수술 필라멘트들이 동일한 이동 속도로 연장가능하기 때문에 일어난다. 제2 축방향 성분 및 방사상 수축 성분을 갖는 제2 연장은, i) 하나 이상의 전기수술 필라멘트들이 제2 이동속도로 연장가능하고, 복수의 캡처 요소들이 제2 이동속도 보다 큰 제1 이동 속도로 연장가능하기 때문에 결과된다. 일부 실시예에서, 스트럿(20)의 좁은 섹션은 현재까지 거의 50,000 건의 생검에서 사용되어 온 입증된 작업(예를 들어, 10 ㎜ 내지 20 ㎜ 장치) 설계에 사용된 표준 와이드 스트럿과 유사하거나 동일한 강성을 갖는다.
일부 실시예에서, 스트럿들(20)은 그들을 따라서 형성된 접음 선(362)(도 19)을 갖는 단일의 구조체로서 형성된다. 접힘 선은 스트럿들(20)이 예를 들어, 도 25a에 도시된 바와 같이 프로브 요소(16)에 통합될 수 있은 예비-어셈블리를 형성하도록 허용한다.
전기수술 장치에 전력을 공급하기 위해, 상기 장치는 일부 실시예에서는 본원에 기재된 RF 발생기와 동일하거나 유사할 수 있은 고주파 전력 발생기에 전기적으로 접속된다.
도 38은 본원에 예시된 전기수술 장치의 모터 전류 그래프를 도시한다. 테스트 동안, 모터 전류는 원하는 대부분의 캡처(약 95 %)에 대해서 전류 한계(약 130 mA)의 50% 미만을 유지하는 것으로 관찰되었다. 도 37은 보다 높은 모터 전류 곡선을 결과시키는, 대안적인 캡처 요소 설계를 갖는 전기수술 장치의 모터 전류 그래프를 도시한 것이다.
동작(Operation)
도 36은 예시적인 실시예에 따른 전기수술 기구를 동작시키는 방법(400)의 다이어그램이다. 방법(400)은 하나 이상의 전기수술 필라멘트(예를 들어, 텅스텐 합금 필라멘트) 및 절단면을 형성하기 위해서, 전기수술 필라멘트의 선단 에지에, 결합된 복수의 캡처 요소들(예를 들어, 세장형 스텐레스 강 리프들)을 갖는 전기수술 기구를 제공하는 단계를 포함한다. 특히, 상기 방법은 그의 연장 길이를 따라서 다양한 강성을 갖는 캡처 요소들을 구비하는 전기수술 기구를 제공하는 단계를 포함한다(단계 402).
상기 방법(400)은 예를 들어 발전기에 의해 고주파 전기 에너지로 하나 이상의 전기수술 필라멘트에 전원을 인가하는 단계를 포함한다. 더욱 상세하게, 절단면을 형성하기 위해 캡처 요소들의 선단 에지에 결합된 하나 이상의 전기수술 필라멘트들은 발전기에 의해 고주파 전기 에너지로 전원이 인가된다(단계 404). 일부 실시예에서, 발전기는 100 KHz 보다 큰, 예를 들어 약 340 KHz의 전기 파형을 생성한다. 닫힌 피드백 제어 루프는 전기수술 필라멘트를 따라서 균일한 전력 밀도를 유지하기 위해 전기수술 필라멘트에 대한 전력 출력을 조절한다. 일부 구현예에서, 발전기는 전기 절단 아크를 개시하기 위한 제1 파형을 생성한 다음, 전기 출력을 한정된 절단 전력 레벨로 제어하는 단계로 이행한다.
방법(400)은 타원형 경로를 형성하기 위해서 장치의 세장형 샤프트의 전방 팁에서 또는 그 부근에서 전방 연장(forward extension)에 의해 복수의 캡처 요소들 및 전기수술 필라멘트들 각각을 연장시키는 단계를 포함한다. 캡처 성분 및 전기수술 필라멘트의 결합된 타원형 경로는 절제를 위한 조직 부피를 둘러싸는 타원형 리셉터클(traheroidal receptacle)을 형성한다(단계 406).
전기수술 시스템의 예
도 15는 캡처 기구를 구비하는 일 실시예의 전기수술 시스템(10)을 도시한다. 일부 실시예에서, 전기수술 시스템(10)은 재사용가능한 요소(14)(때때로 "핸들"이라고도 칭함) 및 재사용가능한 요소(14)의 폴리머 하우징(18) 내에 착탈가능하게 탑재되는 일회용 전달 요소(16)(때때로 "프로브"라고도 칭함)를 포함하는 캡처 기구(12)를 포함한다. 일부 실시예에서, 핸들(14) 및 전달 요소(16)는 단일의 일회용 유닛으로서 통합된다.
일부 실시예에서, 전달 요소(16)는 기구 축(24)을 따라서 연장하고, 기구 축 둘레로 대칭적으로 배치된 세장형 캐뉼러 어셈블리(22)를 포함한다. 캐뉼러 어셈블리(22)의 근위부는, 일부 실시예에서, 회전가능한 외부에 나사산이 형성된 커넥터(26)를 통해 연장한다. 이어서 커넥터(26)는, 하우징(18) 내에 나사식으로 체결된다. 캐뉼러 어셈블리(22)는, 일부 실시예에서, 배출 시스템의 요소인 회전가능한 흡입 매니폴드(suction manifold)(28)를 통해서 연장한다. 흡입 매니폴드(28)는, 일부 실시예에서, 관형 캐뉼러 요소(32)의 외측 또는 외표면 상에 장착된 페룰(ferrule) 또는 칼라(collar)(30)에 의해 캐뉼러 어셈블리(22) 상의 위치에 유지된다. 캐뉼러 어셈블리(22)의 전방 영역(34)은 일부 실시예에서, 원위 단부 또는 팁(36)쪽으로 연장한다.
일부 실시예에서, 흡입 또는 진공 매니폴드(28)는 전방 영역(34)에 위치된 4 개의 흡기 포트들과 같은 캐뉼러 어셈블리(22)를 통한 진공 운반 및 유체 수용 관계에 있으며, 4 개의 흡기 포트 중 2 개는 38로 도시되어 있다. 열 절연 슬리브(4218)(도 29)는, 일부 실시예에서, 환자 조직을 열손상으로부터 보호하기 위해서 캐뉼러 요소(32) 위에 위치된다. 일부 실시예에서, 진공은 가요성인 투명 폴리머 튜브(4)를 통해서 흡입 매니폴드(28)에 진공이 전달되거나, 고온의 액체를 흡입 매니폴드(28)로부터 받는다. 일부 실시예에서, 튜브(40)는 매니폴드(28)의 배기구로부터 커넥터(42) 및 커넥터(44)와의 압입 접속부 내로 연장하고, 압입 접속부에서 커넥터 상에서 가요성 튜브(46) 또는 직경이 더 큰 호스에 연결된다. 일부 실시예에서, 호스(46)는, 가요성 호스(50)를 통해서, 흡입 펌프 어셈블리(52)의 흡입구(30)와 진공 연통되는 유체 트랩 및 필터 조립체(48)로 연장한다. 펌프 어셈블리(52)는 54로 도시된 스위치 배치로부터 또는 케이블(58)에 의해서 펌프 어셈블리(52)에 연결된 풋스위치(56)의 이용을 통해서 동작되도록 활성화될 수 있다.
일부 실시예에서, 하우징(18)의 전방부(forward portion)에 위치되는 것은, 예를 들어, 각각 아암/디스암 스위치로서 기능하는 3 개의 버튼 스위치(62-64); 전원인가/위치 스위치; 및 조직 캡처 개시 스위치를 포함한다. 일부 실시예에서, 하우징(18)의 일측의 스위치들(62-64) 바로 위에는 발광 다이오드(LED) 기반의 표시기 또는 큐잉 라이트(예를 들어, 시작/리셋 큐; 조직 캡처 완료 큐; 조직 캡처 개시 큐: 전원인가/위치 큐; 아암/디스암 큐)의 선형 어레이가 존재한다.
일부 실시예에서, 전원인가 및 전기 제어는 통합 제어 어셈블리 및 전기수술 발전기(70)와 연결되고 콘솔(72) 내에 통합된 다중-리드 케이블(68)을 통해서 기구(12)에 제공된다. 일부 실시예에서, 제어 어셈블리 기능은 기구(12) 내 및 기본적으로 재사용가능한 요소(14) 내에 통합된 제어 어셈블리 카운터파트들과 함께 기능을 수행한다. 알부 실시예에서, 케이블(68)과 콘솔(72)의 연결은 콘솔 커넥터(76)에 결합된 멀티-리드 커넥터(74)를 포함한다. 일부 실시예에서, 기구(12)의 전기수술 활성 전극 어셈블리(elelctro-surgically active electrode assembly)는 단극(mono polar) 방식으로 수행된다. 따라서, 이러한 실시예에서, 종래의 비교적 큰 분산 복귀 전극 어셈블리(relatively large dispersive return electrode assembly)(80)가 환자의 피부 표면에 대해 위치된다. 일부 실시예에서, 어셈블리(80)는 케이블(86) 및 커넥터(88)를 통해 콘솔 커넥터(90)에 연결된 2 개의 전극 요소들(82 및 84)을 갖도록 구성된다. 일부 실시예에서, 전원은 온/오프 스위치(92)의 활성화에 의해서 콘솔(72)에서 회로에 공급된다. 일부 실시예에서, 스위치(92)가 "온" 배향일 때, 스위치 위에 위치한 녹색의 시각적 표시 LED(94)가 활성화된다. 일부 실시예에서, 콘솔 커넥터(76)에 의한 케이블(68)과 커넥터(74)의 적절한 연결은 커넥터(76) 위에 배치된 조명된 녹색 LED(96)에 의해 표시된다. 일부 실시예에서, 이러한 연결 테스트는 하우징(18) 내의 코딩 저항에 전류를 흘려줌으로써 실시된다. 일부 실시예에서, 일반적으로 98로 표시되는 3-페달 풋스위치가 케이블(100)을 통해서 콘솔(92)의 후방 패널에 연결된다. 스위치(98)의 3-페달(98a, 98b, 98c)은 버튼 스위치들(62-64)에 대하여 대안의 스위칭을 제공한다.
일부 실시예에서, 하우징(18) LED 어레이(66)에서의 비쥬얼 큐잉이 콘솔(72)에 제공된다. 이와 관련하여, 시작/리셋 스위치(102)는 해당 스위치의 활성화 시에 녹색 컬러를 발광하는 LED 인디케이터(104) 스위치와 동작상 연관되어 있다. 일부 실시예에서, 전원인가/위치 모드 비쥬얼 큐 LED(106)는 팁(36)에서 전구체 전극 어셈블리의 전원인가를 나타낸다. 이러한 LED는 캐뉼러 조립 팁(36)의 표적 조직 부피와 대면하도록 전기수술 전진 중에 황색 출력을 제공한다. 전구체 어셈블리의 전기수술적 구현은 하나의 접근법을 나타낸다. 그러나 일부 실시예에서, 전기 절연성 전구체 블레이드는 물론 투관침 어셈블리가 제공될 수 있다.
다음 비쥬얼 큐잉으로서, 녹색, 아암/캡처 모드 비쥬얼 큐는, 일부 실시예에서, LED(108)에 의해서 기구(12)의 조직 캡처 특징의 아밍(arming)을 나타내기 위해서 제공된다. 일부 실시예에서, 일단 스위치 62 또는 98a의 아암/디스암이 눌러지면, 전원인가/위치 스위치들(63 또는 98b)이 더 이상 활성화되지 않는다. 그러나 일부 실시예에서, 의사가 다시 아암/디스암 스위치를 눌러서 포지셔닝 모드로 돌아갈 수 있다. 일부 실시예에서, 캡처 모드에 들어가기 위해, 의사는 풋스위치(98c) 또는 캡처 스위치(64)를 누른다. 일부 실시예에서, 황색 캡처 모드 비쥬얼 큐가, 조직 캡처 또는 검색 절차의 개시 또는 수행을 나타내는 LED(110)에 의해 제공되고, 그러한 캡처가 완료되면, 녹색 캡처 완료 비쥬얼 큐가 녹색 LED(112)에 의해 제공된다. 일시 정지 모드 조건은, 일부 실시예에서, 녹색 LED(114)의 전원인가에 의해 표시된다. 일반적으로, 일부 실시예에서, 시술 중에 캡처 스위치(64) 또는 풋스위치(98c)를 해제함으로써 일시정지 모드로 들어간다. 그러한 실시예들에서, 일시 정지 모드에 있을 때, 기구(12)의 능동 캡처 전극들은 전원인가되지 않고 그의 캡처 요소의 전개가 정지된다. 그러나 일부 실시예에서, 흡입 펌프 어셈블리(52)에 의해 수행되는 배출 기능은 계속해서 수행된다. 일부 실시예에서, 캡처 모드로 다시 들어가기 위해, 의사는 다시 풋 스위치(98c) 또는 캡처 스위치(64)를 누른다. 선택된 스위치의 재활성화 시에, 캡처 모드는 실질적으로 중단된 배향에서 계속된다. 이러한 시스템의 일시정지 모드는, 예를 들어 아크-기반 절단 요소에 의해 마주치는 유체의 배출을 허용하는 작동의 캡처 모드 동안 의사에 의해 사용될 수 있고, 예를 들어, 아크-기반 전달 요소들에 의해 직면하는 유체의 배출을 허용한다. 이러한 유체는 예를 들어 국소 마취 용액, 혈액 등의 축적일 수 있다.
