KR20180028338A - Semiconductor device and semiconductor device package including the same - Google Patents
Semiconductor device and semiconductor device package including the same Download PDFInfo
- Publication number
- KR20180028338A KR20180028338A KR1020160115894A KR20160115894A KR20180028338A KR 20180028338 A KR20180028338 A KR 20180028338A KR 1020160115894 A KR1020160115894 A KR 1020160115894A KR 20160115894 A KR20160115894 A KR 20160115894A KR 20180028338 A KR20180028338 A KR 20180028338A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- disposed
- semiconductor layer
- section
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 241
- 229910052782 aluminium Inorganic materials 0.000 claims description 65
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 8
- 229910002704 AlGaN Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 abstract description 25
- 239000010410 layer Substances 0.000 description 376
- 239000000203 mixture Substances 0.000 description 51
- 239000006185 dispersion Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 29
- 230000004048 modification Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 17
- 230000007423 decrease Effects 0.000 description 14
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 239000002019 doping agent Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 230000031700 light absorption Effects 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910020781 SixOy Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229910017083 AlN Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910019897 RuOx Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DZLPZFLXRVRDAE-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] Chemical compound [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] DZLPZFLXRVRDAE-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/10—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
실시 예는 반도체 소자 및 이를 포함하는 반도체 소자 패키지에 관한 것이다.Embodiments relate to a semiconductor device and a semiconductor device package including the same.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.Semiconductor devices including compounds such as GaN and AlGaN have many merits such as wide and easy bandgap energy, and can be used variously as light emitting devices, light receiving devices, and various diodes.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다. Particularly, a light emitting device such as a light emitting diode or a laser diode using a semiconductor material of Group 3-5 or 2-6 group semiconductors can be applied to various devices such as a red, Blue, and ultraviolet rays. By using fluorescent materials or combining colors, it is possible to realize a white light beam with high efficiency. Also, compared to conventional light sources such as fluorescent lamps and incandescent lamps, low power consumption, , Safety, and environmental friendliness.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.In addition, when a light-receiving element such as a photodetector or a solar cell is manufactured using a semiconductor material of Group 3-5 or Group 2-6 compound semiconductor, development of a device material absorbs light of various wavelength regions to generate a photocurrent , It is possible to use light in various wavelength ranges from the gamma ray to the radio wave region. It also has advantages of fast response speed, safety, environmental friendliness and easy control of device materials, so it can be easily used for power control or microwave circuit or communication module.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.Accordingly, the semiconductor device can be replaced with a transmission module of an optical communication means, a light emitting diode backlight replacing a cold cathode fluorescent lamp (CCFL) constituting a backlight of an LCD (Liquid Crystal Display) display device, White light emitting diodes (LEDs), automotive headlights, traffic lights, and gas and fire sensors. In addition, semiconductor devices can be applied to high frequency application circuits, other power control devices, and communication modules.
특히, 자외선 파장 영역의 광을 방출하는 발광소자는 경화작용이나 살균 작용을 하여 경화용, 의료용, 및 살균용으로 사용될 수 있다.In particular, a light emitting device that emits light in the ultraviolet wavelength range can be used for curing, medical use, and sterilization by curing or sterilizing action.
최근 자외선 발광소자에 대한 연구가 활발하나, 아직까지 자외선 발광소자는 수직형으로 구현하기 어려운 문제가 있으며, 광 추출 효율이 상대적으로 떨어지는 문제가 있다.Recently, research on ultraviolet light emitting devices has been actively conducted. However, there is a problem that it is difficult to realize a vertical type ultraviolet light emitting device, and the light extraction efficiency is relatively low.
실시 예는 광 추출 효율이 향상된 반도체 소자를 제공한다.The embodiment provides a semiconductor device with improved light extraction efficiency.
실시 예는 전류 분산 효율이 우수한 반도체 소자를 제공한다.The embodiment provides a semiconductor device having excellent current dispersion efficiency.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.The problems to be solved in the embodiments are not limited to these, and the objects and effects that can be grasped from the solution means and the embodiments of the problems described below are also included.
본 발명의 일 실시 예에 따른 반도체 소자는, 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층을 포함하고, 상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 리세스를 포함하는 발광구조물; 상기 복수 개의 리세스의 내부에 배치되어 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극; 상기 제2도전형 반도체층과 전기적으로 연결되는 제2전극; 상기 제1전극과 전기적으로 연결되는 제1도전층; 및 상기 제2전극과 전기적으로 연결되는 제2도전층을 포함하고, 상기 제2도전형 반사층은 제1방향으로 가장 인접한 2개의 리세스의 중심 사이에 배치되는 제1-1면을 포함하고, 상기 제1방향은 상기 발광구조물의 두께 방향과 수직한 방향이고, 상기 제1-1면은 상기 제1방향으로 이격된 제2전극이 배치되는 제1구간, 및 상기 제2전극 사이에 배치되는 제2구간을 포함하고, 상기 제2도전층은 상기 제1구간 및 제2구간에 배치되고, 상기 제2구간의 제1방향의 폭은 상기 제1구간의 제1방향 전체 폭의 1:0.7 내지 1: 5이다.A semiconductor device according to an embodiment of the present invention includes a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, A light emitting structure including a plurality of recesses penetrating the second conductivity type semiconductor layer and the active layer and disposed to a partial region of the first conductivity type semiconductor layer; A first electrode disposed inside the plurality of recesses and electrically connected to the first conductive semiconductor layer; A second electrode electrically connected to the second conductive semiconductor layer; A first conductive layer electrically connected to the first electrode; And a second conductive layer electrically connected to the second electrode, wherein the second conductive reflective layer includes a first-first surface disposed between centers of two recesses closest to each other in the first direction, Wherein the first direction is a direction perpendicular to a thickness direction of the light emitting structure, the first-first surface is a first section in which a second electrode spaced in the first direction is disposed, And the second conductive layer is disposed in the first section and the second section, and the width of the second section in the first direction is 1: 0.7 of the entire width in the first direction of the first section. To 1: 5.
실시 예에 따르면, 광 추출 효율이 향상된다.According to the embodiment, the light extraction efficiency is improved.
또한, 전류 분산 효율이 우수하여 광 출력이 향상될 수 있다.Further, the current dispersion efficiency is excellent, and the light output can be improved.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and advantageous advantages and effects of the present invention are not limited to the above description, and can be more easily understood in the course of describing a specific embodiment of the present invention.
도 1은 본 발명의 실시 예에 따른 발광구조물의 개념도이고,
도 2는 발광구조물의 알루미늄 조성을 측정한 그래프이고,
도 3a 및 도 3b는 리세스의 개수 변화에 따라 광 출력이 향상되는 구성을 설명하기 위한 도면이고,
도 4는 본 발명의 제1실시 예에 따른 반도체 소자의 개념도이고,
도 5는 도 4의 평면도이고,
도 6은 도 5의 A-A 방향 단면도이고,
도 7은 제2도전층의 구성을 설명하기 위한 도면이고,
도 8은 도 7의 제1변형예이고,
도 9는 도 7의 제2변형예이고,
도 10은 본 발명의 제2실시 예에 따른 반도체 소자의 개념도이고,
도 11는 도 10의 평면도이고,
도 12는 도 11의 B-1부분 확대도이고,
도 13은 도 11의 B-2부분 확대도이고,
도 14는 도 12의 B-B 방향 단면도이고,
도 15는 도 14의 제1변형예이고,
도 16은 도 14의 제2변형예이고,
도 17은 도 13의 제3변형예이고,
도 18은 본 발명의 제3실시 예에 따른 반도체 소자의 개념도이고,
도 19는 도 18의 평면도이고,
도 20은 도 19의 C-C방향 단면도이고,
도 21은 도 20의 제1변형예이고,
도 22는 도 20의 제2변형예이고,
도 23은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이다.FIG. 1 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention,
2 is a graph showing the aluminum composition of the light emitting structure,
3A and 3B are diagrams for explaining a configuration in which light output is improved in accordance with the number of recesses,
4 is a conceptual view of a semiconductor device according to the first embodiment of the present invention,
Fig. 5 is a plan view of Fig. 4,
Fig. 6 is a sectional view in the AA direction in Fig. 5,
7 is a view for explaining the configuration of the second conductive layer,
Fig. 8 is a first modification of Fig. 7,
Fig. 9 is a second modification of Fig. 7,
10 is a conceptual diagram of a semiconductor device according to a second embodiment of the present invention,
Fig. 11 is a plan view of Fig. 10,
Fig. 12 is an enlarged view of part B-1 in Fig. 11,
Fig. 13 is an enlarged view of part B-2 in Fig. 11,
Fig. 14 is a sectional view in the direction of the BB in Fig. 12,
Fig. 15 is a first modification of Fig. 14,
Fig. 16 is a second modification of Fig. 14,
FIG. 17 is a third modification of FIG. 13,
18 is a conceptual diagram of a semiconductor device according to the third embodiment of the present invention,
Fig. 19 is a plan view of Fig. 18,
Fig. 20 is a sectional view in the CC direction of Fig. 19,
Fig. 21 is a first modification of Fig. 20,
Fig. 22 is a second modification of Fig. 20,
23 is a conceptual view of a semiconductor device package according to an embodiment of the present invention.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다. The embodiments may be modified in other forms or various embodiments may be combined with each other, and the scope of the present invention is not limited to each embodiment described below.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다. Although not described in the context of another embodiment, unless otherwise described or contradicted by the description in another embodiment, the description in relation to another embodiment may be understood.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.For example, if the features of configuration A are described in a particular embodiment, and the features of configuration B are described in another embodiment, even if the embodiment in which configuration A and configuration B are combined is not explicitly described, It is to be understood that they fall within the scope of the present invention.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In the description of the embodiments, in the case where one element is described as being formed "on or under" another element, the upper (upper) or lower (lower) or under are all such that two elements are in direct contact with each other or one or more other elements are indirectly formed between the two elements. Also, when expressed as "on or under", it may include not only an upward direction but also a downward direction with respect to one element.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.
도 1은 본 발명의 실시 예에 따른 발광구조물의 개념도이고, 도 2는 도 1의 알루미늄 조성을 측정한 그래프이다.FIG. 1 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention, and FIG. 2 is a graph illustrating the aluminum composition of FIG. 1.
본 발명의 실시 예에 따른 발광구조물(120)은 자외선 파장대의 광을 출력할 수 있다. 예시적으로 발광구조물은 근자외선 파장대의 광(UV-A)을 출력할 수도 있고, 원자외선 파장대의 광(UV-B)을 출력할 수 도 있고, 심자외선 파장대의 광(UV-C)을 출력할 수 있다. 파장범위는 발광구조물(120)의 Al의 조성비에 의해 결정될 수 있다.The
예시적으로, 근자외선 파장대의 광(UV-A)는 320nm 내지 420nm 범위의 파장을 가질 수 있고, 원자외선 파장대의 광(UV-B)은 280nm 내지 320nm 범위의 파장을 가질 수 있으며, 심자외선 파장대의 광(UV-C)은 100nm 내지 280nm 범위의 파장을 가질 수 있다.Illustratively, the near ultraviolet light (UV-A) may have a wavelength in the range of 320 to 420 nm, the far ultraviolet light (UV-B) may have a wavelength in the range of 280 nm to 320 nm, The light of the wavelength band (UV-C) may have a wavelength in the range of 100 nm to 280 nm.
도 1을 참고하면, 실시 예에 따른 반도체 소자는 제1도전형 반도체층(124), 제2도전형 반도체층(127), 및 제1도전형 반도체층(124)과 제2도전형 반도체층(127) 사이에 배치되는 활성층(126)을 포함하는 발광구조물(120)을 포함한다.1, a semiconductor device according to an embodiment includes a first
제1도전형 반도체층(124)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1도펀트가 도핑될 수 있다. 제1도전형 반도체층(124)은 Inx1Aly1Ga1 -x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1도전형 반도체층(124)은 n형 반도체층일 수 있다.The first
활성층(126)은 제1도전형 반도체층(124)과 제2도전형 반도체층(127) 사이에 배치된다. 활성층(126)은 제1도전형 반도체층(124)을 통해서 주입되는 전자(또는 정공)와 제2도전형 반도체층(127)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(126)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 자외선 파장을 가지는 빛을 생성할 수 있다.The
활성층(126)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quant㎛ Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(126)의 구조는 이에 한정하지 않는다.The
제2도전형 반도체층(127)은 활성층(126) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2도전형 반도체층(127)에 제2도펀트가 도핑될 수 있다. 제2도전형 반도체층(127)은 Inx5Aly2Ga1 -x5- y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2도전형 반도체층(127)은 p형 반도체층일 수 있다.The second
제2도전형 반도체층(127)은 알루미늄 조성이 높은 제2-1도전형 반도체층(127a)과 알루미늄 조성이 상대적으로 낮은 제2-2도전형 반도체층(127b)을 포함할 수 있다.The second conductivity
제2전극(246)은 제2-2도전형 반도체층(127b)과 오믹 접촉할 수 있다. 제2전극(246)은 상대적으로 자외선 광 흡수가 적은 투명전극을 포함할 수 있다. 예시적으로 제2전극(246)은 ITO일 수 있으나 반드시 이에 한정하지 않는다.The
제2도전층(150)은 제2도전형 반도체층(127)에 전류를 주입할 수 있다. 또한, 제2도전층(150)은 활성층(126)에서 출사되는 광을 반사할 수 있다. The second
실시 예에 따르면, 제2전극(246)은 자외선 광의 파장이 갖는 에너지보다 높은 밴드갭을 갖는 반도체층(예:P-AlGaN)에 직접 접촉할 수 있다. 기존에는 오믹을 위해 밴드갭이 작은 GaN층에 제2전극(246)을 배치하여 자외선 광이 대부분 GaN층 흡수되는 문제가 있다. 그러나, 실시 예의 제2전극(246)은 P-AlGaN에 직접 오믹 접촉하므로 대부분의 광은 제2도전형 반도체층(127)을 투과할 수 있다. According to the embodiment, the
그러나, 대부분의 제2전극은 자외선 광을 흡수하는 문제가 있다. 따라서, 제2전극에 의한 오믹 접촉은 유지하면서 광 추출 효율을 개선할 필요가 있다.However, most of the second electrodes have a problem of absorbing ultraviolet light. Therefore, it is necessary to improve the light extraction efficiency while maintaining the ohmic contact by the second electrode.