일부 실시예에서, 적어도 진공 펌프 어셈블리(52)가 작동하는 정도까지 진공 시스템이 작동한다는 보증은 펌프 어셈블리(52)와 기구(12) 사이에서 연장되는 도관과 함께 부착된 진공 작동식 스위치(vacuum actuated switch)(미도시)에 의해 달성될 수 있다. 예를 들어, 그러한 스위치가 작동되는한은, 절차의 개시가 제어 어셈블리 (70)에 의해 논리적으로 차단될 수 있다. 전술한 바와 같은 연기 및 그러한 유체의 제거에 추가하여, 일부 실시예에서, 펌프 어셈블리(52), 흡입 포트(38)로 연장되는 전달 채널을 한정하는 도관을 포함하는 배출 시스템이 기능하여, 조직 세포의 유체와 전기 수술 절단 아크가 만나서 생기는 스팀을 제거하도록 한다. 이러한 스팀(고온 유체의 일 성분인)의 제거는, 그 중에서도, 절단 부위 주변의 건강한 조직을 열손상으로부터 보호한다. 일부 실시예에서, 리턴 전극(80)의 커넥터(88)가 콘솔 커넥터(90)에 연결되고 스위치(92)가 "파워 온" 상태에 있을 때, 환자 회로 안전 모니터(PCSM)가 자가 테스트를 수행한다. 일부 실시예에서, 시작/리셋 스위치(102)의 후속 작동시, 2 개의 전극 요소들(82 및 84)에 대한 결함 테스트가 수행된다. 일부 실시예에서, 후자의 테스트가 실패한 경우, 시각 및 청각적 맥동 경고 신호가 다시 활성화되며, 비쥬얼 큐는 커넥터(90)에 인접하여 위치된 적색 LED(122)에 제공된다.
핸드헬드 기구(hand-held instrument)의 전달 요소
도 16을 참조하면, 핸드헬드 장치(12)의 전달 요소(16)는 재사용가능한 요소(14)의 하우징(18) 내에 삽입되기 전의 배향으로 도시되어 있다. 도면에서, 캐뉼러 어셈블리(22)는 원통형 지지체 하우징(130)으로부터 전방으로 연장되는 것으로 도시된다. 일부 실시예에서, 지지 하우징(130)의 전방 영역은 회전가능한 커넥터(26)를 지지한다. 이와 관련하여, 커넥터(26)는 손에 의한 회전을 용이하게 하는 이격된 인덴테이션(indentation)이 형성된 파지 표면(134)과 함께 회전하도록 부착된 외부 나사산(132)을 갖도록 구성된다. 일부 실시예에서, 지지 하우징(130)의 후방 단부에는, 일회용 요소(16)의 설치 중에, 세장형 수용 캐비티(14)를 따라서 내측으로 연장되는 상향 배치된 세장형 슬롯(138) 내에 슬라이딩가능하게 수용되는 직립형 인덱싱 핀(136)이 위치된다. 하우징(18)의 수용 캐비티(140)의 전방 단부는, 일부 실시예에서, 얼라인먼트 부싱(128)을 갖도록 형성된다. 일부 실시예에서, 얼라인먼트 부싱(128)은 내부 나사산(142)을 갖도록 형성된다. 일부 실시예에서, 캐비티(140) 내의 얼라인먼트 부싱(128)의 내부 나사산(142)은 일회용 요소(16)가 재사용가능한 요소(14)와 함께 장착되는 경우에, 커넥터(26)의 외부 나사산(132)과 나사 결합된다.
일부 실시예에서, 지지 하우징(13) 상의 대향하여 위치된 인덱싱 핀(136)은 지지 하우징의 수용 캐비티(140) 내로의 삽입 시에, 하우징 내에 배치된 대응하는 전기 터미널들과 접촉하는 닦음 접점(wiping contact)을 형성하도록 배향되는 두 개의 서로 이격된 전기 접점들(146 및 148)이다. 일부 실시예에서, 전기 접점들(146 및 148)은 팁 (36)에서 전구체 전극 어셈블리 및 캐뉼러 어셈블리(22) 내에 보유되는 캡처 요소와 관련된 전기수술 절단 및 체결 케이블(cutting and pursing cable)에 각각 인가되는 전기수술 절단 전류를 선택적으로 받는다. 일부 실시예에서, 체결 케이블은 캐뉼러 요소(32) 내의 캡처 요소로부터 가이드 탭들 또는 이어들(ears)을 갖는 케이블 터미네이터 요소까지 연장한다. 상기 탭들 또는 이어들 가운데 하나는 축 24와 평행하게 배열된 세장형 안정화 슬롯(152) 내에 슬라이딩가능하게 장착된 150으로 표시하였다. 일부 실시예에서, 대응하는 사이드 탭 및 슬롯 조합은 지지 하우징(130)의 반대 쪽에서 발견된다. 일부 실시예에서, 152로 도시된 전방으로 위치되는 슬롯들은 두 개의 세장형 구동 슬롯들이고, 이들 가운데 하나는 유사하게 축 24에 대해서 평행하게 배열된 156으로 나타내었다.
일부 실시예에서, 구동 어셈블리 부재의 외측으로 연장하는 이어들 및 가이드 탭들은 이들 슬롯들로부터 연장하는 멤버들이고, 도면 부호 160, 162로 나타내었다. 일부 실시예에서, 이들 이어들 및 탭들(160, 162)은 구동 어셈블리 요소에 전방 이동을 부여하기 위해서 이용되는 뒤쪽으로 배치된 구동 표면들을 지지한다. 일부 실시예에서, 이러한 전방 이동은 캐뉼러 요소(32)로부터 알려진 캡처 요소를 펼치는 기능을 한다. 일부 실시예에서, 지지 하우징(130)이 하우징(18)의 수용 캐비티(140) 내에 설치될 때, 이들 탭들(160 및 162)은 얼라인먼트 부싱(128)의 일부로 하우징(18)의 전방부에 제공된 각각 도면 부호 164 및 166으로 도시된 대향하여 배치된 노치들을 통과한다. 마찬가지로, 노치(168)는, 일부 실시예에서, 하우징(18) 내에 전방으로 위치되어, 전기 터미널(146 및 148)의 통과를 허용한다. 일부 실시예에서, 얼라인먼트 부싱(128)은 세장형 슬롯(138) 및 노치(168)의 전방부를 형성하도록 구성된다.
일부 실시예에서, 재사용가능한 요소(14) 내에 일회용 요소(16)를 설치하는 절차는 수용 캐비티(140) 내에서 지지 하우징(130)을 슬라이딩시키고, 커넥터(26)의 파지 표면(134)을 회전시켜서 나사산 132와 나사산 142의 맞물림을 제공하는 것을 포함한다. 일부 실시예에서, 조립을 완료할 때, 배출 어셈블리의 가요성 투명 튜브(42)는 외측으로 매달리고, 흡입 매니폴드(28)와의 유체, 흡입 또는 진공 연통되는 배출구(170)에 부착될 수 있다. 끝으로, 일부 실시예에서, 탭(172)은 구동 슬롯(156)의 전방부를 관통하여 연장되는 것으로 보인다. 이 탭은 이어들(160, 162)을 갖는 구동 부재 요소(drive member component)에 의해 허용되는 전진 이동의 범위를 제한하는 포지티브 차단 또는 정지를 제공하는 구동 어셈블리 위의 구성요소일 수 있다. 그것은 미리-선택된 캡처 요소 최대 유효 직경 범위에 따라서 위치될 수 있다. 정지 기능이 수행될 때, 일부 실시예에서, 캡처 완료 신호는 전기 구동 모터의 스톨(stall) 시에 목격되는 전류 스파이크로서 도출된다. 그 신호는 제어 어셈블리(70)로 전달된다.
캡처 기구의 취급
도 29를 참조하면, 일부 실시예에서, 재사용가능한 요소(14)의 모터 구동 특징과 일회용 요소(16)의 지지 하우징(130)의 동작상의 연관성을 나타내는 단면도가 제시된다. 도면에서, 모터 어셈블리(180)는, 모터 장착 챔버(182) 내에 위치되는 것으로 도시된다. 일부 실시예에서, 그러한 챔버(182) 내에서 모터 어셈블리(182)는 어느 정도의 자기-정렬 운동(self-aligning movement)이 허용되지만, 토크 정지 요소(184)에 의해 회전 운동은 구속된다. 일부 실시예에서, 어셈블리(180)는 유성 기어 어셈블리(188)에 의해서 구동 관계(drive relationship)로 연결되는 모터 요소(186)을 통합한다. 일부 실시예에서, 유성 기어 어셈블리(188)의 구동 출력은, 대향하여 배치되고 이격된 벌크헤드들(196 및 198)에 의해 한정되는 밀봉 챔버(194) 내에 위치된 유체 실(fluid seal)(192)을 관통해서 연장하는 스텐레스 강 가요성 벨로우즈형 커플러(190)와 구동 관계로 연결된다. 일부 실시예에서, 유체 실(192)은 커플러(190)를 제약하지 않고, 세장형 나사산 병진 요소(200)의 후방 단부에 대한 커플링에 대해서 모터 어셈블블리(180)의 자기 정렬을 허용한다.
연결되도록 허용한다. 일부 실시예에서, 세장형 나사산 병진 요소(200)는 스러스트 베어링(202)과 체결되도록 연장된다. 일부 실시예에서, 스러스트 베어링 (202)은 모터 어셈블리(180)에 의해서 부여되는 모든 구동력에 대해서 지지하고, 스러스트 베어링 챔버(204) 내에 장착되고 고정된다. 일부 실시예에서, 병진 요소(200)는 도면 부호 206으로 도시되고, 볼나사 또는 너트 요소(208)을 포함하는 전달 어셈블리 및 탭들 또는 이어들(160, 162)(도 16)과 자유롭게 접하는 구동을 위해 정렬된 위치로 연장되도록 구성된 Y 자 모양의 요크(210)에 의해 체결된다. 일부 실시예에서, 캡처 과정 중에, 병진 요소(200)는 전달 어셈블리 (206)를 전방으로 이동시키기 위해 적절한 방향으로 구동 가능하게 회전된다. 일부 실시예에서, 그 이동은 캡처 요소들을 오무리는 퍼싱 활동이 완료되고 모터 요소(186)가 스톨(stall) 상태에 들어갈 때까지 구동 요소를 전방으로 구동한다. 이 시점에서, 제어 시스템(70)은, 일부 실시예에서, 전기수술 절단 전류를 중단시키고, 모터(186)의 방향 구동 감각을 반전시켜 전달 어셈블리(206)가 즉시 도면에 도시된 "원점(home)" 위치로 복귀하게 한다. 이 도면은, 일부 실시예에서, 지지 하우징(130) 상에 위치된 2 개의 전기 접점들(146 및 148)이 폴리머 접촉 클램프 (212)에 의해 지지되는 대응하는 접점들(미도시)과 접촉한다는 것을 추가로 나타낸다.
도 29는 캐뉼러 어셈블리(22)의 팁(36)의 세부 사항을 도시한다.
도 29는 일부 실시예에서, 팁은 십자형 형태로 배열되거나 또는 일반적으로 도면 부호 214로 나타낸 바와 같이 기구 축(24)에 대해 대칭으로 배열된 4 개의 직선형의 일반적으로 L-자형의 전구체 전극 요소들을 포함한다. 전구체 어셈블리 (214)의 전극 요소들은 원뿔대 형상의 세라믹(알루미나) 보호 팁 요소 (216)의 전방으로 이격되어 있는 것으로 도시될 것이다. 팁 요소(216)는 아크-저항성을 제공하거나 아크 분리 팁 부분이 파괴되는 것을 방지하는 기능을 한다. 전구체 어셈블리의 이러한 전기수술 실시예에 있어서, 전극 요소의 기하학적 구조뿐만 아니라 이들의 간격은 캡처 요소의 선단 에지와 함께 아크 오버(arc-over)를 회피하기 위해 선택된다.