도 2를 참고하면, 활성층(126)과 제2도전형 반도체층(127) 사이에는 전자 차단층(129)이 배치될 수 있다. 전자 차단층(129)은 제1도전형 반도체층(124)에서 공급된 전자가 제2도전형 반도체층(127)으로 빠져나가는 흐름을 차단하여, 활성층(126) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다. 전자 차단층(129)의 에너지 밴드갭은 활성층(126) 및/또는 제2도전형 반도체층(127)의 에너지 밴드갭보다 클 수 있다.Referring to FIG. 2, an
전자 차단층(129)은 Inx1Aly1Ga1 -x1- y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, InGaN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다. 전자 차단층(129)은 알루미늄 조성이 높은 제1층(129b)과 알루미늄 조성이 낮은 제2층(129a)이 교대로 배치될 수 있다.The
제1도전형 반도체층(124), 장벽층(126b) 및 우물층(126a)을 포함하는 활성층(126), 제2-1도전형 반도체층(127a), 및 제2-2도전형 반도체층(127b)은 모두 알루미늄을 포함할 수 있다. 따라서, 제1도전형 반도체층(124), 장벽층(126b), 우물층(126a), 제2-1도전형 반도체층(127a), 및 제2-2도전형 반도체층(127b)은 AlGaN일 수 있다. 그러나, 반드시 이에 한정하지 않는다.The
제2-1도전형 반도체층(127a)의 두께는 10nm보다 크고 200nm보다 작을 수 있다. 제2-1도전형 반도체층(127a)의 두께가 10nm보다 작은 경우 수평 방향으로 저항이 증가하여 전류 주입 효율이 저하될 수 있다. 또한, 제2-1도전형 반도체층(127a)의 두께가 200nm보다 큰 경우 수직 방향으로 저항이 증가하여 전류 주입 효율이 저하될 수 있다.The thickness of the second-first conductivity
제2-1도전형 반도체층(127a)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 자외선 광을 생성하기 위해 우물층(126a)의 알루미늄 조성은 약 30% 내지 50%일 수 있다. 만약, 제2-1도전형 반도체층(127a)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 낮은 경우 제2-1도전형 반도체층(127a)이 광을 흡수하기 때문에 광 추출 효율이 떨어질 수 있다.The aluminum composition of the second-first conductivity
제2-1도전형 반도체층(127a)의 알루미늄 조성은 40%보다 크고 80%보다 작을 수 있다. 제2-1도전형 반도체층(127a)의 알루미늄 조성은 40%보다 작은 경우 광을 흡수하는 문제가 있으며, 80%보다 큰 경우에는 전류 주입 효율이 악화되는 문제가 있다. 예시적으로, 우물층(126a)의 알루미늄 조성이 30%인 경우 제2-1도전형 반도체층(127a)의 알루미늄 조성은 40%일 수 있다.The aluminum composition of the second-first conductivity
제2-2도전형 반도체층(127b)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 낮을 수 있다. 제2-2도전형 반도체층(127b)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높은 경우 제2 전극과 제2-2도전형 반도체층(127b) 사이의 저항이 높아져 충분한 전류 주입이 이루어지지 않을 수 있다.The aluminum composition of the second-second conductivity
제2-2도전형 반도체층(127b)의 알루미늄 조성은 1%보다 크고 50%보다 작을 수 있다. 50%보다 큰 경우 p오믹 전극과 충분한 오믹이 이루어지지 않을 수 있고, 조성이 1%보다 작은 경우 거의 GaN 조성과 가까워져 광을 흡수하는 문제가 있다.The aluminum composition of the second-conductivity-
제2-2도전형 반도체층(127b)의 두께는 1nm보다 크고 30nm보다 작을 수 있다. 전술한 바와 같이 제2-2도전형 반도체층(127b)은 오믹을 위해 알루미늄의 조성이 낮으므로 자외선 광을 흡수할 수 있다. 따라서, 최대한 제2-2도전형 반도체층(127b)의 두께를 얇게 제어하는 것이 광 출력 관점에서 유리할 수 있다. The thickness of the second-conductivity-
제2-2도전형 반도체층(127b)의 두께가 1nm이하로 제어되는 경우 일부 구간은 제2-2도전형 반도체층(127b)이 배치되지 않고, 제2-1도전형 반도체층(127a)이 발광구조물(120)의 외부로 노출되는 영역이 발생할 수 있다. 따라서 하나의 층을 구성하기 어려울 수 있고, 제2-2도전형 반도체층(127b)의 역할을 수행하기 어려울 수 있다. 또한, 두께가 30nm보다 큰 경우 흡수하는 광량이 너무 커져 광 출력 효율이 감소할 수 있다.When the thickness of the second-second conductivity-
제2-2도전형 반도체층(127b)는 제2-3도전형 반도체층(127c)과 제2-4도전형 반도체층(127d)을 포함할 수 있다. 제2-3도전형 반도체층(127c)은 p-오믹 전극과 접촉하는 표면층일 수 있고, 제2-4도전형 반도체층(127d)은 알루미늄의 조성을 조절하는 층일 수 있다. The second conductivity
제2-4도전형 반도체층(127d)은 상대적으로 높은 알루미늄 함량을 포함하는 제2-1도전형 반도체층(127a)과 상대적으로 낮은 알루미늄 함량을 포함하는 제2-3도전형 반도체층(127c) 사이에 배치될 수 있다. 따라서, 알루미늄 함량이 급격하게 변화하여 결정성이 악화되는 문제를 방지할 수 있다.The second-4 conductive
제2-3도전형 반도체층(127c)은 알루미늄 조성이 1%보다 크고 20%보다 작을 수 있다. 또는 알루미늄 조성은 1%보다 크고 10%보다 작을 수 있다. The second to third conductivity
알루미늄 조성이 1%보다 낮은 경우, 제2-3도전형 반도체층(127c)에서 광흡수율이 너무 높아지는 문제가 있을 수 있고, 알루미늄 조성이 20%보다 높은 경우 제2전극(p-오믹전극)의 접촉 저항이 높아져 전류 주입 효율이 떨어지는 문제점이 있을 수 있다. If the aluminum composition is lower than 1%, there may be a problem that the light absorption rate becomes too high in the second and third conductive type semiconductor layers 127c and 127b. If the aluminum composition is higher than 20% There may be a problem that the contact resistance increases and the current injection efficiency decreases.
그러나, 반드시 이에 한정되는 것은 아니고 제2-3도전형 반도체층(127c)의 알루미늄 조성은 전류 주입 특성과 광 흡수율을 고려하여 조절될 수도 있다. 또는, 제품에서 요구되는 광 출력 따라 조절할 수도 있다.However, the present invention is not limited thereto, and the aluminum composition of the second and third conductivity type semiconductor layers 127c may be adjusted in consideration of current injection characteristics and light absorption rate. Alternatively, it may be adjusted according to the light output required by the product.
예를 들어, 전류 주입 효율 특성이 광 흡수율보다 더 중요한 경우, 알루미늄의 조성비를 1% 내지 10%로 조절할 수 있다. 광출력 특성이 전기적 특성보다 더 중요한 제품의 경우 제2-3도전형 반도체층(127c)의 알루미늄 조성비를 1% 내지 20%로 조절할 수도 있다. For example, when the current injection efficiency characteristic is more important than the light absorption rate, the composition ratio of aluminum can be adjusted to 1% to 10%. In the case of a product in which the optical output characteristics are more important than the electrical characteristics, the aluminum composition ratio of the second and third conductivity type semiconductor layers 127c may be adjusted to 1% to 20%.
제2-3도전형 반도체층(127c)의 알루미늄 조성비가 1%보다 크고 20%보다 작 은 경우, 제2-3도전형 반도체층(127c)과 제2전극 사이의 저항이 감소하므로 동작 전압이 낮아질 수 있다. 따라서, 전기적 특성이 향상될 수 있다. 제2-3도전형 반도체층(127c)의 두께는 1nm보다 크고 10nm보다 작게 형성될 수 있다. 따라서, 광 흡수 문제를 개선할 수 있다.When the aluminum composition ratio of the second to third conductivity
제2-2도전형 반도체층(127b)의 두께는 제2-1도전형 반도체층(127a)의 두께보다 작을 수 있다. 제2-1도전형 반도체층(127a)과 제2-2도전형 반도체층(127b)의 두께비는 1.5:1 내지 20:1일 수 있다. 두께비가 1.5:1보다 작은 경우 제2-1도전형 반도체층(127a)의 두께가 너무 얇아져 전류 주입 효율이 감소할 수 있다. 또한, 두께비가 20:1보다 큰 경우 제2-2도전형 반도체층(127b)의 두께가 너무 얇아져 오믹 신뢰성이 저하될 수 있다.The thickness of the second-second conductivity
제2-1도전형 반도체층(127a)의 알루미늄 조성은 활성층(126)에서 멀어질수록 작아질 수 있다. 또한, 제2-2도전형 반도체층(127b)의 알루미늄 조성은 활성층(126)에서 멀어질수록 작아질 수 있다. 따라서, 제2-3도전형 반도체층(127c)의 알루미늄 조성은 1% 내지 10%를 만족할 수 있다.The aluminum composition of the second-first conductivity
그러나, 반드시 이에 한정하는 것은 아니고 제2-1도전형 반도체층(127a)과 제2-2도전형 반도체층(127b)의 알루미늄 조성은 연속적으로 감소하는 것이 아니라 일정 구간에서 감소가 없는 구간을 포함할 수도 있다.However, the present invention is not limited to this, and the aluminum composition of the second-first conductivity-
이때, 제2-2도전형 반도체층(127b)의 알루미늄 감소폭은 제2-1도전형 반도체층(127a)의 알루미늄 감소폭보다 클 수 있다. 즉, 제2-2도전형 반도체층(127b)의 Al 조성비의 두께 방향에 대한 변화율은 제2-1도전형 반도체층(127a)의 Al 조성비의 두께 방향에 대한 변화율보다 클 수 있다. 여기서 두께 방향은 제1도전형 반도체층(124)에서 제2도전형 반도체층(127)으로 향하는 방향 또는 제2도전형 반도체층(127)에서 제1도전형 반도체층(124)으로 향하는 방향일 수 있다.At this time, the aluminum reduction width of the second-second conductivity-
제2-1도전형 반도체층(127a)은 두께는 제2-2도전형 반도체층(127b)보다 두꺼운 반면, 알루미늄 조성은 우물층(126a)보다 높아야 하므로 감소폭이 상대적으로 완만할 수 있다.The second-first conductivity
그러나, 제2-2도전형 반도체층(127b)은 두께가 얇고 알루미늄 조성의 변화폭이 크므로 알루미늄 조성의 감소폭이 상대적으로 클 수 있다.However, since the thickness of the second-conductivity-
도 3a 및 도 3b는 리세스의 개수 변화에 따라 광 출력이 향상되는 구성을 설명하기 위한 도면이다.FIGS. 3A and 3B are views for explaining a configuration in which light output is improved in accordance with the number of recesses. FIG.