도 30을 참조하면, 218로 상징적으로 표시된 표적 조직의 완전 캡처와 관련하여 전개 구동 요소(deployment drive compoent)의 방향이 제시된다. 지지 하우징 (130)의 단면도는 지지 하우징이 2 개의 동일한 몰딩(222)으로부터 형성되는 것을 보여준다. 이들 쌍을 이룬 몰딩들은 함께 유지되고, 일부 실시예에서, 추가적으로 캐뉼러 요소(32)를 지지하는 커넥터(26)에 의해서 접착에 의해 또는 전방으로 함께 보유된다. 캐뉼러 요소(32)는 일부 실시예에서, 매니폴드(28) 내에 형성된 배출 챔버(224)를 관통해서 연장된다. 일부 실시예에서, 챔버(224)와의 진공 연통은 캐뉼러 요소(32)내의 포트 또는 개구(226)에 의해 제공된다.
쌍을 이룬 몰딩 요소들에 의해 한정된 후방 벌크헤드(228)에서의 접착에 의한 부착(adhesive attachment)으로부터의 연장은, 일부 실시예에서, 지지 튜브(230)의 내측부이다. 일부 실시예에서, 튜브(230)는 플라스틱 칼라(232)에 의해 벌크헤드 (228)의 후방 측면에 고정되고, 전방 영역(34)으로 전방으로 연장된다. 일부 실시예에서, 지지 튜브(230)의 내부를 관통하여 절연하여 연장하는 것은 전구체 어셈블리(214)와 물리적 및 전기적으로 접촉하는 전구체 전극 튜브(240)이다. 일부 실시예에서, 튜브(240)의 후방 팁은 축(24)을 따라 연장되어 공동(242)에서 쌍을 이룬 성형 요소들(molding component)과 맞물린다. 일부 실시예에서, 지지 튜브(230)로부터 후방으로 연장되는 전구체 전극 튜브(240)의 일부분은 탄성 바이어스된 단자 요소(144)를 통해 전구체 전극 전류를 받는 전기 전도성 표면으로 구성된다.
일부 실시예에서, 5 개의 편조된 스텐레스 강 스틸 케이블(braided stainless steel cables)은 캡처 요소(220)와 그들의 연결 부분으로부터 지지 튜브(230) 상에 슬라이딩가능하게 장착되고 그 위에서 기구 축(24)과 평행하게 이동할 수 있은 폴리머 케이블 터미네이터 요소(244)로 연장한다. 일부 실시예에서, 두 개의 편조된 퍼싱 케이블들은 도면에서 도면 부호 250 및 252로 도안화하여 나타낸다. 그러나 5개의 모든 케이블들은 케이블 터미네이터 요소(244)까지 연장하여 케이블 터미네이터 요소(244)에 연결된다. 케이블 터미네이터 요소(244)는, 일부 실시예에서, 5개의 종 방향으로 배치되고 방사상으로 이격되어 있는 채널들로 구성되고, 케이블 250 내지 254 중 하나가 각각 하나의 채널내로 연장한다(도 26 및 도 27 참조). 도면에서, 케이블 252는 채널(256)을 통해 연장하는 것으로 도시된다. 일부 실시예에서, 5 개의 케이블 모두가 두 개의 스텐레스 강 칼라에 의해 터미네이터 요소에 유지되거나 고정된다. 이와 관련하여, 전방 스텐레스 강 칼라 또는 페룰이 도면 부호 258로 도시되고, 후방 스텐레스 강 칼라 또는 페룰이 도면 부호 260으로 도시된다. 일부 실시예에서, 칼라(260)는 전기수술 절단 전력 또는 전류를 5개의 퍼싱 케이블에 동시에 인가하는 기능을 추가적으로 하고, 따라서 칼라는 처음에는 니켈 도금되고나서 금도금 되어 전기수술 전류가 솔더 유니온(262)을 통해서 칼라에 인가될 수 있다. 일부 실시예에서, 유니온(262)은 칼라(260)를 다중-가닥이고 고도로 유연한 절연 구리 케이블(264)과 연결한다. 일부 실시예에서, 케이블(264)은 이어서 전방 전기 단자 어셈블리(146)에 납땜(또는 용접)된다. 일부 실시예에서, 터미네이터 요소(244)는 두 개의 외측으로 연장하는 가이드 탭 또는 이어들에 의해서 슬라이디가능하게 이동하기 위해서 안정화되고, 두 개의 가이드 탭 또는 이어들 가운데 하나는 도 16 및 도 29에서 슬롯(152)과 함께 도면 부호 148로 나타내었다. 일부 실시예들에서, 이러한 구성으로, 5 개의 케이블들이 전기수술 전류에 의해 여기되기 때문에, 앞쪽으로 장력을 갖도록 당겨지고, 이어서 터미네이터 요소를 도면부호 244"로 점섬으로 도시한 바와 같은 그의 최초의 위치에서 슬라이딩가능한 방식으로 지지 튜브(230) 상에서 앞쪽으로 당긴다.
일부 실시예에서, 구동은, 도 29와 관련하여 기술된 바와 같이, 구동 튜브(266)으로부터 캡처 요소(220)의 5 개의 약간 긴 리프들에 전달되고, 이어서 그의 외측으로 배치된 구동 이어들 또는 탭들(160 및 162)로부터 구동된다. 이러한 탭들은, 일부 실시예에서, 슬롯들을 관통하여, 연장하는데, 슬롯 가운데 하나를 도 29에 도면 부호 156으로 나타내었다. 이들 탭들과 연관된 구동 부재는 캡처 완료 배향으로 도 30에서 도면 부호 270으로 나타내었다. 일부 실시예에서, 구동 부재(270)가 지지 튜브(230) 상에 슬라이딩가능하게 장착되는 구동 튜브(266)에 부착된다. 일부 실시예에서, 구동 부재(270)가 초기 위치(도시되지 않음)로부터 전방으로 구동됨에 따라, 5 개의 퍼싱 케이블들(250-254)이 다섯 개의 채널들을 통해 지나간다. 하나의 이러한 채널은 케이블(252)과 관련하여 도면에서 상징적으로 도시하였다. 일부 실시예에서, 이들 케이블 하우징(130) 쌍 요소(housing paired component)에 장착되는 캡처 정지 요소(274) 상에서 추가적으로 슬라이딩한다. 일부 실시예에서, 캡처 정지 요소(274)는 전술한 탭(172)과 함께 제자리에 고정된다(도 16). 구동 부재(270)는 이 도면에 도시된 바와 같이 퍼싱 캡처의 완료 시에 인접하여 접촉된 정지 부재(274)를 갖는다.
도 31을 참조하면, 전방 영역(34), 표면(276) 및 캡처 요소 케이블들(251 및 252)의 확대도가 나타난다. 정상적인 사용에서, 일부 실시예에서, 251 및 252로 나타낸 케이블들은, 도 30에 도시된 바와 같이, 터미네이터 요소(244)의 가상 위치(244 ')와 일치하는 실선 형태로 도시된 방향을 가질 것이다. 그러나 선적 및/또는 취급 과정에서, 244 '에서의 터미네이터 요소는 약간 전방으로 슬라이딩될 수 있고, 따라서 사용하기 전에 초기 방향으로 복귀되어야 한다. 전방으로 슬라이딩하는 것이 허용되면, 일부 실시예에서, 케이블들은, 도 31에서 도면 부호 251 '및 252'로 나타낸 바와 같이, 앞쪽으로 "풀리는" 것이 관찰되었다. 도 15와 관련하여 기술된 전원인가/위치 모드 동안에, 풋 페달(98a), 스위치(63) 및 LED(106)와 함께, 전구체 어셈블리(214)는, 일부 실시예에서, 고압 아크 생성 상태가 될 것이고, 도면 부호 251' 및 252'로 나타낸 케이블들은 필수적으로 접지 상태로 될 것이다.
도 30으로 돌아가면, 5개의 케이블들은 전기적으로 여기되는 동안에 전방으로 당겨지므로, 터미네이터 요소(244)는, 일부 실시예에서, 개구부의 "직경 범위"는 물론 캡처 요소(220)에 의해 만들어진 용기 구조 또는 케이지의 전체 길이가 유효한 최대가 되도록 선택된 위치에서 케이블 스탑(296)과 만날 것이다. 이와 관련하여, 유효 직경 범위는 약 10 ㎜ 내지 약 50 ㎜의 범위일 수 있다. "유효"라는 용어는 케이블에 의해서 형성되는 프로파일이 여기 시에 5각형과 유사하기 때문에 직경 범위와 관련하여 사용된다.
일반적으로, 일부 실시예에서, 캡처 요소(220)가 일반적으로 소위 최대 유효 직경 범위가 실현되는, 종방향 전개에 있어서 대략적으로 1/2이 되는 중간 위치를 달성할 때, 터미네이터 요소(244)의 슬라이딩이 차단되도록 케이블 정지 칼라(296)가 위치된다. 그러한 최대 유효 직경 범위는 도 28b에 개략적으로 도시하였고, 도 27에도 도시하였는데, 5각형을 닮은 것을 확인할 수 있다. 일부 실시예에서, 기구(12)의 이용이, 케이블 스탑(296)에서 폐색에 의해 일반적으로 달성되는 높은 값으로 점진적으로 증가하는 케이블 상의 압박 응력을 유도함으로써 매우 치밀한 조직의 회복으로 연장할 수 있도록 기구(12)의 캡처 성능은 개선된다. 이러한 점진적인 케이블 로딩은, 일부 실시예에서, 터미네이터 요소(24)가 케이블 정지 칼라(296)에 근접함에 따라서 일어나고, 도 30을 보면, 케이블 정지 칼라(296)와 인접하는 접합부 내에 위치된 압축 스프링(298)으로서 존재하는 탄성 요소의 포지셔닝에 의해 구현된다. 이러한 구조에서, 타원형 압축 스프링은 케이블에 가해지는 장력의 정도를 조절하여, 리프 팁 영역이 퍼싱 활동의 개시 시에 축(24)을 향해 내향으로 점차적으로 인도되도록 기능한다. 스프링(298) 및 캡처 요소(220)의 성능에 대한 보다 상세한 설명은, Philip E. Eggers에 의해서 출원되고, 2005년 10월 18일에 미국특허 제6,955,653호로 등록된, 발명의 명칭이 "Electrosurgical Method and Apparatus with Dense Tissue Recovery Capacity"이고, 그 내용은 그 전체가 본 명세서에 참조에 의해 편입되는 미국특허출원 제10/630,336호에 상세하게 기재되어 있다. 일부 실시예에서, 모터 어셈블리(180)의 전원인가는 구동 부재(270)가 캡처 정지 요소(274)와 접촉하여 체결될 때까지 계속된다(도 30). 일부 실시예에서, 그 시점에서, 결과적으로 유도 스파이크가 생성되어 케이블들(250-254)의 전기수술 자극을 차단하고 모터 어셈블리(180)가 역전되어 요크(210)(도 29)를 그의 "원위치"로 복귀되도록 한다. 일부 실시예에서, 캡처 요소(220)는 도 30 및 28c에 상징적으로 표현된 프로파일을 취하기 위해 모터 어셈블리(180)의 알려진 전원단절까지 공격 퍼싱 각도로 조종될 것이다.
일부 구체예에서, 표적 조직 부피에 대해 샘플링 기구를 포지셔닝하기 위해서, 외과적으로 예리한 기계적 팁이 사용된다. 외과적으로 예리한 전구체 어셈블리들이 도면 부호 10의 시스템들과 함께 사용될 수 있으나, 아크-오버 현상을 피하기 위해서, 이러한 기계적 팁들은 예리하기만 한 것이 아니고 전기적으로 절연되어야 한다. 특히 지르코니아로 제조된 세라믹 블레이드(예를 들어, Staunton, VA의 Specialty Blades, Inc.에 의해 시판되는 것)가 사용될 수 있다.
도 34를 참조하면, 기구 전방 영역(34)은 도 31에서와 동일하게 동일한 도면 부호를 이용하여 도시하였다. 그러나 이 도면의 구성에서 도 31에 도시된 알루미나 팁 요소(216)는 제거되어, 블레이드(3332) 베이스(3336)는 캡처 요소 리드 및 케이블에 대하여 상기 축방향 내측에 위치된다.