발광구조물(120)은 알루미늄 조성이 높아지면 발광구조물(120) 내에서 전류 분산 특성이 저하될 수 있다. 또한, 활성층은 GaN 기반의 청색 발광 소자에 비하여 측면으로 방출하는 광량이 증가하게 된다(TM 모드). 이러한 TM모드는 자외선 반도체 소자에서 주로 발생할 수 있다.If the aluminum composition of the
자외선 반도체 소자는 청색 GaN 반도체 소자에 비해 전류 분산 특성이 떨어진다. 따라서, 자외선 반도체 소자는 청색 GaN 반도체 소자에 비해 상대적으로 많은 제1전극(142)을 배치할 필요가 있다.The ultraviolet semiconductor element has a lower current dispersion characteristic than the blue GaN semiconductor element. Therefore, the ultraviolet semiconductor device needs to dispose the
알루미늄의 조성이 높아지면 전류 분산 특성이 악화될 수 있다. 도 3a를 참고하면, 각각의 제1전극(142)의 인근지점에만 전류가 분산되며, 거리가 먼 지점에서는 전류밀도가 급격히 낮아질 수 있다. 따라서, 유효 발광 영역(P2)이 좁아질 수 있다. The higher the composition of aluminum, the worse the current dispersion characteristics may be. Referring to FIG. 3A, the current is dispersed only in the vicinity of each
유효 발광 영역(P2)은 전류 밀도가 가장 높은 제1전극(142)의 중심에서의 전류 밀도를 기준으로 전류 밀도가 40%이하인 경계지점까지의 영역으로 정의할 수 있다. 예를 들어, 유효 발광 영역(P2)은 리세스(128)의 중심으로부터 40㎛이내의 범위에서 주입 전류의 레벨, Al의 조성에 따라 조절될 수 있다.The effective light emitting region P2 can be defined as a region up to the boundary point where the current density is 40% or less based on the current density at the center of the
저전류밀도영역(P3)은 전류밀도가 낮아서 발광에 거의 기여하지 못할 수 있다. 따라서, 실시 예는 전류밀도가 낮은 저전류밀도영역(P3)에 제1전극(142)을 더 배치하거나 반사구조를 이용하여 광 출력을 향상시킬 수 있다.The low current density region P3 has a low current density and may hardly contribute to light emission. Therefore, the embodiment can further arrange the
일반적으로 청색광을 방출하는 GaN 기반의 반도체 소자의 경우 상대적으로 전류 분산 특성이 우수하므로 리세스(128) 및 제1전극(142)의 면적을 최소화하는 것이 바람직하다. 리세스(128)와 제1전극(142)의 면적이 커질수록 활성층(126)의 면적이 작아지기 때문이다. 그러나, 실시 예의 경우 알루미늄의 조성이 높아서 전류 분산 특성이 상대적으로 떨어지므로, 활성층(126)의 면적을 희생하더라도 제1전극(142)의 개수를 증가시켜 저전류밀도영역(P3)을 줄이거나, 또는 저전류밀도영역(P3)에 반사구조를 배치하는 것이 바람직할 수 있다.Generally, in the case of a GaN-based semiconductor device emitting blue light, it is preferable to minimize the area of the
도 3b를 참고하면, 리세스(128)의 개수가 48개인 경우에는 리세스(128)가 가로 세로 방향으로 일직선으로 배치되지 못하고, 지그재그로 배치될 수 있다. 이 경우 저전류밀도영역(P3)의 면적은 더욱 좁아져 대부분의 활성층이 발광에 참여할 수 있다. Referring to FIG. 3B, when the number of
리세스(128)의 개수가 70개 내지 110개가 되는 경우 전류가 더 효율적으로 분산되어 동작 전압이 더 낮아지고 광 출력은 향상될 수 있다. UV-C를 발광하는 반도체 소자에서는 리세스(128)의 개수가 70개보다 적을 경우 전기적 광학적 특성이 저하될 수 있고, 110개보다 많을 경우 전기적 특성은 향상될 수 있지만 발광층의 부피가 줄어들어 광학적 특성이 저하될 수 있다. 이때, 리세스(128)의 직경은 20㎛ 내지 70㎛일 수 있다.When the number of the
도 4는 본 발명의 제1실시 예에 따른 반도체 소자의 개념도이다.4 is a conceptual diagram of a semiconductor device according to the first embodiment of the present invention.
도 4의 발광구조물(120)은 도 1 및 도 2에서 설명한 발광구조물(120)의 구성이 그대로 적용될 수 있다.The
복수 개의 리세스(128)는 제2도전형 반도체층(127)의 제1면에서 활성층(126)을 관통하여 제1도전형 반도체층(124)의 일부 영역까지 배치될 수 있다. 리세스(128)의 내부에는 제1절연층(131)이 배치되어 제1도전층(165)을 제2도전형 반도체층(127) 및 활성층(126)과 전기적으로 절연시킬 수 있다.The plurality of
제1전극(142)은 리세스(128)의 상면에 배치되어 제1도전형 반도체층(124)과 전기적으로 연결될 수 있다. 제2전극(246)은 제2도전형 반도체층(127)의 하부에 형성될 수 있다. The
전술한 바와 같이 제2전극(246)과 접촉하는 제2도전형 반도체층(127)의 제1면(127G)은 알루미늄의 조성이 1% 내지 10%이므로 전류 주입이 용이할 수 있다.As described above, the
제1전극(142)과 제2전극(246)은 오믹 전극일 수 있다. 제1전극(142)과 제2전극(246)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다. The
반도체 소자의 일측 모서리 영역에는 제2전극패드(166)가 배치될 수 있다. 제2전극패드(166)는 중앙 부분이 함몰되어 상면이 오목부와 볼록부를 가질 수 있다. 상면의 오목부에는 와이어(미도시)가 본딩될 수 있다. 따라서, 접착 면적이 넓어져 제2전극패드(166)와 와이어가 더 견고히 본딩될 수 있다.A
제2전극패드(166)는 광을 반사하는 작용을 할 수 있으므로, 제2전극패드(166)는 발광구조물(120)과 가까울수록 광 추출효율이 향상될 수 있다. Since the
제2전극패드(166)의 볼록부의 높이는 활성층(126)보다 높을 수 있다. 따라서 제2전극패드(166)는 활성층(126)에서 소자의 수평방향으로 방출되는 광을 상부로 반사하여 광 추출효율을 향상시키고, 지향각을 제어할 수 있다.The height of the convex portion of the
제2전극패드(166)의 하부에서 제1절연층(131)이 일부 오픈되어 제2도전층(150)과 제2전극(246)이 전기적으로 연결될 수 있다. The first insulating
패시베이션층(180)은 발광구조물(120)의 상부면과 측면에 형성될 수 있다. 패시베이션층(180)은 제2전극(246)과 인접한 영역이나 제2전극(246)의 하부에서 제1절연층(131)과 접촉할 수 있다.The
제1절연층(131)이 오픈되어 제2전극패드(166)가 이 제2도전층(150)과 접촉하는 부분의 폭(d22)은 예를 들면 40㎛ 내지 90㎛일 수 있다. 40㎛보다 작으면 동작 전압이 상승하는 문제가 있고, 90㎛보다 크면 제2도전층(150)을 외부로 노출시키지 않기 위한 공정 마진 확보가 어려울 수 있다. 제2도전층(150)이 제2전극(246)의 바깥 영역으로 노출되면, 소자의 신뢰성이 저하될 수 있다. 따라서, 바람직하게 폭(d22)은 제2전극패드(166)의 전체 폭의 60% 내지 95%일 수 있다.The width d22 of the portion where the first insulating
제1절연층(131)은 제1전극(142)을 활성층(126) 및 제2도전형 반도체층(127)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 제2도전층(150)을 제1도전층(165)과 전기적으로 절연시킬 수 있다.The first insulating
제1절연층(131)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택되어 형성될 수 있으나, 이에 한정하지 않는다. 제1절연층(131)은 단층 또는 다층으로 형성될 수 있다. 예시적으로 제1절연층(131)은 은 Si 산화물이나 Ti 화합물을 포함하는 다층 구조의 DBR(distributed Bragg reflector) 일 수도 있다. 그러나, 반드시 이에 한정하지 않고 제1절연층(131)은 다양한 반사 구조를 포함할 수 있다.The first insulating
제1절연층(131)이 반사기능을 수행하는 경우, 활성층(126)에서 측면을 향해 방출되는 광을 상향 반사시켜 광 추출 효율을 향상시킬 수 있다. 자외선 반도체 소자는 청색광을 방출하는 반도체 소자에 비해 리세스(128)의 개수가 많아질수록 광 추출 효율은 더 효과적일 수 있다.When the first insulating
제2도전층(150)은 제2전극(246)을 덮을 수 있다. 따라서, 제2전극패드(166)와, 제2도전층(150), 및 제2전극(246)은 하나의 전기적 채널을 형성할 수 있다.The second
제2도전층(150)은 제2전극(246)을 덮고, 제1절연층(131)의 측면과 하면에 접할 수 있다. 제2도전층(150)은 제1절연층(131)과의 접착력이 좋은 물질로 이루어지며, Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다. The second
제2도전층(150)이 제1절연층(131)의 측면과 상면과 접하는 경우, 제2전극(246)의 열적, 전기적 신뢰성이 향상될 수 있다. 또한, 제1절연층(131)과 제2전극(246) 사이로 방출되는 광을 상부로 반사하는 반사 기능을 가질 수 있다.The thermal and electrical reliability of the
제2절연층(132)은 제2도전층(150)을 제1도전층(165)과 전기적으로 절연시킨다. 제1도전층(165)은 제2절연층(132)을 관통하여 제1전극(142)과 전기적으로 연결될 수 있다.The second
발광구조물(120)의 하부면과 리세스(128)의 형상을 따라 제1도전층(165)과 접합층(160)이 배치될 수 있다. 제1도전층(165)은 반사율이 우수한 물질로 이루어질 수 있다. 예시적으로 제1도전층(165)은 알루미늄을 포함할 수 있다. 제1도전층(165)이 알루미늄을 포함하는 경우, 활성층(126)에서 방출되는 광을 상부로 반사하는 역할을 하여 광 추출 효율을 향상할 수 있다.The first
접합층(160)은 도전성 재료를 포함할 수 있다. 예시적으로 접합층(160)은 금, 주석, 인듐, 알루미늄, 실리콘, 은, 니켈, 및 구리로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.The
기판(170)은 도전성 물질로 이루어질 수 있다. 예시적으로 기판(170)은 금속 또는 반도체 물질을 포함할 수 있다. 기판(170)은 전기 전도도 및/또는 열 전도도가 우수한 금속일 수 있다. 이 경우 반도체 소자 동작시 발생하는 열을 신속이 외부로 방출할 수 있다. The
기판(170)은 실리콘, 몰리브덴, 실리콘, 텅스텐, 구리 및 알루미늄으로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.The
발광구조물(120)의 상면에는 요철이 형성될 수 있다. 이러한 요철은 발광구조물(120)에서 출사되는 광의 추출 효율을 향상시킬 수 있다. 요철은 자외선 파장에 따라 평균 높이가 다를 수 있으며, UV-C의 경우 300 nm 내지 800 nm 정도의 높이를 갖고, 평균 500nm 내지 600nm 정도의 높이를 가질 때 광 추출 효율이 향상될 수 있다.Irregularities may be formed on the upper surface of the
도 5는 도 4의 평면도이고, 도 6은 도 5의 A-A 방향 단면도이다.FIG. 5 is a plan view of FIG. 4, and FIG. 6 is a cross-sectional view taken along the line A-A of FIG.
도 5 및 도 6을 참고하면, 제2도전형 반도체층(127)의 제1면(127G)은 평면상에서 복수 개의 리세스(128)가 내부에 배치되는 복수 개의 제1영역(127G-1), 및 복수 개의 제1영역(127G-1) 사이에 배치되는 제2영역(127G-2)을 포함한다.5 and 6, the
리세스(128)의 직경은 20㎛ 내지 70㎛일 수 있다. 리세스(128)의 직경이 20㎛보다 작은 경우 내부에 배치되는 제1전극(142) 형성시 공정마진을 확보하기 어렵고, 리세스(128)의 직경이 70㎛보다 클 경우 활성층(126)의 면적이 감소하기 때문에 발광 효율이 악화될 수 있다. 여기서 리세스(128)의 직경은 제2도전형 반도체층(127)상에 형성된 최대 직경일 수 있다.The diameter of the
제1영역(127G-1)의 직경은 리세스(128)의 직경의 1.0배 내지 1.5배일 수 있다. 제1영역(127G-1)의 직경이 1.5배를 초과하는 경우 제2전극(246)의 접촉 면적이 줄어들어 전류 분산 효율이 떨어지는 문제가 있다. 제1영역(127G-1)은 리세스(128)의 최대 외경과 제2전극(246)사이의 거리(S11)일 수 있다.The diameter of the
제2영역(127G-2)은 복수 개의 제1영역(127G-1) 이외의 전체 영역일 수 있다. 제2영역(127G-2)에는 전체적으로 제2전극(246)이 배치될 수 있다.The
복수 개의 제1전극(142)이 제1도전형 반도체층(124)과 접촉하는 제1면적은 발광구조물(120)의 수평방향 최대 단면적의 7.4% 내지 20%, 또는 10% 내지 20%이하일 수 있다. 제1면적은 각각의 제1전극(142)이 제1도전형 반도체층(124)과 접촉하는 면적의 합일 수 있다.The first area where the plurality of
복수 개의 제1전극(142)의 제1면적이 7.4% 미만인 경우에는 충분한 전류 분산 특성을 가질 수 없어 광 출력이 감소하며, 20%를 초과하는 경우에는 활성층(126) 및 제2전극(246)의 면적이 과도하게 감소하여 동작 전압이 상승하고 광 출력이 감소하는 문제가 있다.If the first area of the plurality of
또한, 복수 개의 리세스(128)의 총면적은 발광구조물(120)의 수평방향 최대 단면적의 10% 내지 30% 또는, 13% 내지 30%일 수 있다. 리세스(128)의 총면적이 상기 조건을 만족하기 못하면 제1전극(142)의 총면적을 7.4% 이상 20% 이하로 제어하기 어렵다. 또한, 동작 전압이 상승하고 광 출력이 감소하는 문제가 있다.In addition, the total area of the plurality of
제2도전형 반도체층(127)의 면적은 발광구조물(120)의 수평 방향 최대면적에서 리세스(128)의 총면적을 제외한 면적일 수 있다. 예시적으로 제2도전형 반도체층(127)의 면적은 발광구조물(120)의 수평 방향 최대면적의 70% 내지 90%일 수 있다.The area of the second conductivity
제2전극(246)과 제2도전형 반도체층(127)이 접촉하는 제2면적(도 5의 제2영역)은 발광구조물(120)의 수평방향 최대 단면적의 50%이상 70%이하일 수 있다. 제2면적은 제2전극(246)이 제2도전형 반도체층(127)과 접촉하는 총면적일 수 있다. The second area (the second area in FIG. 5) where the
제2면적이 50% 미만인 경우에는 제2전극(246)의 면적이 과도하게 작아져 동작 전압이 상승하고, 홀의 주입 효율이 떨어지는 문제가 있다. 제2면적이 70%를 초과하는 경우에는 제1면적을 효과적으로 넓힐 수 없어 전자의 주입 효율이 떨어지는 문제가 있다. 제2전극(246)과 제2도전형 반도체층(127)이 접촉하지 않는 면적(도 5의 제1영역)은 1% 내지 20%일 수 있다.When the second area is less than 50%, the area of the
제1면적과 제2면적은 반비례 관계를 갖는다. 즉, 제1전극(142)의 개수를 늘리기 위해서 리세스(128)의 개수를 늘리는 경우 제2전극(246)의 면적이 감소하게 된다. 따라서 전기적, 광학적 특성을 높이기 위해서는 전자와 홀의 분산 특성이 균형을 이루어야 한다. 따라서, 제1면적과 제2면적의 적정한 비율을 정하는 것이 중요하다.The first area and the second area have an inverse relationship. That is, when the number of the
복수 개의 제1전극(142)이 제1도전형 반도체층(124)에 접촉하는 제1면적과 제2전극(246)이 제2도전형 반도체층(127)에 접촉하는 제2면적의 비(제1면적: 제2면적)는 1:3 내지 1:7일 수 있다.A ratio of a first area where the
면적비가 1:7보다 커지는 경우에는 제1면적이 상대적으로 작아져 전류 분산 특성이 악화될 수 있다. 또한, 면적비가 1:3보다 작아지는 경우 상대적으로 제2면적이 작아져 전류 분산 특성이 악화될 수 있다If the area ratio is larger than 1: 7, the first area becomes relatively small and the current dispersion characteristics may be deteriorated. Also, when the area ratio is smaller than 1: 3, the second area becomes relatively small, and the current dispersion characteristic may be deteriorated
복수 개의 제1영역(127G-1) 전체 면적과 제2영역(127G-2)의 면적의 비는 1:2.5 내지 1:70, 또는 1:30 내지 1:70일 수 있다. 면적의 비가 1:2.5보다 작은 경우 제1영역(127G-1)의 면적이 과도하게 커져 제2전극(246)의 충분한 오믹 면적을 확보할 수 없는 문제가 있으며, 면적비가 1:70보다 커지는 경우에는 제1영역(127G-1)의 면적이 작아져 공정 마진을 확보하기 어려운 문제가 있다.The ratio of the total area of the plurality of
제2전극(246)은 저항이 낮은 금속 또는 금속 산화물을 포함할 수 있다. 그러나, 제2전극(246)은 가시광은 반사 또는 투과하나 자외선 광은 흡수하는 문제가 있다. 따라서, 제2전극(246)의 면적을 좁혀 활성층(126)에서 제2도전형 반도체층(127)으로 방출되는 광을 반사시킬 필요가 있다. 예시적으로 제2전극(246)이 배치되는 제2영역(127G-2)의 면적을 좁히고 제1영역(127G-1)을 넓혀 반사 영역을 확보하거나, 제2영역(127G-2)을 복수 개로 분할하여 반사 구조를 선택적으로 배치할 수 있다.The
제2도전층(150)은 제1영역(127G-1)과 제2영역(127G-2)에 배치되므로 제1영역(127G-1)으로 입사된 광은 제2도전층(150)에 의해 반사될 수 있다. 이때, 전류 분산에 필요한 제2전극(246)의 접촉면적을 확보하면서도 최대한 반사 영역을 확보하는 것이 중요하다.Since the second
제2영역(127G-2)의 면적은 발광구조물(120)의 최대 면적을 기준으로 35% 내지 60%일 수 있다. 제2영역(127G-2)의 면적이 35%보다 작은 경우 제2전극(246)의 접촉 면적이 작아 전류 분산 효율이 떨어질 수 있다. 또한, 제2영역(127G-2)의 면적이 60%를 초과하는 경우에는 제1영역(127G-1)의 면적이 작아져 광 추출 효율이 감소할 수 있다.The area of the
리세스(128)를 제외한 제1영역(127G-1)의 면적은 발광구조물(120)의 최대 면적을 기준으로 10% 내지 55%일 수 있다. 제1영역(127G-1)의 면적이 10%보다 작은 경우 충분한 반사 효율을 갖기 어려우며, 제1영역(127G-1)의 면적이 55%보다 큰 경우에는 제2영역(127G-2)의 면적이 작아져 전류 분산 효율이 감소하는 문제가 있다.The area of the
따라서, 제1영역(127G-1)의 면적과 제2영역(127G-2)의 면적의 비는 1:0.7 내지 1:6 일 수 있다. 이 관계를 만족하면 충분한 전류 분산 효율을 가져 광 출력이 향상될 수 있다. 또한, 충분한 반사 영역을 확보하여 광 추출 효과가 향상될 수도 있다.Therefore, the ratio of the area of the
도 6을 참고하면, 제2도전형 반도체층(127)의 제1면(127G)은 2개의 인접한 리세스(128) 사이에 배치되는 제1-1면(S10)을 포함할 수 있다. 제1-1면(S10)은 제2전극(246)이 배치되지 않는 제1구간(S11), 및 전극이 배치되는 제2구간(S12)을 포함할 수 있다. 제1-1면(S10)의 폭은 17㎛ 내지 45㎛일 수 있다.Referring to FIG. 6, the
제1-1면(S10)의 폭이 17㎛보다 작을 경우, 리세스(128) 사이의 이격 거리가 너무 좁아 제2전극(246)이 배치되는 면적이 줄어들어 전기적 특성이 악화될 수 있고, 45㎛보다 클 경우 리세스(128) 사이의 이격 거리가 너무 멀어 제1전극(142)이 배치될 수 있는 면적이 좁아질 수 있어 전기적 특성이 악화될 수 있다.If the width of the first-side surface S10 is less than 17 mu m, the spacing between the
제1구간(S11)은 제1영역(127G-1)을 구성하는 단위 구간일 수 있다. 또한, 제2구간(S12)은 제2영역(127G-2)을 구성하는 단위 구간일 수 있다. 제2구간(S12)의 제1방향 폭은 상기 제1구간(S11)의 제1방향 폭보다 클 수 있다. 제1구간(S11)의 제1방향 폭(리세스에서 제2전극까지의 거리)은 1㎛ 내지 15㎛일 수 있다.The first section S11 may be a unit section constituting the
제1구간(S11)의 폭이 1㎛보다 작을 경우 전류 확산을 위한 제2 도전형 반도체층(127)상의 제1 절연층(131a)이 공정 마진에 의하여 배치되기 어려울 수 있다. 따라서 전기적 특성이 악화될 수 있다. 15㎛보다 클 경우 제2 전극(246)과 제1 전극(142)의 거리가 지나치게 멀기 때문에 전기적 특성이 악화될 수 있다. 따라서 공정 마진과 전기적 특성을 고려했을 때 제1구간(S11)의 제1 방향 폭은 상기 범위 내로 배치될 수 있다.If the width of the first section S11 is less than 1 占 퐉, the first insulating
제1절연층(131)은 제1면(127G)으로 연장된 연장부(131a)를 포함할 수 있으며, 제2전극(246)은 제1절연층(131)의 연장부(131a)와 0㎛ 내지 4㎛의 이격 영역(S13)을 가질 수 있다. 이격 영역(S13)가 4㎛보다 큰 경우 제2전극(246)이 배치되는 면적이 좁아져 동작 전압이 상승하는 문제점이 발생될 수 있다. The first insulating
제2도전층(150)은 제2전극(246)을 완전히 감싸며 제1절연층(131)의 측면과 하면에 접할 수 있다. 제2도전층(150)이 제1절연층(131)의 측면과 상면과 접하는 경우, 제2전극(246)의 열적, 전기적 신뢰성을 향상할 수 있다. 또한, 입사되는 자외선 광을 상부로 반사하는 기능을 가질 수 있다.The second
제2도전층(150)은 이격 영역(S13)에서 제2도전층(150)과 제2도전형 반도체층(127)이 쇼트키 접합되는 영역이 배치될 수 있다. 따라서, 전류 분산이 용이해질 수 있다.In the second
제1면(127G)은 평균 거칠기가 7nm이하로 제어될 수 있다. 평균 거칠기가 7nm보다 큰 경우 제2전극(246) 및 제2도전층(150)의 경계면이 거칠어져 반사율이 감소하는 문제가 있다. 평균 거칠기는 제1면(127G)에 형성된 요철의 높이차를 계산한 값일 수 있다. 평균 거칠기는 원자 현미경(AFM)으로 측정한 RMS(Root-Mean-Square) 값일 수 있다.The
도 7은 제2도전층의 구성을 설명하기 위한 도면이고, 도 8은 도 7의 제1변형예이고, 도 9는 도 7의 제2변형예이다.FIG. 7 is a view for explaining the configuration of the second conductive layer, FIG. 8 is a first modification of FIG. 7, and FIG. 9 is a second modification of FIG.
도 7을 참고하면, 제2전극(246)의 두께(d5)는 1nm 내지 15nm, 또는 1nm 내지 5nm일 수 있다. 제2전극(246)의 두께(d5)가 15nm이하인 경우에는 흡수되는 광량이 줄어들 수 있다.Referring to FIG. 7, the thickness d5 of the
제2도전층(150)은 알루미늄을 포함하는 반사층(151), 및 제2전극(246)과 반사층(151) 사이에 배치되는 제1중간층(152)을 포함할 수 있다. 제2전극(246)을 ITO로 구성하는 경우 산소가 반사층(151)에 침투하여 Al2O3를 형성할 수 있다. 이 경우 반사층(151)의 반사 효율이 떨어지게 된다. 실시 예에서는 반사층(151)과 제2전극(246) 사이에 제1중간층(152)이 배치되어 이들의 접착력을 향상시키고, 산소의 침투를 방지할 수 있다.The second
제1중간층(152)은 크롬(Cr), 티탄(Ti) 니켈(Ni) 중 적어도 하나를 포함할 수 있다. 제1중간층(152)의 두께(d6)는 0.7m 내지 7nm일 수 있다. 제1중간층(152)은 알루미늄을 더 포함할 수 있다. 이 경우 제1중간층(152)과 알루미늄의 접착력을 향상시킬 수 있다. 또한, 제1중간층(152)이 이격 영역에서 제1면(127G)과 접촉함으로써 쇼트키 접합으로 전류 확산 특성이 개선될 수 있다.The first
제2전극(246)과 반사층(151)의 두께비(d5:d7)는 1:2 내지 1:120일 수 있다. 반사층(151)의 두께(d7)는 30nm 내지 120nm일 수 있다. 반사층(151)의 두께가 30nm보다 작은 경우 자외선 파장대에서 반사율이 떨어지는 문제가 있으며, 두께가 120nm보다 두꺼워져도 반사 효율이 거의 상승하지 않는다.The thickness ratio d5: d7 of the
도 8을 참고하면, 반사층(151)의 하부에는 제2중간층(153)이 배치될 수 있다. 제2중간층(153)은 이웃한 층으로 알루미늄이 마이그레이션되는 것을 방지할 수 있다. 제2중간층(153)은 Ni, Ti, No, Pt, W 중 적어도 하나를 포함할 수 있으며, 두께는 50nm 내지 200nm일 수 있다.Referring to FIG. 8, a second
도 9를 참고하면, 제2중간층(153)의 하부에는 제3중간층(154)이 배치될 수 있다. 제3중간층(154)은 다른 층과의 접합을 위한 층으로 Au, Ni 등을 포함할 수 있다.Referring to FIG. 9, a third
도 10은 본 발명의 제2실시 예에 따른 반도체 소자의 개념도이고, 도 11는 도 10의 평면도이고, 도 12는 도 11의 B-1부분 확대도이고, 도 13은 도 11의 B-2부분 확대도이다.11 is a plan view of FIG. 10, FIG. 12 is an enlarged view of part B-1 in FIG. 11, and FIG. 13 is a cross- Fig.