도 35를 보면, 팁 영역(34)은 다시 알루미나 팁 요소(216) 및 전기수술 전구체 어셈블리(214)를 제거하고 도 32와 동일한 방식으로 도시하였다. 수술용 블레이드(3332)의 상대적인 배향은 표적 조직 부피(218)에 대하여 도시하였다. 생검 또는 절제된 시료(3300)은 병리 모멘트가 없고 전구체 어셈블리와 관련된 인공물의 영역이 없는 동일한 주변 열 인공물(pheripheral thermal artifact) (3304)을 나타내는 것으로 보여진다.
바람직하게는, 일부 실시예에서, 도면 부호 3338 및 3339로 표시되는 블레이드 에지는 바드-파커 골드 첨예도 기준(Bard-Parker gold standard of sharpness)과 동일하거나 근접하는 첨예도를 가질 것이다. 일반적으로, D 값은 약 3 ㎜ 내지 약 10 ㎜, 일부 실시예에서, 바람직하게는 약 5 ㎜ 내지 약 7 ㎜의 범위내이다. 이러한 베이스 너비는 트로카-타입 팁(trocar-type tips)에도 적용된다. 또한, 상기 끼인각(φ)은 약 30° 내지 약 70°의 범위, 및 바람직하게는 약 40° 내지 약 55°의 범위 내에 있을 것이다.
본원에 기술된 캡처 장치와 함께 사용될 수 있은 전기수술 시스템 및 요소들의 예는 후술하는 미국 특허 및 특허 출원에 기술된 것을 포함하며, 그 내용은 전체가 참조에 의해 본원에 편입된다: 미국특허 제7,569,053호, Apparatus for retrieving a tissue volume with improved positioning precursor assembly,” Eggers et al.; 미국특허 제7,494,473호, Electrical apparatus and system with improved tissue capture component,”Eggers et al.; 미국특허 제6,955,653호, "Electrosurgical method and apparatus with dense tissue recovery capacity,” Eggers, Philip; 미국특허 제6,923,809호, 'Minimally invasive instrumentation for recovering tissue,”Eggers et al.; 미국특허 제7,004,174호, "Electrosurgery with infiltration anesthesia,” Eggers et al.; 미국특허공개 제2005/0267455호, Electrosurgery with infiltration anesthesia,” Eggers et al.; 및 미국특허 제7,828,707호, Electrosurgical accessing of tissue with controlled collateral thermal phenomena,” Eggers, Phillip.
컴퓨팅 장치
일부 실시예에서, 콘솔(72)은 프로세서, 메모리, 저장장치, 상기 메모리 및 다중 고속 확장 포트들에 접속하는 고속 인터페이스, 및 저속 확장 포트 및 상기 저장장치에 접속하는 저속 인터페이스를 갖는 컴퓨팅 장치를 포함할 수 있다. 각각의 프로세서, 메모리, 저장장치, 고속 인터페이스, 고속 확장 포트 및 저속 인터페이스는 각각 다양한 버스들을 사용하여 상호 연결되며, 공통 마더 보드에 실장되거나 기타 적절한 방식으로 실장될 수 있다. 프로세서는 고속 인터페이스에 연결된 디스플레이와 같은 외부 입/출력 장치 상의 GUI를 위한 그래픽 정보를 표시하기 위해 메모리 또는 저장장치에 저장된 명령을 포함하여 컴퓨팅 장치 내에서 실행하기 위한 명령들을 처리할 수 있다. 다른 구현예에서, 다중 메모리 및 다양한 타입의 메모리들과 함께, 적절하게, 다중 프로세서 및/또는 다중 버스들이 사용될 수 있다. 또한, 다중 컴퓨팅 장치들이 필요한 동작을 제공하는 각 장치(예를 들어, 서버 뱅크, 일군의 블레이드 서버들 또는 다중-프로세서 시스템)와 연결될 수 있다.
메모리는 컴퓨팅 장치 내에 정보를 저장한다. 일부 구현예에서, 메모리는 휘발성 메모리 유닛 또는 유닛들이다. 일부 구현예에서, 메모리는 비휘발성 메모리 유닛 또는 유닛들이다. 메모리는 또한 자기 또는 광학 디스크와 같은 다른 형태의 컴퓨터 판독가능 매체일 수 있다.
저장장치는 컴퓨팅 장치에 대해서 대용량 저장을 제공할 수 있다. 일부 구현예에서, 저장장치는 플로피디스크 장치, 하드디스크 장치, 광학디스크 장치 또는 테이프 장치, 플래시 메모리 또는 다른 유사한 고체 상태 메모리 장치와 같은 컴퓨터 판독가능한 매체이거나 이러한 컴퓨터 판독가능한 매체를 포함할 수 있거나, 또는 스토리지 영역 네트워크 또는 다른 구성을 포함하는 장치들을 포함하는 장치들의 어레이를 포함할 수 있다. 명령들은 정보 캐리어에 저장할 수 있다. 명령들은, 하나 이상의 처리 장치(예를 들어, 프로세서)에 의해 실행될 때, 위에 설명한 것과 같은 하나 이상의 방법을 수행한다. 명령들은 또한 컴퓨터 또는 기계 판독가능 매체(예를 들어, 메모리, 저장장치 또는 프로세서상의 메모리)와 같은 하나 이상의 저장장치에 의해 저장될 수 있다.
고속 인터페이스는 컴퓨팅 장치의 대역폭 집약적인 작업들 (bandwidth-intensive operations)을 관리하는 반면에, 저속 인터페이스는 낮은 대역폭 집약적 작업들(lower bandwidth-intensive operations)을 관리한다. 이러한 기능 할당은 단지 예일뿐이다. 일부 구현예에서, 고속 인터페이스는 메모리, 디스플레이(예를 들어, 그래픽 프로세서 또는 가속기를 통한) 및 다양한 확장 카드들(도시되지 않음)을 수용할 수 있은 고속 확장 포트들에 연결된다. 구현에 있어서, 저속 인터페이스는 저장장치 및 저속 확장 포트에 연결된다. 다양한 통신 포트들(USB, 불루투스®, 이더넷, 무선 이더넷)이 키보드, 포인팅 장치, 스캐너 등과 같은 하나 이상의 입출력 장치에 또는 예컨대, 네트워크 어댑터를 통해서, 스위치 또는 라우터와 같은 네트워킹 장치에 연결될 수 있다.
본원에서 설명된 시스템 및 기술의 다양한 구현예들은 디지털 전자 회로, 집적 회로, 특수 설계된 ASIC(주문형 집적 회로), 컴퓨터 하드웨어, 펌웨어, 소프트웨어 및/또는 이들의 조합에 의해서 실현될 수 있다. 이러한 다양한 구현예들은 저장 시시스템, 하나 이상의 입력장치, 및 하나 이상의 출력장치로부터 데이터 및 명령을 수신하고 또는 이들에 데이터 및 명령을 전송하도록 결합된, 특수 또는 범용일 수 있는, 하나 이상의 프로그램가능한 프로세서를 포함하는 프로그램가능한 시스템상에서 실행가능하고/하거나 해석가능한 하나 이상의 컴퓨터 프로그램에 의한 구현을 포함할 수 있다.
이러한 컴퓨터 프로그램들(프로그램, 소프트웨어, 소프트웨어 응용 또는 코드로도 알려짐)은 프로그램가능한 프로세서에 대한 기계 명령어들을 포함하며, 높은 수준의 절차적 및/또는 객체 지향 프로그래밍 언어 및/또는 어셈블리/기계 언어로 구현될 수 있다. 본 명세서에 사용될 때, 기계-판독가능한 매체 및 컴퓨터 판독가능한 매체라는 용어는 기계 명령을 기계-판독가능한 신호로 수신하는 기계-판독가능한 매체를 포함하는 프로그램가능한 프로세서에 명령들 및/또는 명령들을 제공하도록 이용되는 임의의 컴퓨터 프로그램 제품, 장치 및/또는 디바이스(예를 들어, 자기디스크, 광디스크, 메모리, PLD(Programmable Logic Devices)를 의미한다. 기계-판독가능한 신호라는 용어는 기계 명령어들 및/또는 데이터를 프로그램가능한 프로세서에 제공하는데 사용되는 모든 신호를 의미한다.
사용자와의 상호 작용을 제공하기 위해, 본원에서 설명된 시스템 및 기술은 정보를 사용자에게 디스플레이하기 위한 디스플레이 장치(예를 들어, CRT 또는 LCD 모니터) 및 사용자가 그것에 의해서 컴퓨터에 입력을 제공할 수 있는 키보드 및 포인팅 장치(예를 들어, 마우스 또는 트랙볼)를 갖는 컴퓨터상에서 구현될 수 있다. 다른 종류의 장치가 사용자와의 상호 작용을 제공하는 데 사용될 수 있다. 예를 들어, 사용자에게 제공되는 피드백은 임의의 형태의 감각 피드백(예를 들어, 시각 피드백, 청각 피드백 또는 촉각 피드백 일 수 있고, 사용자로부터의 입력은 음향, 음성 또는 촉각 입력을 포함하는 임의의 형태로 수신될 수 있다.
본원에 기재된 시스템 및 기술은 백엔드 요소(back end component)(예를 들어, 데이터 서버와 같은)를 포함하거나 미들웨어 요소(예컨데, 응용 서버)를 포함하거나 프런트 엔드 요소(예를 들어, GUI를 갖는 클라이언트 컴퓨터 또는 그것을 통해서 사용자가 본원에 기재된 시스템 및 기술들의 구현을 위해 상호작용할 수 있는 웹 브라우저) 또는 그러한 백 엔드, 미들웨어 또는 프론트 엔드 요소의 임의의 조합을 포함하는 컴퓨팅 시스템에서 구현될 수 있다. 시스템의 구성요소들은 임의의 형태 또는 매체의 디지털 데이터 통신(예를 들어, 통신 네트워크)에 의해서 서로 연결될 수 있다. 통신 네트워크의 예는 근거리 통신망(LAN), 광역 통신망(WAN) 및 인터넷을 포함한다.
컴퓨팅 시스템은 클라이언트들과 서버들을 포함할 수 있다. 클라이언트와 서버는 일반적으로 서로 멀리 떨어져 있으며 전형적으로 통신 네트워크를 통해 상호 작용한다. 클라이언트와 서버의 관계는 각각의 컴퓨터에서 실행되고 서로 클라이언트-서버 관계를 갖는 컴퓨터 프로그램들에 의해 발생한다.
본 발명은 바람직한 구체적인 실시예를 참조하여 특히 도시되고 설명되었지만, 통상의 기술자들은 첨부된 청구범위에 의해서 한정되는, 본 발명의 사상 및 범위를 벗어나지 않고 형태 및 세부 사항에서 다양한 변화가 이루어질 수 있음을 이해해야 한다.
본 발명은 특정한 바람직한 구체적인 실시예를 참조하여 특히 도시되고 설명되었지만, 통상의 기술자들은 첨부된 청구범위에 의해서 한정되는, 본 발명의 사상 및 범위를 벗어나지 않고 형태 및 세부 사항에서 다양한 변화가 이루어질 수 있음을 이해해야 한다.
본원에 기술된 방법들, 시스템들, 및 프로세스들은 본원에 기술된 실시예들로부터의 정보를 사용하여 개발된 변형들 및 적응들을 포함하는 것으로 고려된다.
상세한 설명을 통해, 시스템 및 조성물이 특정 구성요소들을 갖거나, 포함하거나 또는 함유하는 것으로 기술되거나, 공정 및 방법이 특정 단계들을 갖거나 또는 포함하건 함유하는 것으로 기술되는 경우, 부가적으로, 언급된 구성요소들로 필수적으로 구성되거나 구성되는 시스템 및 조성물들, 및 언급된 처리 단계들로 필수적으로 구성되거나 구성되는 실시예들의 처리들 및 방법들이 존재한다는 것을 이해해야 한다.
예를 들어 배경 기술란(또는 다른 곳에서)과 같은 모든 출판물에 대한 언급은 이 출판물이 본원에 제시된 특허청구범위와 관련하여 선행 기술로서의 역할을 하는 것을 인정하는 것이 아니다. 배경기술란은 명확성을 목적으로 제시된 것이며 임의의 청구항과 관련하여 선행 기술에 대한 설명을 의미하지 않는다.
식별항목들(헤더들)은 본 명세서에서 독자를 돕기 위해 사용되며 본원에 기술된 발명의 해석을 제한하려는 것이 아니다.