도 10을 참고하면, 실시 예에 따른 반도체 소자는 도 1 내지 도 3에서 설명한 발광구조물(120), 및 도 4에서 설명한 각 층의 구성이 그대로 적용될 수 있다. 실시 예에 따르면 2개의 리세스(128) 사이에 배치된 제2도전형 반도체층(127)의 제1면(127G)에 제2전극(246)이 복수 개로 배치될 수 있다.Referring to FIG. 10, the semiconductor device according to the embodiment may be applied to the
도 11 내지 도 13을 참고하면, 제1면(127G)은 리세스(128)를 둘러싸는 제1영역(127G-1), 제1영역(127G-1)을 둘러싸는 제2영역(127G-2), 및 제2영역(127G-2) 사이에 배치되는 제3영역(127G-3)을 포함할 수 있다.11-13, the
여기서, 제1영역(127G-1)은 리세스(128)와 제2전극(246) 사이의 영역일 수 있다. 예시적으로 제1영역(127G-1)의 면적은 링 형상일 수 있다. 제1영역(127G-1)의 면적은 발광구조물(120)의 수평방향 최대면적을 기준으로 1% 내지 20%일 수 있다.Here, the
제2영역(127G-2)은 리세스(128) 및 제1영역(127G-1)을 제외한 나머지 면적을 가질 수 있다. 예시적으로 제2영역(127G-2)은 내측은 원 형상이고 외측은 다각 형상일 수 있다. 예시적으로 외측은 팔각 형상일 수 있으나 반드시 이에 한정하지 않는다. 제2영역(127G-2)은 제3영역(127G-3)에 의해 구획된 복수 개일 수 있다.The
제3영역(127G-3)은 복수 개의 제2영역(127G-2) 사이에 배치될 수 있다. 제3영역(127G-3)은 제1전극(142)의 전류밀도 100%를 기준으로 전류밀도가 40%이하인 영역일 수 있다. 따라서, 제3영역(127G-3)은 발광에 참여하는 확률이 낮을 수 있다. 실시 예에 따르면, 발광 기여도가 낮은 제3영역(127G-3)을 반사 영역으로 구성하여 광 추출 효율을 증가시킬 수 있다. The
제1면(127G)은 제3영역(127G-3)과 제1면(127G)의 테두리 영역 사이에 배치되는 제4영역(127G-4)을 더 포함할 수 있다. The
제2전극(246)은 제2영역(127G-2)에 배치되는 제2-1전극(246a)과 제4영역(127G-4)에 배치되는 제2-2전극(246b)을 포함할 수 있다.The
제2전극(246)은 저항이 낮은 금속 또는 금속 산화물을 포함할 수 있다. 그러나, 이러한 제2전극(246)은 가시광은 반사 또는 투과하나 자외선 광은 흡수하는 문제가 있다.The
따라서, 제2전극(246)의 면적을 전기적 특성이 크게 저하되지 않는 면적까지 좁혀 활성층(126)에서 제2도전형 반도체층(127)으로 방출되는 광을 반사시킬 필요가 있다. 이때, 제2전극(246)이 배치되는 제2영역(127G-2)의 면적을 좁히고 제3영역(127G-3)을 넓혀 반사 영역을 확보할 수 있다. 제2도전층(150)은 제1면(127G)에 전체적으로 배치되므로 제3영역(127G-3)으로 입사된 광은 제2도전층(150)에 의해 반사될 수 있다. Therefore, it is necessary to reduce the area of the
즉, 실시 예에서는 발광 기여도가 낮은 제3영역(127G-3)을 반사 영역을 활용할 수 있다.That is, in the embodiment, the reflection region can be utilized for the
제1면(127G)과 제2전극(246)이 접촉하는 제1접촉면적(도 11의 제2영역과 제4영역의 합)은 발광구조물(120)의 최대 면적을 기준으로 35% 내지 60%일 수 있다. 제1접촉면적이 35%보다 작은 경우 전류 분산 효율이 떨어질 수 있다. 또한, 제1접촉면적이 60%를 초과하는 경우에는 제3영역(127G-3)의 면적이 작아져 광 추출 효율이 감소할 수 있다.The first contact area (the sum of the second region and the fourth region in FIG. 11) where the
제1면(127G)과 제2전극(246)이 접촉하지 않는 제2접촉면적(도 11의 제1영역과 제3영역의 합)은 발광구조물(120)의 최대 면적을 기준으로 10% 내지 55%일 수 있다. 제2접촉면적이 10%보다 작은 경우 충분한 반사 효율을 갖기 어려우며, 제2접촉면적이 55%보다 큰 경우에는 제2영역(127G-2)의 면적이 작아져 전류 분산 효율이 감소하는 문제가 있다.The second contact area (the sum of the first area and the third area in Fig. 11) in which the
제2접촉면적과 제1접촉면적의 비는 1:0.7 내지 1:6 일 수 있다. 이 관계를 만족하면 충분한 전류 분산 효율을 가져 광 출력이 향상될 수 있다. 또한, 충분한 반사 영역을 확보하여 광 추출 효과가 향상될 수도 있다.The ratio of the second contact area to the first contact area may be from 1: 0.7 to 1: 6. If this relationship is satisfied, the light output can be improved by having sufficient current dispersion efficiency. In addition, a sufficient reflection area can be ensured and the light extraction effect may be improved.
도 13을 참고하면, 제3영역(127G-3)과 제1면(127G)의 테두리 사이의 이격 거리(d1)는 1.0㎛ 내지 10㎛일 수 있다. 이격 거리(d1)가 1.0㎛보다 작은 경우 마진이 작아 공차 발생시 제2도전층(150)이 제대로 형성되지 않아 신뢰성이 저하될 수 있다. 또한, 이격 거리(d1)가 10㎛보다 클 경우 제2전극(246)이 배치되는 면적이 줄어들어 반도체 소자의 전기적 특성이 저하될 수 있다.Referring to FIG. 13, the distance d1 between the rim of the
도 14는 도 12의 B-B 방향 단면도이다.Fig. 14 is a sectional view taken along the line B-B in Fig. 12;
도 14를 참고하면, 제2도전형 반사층(151)의 제1면(127G)은 제1방향(X방향)으로 가장 인접한 2개의 리세스(128)의 중심 사이에 배치되는 제1-1면(S10)을 포함할 수 있다. 여기서, 제1방향은 발광구조물(120)의 두께 방향과 수직한 방향일 수 있다.14, the
제1-1면(S10)은 제1방향으로 이격된 제2전극(246)이 배치되는 제1구간(S11), 및 제2전극(246) 사이에 배치되는 제2구간(S12)을 포함할 수 있다. 제2도전층(150)은 제1구간(S11) 및 제2구간(S12)에 배치될 수 있다. 제1-1면(S10)의 전체 폭은 17㎛ 내지 45㎛일 수 있다.The
제1구간(S11)의 제1방향 전체 폭은 12㎛ 내지 24㎛일 수 있다. 제1구간(S11)은 제2구간(S12)의 양 옆으로 2개의 분할영역을 포함할 수 있다. 각 분할 영역의 폭은 6㎛ 내지 12㎛일 수 있다.The entire width of the first section S11 in the first direction may be 12 占 퐉 to 24 占 퐉. The first section S11 may include two divided sections on both sides of the second section S12. The width of each of the divided regions may be 6 탆 to 12 탆.
제1구간(S11)의 전체 폭이 12㎛보다 작은 경우에는 제2전극(246)의 면적이 작아져 전류 분산 효율이 감소되는 문제가 있으며, 24㎛보다 큰 경우에는 제2구간(S12)이 좁아져 반사 효율이 감소하는 문제가 있다.When the total width of the first section S11 is smaller than 12 占 퐉, the area of the
제2구간(S12)의 제1방향 폭은 5㎛ 내지 16㎛일 수 있다. 제2구간(S12)의 제1방향 폭이 5㎛보다 작은 경우에는 충분한 반사 영역을 확보하기 어려운 문제가 있으며, 폭이 16㎛보다 큰 경우에는 제2전극(246)이 좁아지는 문제가 있다.The first directional width of the second section S12 may be between 5 탆 and 16 탆. If the first direction width of the second section S12 is smaller than 5 占 퐉, there is a problem that it is difficult to secure a sufficient reflection area. If the width is larger than 16 占 퐉, the
제2구간(S12)은 제1전극(142)의 전류밀도 100%를 기준으로 40%이하인 영역에 배치될 수 있다. 제2구간(S12)과 리세스(128) 중심 사이의 제1거리(W2+S13+S11)는 최소 17㎛이상일 수 있다. 리세스(128)의 저면 반지름(W2)은 10㎛ 내지 35㎛이고, 제3구간(S13)의 폭은 1㎛ 내지 5㎛이고, 제1구간(S11)의 폭은 6㎛ 내지 12㎛일 수 있다. 따라서, 최대 이격 거리는 52㎛이상일 수 있다.The second section S12 may be disposed in an area of 40% or less based on 100% of the current density of the
제2구간(S12)은 리세스(128) 중심으로부터 최소 17㎛이상 이격된 영역 중에서 전류밀도가 40%이하인 영역에 배치될 수 있다. 예시적으로 제2구간(S12)은 리세스(128) 중심으로부터 40㎛이상 이격된 영역에 배치될 수 있다.The second section S12 may be disposed in an area having a current density of 40% or less among the areas at least 17 mu m apart from the center of the
반도체 소자에 복수 개의 리세스(128)가 존재하는 경우, 각 리세스(128)로부터 40㎛이상 떨어진 제2구간(S12)은 서로 중첩될 수 있다. 따라서, 중첩된 제2구간(S12)의 면적은 리세스(128) 사이의 거리에 따라 조절될 수 있다.When the semiconductor device has a plurality of
이때, 제2구간(S12)은 제1-1면(S10)의 제1방향 폭의 1/2지점을 포함할 수 있다. 제1-1면(S10)의 제1방향 폭의 1/2지점은 인접한 2개의 리세스(128) 사이 영역이므로 전류 밀도가 낮을 확률이 높다. 그러나, 반드시 이에 한정되는 것은 아니고 복수 개의 리세스의 직경이 서로 다른 경우, 제1방향 폭의 1/2 지점을 반드시 포함하지 않을 수 있다.At this time, the second section S12 may include a half point of the first direction width of the first-first surface S10. The 1/2 point of the width in the first direction on the first-first surface S10 is a region between two
제3구간(S13)은 제2전극(246)과 리세스(128) 사이 영역일 수 있다. 제3구간(S13)의 제1방향 폭은 1㎛ 내지 5㎛일 수 있다.The third section S13 may be a region between the
제2구간(S12)의 폭과 제1구간(S11)의 전체 폭의 비는 1:0.7 내지 1:5일 수 있다. 상기 폭의 비를 만족하는 경우 제2접촉면적과 제1접촉면적의 비를 1:0.7 내지 1:6로 유지할 수 있다. 따라서, 전류 분산 효율 및 광 추출 효과가 향상될 수 있다.The ratio of the width of the second section S12 to the total width of the first section S11 may be 1: 0.7 to 1: 5. When the width ratio is satisfied, the ratio of the second contact area to the first contact area can be maintained at 1: 0.7 to 1: 6. Therefore, the current dispersion efficiency and the light extraction effect can be improved.
도 15는 도 14의 제1변형예이다.Fig. 15 is a first modification of Fig.
도 15를 참고하면, 제2도전층(150)은 제2구간(S12)에서 반사홈(150-1)을 포함할 수 있다. 제2구간(S12)으로 입사된 광은 반사홈(150-1)에 의해 진행 경로가 변경되어 반사될 수 있다. 이러한 구성에 의하면 광을 다양한 방향으로 반사하여 균일도를 향상시킬 수 있다.Referring to FIG. 15, the second
경사면의 각도(θ5)는 90도 크고 150도 보다 클 수 있다. 경사면의 각도가 90도보다 작거나 150도 보다 큰 경우 입사된 광의 반사 각도를 다양하게 변화하기 어려울 수 있다. 경사면의 각도는 바닥면과 경사면이 이루는 각으로 정의할 수 있다.The angle [theta] 5 of the inclined surface may be greater than 90 degrees and greater than 150 degrees. If the angle of the inclined plane is smaller than 90 degrees or larger than 150 degrees, it may be difficult to vary the reflection angle of the incident light variously. The angle of the inclined plane can be defined as the angle formed by the bottom plane and the inclined plane.
반사홈(150-1)의 깊이는 제1절연층(131)의 두께와 동일할 수 있다. 제1절연층(131)의 두께는 제2전극(246)의 두께보다 110% 내지 130% 두꺼울 수 있다.The depth of the reflective groove 150-1 may be the same as the thickness of the first insulating
반사홈(150-1)에는 투광층(133)이 배치될 수 있다. 투광층(133)의 형상과 반사홈(150-1)의 형상은 대응될 수 있다. 따라서, 투광층(133)의 두께는 반사홈(150-1)의 두께와 동일할 수 있다. 예시적으로 반사홈(150-1)은 투광층(133)상에 제2도전층(150)을 형성함으로써 형성될 수 있다.The light-transmitting
투광층(133)의 재질은 자외선 파장대의 광을 통과시키는 다양한 재질이 포함될 수 있다. 예시적으로 투광층(133)은 절연층 재질을 포함할 수 있다. 투광층(133)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 중 적어도 하나를 포함할 수 있으나 반드시 이에 한정하지 않는다.The material of the light-transmitting
도 16a는 도 14의 제2변형예이고, 도 16b는 제2변형예의 평면도이다.FIG. 16A is a second modification of FIG. 14, and FIG. 16B is a plan view of a second modification.
도 16a를 참고하면, 제2구간(S12)에는 서브 리세스(127), 및 서브 리세스(127)의 내부에 배치되는 서브 반사층(135)이 배치될 수도 있다.16A, in the second section S12, a sub-recess 127 and a
서브 반사층(135)은 서브 리세스(127)의 내부에 배치될 수 있다. 구체적으로 서브 반사층(135)은 서브 리세스(127)내에서 제1절연층(131)상에 배치될 수 있다. The
서브 반사층(135)은 자외선 파장대에서 반사율이 높은 물질이 선택될 수 있다. 서브 반사층(135)은 도전성 물질을 포함할 수 있다. 예시적으로 서브 반사층(135)은 알루미늄을 포함할 수 있다. 서브 반사층(135)의 두께가 약 30nm 내지 120nm인 경우, 자외선 파장대의 광을 80% 이상 반사할 수 있다. 따라서, 활성층(126)에서 출사된 광이 반도체층 내부에서 흡수되는 것을 방지할 수 있다.As the
서브 반사층(135)에 의해 비스듬하게 출사되는 광(L1)이 상향 반사될 수 있다. 따라서, 발광구조물(120) 내에서 광 흡수를 줄이고, 광 추출 효율을 향상시킬 수 있다. 또한, 반도체 소자의 지향각을 조절할 수도 있다.The light L1 that is obliquely emitted by the
서브 반사층(135)은 제2전극(246)의 일부를 덮을 수 있다. 이러한 구성에 의해 제1절연층(131)과 제2전극(246) 사이로 유입되는 광을 상부로 반사시킬 수 있다. 그러나, 알루미늄과 같은 서브 반사층(135)은 스텝 커버리지가 상대적으로 좋지 않으므로 제2전극(246)을 완전히 덮는 것은 바람직하지 않을 수 있다.The
제2전극(246)의 두께는 제1절연층(131)의 두께의 80%이하일 수 있다. 이로 인해 서브 반사층(135) 및 제2도전층(150)이 배치될 때 스텝 커버리지 저하에 따른 서브 반사층(135) 혹은 제2도전층(150)의 크랙이나 박리 등의 문제를 해결할 수 있다. The thickness of the
서브 반사층(135)의 폭은 서브 리세스(127)의 폭과 동일할 수 있다. 제1리세스(128)의 폭과 서브 리세스(127)의 폭은 발광구조물(120)의 제1면(127G)에 형성된 최대폭일 수 있다.The width of the
서브 반사층(135)은 서브 리세스(127)에서 제2전극(246)을 향해 연장된 연장부(135a)를 포함할 수 있다. 연장부(135a)는 서브 리세스(127)에 의하여 분리된 제2전극(246)을 서로 전기적으로 연결할 수 있다.The
서브 반사층(135)은 제2전극(246)과 제1절연층(131) 사이의 이격 거리에 배치될 수 있으며, 이격 거리 내에서 서브 반사층(135)이 제2도전형 반도체층(127)과 쇼트키 접합이 형성되는 영역이 배치될 수 있으며, 쇼트키 접합을 형성함으로써 전류 분산이 용이해질 수 있다.The
서브 반사층(135)의 경사부와 제2도전형 반도체층(127)의 제1면이 이루는 각(θ4)은 90도 내지 145도일 수 있다. 경사각(θ4)이 90도보다 작을 경우 제2도전형 반도체층(127)의 식각이 어렵고 145도보다 클 경우 식각되는 활성층(126)의 면적이 커져서 발광 효율이 저하되는 문제가 있다.The angle? 4 formed by the inclined portion of the
제2도전층(150)은 서브 반사층(135)과 제2전극(246)을 덮을 수 있다. 따라서, 제2전극패드(166)와, 제2도전층(150), 서브 반사층(135), 및 제2전극(246)은 하나의 전기적 채널을 형성할 수 있다. 제2도전층(150)의 구성은 전술한 구성이 모두 적용될 수 있다. The second
도 16b를 참고하면, 서브 반사층(135)은 복수 개의 리세스(128) 사이에 배치되어 복수 개의 발광영역을 정의할 수 있다. 발광영역의 면적은 주입 전류의 레벨, Al의 조성에 따라 조절될 수 있다.Referring to FIG. 16B, the
도 17은 도 14의 제3변형예이다.17 is a third modification of Fig.
제2도전층(150)은 알루미늄을 포함하는 반사층(151), 및 제2전극(246)과 반사층(151) 사이에 배치되는 제1중간층(152)을 포함할 수 있다. 제2전극(246)을 ITO로 구성하는 경우 산소가 반사층(151)에 침투하여 Al2O3를 형성할 수 있다. 이 경우 반사층(151)의 반사 효율이 떨어지게 된다. 실시 예에서는 반사층(151)과 제2전극(246) 사이에 제1중간층(152)이 배치되어 이들의 접착력을 향상시키고, 산소의 침투를 방지할 수 있다.The second
제1중간층(152)은 크롬(Cr), 티탄(Ti) 니켈(Ni) 중 적어도 하나를 포함할 수 있다. 제1중간층(152)의 두께는 0.7m 내지 7nm일 수 있다. 제1중간층(152)은 알루미늄을 더 포함할 수 있다. 이 경우 제1중간층(152)과 알루미늄의 접착력을 향상시킬 수 있다.The first
제1중간층(152)은 제2구간(S12), 제3구간(S13)에서 제2도전형 반도체층(127)의 제1면(127G)과 접촉할 수 있다. 따라서, 쇼트키 접합에 의해 전류 분산 효율이 향상될 수 있다.The first
제2전극(246)과 반사층(151)의 두께비는 상기 제2도전층(150)의 두께비는 1:2 내지 1:120일 수 있다. 반사층(151)의 두께는 30nm 내지 120nm일 수 있다. 반사층(151)의 두께가 30nm보다 작은 경우 자외선 파장대에서 반사율이 떨어지는 문제가 있으며, 두께가 120nm보다 커져도 반사 효율이 거의 상승하지 않는다.The thickness ratio of the
도 18은 본 발명의 제3실시 예에 따른 반도체 소자의 개념도이고, 도 19는 도 18의 평면도이다.18 is a conceptual view of a semiconductor device according to a third embodiment of the present invention, and Fig. 19 is a plan view of Fig.
도 18을 참고하면, 실시 예에 따른 반도체 소자는 도 1 내지 도 3에서 설명한 발광구조물(120), 및 도 4에서 설명한 각 층의 구성이 그대로 적용될 수 있다.Referring to FIG. 18, the semiconductor device according to the embodiment may be applied to the
도 19를 참고하면, 제1면(127G)은 리세스(128)가 내부에 배치되는 제1영역(127G-1), 및 제1영역(127G-1) 사이에 배치되는 제2영역(127G-2)을 포함할 수 있다.19, the
제1영역(127G-1)의 직경은 리세스(128)의 직경의 1.0배 내지 1.5배일 수 있다. 제1영역(127G-1)의 직경이 1.5배를 초과하는 경우 제2전극(246)의 면적이 줄어들어 전류 분산 효율이 떨어지는 문제가 있다. 제1영역(127G-1)은 리세스(128)와 제2전극(246) 사이의 영역일 수 있다.The diameter of the
제2영역(127G-2)은 복수 개의 제1영역(127G-1) 이외의 나머지 영역일 수 있다. 제2영역(127G-2)에는 전체적으로 제2전극(246)이 배치될 수 있다.The
제2전극(246)은 저항이 낮은 금속 또는 금속 산화물을 포함할 수 있다. 따라서, 제2전극(246)은 자외선 광을 흡수하는 문제가 있다. 따라서, 제2전극(246)의 면적을 좁혀 제2전극(246)이 흡수하는 광량을 줄일 필요가 있다. The
제2도전층(150)은 제1영역(127G-1)과 제2영역(127G-2)에 배치되므로 제1영역(127G-1)으로 입사된 광은 제2도전층(150)에 의해 반사될 수 있다. 따라서, 제2전극(246)이 배치되는 제2영역(127G-2)의 면적을 좁히고 제1영역(127G-1)을 넓히면 광 추출 효율을 높일 수 있다. 이때, 전류 분산에 필요한 제2전극(246)의 면적을 확보하면서도 최대한 반사 영역을 확보하는 것이 중요할 수 있다.Since the second
제2영역(127G-2)의 면적은 발광구조물(120)의 최대 면적을 기준으로 35% 내지 60%일 수 있다. 제2영역(127G-2)의 면적이 35%보다 작은 경우 제2전극(246)의 접촉 면적이 작아 전류 분산 효율이 떨어질 수 있다. 또한, 제2영역(127G-2)의 면적이 60%를 초과하는 경우에는 제1영역(127G-1)의 면적이 작아져 광 추출 효율이 감소할 수 있다.The area of the
제1영역(127G-1)의 면적은 발광구조물(120)의 최대 면적을 기준으로 10% 내지 55%일 수 있다. 제1영역(127G-1)의 면적이 10%보다 작은 경우 충분한 반사 효율을 갖기 어려우며, 제1영역(127G-1)의 면적이 55%보다 큰 경우에는 제2영역(127G-2)의 면적이 작아져 전류 주입 효율이 감소하는 문제가 있다.The area of the
따라서, 제1영역(127G-1)의 면적과 제2영역(127G-2)의 면적의 비는 1:0.7 내지 1:6일 수 있다. 이 관계를 만족하면 충분한 전류 분산 효율을 가져 광 출력이 향상될 수 있다. 또한, 충분한 반사 영역을 확보하여 광 추출 효과가 향상될 수도 있다.Therefore, the ratio of the area of the
도 20은 도 19의 C-C방향 단면도이다.20 is a cross-sectional view along the line C-C in Fig.