Claims (51)

  1. 전극 아암에 결합된 절단 전극을 보관 위치(stowed position)로부터 전개된 위치로 연장시키도록 구성된 하나 이상의 연장가능한 전극 아암들을 갖는 절제 봉으로서, 여기서 상기 전극 아암들의 연장 중에, 상기 전달 전극은, RF 에너지에 의해 전원인가되어, 전극 아암들이 표적 조직을 둘러싸는 리셉터클을 형성하기 위해 표적 조직 근위의 조직을 절단하도록 구성되는 절제 봉(excising wand); 및
    상기 절제 봉에 작동가능하게 연결되고 출력을 갖는 RF 발생기를 포함하는 전기수술 시스템(electrosurgical system)으로서, 상기 RF 발생기는,
    전원 회로;
    상기 절단 전극을 통한 전류 흐름의 측정과 관련된 전류 감지 출력을 갖는 전류 모니터링 회로;
    상기 절단 전극에 인가된 전위의 측정과 관련된 전압 감지 출력을 갖는 전압 모니터링 회로; 및
    적어도 부분적으로 상기 전류 감지 출력 및 상기 전압 감지 출력에 기초하여 차동 위상 각(differential phase angle)을 결정함으로써 상기 RF 에너지의 출력 전력을 측정하고, 각각 하나 이상의 상이한 봉 타입과 관련된, 상기 복수의 제어설정들로부터 상기 절제 봉에 대한 하나의 제어 설정을 선택하고, 및 결정된 출력 전력과 선택된 제어 설정의 비교에 기초하여 절단 전극에 출력된 RF 에너지를 조정하도록 구성되는 제어기를 포함하는 전기수술 시스템.
  2. 제1항에 있어서, 상기 제어기는 조직을 절단할 때 절단 전극이 균일한 전력 밀도를 갖도록 상기 절단 전극으로 출력된 상기 RF 에너지를 조정하도록 구성되는 것을 특징으로 하는 시스템.
  3. 제1항에 있어서, 상기 전압 모니터링 회로는 상기 RF 발생기의 출력에서 순시 전압의 실효값을 측정하도록 구성되는 시스템.
  4. 제1항에 있어서, 상기 전류 모니터링 회로는 상기 RF 발생기의 출력에서 순시 전류의 실효값을 측정하도록 구성되는 시스템.
  5. 제1항에 있어서, 상기 RF 발생기는,
    상기 절단 전극에 인가된 RF 에너지의 평균 전력의 측정과 관련된 전력 감지 출력을 갖는 전력 모니터링 회로를 포함하는 것을 특징으로 하는 절단 전극 어셈블리.
  6. 제5항에 있어서, 상기 차동 위상 각(θZ)은, 아래 수식에 의해 산출되는 시스템:
    Figure pct00031