제2도전형 반사층의 제1면(127G)은 제1방향(X방향)으로 가장 인접한 제1, 제2리세스(128a, 128b)의 중심 사이에 배치되는 제1-1면(S10)을 포함할 수 있다. 이때, 제1방향은 발광구조물(120)의 두께 방향과 수직한 방향일 수 있다.The
제1-1면(S10)은 제1구간(S21), 및 제1구간(S21)과 제1, 제2리세스(128a, 128b) 사이에 배치되는 제2구간(S22a, S22b)을 포함할 수 있다. The first-first surface S10 includes a first section S21 and a second section S22a and S22b disposed between the first section S21 and the first and
제2구간(S22a, S22b)은 제1구간(S21)과 제1리세스(128a) 사이에 배치되는 제2-1구간(S22a), 및 제1구간(S21)과 제2리세스(128b) 사이에 배치되는 제2-2구간(S22b)을 포함할 수 있다.The second sections S22a and S22b include a second section S22a disposed between the first section S21 and the
제2전극(246)은 제1구간(S21)에 배치될 수 있다. 제2전극(246)은 제2구간(S22a, S22b)에만 배치되는 경우 제2구간(S22a, S22b)의 전류밀도를 향상시킬 수 있으나 제1구간(S21)의 전류밀도는 상대적으로 낮아질 수 있다. 또한, 제2전극(246)이 제1구간(S21)과 제2구간(S22a, S22b)에 모두 배치되는 경우 제1구간(S21)과 제2구간(S22a, S22b)에서 모두 광 흡수가 일어나게 되어 광 추출 효율 관점에서 좋지 않을 수 있다. And the
제2도전층은 제1구간(S21) 및 제2구간(S22a, S22b)에 배치될 수 있다. 따라서, 제2전극(246)이 배치되지 않는 제2구간(S22a, S22b)은 반사 기능을 수행할 수 있다.The second conductive layer may be disposed in the first section S21 and the second sections S22a and S22b. Therefore, the second sections S22a and S22b in which the
실시 예에 따르면, 발광에 필요한 전류밀도를 확보하면서 광 추출 효율도 확보할 수 있도록 제1전극(142)과 제2전극(246)의 사이의 거리를 적절히 정하는 것이 중요할 수 있다.According to the embodiment, it may be important to appropriately set the distance between the
예시적으로 제1전극(142)의 면적이 큰 경우 전류 분산 영역이 넓어지므로 제2구간(S22a, S22b)을 좀 더 넓게 확보할 수 있다. 따라서, 반사 영역을 넓힐 수 있다. 그러나, 제1전극(142)의 면적이 작은 경우 전류 분산 영역이 좁아지므로 제2구간(S22a, S22b)은 좁아질 수 있다.For example, if the area of the
제2-1구간(S22b)의 제1방향 폭과 제1리세스(128a)의 직경(W1)의 비는 1:1.25 내지 1:14일 수 있다. 직경의 비가 1:1.25보다 작아지는 경우 리세스(128)의 직경이 줄어들어 제1전극(142)의 면적이 감소하게 된다. 따라서, 제1전극(142)을 통해 주입되는 전류의 세기가 약해져 제2구간(S22a, S22b)에서의 전류밀도가 약해질 수 있다.The ratio of the first directional width of the second section S22b to the diameter W1 of the
직경의 비가 1:14보다 커지는 경우 리세스(128)의 직경이 과도하게 커지게 되므로 상대적으로 제2도전형 반도체층의 제1면(127G)의 면적이 줄어들게 된다. 즉, 제1-1면(S10)의 폭이 줄어들게 된다. 그 결과, 활성층(126)의 면적이 감소하여 발광 영역이 줄어들게 된다.The diameter of the
리세스(128)의 직경(W1)은 20㎛ 내지 70㎛일 수 있다. 리세스(128)의 직경이 20㎛보다 작은 경우 내부에 배치되는 제1전극(142) 형성시 공정마진을 확보하기 어렵고, 리세스(128)의 직경이 70㎛보다 클 경우 활성층(126)의 면적이 감소하기 때문에 발광 효율이 악화될 수 있다. 여기서 리세스(128)의 직경은 제2도전형 반도체층의 제1면(127G)에 형성된 최대 직경일 수 있다.The diameter W1 of the
제1구간(S21)의 제1방향 폭은 6㎛ 내지 12㎛일 수 있다. 폭이 6㎛보다 작은 경우에는 제2전극(246)의 면적이 작아져 전류 분산 효율이 감소되는 문제가 있으며, 12㎛보다 큰 경우에는 제2구간(S22a, S22b)이 좁아져 반사 효율이 감소하는 문제가 있다.The width of the first section S21 in the first direction may be 6 占 퐉 to 12 占 퐉. When the width is smaller than 6 mu m, the area of the
제2-1구간(S22a) 및 제2-2구간(S22b)의 제1방향 폭은 각각 5㎛ 내지 16㎛일 수 있다. 즉, 제2구간(S22a, S22b) 전체 폭은 10㎛ 내지 32㎛일 수 있다. 제2-1구간(S22a) 및 제2-2구간(S22b)의 제1방향 폭이 5㎛보다 작은 경우에는 충분한 반사 영역을 확보하기 어려운 문제가 있으며, 폭이 16㎛보다 큰 경우에는 제2전극(246)이 좁아지는 문제가 있다.The first directional widths of the 2-1 section S22a and the 2-2nd section S22b may be 5 占 퐉 to 16 占 퐉, respectively. That is, the total width of the second sections S22a and S22b may be 10 to 32 탆. If the first directional widths of the 2-1 section S22a and the 2-2nd section S22b are smaller than 5 占 퐉, there is a problem that it is difficult to secure a sufficient reflection area. When the width is larger than 16 占 퐉, There is a problem that the
제1구간(S21)의 폭과 제2구간(S22a, S22b)의 전체 폭의 비는 1:0.8 내지 1:5일 수 있다. 상기 폭의 비를 만족하는 경우 제1영역(127G-1)의 면적과 제2영역(127G-2)의 면적의 비를 1:0.8 내지 1:6으로 조절할 수 있다. 따라서, 전류 분산 효율 및 광 추출 효과가 향상될 수 있다.The ratio of the width of the first section S21 to the total width of the second sections S22a and S22b may be 1: 0.8 to 1: 5. When the width ratio is satisfied, the ratio of the area of the
제1구간(S21)은 제1-1면(S10)의 1/2 지점을 포함할 수 있다. 제2전극(246)이 제1-1면(S10)의 중심에 배치되므로 제1구간(S21)의 전류밀도는 상승할 수 있다. 또한, 제1구간(S21)의 전류밀도가 상승하므로 그 사이에 있는 제2구간(S22a, S22b) 역시 전류가 분산되어 발광에 필요한 전류밀도를 확보할 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고, 제1리세스(128a)의 직경과 제2리세스(128b)의 직경이 달라지는 경우 제1구간(S21)은 제1-1면(S10)의 1/2지점을 벗어날 수도 있다.The first section S21 may include a half point of the first-first surface S10. Since the
도 21은 도 20의 제1변형예이고, 도 22는 도 20의 제2변형예이다.Fig. 21 is a first modification of Fig. 20, and Fig. 22 is a second modification of Fig.
제2도전층(150)은 제2구간(S22a, S22b)에서 반사홈(150-2)을 포함할 수 있다. 제2구간(S22a, S22b)으로 입사된 광은 반사홈(150-2)의 경사면에 의해 진행 경로가 변경되어 반사될 수 있다. 이러한 구성에 의하면 광 균일도를 향상시킬 수 있다.The second
반사홈(150-2)의 깊이는 제1절연층(131)의 두께와 동일할 수 있다. 제1절연층(131)의 두께는 제2전극(246)의 두께보다 110% 내지 130% 두꺼울 수 있다. 전술한 바와 같이 제2전극(246)의 두께는 1 내지 15nm일 수 있다.The depth of the reflective groove 150-2 may be the same as the thickness of the first insulating
반사홈(150-2)에는 투광층(131b)이 배치될 수 있다. 투광층(131b)의 형상과 반사홈(150-2)의 형상은 대응될 수 있다. 따라서, 투광층(131b)의 두께는 반사홈(150-2)의 두께와 동일할 수 있다. 예시적으로 반사홈(150-2)은 투광층(131b)상에 제2도전층(150)을 배치함으로써 형성될 수 있다.The light-transmitting
투광층(131b)의 재질은 자외선 파장대의 광을 통과시키는 다양한 재질이 포함될 수 있다. 예시적으로 투광층(131b)은 절연층 재질을 포함할 수 있다. 투광층(131b)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 중 적어도 하나를 포함할 수 있으나 반드시 이에 한정하지 않는다. The material of the light-transmitting
투광층(131b)은 제1리세스(128a)의 내부에 배치되는 제1절연층(131)이 제2도전형 반도체층으로 연장되어 형성될 수도 있다. 그러나, 반드시 이에 한정되는 것은 아니고 별도의 유전체층을 배치할 수도 있다.The light-transmitting
도 22를 참고하면, 제2전극(246)은 제1-1면(S10)의 중앙지점에서 멀어질수록 밀도가 낮아지게 배치될 수 있다. 즉, 분할된 제2전극(246c, 246d, 246e)이 중앙에서 멀어질수록 작아지게 배치될 수 있다. 분할된 제2전극(246c, 246d, 246e)은 마스크를 이용하여 선택적으로 식각하여 제작할 수 있다. Referring to FIG. 22, the
이러한 구성에 의하면, 제1구간(S21)의 전류밀도를 유지하면서도 제2구간(S22a, S22b)의 전류밀도를 상승시킬 수 있다. 또한, 제1구간(S21)과 제2구간(S22a, S22b)의 면적비를 1:0.8 내지 1:6으로 유지함으로써 전류 분산 효율과 반사 효율을 동시에 가질 수 있다.With this configuration, the current density in the second section S22a and S22b can be increased while maintaining the current density in the first section S21. In addition, by maintaining the area ratio of the first section S21 and the second sections S22a and S22b at 1: 0.8 to 1: 6, the current dispersion efficiency and the reflection efficiency can be simultaneously obtained.
도 23은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이다.23 is a conceptual view of a semiconductor device package according to an embodiment of the present invention.
반도체 소자는 패키지로 구성되어, 수지(resin)나 레지스트(resist)나 SOD 또는 SOG의 경화용으로 사용될 수 있다. 또는, 반도체 소자는 치료용 의료용으로 사용되거나 공기 청정기나 정수기 등의 살균에 사용될 수도 있다.The semiconductor device is composed of a package and can be used for curing a resin, a resist, SOD or SOG. Alternatively, the semiconductor device may be used for therapeutic medical use or for sterilizing air purifiers, water purifiers, and the like.
도 23을 참고하면, 반도체 소자 패키지는 홈(3)이 형성된 몸체(2), 몸체(2)에 배치되는 반도체 소자(1), 및 몸체(2)에 배치되어 반도체 소자(1)와 전기적으로 연결되는 한 쌍의 리드 프레임(5a, 5b)을 포함할 수 있다. 23, the semiconductor device package comprises a
몸체(2)는 자외선 광을 반사하는 재질 또는 코팅층을 포함할 수 있다. 몸체(2)는 복수의 층(2a, 2b, 2c, 2d)을 적층하여 형성할 수 있다. 복수의 층(2a, 2b, 2c, 2d)은 동일한 재질일 수도 있고 상이한 재질을 포함할 수도 있다.The
홈(3)은 반도체 소자에서 멀어질수록 넓어지게 형성되고, 경사면에는 단차(3a)가 형성될 수 있다.The
투광층(4)은 홈(3)을 덮을 수 있다. 투광층(4)은 글라스 재질일 있으나, 반드시 이에 한정하지 않는다. 투광층(4)은 자외선 광을 유효하게 투과할 수 있는 재질이면 특별히 제한하지 않는다. 홈(3)의 내부는 빈 공간일 수 있다.The light-transmitting
반도체 소자는 조명 시스템의 광원으로 사용되거나, 영상표시장치의 광원이나 조명장치의 광원으로 사용될 수 있다. 즉, 반도체 소자는 케이스에 배치되어 광을 제공하는 다양한 전자 디바이스에 적용될 수 있다. 예시적으로, 반도체 소자와 RGB 형광체를 혼합하여 사용하는 경우 연색성(CRI)이 우수한 백색광을 구현할 수 있다.The semiconductor device may be used as a light source of an illumination system, or as a light source of an image display device or a lighting device. That is, semiconductor devices can be applied to various electronic devices arranged in a case to provide light. Illustratively, when a semiconductor device and an RGB phosphor are mixed and used, white light with excellent color rendering (CRI) can be realized.
상술한 반도체 소자는 발광소자 패키지로 구성되어, 조명 시스템의 광원으로 사용될 수 있는데, 예를 들어 영상표시장치의 광원이나 조명 장치 등의 광원으로 사용될 수 있다.The above-described semiconductor device is composed of a light emitting device package and can be used as a light source of an illumination system, for example, as a light source of a video display device or a lighting device.
영상표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있고, 조명 장치의 광원으로 사용될 때 등기구나 벌브 타입으로 사용될 수도 있으며, 또한 이동 단말기의 광원으로 사용될 수도 있다.When used as a backlight unit of a video display device, it can be used as an edge type backlight unit or as a direct-type backlight unit. When used as a light source of a lighting device, it can be used as a regulator or a bulb type. It is possible.