    상기 식에서,
    POUT(t)는 RF 발생기의 출력에서의 평균 전력의 측정치이고,
    Figure pct00032
    은 절단 전극에 인가된 전위의 실효값 측정치(root-mean square measurement)이며; 및
    Figure pct00033
    는 절단 전극을 통과하는 전류 흐름의 실효값 측정치임.
  7. 제1항에 있어서, 상기 제어기는, 하기 수식에 기초해서 상기 절단 전극에 출력된 RF 에너지를 조정하도록 구성되는 시스템:
    Figure pct00034

    상기 식에서,
    VRMS는 RF 발생기의 출력에서의 전위의 실효값(RMS) 측정치이며,
    Z는 부하 임피던스이며,
    θZ는 측정된 차동 위상 각임.
  8. 제1항에 있어서, 상기 전극 아암들에 의해 형성된 리셉터클은 약 10 ㎜ 내지 30 ㎜의 최대 캡처 직경을 갖는 것을 특징으로 하는 시스템.
  9. 제1항에 있어서, 상기 전극 아암들에 의해 형성된 리셉터클은 약 12 ㎜ 보다 큰 최대 캡처 직경을 갖는 것을 특징으로 하는 시스템.
  10. 제1항에 있어서, 상기 RF 발생기는,
    상기 절제 봉의 신호 라인에 대한 인터페이스로서, 상기 신호 라인은 상기 절제 봉 내에 수용된 식별 부재(identification element)에 결합되는 인터페이스; 및
    각각의 절제 봉이 관련된 제어 설정을 갖는 절제 봉 타입들의 목록을 내부에 저장한 메모리를 포함하는 시스템.
  11. 제10항에 있어서, 상기 제어기는 상기 신호 라인으로부터 수신된 신호에 기초하여 부착된 절제 봉의 제어 설정을 선택하도록 구성되는 것을 특징으로 하는 시스템.
  12. 제10항에 있어서, 주어진 절제 봉 타입의 제어 설정은, 각각의 절제 봉 타입의 절단 전극으로 출력되는 이산 전력 곡선(discrete power curve)을 포함하는 시스템.
  13. 제12 항에있어서, 상기 이산 전력 곡선은,
    아크 개시를 위한 출력 전압;
    아크 개시를 위한 출력 시간;
    시상수 값 형태의 소프트-스타트 출력 전력; 및
    시간에 따른 복수의 전력값들을 포함하는 전력 프로파일 정의(power profile definition)로 구성되는 군에서 선택되는 멤버를 포함하는 시스템.
  14. RF 발생기에 의해서 생성된 RF 에너지로 절제 봉의 절단 전극에 전원을 인가하는 단계;
    절제 봉의 전극 아암을 보관된 위치에서 전개된 위치로 연장하는 단계로서, 여기서 상기 전극 암은 상기 절단 전극에 연결되고, 연장으로 인해서 절단 전극이 표적 조직 근위의 조직을 절단하여 캡처된 표적 조직 둘레에 리셉터클을 형성하도록 하는 단계;
    전압 감지 회로를 통해서, 상기 RF 발생기의 전압 출력을 측정하는 단계;
    전류 센서 회로를 통해서, 상기 RF 발생기의 전류 출력을 측정하는 단계; 및
    프로세서에 의해서, 상기 전압 출력 및 상기 전류 출력으로부터 유도된 차동 위상 각 측정치를 상기 절제 봉과 관련되고, 복수의 제어 설정들로부터 선택된 제어 설정과 비교하여 상기 RF 발생기에 의해 생성된 상기 RF 에너지를 조정하는 단계로서, 여기서 상기 복수의 제어설정들은 각각 하나 이상의 서로 다른 봉 타입과 연관되는 단계를 포함하는 방법.
  15. 제14항에 있어서, 상기 전력 출력은, 프로세서를 통해서, 상기 절단 전극에 대해 일정한 실제 전력 밀도를 유지하도록 조정되는 방법.
  16. 제15항에 있어서, 상기 RF 발생기에 의한 전력 출력은 하기 수식으로 주어지는 시스템:
    Figure pct00035

    상기 식에서,
    VRMS는 출력 AC 전압의 유효값(예컨대, DC-균등 값)이고;
    Z는 표적 조직의 임피던스이며; 및
    θZ는 표적 조직의 임피던스의 위상 각임.
  17. 제14항에 있어서, 상기 측정된 전류 출력은 상기 RF 발생기의 순시 전류 출력이고, 상기 측정된 전압 출력은 상기 RF 발생기의 순시 전압 출력인 방법.
  18. 제14항에 있어서, 상기 전압 출력 및 상기 전류 출력은 동시에 측정되는 방법.
  19. 제14항에 있어서, 상기 방법은
    전력 모니터링 회로를 통해서, RF 발생기에 의한 전력 출력을 측정하는 단계를 포함하는 방법.
  20. 제14항에 있어서, 상기 차동 위상 각도(θZ)는 하기 수식에 의해서 산출되는 방법:
    Figure pct00036

    상기 식에서,
    POUT(t)는 RF 발생기의 출력에서의 평균 전력의 측정치이고,
    Figure pct00037
    은 절단 전극에 인가된 전위의 실효값 측정치(root-mean square measurement)이며; 및
    Figure pct00038
    는 절단 전극을 통과하는 전류 흐름의 실효값 측정치이다.
  21. 제14항에 있어서, 상기 방법은
    전력 감지 회로를 통해서 상기 RF 발생기의 전력 출력을 측정하는 단계; 및
    상기 프로세서에 의해, 상기 전압 출력, 상기 전류 출력 및 상기 전력 출력으로부터 구한 차동 위상 각 값에 기초하여 상기 RF 에너지의 상기 전력 출력을 조정하는 단계를 포함하는 방법.
  22. 제14항에 있어서, 전극 아암들에 의해 형성된 리셉터클은 10 ㎜, 12 ㎜, 15 ㎜, 20 ㎜ 및 30 ㎜로 구성되는 군으로부터 선택되는 최대 캡처 직경을 갖는 방법.
  23. 제14항에 있어서, 전극 아암들에 의해 형성된 리셉터클은 약 12 ㎜ 보다 큰 최대 캡처 직경을 갖는 방법.
  24. 제14항에 있어서, 상기 방법이
    RF 발생기가 절제 봉에 작동가능하게 연결될 때 절제 봉의 봉 크기를 자동으로 확인하는 단계; 및
    관련 절제 봉의 크기의 확인에 기초하여 RF 에너지의 출력 전력을 조정하는 단계를 포함하는 방법.
  25. 제24항에 있어서, 상기 출력 전력은 상기 전극 아암들에 의해 형성된 리셉터클의 크기에 기초하여 선택가능한 것을 특징으로 하는 방법.
  26. 전기수술 기구의 절단 전극을 보관 위치로부터 전개된 위치로 연장시켜 표적 조직을 캡처해서 추출하도록 구성된 전기수술 기구에 작동가능하게 연결되도록 구성되는 RF 발생기를 포함하는 전기수술 시스템으로서, 상기 RF 발생기는,
    상기 전기수술 기구의 신호 라인에 대한 인터페이스로서, 여기서 상기 신호 라인은 상기 전기수술 기구에 수용된 식별 부재(identification element)에 결합되는 인터페이스;
    전기수술 기구 타입이 절제 봉의 봉 크기 특성과 관련된, 전기수술 기구 타입의 제어와 관련되는 복수의 제어설정들을 내부에 저장한 메모리; 및
    신호 라인을 통해 수신된 신호에 기초하여 부착된 전기수술 기구에 대한 복수의 제어설정들으로부터 하나의 제어 설정을 선택하도록 구성되는 제어기를 포함하는 전기수술 시스템.
  27. 제26항에 있어서, 각각의 이산 전력 곡선은,
    아크 개시를 위한 출력 전압;
    아크 개시를 위한 출력 시간;
    시상수 값 형태의 소프트-스타트 출력 전력; 및
    시간에 따른 복수의 전력값들을 포함하는 전력 프로파일 정의로 구성되는 군에서 선택되는 멤버를 포함하는 시스템.
  28. 제26항에 있어서, 상기 식별 부재는 저항, 커패시터, 및 집적 회로(IC) 데이터 모듈로 구성되는 그룹으로부터 선택되는 멤버를 포함하는 시스템.
  29. 제26항에 있어서, 상기 복수의 제어설정들은 룩업 테이블에 저장되는 시스템.
  30. 제26항에 있어서, 각각의 제어 설정들은 하나 또는 양자의 최대 캡처 직경 및 전극 아암 크기로 특징지워지는 전기수술 기구 타입과 관련되는 시스템.
  31. 제26항에 있어서, 상기 전기수술 기구는 RF 발생기의 인터페이스에 탈착가능하게 부착되도록 구성되는 시스템.
  32. 제26항에 있어서, 상기 전기수술 기구는 일회용으로 구성되는 시스템.
  33. 제26항에 있어서, 상기 전기수술 기구는 다중 용도로 구성되는 시스템.
  34. 제26항에 있어서, 상기 식별자(identifier)는 저항을 포함하고, 상기 인터페이스는 상기 신호 라인에 전위를 인가하고 상기 식별 부재의 저항을 측정하도록 구성되는 시스템.
  35. 메모리를 통해서, 전기수술 기구 타입들 및 그의 대응하는 제어 설정들의 저장된 목록을 제공하는 단계로서, 각각의 전기수술 기구 타입은 전기수술 기구의 크기 특징과 관련되는 단계;
    RF 발생기의 리셉터클을 통해서, 부착된 전기수술 기구에 대한 커넥터를 수용하는 단계로서, 여기서 상기 커넥터는 적어도 전력선, 접지선, 인터페이스 선을 포함하는 단계;
    상기 인터페이스 라인을 통해서, 상기 전기수술 기구의 타입과 관련되는 식별자 신호(identifier signal)를 검색하여 전기수술 기구를 조사하는 단계;
    프로세서에 의해서, 검색된 식별자 신호에 기초하여, 상기 메모리로부터 제어 설정을 검색하는 단계; 및
    상기 프로세서에 의해서, 상기 제어 설정을 상기 전기수술 시스템의 제어기에 적용하는 단계를 포함하는, 전기수술 시스템의 제어방법.
  36. 제35항에 있어서, 상기 조사 단계는:
    상기 인터페이스 라인에 전위를 인가하는 단계; 및
    상기 인터페이스 라인을 통해서 그 결과로서 생기는 전류를 측정하는 단계로서, 여기서 상기 측정은 상기 전기수술 기구에 수용된 저항의 측정된 저항에 대응하는 단계를 포함하는 방법.
  37. 제35항에 있어서, 상기 전기수술 기구의 타입은 각각의 최대 캡처 직경 및 전극 아암 크기 중 하나 또는 양자에 의해서 특징지워지는 방법.
  38. 전극 아암들에 결합된 절단 전극을 보관 위치로부터 전개된 위치로 연장시키도록 구성된 하나 이상의 연장가능한 전극 아암들을 갖는 절제 봉으로서, 여기서 상기 전극 아암들의 연장 중에, 상기 절단 전극은, RF 에너지에 의해 전원인가되어, 전극 아암들이 상기 표적 조직을 둘러싸는 리셉터클을 형성하기 위해서, 표적 조직 근위의 조직을 절단하도록 구성되는 절제 봉; 및
    상기 절단 전극에 작동가능하게 결합된 RF 발생기를 포함하는 전기수술 시스템으로서, 상기 RF 발생기는,
    상기 전극 아암들의 연장 중에 상기 절단 전극에 전력을 출력하도록 구성되는 전원 회로; 및
    절단 전극이 절단하는 동안에 일정한 전력 밀도를 유지하도록 절단되는 조직의 변화하는 임피던스를 보상하도록 구성된 임피던스 판별 회로(impedance discriminator circuit)를 포함하는 전기수술 시스템.
  39. 제38항에 있어서, 상기 임피던스 판별 회로는 조직에 전달된 전력을 정규화함으로써 절단되는 조직의 변화하는 임피던스를 보상하는 시스템.
  40. 제39항에 있어서, 상기 임피던스 판별 회로는 변화하는 임피던스를 약 50 내지 약 1800 Ω의 범위 내로 정규화되도록 구성되는 시스템.
  41. 제38항에 있어서, 상기 임피던스 판별 회로는 저대역 통과 필터를 포함하는 임피던스 매칭 네트워크를 포함하는 시스템.
  42. 제41항에 있어서, 상기 임피던스 매칭 네트워크는 약 1800 Ω에서 저감쇠 보드 응답(underdamped Bode response)을 갖는 시스템.
  43. 제41항에 있어서, 상기 저대역 통과 필터는 버터워스 필터(Butterworth filter)를 포함하는 시스템.
  44. 제41항에 있어서, 상기 저대역 통과 필터는 후단 필터 네트워크(post filter network)를 포함하는 시스템.
  45. 제41항에 있어서, 상기 저대역 통과 필터는 3차 저대역 통과 필터를 포함하는 시스템.
  46. 제38항에 있어서, 상기 전력 회로는 RF 초퍼 회로 및 탱크 회로로 구성되는 군에서 선택되는 멤버를 포함하는 시스템.
  47. 제38항에 있어서, 상기 임피던스 판별 회로는 수동 필터 회로를 포함하는 시스템.
  48. 제38항에 있어서, 상기 임피던스 판별 회로는 능동 필터 회로를 포함하는 시스템.
  49. RF 에너지에 의해서, 수술 부위로부터 피하 표적 조직을 추출하도록 구성된 절제 봉의 연장가능한 전극 아암에 연결된 절단 전극에 전원을 인가하는 단계;
    상기 전극 아암을 보관 위치로부터 전개된 위치로 연장하는 단계로서, 상기 보관 위치로부터 상기 전개된 위치로 연장되는 동안에, 전극 암이, 전개된 위치에 있을 때, 표적 조직을 추출하기 위해서, 상기 표적 조직 근위의 조직을 절단하여 리셉터클을 형성하도록 구성되는 단계; 및
    임피던스 판별 회로를 통해서, 상기 RF 에너지를 필터링하여, 절단 전극에 전달되는 전력을 약 50 내지 1800 Ω의 범위로 정규화하는 단계를 포함하는 방법.
  50. 제49항에 있어서, 상기 필터링 단계는 1800 Ω에서 저감쇠 보드 응답(underdamped Bode response)을 갖는 방법.
  51. 제49항에 있어서, 상기 필터링 단계는 3차 저대역 통과 필터로부터의 결과인 방법.

KR1020187007296A 2015-08-13 2016-08-12 전기수술 발전기 및 방법 KR20180040670A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562204807P 2015-08-13 2015-08-13
US201562204836P 2015-08-13 2015-08-13
US62/204,836 2015-08-13
US62/204,807 2015-08-13
PCT/US2016/046788 WO2017027809A1 (en) 2015-08-13 2016-08-12 Electrosurgical generator and methods

Publications (1)

Publication Number Publication Date
KR20180040670A true KR20180040670A (ko) 2018-04-20

Family

ID=57983731

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187007301A KR20180039720A (ko) 2015-08-13 2016-08-12 가변 강성 캡처 요소들을 구비한 전기수술 방법 및 장치
KR1020187007296A KR20180040670A (ko) 2015-08-13 2016-08-12 전기수술 발전기 및 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020187007301A KR20180039720A (ko) 2015-08-13 2016-08-12 가변 강성 캡처 요소들을 구비한 전기수술 방법 및 장치

Country Status (8)

Country Link
US (2) US10363079B2 (ko)
EP (2) EP3334358B1 (ko)
JP (2) JP6777727B2 (ko)
KR (2) KR20180039720A (ko)
CN (2) CN108366819B (ko)
AU (2) AU2016306667B2 (ko)
CA (2) CA2995615A1 (ko)
WO (2) WO2017027809A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
WO2013101772A1 (en) 2011-12-30 2013-07-04 Relievant Medsystems, Inc. Systems and methods for treating back pain
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
WO2014071161A1 (en) 2012-11-05 2014-05-08 Relievant Medsystems, Inc. System and methods for creating curved paths through bone and modulating nerves within the bone
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US11737808B2 (en) * 2017-01-23 2023-08-29 Eggers & Associates, LLC Minimally invasive diagnostic and therapeutic excision of tissue
AR109877A1 (es) * 2017-10-24 2019-01-30 Jorge Ernesto Odon Kit para extracción de tejidos
JP7300570B2 (ja) * 2018-02-13 2023-06-30 国立大学法人 長崎大学 切除器具
US11116563B2 (en) * 2018-02-15 2021-09-14 Biosense Webster (Israel) Ltd. Multi-channel RF ablation
EP3930611A1 (en) * 2019-02-26 2022-01-05 CONMED Corporation Modular docking system for electrosurgical equipment
CN111803204B (zh) * 2019-07-08 2022-07-01 昆山雷盛医疗科技有限公司 射频热消融系统及其控制方法
CN111374761B (zh) * 2019-08-06 2021-11-02 深圳钮迈科技有限公司 肿瘤治疗仪的模拟消融系统及方法
EP4027912A4 (en) 2019-09-12 2023-08-16 Relievant Medsystems, Inc. TISSUE MODULATION SYSTEMS AND METHODS
WO2021167920A1 (en) * 2020-02-18 2021-08-26 Apyx Medical Corporation Devices, systems and methods for sensing and discerning between fat and muscle tissue during medical procedures
CN112274242B (zh) * 2020-10-22 2023-06-30 四川大学华西第四医院 一种便于功率调节的射频电波刀
CN112596869B (zh) * 2020-12-08 2023-05-26 成都海光微电子技术有限公司 延时模型的构建方法及装置、电子设备及存储介质
US20220265252A1 (en) * 2021-02-19 2022-08-25 Covidien Lp Device for tissue harvesting for biopsy examination

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032860A (en) 1933-03-24 1936-03-03 Wappler Frederick Charles Method for electrosurgical treatment of tissue
US3896608A (en) * 1973-06-25 1975-07-29 Sperry Rand Corp Static magnetic field metal detector
US3955578A (en) 1974-12-23 1976-05-11 Cook Inc. Rotatable surgical snare
GB2011258A (en) 1977-11-18 1979-07-11 Wolf Gmbh Richard Device for removing excrescences and polyps
JPS5552748A (en) 1978-10-12 1980-04-17 Olympus Optical Co Highhfrequency incising tool
GB2053691B (en) 1979-07-24 1983-04-27 Wolf Gmbh Richard Endoscopes
DE69425249T2 (de) * 1993-03-16 2001-03-22 Ep Technologies Träger-anordnung für mehrfach-elektroden
US5476495A (en) * 1993-03-16 1995-12-19 Ep Technologies, Inc. Cardiac mapping and ablation systems
US6293942B1 (en) * 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
DE19528440C2 (de) 1995-08-02 1998-09-10 Harald Dr Med Kuebler Chirurgisches Schneidinstrument
DE19626408A1 (de) 1996-07-01 1998-01-08 Berchtold Gmbh & Co Geb Trokar für laparoskopische Operationen
US5891142A (en) * 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
US6626903B2 (en) 1997-07-24 2003-09-30 Rex Medical, L.P. Surgical biopsy device
US6270464B1 (en) 1998-06-22 2001-08-07 Artemis Medical, Inc. Biopsy localization method and device
US6331166B1 (en) 1998-03-03 2001-12-18 Senorx, Inc. Breast biopsy system and method
US6261241B1 (en) 1998-03-03 2001-07-17 Senorx, Inc. Electrosurgical biopsy device and method
US6659105B2 (en) 1998-02-26 2003-12-09 Senorx, Inc. Tissue specimen isolating and damaging device and method
US6540693B2 (en) 1998-03-03 2003-04-01 Senorx, Inc. Methods and apparatus for securing medical instruments to desired locations in a patients body
US6296639B1 (en) 1999-02-12 2001-10-02 Novacept Apparatuses and methods for interstitial tissue removal
US7137980B2 (en) * 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7189206B2 (en) 2003-02-24 2007-03-13 Senorx, Inc. Biopsy device with inner cutter
US6287304B1 (en) * 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6471659B2 (en) * 1999-12-27 2002-10-29 Neothermia Corporation Minimally invasive intact recovery of tissue
US6277083B1 (en) * 1999-12-27 2001-08-21 Neothermia Corporation Minimally invasive intact recovery of tissue
US7066933B2 (en) * 2000-08-08 2006-06-27 Erbe Elektromedizin Gmbh High-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation
US6678621B2 (en) * 2000-10-20 2004-01-13 Ethicon Endo-Surgery, Inc. Output displacement control using phase margin in an ultrasonic surgical hand piece
US20020072739A1 (en) 2000-12-07 2002-06-13 Roberta Lee Methods and devices for radiofrequency electrosurgery
US6620157B1 (en) * 2000-12-28 2003-09-16 Senorx, Inc. High frequency power source
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US6923804B2 (en) * 2001-07-12 2005-08-02 Neothermia Corporation Electrosurgical generator
US6740079B1 (en) 2001-07-12 2004-05-25 Neothermia Corporation Electrosurgical generator
US7041108B2 (en) * 2002-05-28 2006-05-09 Lippitt Extractor Company, Llc Grasper mechanism with biased fixed flexure elements
US7044956B2 (en) 2002-07-03 2006-05-16 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20040006355A1 (en) 2002-07-03 2004-01-08 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
AU2002332597A1 (en) * 2002-08-21 2004-03-11 Neothermia Corporation Device and method for minimally invasive and intact recovery of tissue
GB0221707D0 (en) * 2002-09-18 2002-10-30 Gyrus Medical Ltd Electrical system
US7122011B2 (en) 2003-06-18 2006-10-17 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US7494473B2 (en) * 2003-07-30 2009-02-24 Intact Medical Corp. Electrical apparatus and system with improved tissue capture component
AU2006227443B2 (en) * 2005-03-17 2011-06-16 David B. Dowling Control apparatus, system, and method for reduction and/or prevention of space weather induced corrosion
US7569053B2 (en) * 2006-03-03 2009-08-04 Intact Medical Corporation Apparatus for retrieving a tissue volume with improved positioning precursor assembly
US8486060B2 (en) * 2006-09-18 2013-07-16 Cytyc Corporation Power ramping during RF ablation
US8588885B2 (en) * 2007-05-09 2013-11-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Bendable catheter arms having varied flexibility
US8934984B2 (en) * 2007-05-31 2015-01-13 Cochlear Limited Behind-the-ear (BTE) prosthetic device with antenna
US20090048595A1 (en) * 2007-08-14 2009-02-19 Takashi Mihori Electric processing system
WO2009124097A1 (en) * 2008-03-31 2009-10-08 Applied Medical Resources Corporation Electrosurgical system
US20090254077A1 (en) 2008-04-08 2009-10-08 Tyco Healthcare Group Lp Arc Generation in a Fluid Medium
US8137308B2 (en) * 2008-09-16 2012-03-20 Biosense Webster, Inc. Catheter with adjustable deflection sensitivity
US9532827B2 (en) * 2009-06-17 2017-01-03 Nuortho Surgical Inc. Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
ES2723707T3 (es) * 2009-07-15 2019-08-30 Ethicon Llc Instrumentos quirúrgicos ultrasónicos que tienen pinza
US20110071516A1 (en) * 2009-09-24 2011-03-24 Tyco Healthcare Group Lp System and Method for Controlling Electrosurgical Output
GB201021032D0 (en) * 2010-12-10 2011-01-26 Creo Medical Ltd Electrosurgical apparatus
WO2012120490A2 (en) * 2011-03-09 2012-09-13 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US8968293B2 (en) * 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
EP2699150B1 (en) * 2011-04-22 2015-11-04 Topera, Inc. Basket style cardiac mapping catheter having a flexible electrode assembly for detection of cardiac rhythm disorders
US9044238B2 (en) 2012-04-10 2015-06-02 Covidien Lp Electrosurgical monopolar apparatus with arc energy vascular coagulation control
US9106270B2 (en) * 2012-10-02 2015-08-11 Covidien Lp Transmitting data across a patient isolation barrier using an electric-field capacitive coupler module
US9039633B2 (en) 2012-12-24 2015-05-26 Transmed7, Llc Automated, selectable, soft tissue excision biopsy devices and methods
DE102013202526A1 (de) * 2013-02-15 2014-08-21 Olympus Winter & Ibe Gmbh Elektrochirurgisches Handinstrument mit erweiterter Funktionalität
US9456862B2 (en) * 2013-02-19 2016-10-04 Covidien Lp Electrosurgical generator and system
US9655673B2 (en) * 2013-03-11 2017-05-23 Covidien Lp Surgical instrument
CA2907125A1 (en) * 2013-03-15 2014-09-18 Boston Scientific Scimed, Inc. Tissue resection snares
US9155527B2 (en) 2013-08-22 2015-10-13 Transmed7, Llc Soft tissue coring biopsy devices and methods
US9204929B2 (en) * 2013-09-16 2015-12-08 Biosense Webster (Israel) Ltd. Basket catheter with deflectable spine
US9808268B2 (en) * 2013-11-27 2017-11-07 Boston Scientific Scimed, Inc. Medical retrieval devices and related methods of use
WO2015142674A1 (en) 2014-03-15 2015-09-24 Rioux Robert F System and method for marginal tissue ablation
CN104257427A (zh) * 2014-08-05 2015-01-07 上海魅丽纬叶医疗科技有限公司 具有瓣状支架结构的射频消融导管及其设备

Also Published As

Publication number Publication date
EP3334361B1 (en) 2022-02-16
CN108366823A (zh) 2018-08-03
AU2016306667B2 (en) 2020-12-03
US20170156780A1 (en) 2017-06-08
KR20180039720A (ko) 2018-04-18
JP2018525101A (ja) 2018-09-06
CN108366819A (zh) 2018-08-03
US11129660B2 (en) 2021-09-28
US10363079B2 (en) 2019-07-30
EP3334361A4 (en) 2019-06-19
EP3334358A1 (en) 2018-06-20
US20170095286A1 (en) 2017-04-06
JP6777727B2 (ja) 2020-10-28
CN108366823B (zh) 2021-04-27
WO2017027800A1 (en) 2017-02-16
JP2018529406A (ja) 2018-10-11
EP3334361A1 (en) 2018-06-20
JP6891165B2 (ja) 2021-06-18
AU2016305076A1 (en) 2018-04-12
EP3334358B1 (en) 2024-04-17
AU2016306667A1 (en) 2018-04-05
AU2016305076B2 (en) 2020-09-10
CA2995615A1 (en) 2017-02-16
EP3334358A4 (en) 2019-08-21
CA2995612A1 (en) 2017-02-16
CN108366819B (zh) 2021-05-28
WO2017027809A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
KR20180040670A (ko) 전기수술 발전기 및 방법
JP7366917B2 (ja) 再利用可能及び使い捨て装置のためのスマートブレードの適用
CN107072705B (zh) 增强防电弧的电外科系统和方法
US8317786B2 (en) System, method and apparatus for electrosurgical instrument with movable suction sheath
US6923804B2 (en) Electrosurgical generator
KR102304488B1 (ko) 전기 수술 프로브에 의해 전달되는 전력을 제어하는 방법 및 장치
EP1007111A1 (en) Fluid-assisted electrocautery device
BR112015028062B1 (pt) Aparelho eletrocirúrgico para a ressecção do tecido biológico
JP7438951B2 (ja) 外科用排出感知及びモータ制御
JP7387608B2 (ja) 外科用排出感知及び発生器制御
JP7427604B2 (ja) 患者から排出された煙から微粒子を感知し、感知された情報に基づいてポンプ速度を調節し、システムの機能パラメータをハブに通信する方法
US20200015877A1 (en) Amplitude modulated waveform circuitry for electrosurgical devices and systems, and related methods
AU759356B2 (en) Fluid-assisted electrocautery device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
WITB Written withdrawal of application