발광 소자는 상술한 발광 다이오드 외에 레이저 다이오드가 있다.The light emitting element includes a laser diode in addition to the light emitting diode described above.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-l㎛inescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.The laser diode may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure, like the light emitting element. Then, an electro-luminescence (electroluminescence) phenomenon in which light is emitted when an electric current is applied after bonding the p-type first conductivity type semiconductor and the n-type second conductivity type semiconductor is used, There are differences in the directionality and phase of light. That is, the laser diode can emit light having one specific wavelength (monochromatic beam) with the same phase and in the same direction by using a phenomenon called stimulated emission and a constructive interference phenomenon. It can be used for optical communication, medical equipment and semiconductor processing equipment.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광 출력전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.As the light receiving element, a photodetector, which is a kind of transducer that detects light and converts the intensity of the light into an electric signal, is exemplified. As photodetectors, photodetectors (silicon, selenium), photodetectors (cadmium sulfide, cadmium selenide), photodiodes (for example, visible blind spectral regions or PDs with peak wavelengths in the true blind spectral region) A transistor, a photomultiplier tube, a phototube (vacuum, gas-filled), and an IR (Infra-Red) detector, but the embodiment is not limited thereto.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다. In addition, a semiconductor device such as a photodetector may be fabricated using a direct bandgap semiconductor, which is generally excellent in photo-conversion efficiency. Alternatively, the photodetector has a variety of structures, and the most general structure includes a pinned photodetector using a pn junction, a Schottky photodetector using a Schottky junction, and a metal-semiconductor metal (MSM) photodetector have.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.The photodiode, like the light emitting device, may include the first conductivity type semiconductor layer having the structure described above, the active layer, and the second conductivity type semiconductor layer, and may have a pn junction or a pin structure. The photodiode operates by applying reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and a current flows. At this time, the magnitude of the current may be approximately proportional to the intensity of the light incident on the photodiode.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2도전형 반도체층을 포함할 수 있다. A photovoltaic cell or a solar cell is a type of photodiode that can convert light into current. The solar cell, like the light emitting device, may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.In addition, it can be used as a rectifier of an electronic circuit through a rectifying characteristic of a general diode using a p-n junction, and can be applied to an oscillation circuit or the like by being applied to a microwave circuit.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.In addition, the above-described semiconductor element is not necessarily implemented as a semiconductor, and may further include a metal material as the case may be. For example, a semiconductor device such as a light receiving element may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, Or may be implemented using a doped semiconductor material or an intrinsic semiconductor material.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. It is to be understood that all changes and modifications that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
120: 발광구조물
124: 제1도전형 반도체층
126: 활성층
127: 제2도전형 반도체층
142: 제1전극
150: 제2도전층
246: 제2전극120: light emitting structure
124: First conductive type semiconductor layer
126:
127: second conductive type semiconductor layer
142: first electrode
150: second conductive layer
246: second electrode
Claims (17)
상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 리세스를 포함하는 발광구조물;
상기 복수 개의 리세스의 내부에 배치되어 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극;
상기 제2도전형 반도체층과 전기적으로 연결되는 제2전극;
상기 제1전극과 전기적으로 연결되는 제1도전층; 및
상기 제2전극과 전기적으로 연결되는 제2도전층을 포함하고,
상기 제2도전형 반사층은 제1방향으로 가장 인접한 2개의 리세스의 중심 사이에 배치되는 제1-1면을 포함하고, 상기 제1방향은 상기 발광구조물의 두께 방향과 수직한 방향이고,
상기 제1-1면은 상기 제1방향으로 이격된 제2전극이 배치되는 제1구간, 및 상기 제2전극 사이에 배치되는 제2구간을 포함하고,
상기 제2도전층은 상기 제1구간 및 제2구간에 배치되고,
상기 제2구간의 제1방향의 폭은 상기 제1구간의 제1방향 전체 폭의 1:0.7 내지 1: 5인 반도체 소자.
A first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer,
A light emitting structure including a plurality of recesses penetrating the second conductivity type semiconductor layer and the active layer and disposed to a partial region of the first conductivity type semiconductor layer;
A first electrode disposed inside the plurality of recesses and electrically connected to the first conductive semiconductor layer;
A second electrode electrically connected to the second conductive semiconductor layer;
A first conductive layer electrically connected to the first electrode; And
And a second conductive layer electrically connected to the second electrode,
The second conductive type reflective layer includes a first-first surface disposed between centers of two recesses closest to the first direction, the first direction being a direction perpendicular to a thickness direction of the light emitting structure,
Wherein the first-first surface includes a first section in which a second electrode spaced apart in the first direction is disposed, and a second section disposed between the second electrodes,
The second conductive layer is disposed in the first section and the second section,
And the width of the second section in the first direction is 1: 0.7 to 1: 5 of the entire width of the first section in the first direction.
상기 제2구간의 제1방향 폭은 5㎛ 내지 16㎛인 반도체 소자.
The method according to claim 1,
And the first direction width of the second section is 5 占 퐉 to 16 占 퐉.
상기 제2구간은 상기 제1-1면의 제1방향 폭의 1/2지점을 포함하는 반도체 소자.
3. The method of claim 2,
And the second section includes a half point of the first direction width of the first-first surface.
상기 제1구간의 제1방향 전체 폭은 12㎛ 내지 24㎛인 반도체 소자.
The method according to claim 1,
And the entire width of the first section in the first direction is 12 占 퐉 to 24 占 퐉.
상기 제2도전층은 상기 제2구간에 배치되는 반사홈을 갖는 반도체 소자.
The method according to claim 1,
And the second conductive layer has a reflective groove disposed in the second section.
상기 반사홈에 배치되는 투광층을 포함하는 반도체 소자.
6. The method of claim 5,
And a translucent layer disposed in the reflective groove.
상기 제2구간에 배치되는 서브 리세스, 및
상기 서브 리세스의 내부에 배치되는 서브 반사층을 포함하는 반도체 소자.
The method according to claim 1,
A sub-recess disposed in the second section, and
And a sub-reflection layer disposed inside the sub-recess.
상기 서브 반사층은 알루미늄을 포함하는 반도체 소자.
8. The method of claim 7,
Wherein the sub reflection layer comprises aluminum.
상기 서브 반사층은 상기 제2전극과 전기적으로 연결되는 반도체 소자.
8. The method of claim 7,
And the sub reflection layer is electrically connected to the second electrode.
상기 제2도전형 반도체층의 제1면은 AlGaN을 포함하는 반도체 소자.
The method according to claim 1,
And the first surface of the second conductivity type semiconductor layer comprises AlGaN.
상기 제2도전층은,
크롬(Cr), 티탄(Ti) 니켈(Ni) 중 적어도 하나를 포함하는 제1중간층, 및
알루미늄을 포함하는 반사층을 포함하는 반도체 소자.
11. The method of claim 10,
Wherein the second conductive layer comprises:
A first intermediate layer comprising at least one of chromium (Cr), titanium (Ti), nickel (Ni), and
A semiconductor device comprising a reflective layer comprising aluminum.
상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 리세스를 포함하는 발광구조물;
상기 리세스의 내부에 배치되어 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극;
상기 제2도전형 반도체층의 제1면에 배치되는 제2전극; 및
상기 제2전극과 전기적으로 연결되는 제2도전층을 포함하고,
상기 제1면은 제1방향을 기준으로 상기 리세스의 중심으로부터 제1거리 내측에 배치되는 제1구간, 및 상기 제1거리의 이외에 배치되는 제2구간을 포함하고,
상기 제1거리는 17㎛이상이고, 상기 제1방향은 상기 발광구조물의 두께 방향과 수직한 방향이고,
상기 제2전극은 상기 제1구간에 배치되고,
상기 제2도전층은 상기 제1구간 및 제2구간에 배치되는 반도체 소자.
A first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer,
A light emitting structure including a second conductive semiconductor layer and a recess disposed through the active layer to a partial region of the first conductive semiconductor layer;
A first electrode disposed inside the recess and electrically connected to the first conductive semiconductor layer;
A second electrode disposed on a first surface of the second conductive semiconductor layer; And
And a second conductive layer electrically connected to the second electrode,
Wherein the first surface includes a first section disposed within a first distance from a center of the recess with respect to a first direction and a second section disposed outside the first distance,
The first distance is at least 17 mu m, the first direction is a direction perpendicular to the thickness direction of the light emitting structure,
The second electrode is disposed in the first section,
And the second conductive layer is disposed in the first section and the second section.
상기 제1거리는 17㎛이상 52㎛이하인 반도체 소자.
13. The method of claim 12,
Wherein the first distance is 17 占 퐉 or more and 52 占 퐉 or less.
상기 제2구간에 배치되는 서브 리세스, 및
상기 서브 리세스의 내부에 배치되는 서브 반사층을 포함하고,
상기 서브 리세스는 상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 반도체 소자.
13. The method of claim 12,
A sub-recess disposed in the second section, and
And a sub-reflection layer disposed inside the sub-recess,
Wherein the subregions penetrate the second conductivity type semiconductor layer and the active layer and are disposed to a partial region of the first conductivity type semiconductor layer.
상기 제2도전층은 상기 제2구간에 배치되는 반사홈을 포함하는 반도체 소자.
13. The method of claim 12,
And the second conductive layer includes a reflective groove disposed in the second section.
상기 반사홈에 배치되는 투광층을 포함하는 반도체 소자.
16. The method of claim 15,
And a translucent layer disposed in the reflective groove.
상기 몸체에 배치되는 반도체 소자를 포함하고,
상기 반도체 소자는,
제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층을 포함하고,
상기 제2도전형 반도체층 및 상기 활성층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 리세스를 포함하는 발광구조물;
상기 복수 개의 리세스의 내부에 배치되어 상기 제1도전형 반도체층과 전기적으로 연결되는 제1전극;
상기 제2도전형 반도체층의 제1면에 배치되는 제2전극;
상기 제1전극과 전기적으로 연결되는 제1도전층; 및
상기 제2전극과 전기적으로 연결되는 제2도전층을 포함하고,
상기 제2도전형 반사층의 제1면은 제1방향으로 가장 인접한 2개의 리세스의 중심 사이에 배치되는 제1-1면을 포함하고, 상기 제1방향은 상기 발광구조물의 두께 방향과 수직한 방향이고,
상기 제1-1면은 상기 제1방향으로 이격된 제2전극이 배치되는 제1구간, 및 상기 제2전극 사이에 배치되는 제2구간을 포함하고,
상기 제2도전층은 상기 제1구간 및 제2구간에 배치되고,
상기 제2구간의 제1방향의 폭은 상기 제1구간의 제1방향 전체 폭의 1: 0.7 내지 1:5인 반도체 소자 패키지.Body; And
And a semiconductor device disposed on the body,
The semiconductor device may further include:
A first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer,
A light emitting structure including a plurality of recesses penetrating the second conductivity type semiconductor layer and the active layer and disposed to a partial region of the first conductivity type semiconductor layer;
A first electrode disposed inside the plurality of recesses and electrically connected to the first conductive semiconductor layer;
A second electrode disposed on a first surface of the second conductive semiconductor layer;
A first conductive layer electrically connected to the first electrode; And
And a second conductive layer electrically connected to the second electrode,
Wherein the first surface of the second conductive type reflective layer includes a first-first surface disposed between the centers of two recesses closest to the first direction, the first direction being perpendicular to the thickness direction of the light emitting structure Direction,
Wherein the first-first surface includes a first section in which a second electrode spaced apart in the first direction is disposed, and a second section disposed between the second electrodes,
The second conductive layer is disposed in the first section and the second section,
And the width of the second section in the first direction is 1: 0.7 to 1: 5 the entire width of the first section in the first direction.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160115894A KR102577859B1 (en) | 2016-09-08 | 2016-09-08 | Semiconductor device and semiconductor device package including the same |
EP17815692.3A EP3474337A4 (en) | 2016-06-20 | 2017-06-20 | Semiconductor device |
PCT/KR2017/006473 WO2017222279A1 (en) | 2016-06-20 | 2017-06-20 | Semiconductor device |
CN201780038448.4A CN109417111B (en) | 2016-06-20 | 2017-06-20 | Semiconductor device with a plurality of transistors |
US16/310,340 US10734552B2 (en) | 2016-06-20 | 2017-06-20 | Semiconductor device having a light emitting structure |
CN202111318032.2A CN114093994A (en) | 2016-06-20 | 2017-06-20 | Semiconductor device and semiconductor device package |
CN202111318036.0A CN114093995A (en) | 2016-06-20 | 2017-06-20 | Semiconductor device with a plurality of transistors |
JP2018566526A JP7118427B2 (en) | 2016-06-20 | 2017-06-20 | semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160115894A KR102577859B1 (en) | 2016-09-08 | 2016-09-08 | Semiconductor device and semiconductor device package including the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180028338A true KR20180028338A (en) | 2018-03-16 |
KR102577859B1 KR102577859B1 (en) | 2023-09-14 |
Family
ID=61910211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160115894A KR102577859B1 (en) | 2016-06-20 | 2016-09-08 | Semiconductor device and semiconductor device package including the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102577859B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190129345A (en) * | 2018-05-10 | 2019-11-20 | 엘지이노텍 주식회사 | Semiconductor device |
WO2020005009A1 (en) * | 2018-06-29 | 2020-01-02 | 엘지이노텍 주식회사 | Semiconductor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120002894A (en) * | 2010-07-01 | 2012-01-09 | 엘지이노텍 주식회사 | Light emitting device, method for fabricating the light emitting device, light emitting device package and lighting system |
KR20120006409A (en) * | 2010-07-12 | 2012-01-18 | 엘지이노텍 주식회사 | Light emitting device |
JP2012195321A (en) * | 2011-03-14 | 2012-10-11 | Toshiba Corp | Semiconductor light-emitting element |
JP2014195055A (en) * | 2013-02-28 | 2014-10-09 | Nichia Chem Ind Ltd | Semiconductor light-emitting element |
KR20150116251A (en) * | 2014-04-07 | 2015-10-15 | 엘지이노텍 주식회사 | Light emitting device and lighting system |
-
2016
- 2016-09-08 KR KR1020160115894A patent/KR102577859B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120002894A (en) * | 2010-07-01 | 2012-01-09 | 엘지이노텍 주식회사 | Light emitting device, method for fabricating the light emitting device, light emitting device package and lighting system |
KR20120006409A (en) * | 2010-07-12 | 2012-01-18 | 엘지이노텍 주식회사 | Light emitting device |
JP2012195321A (en) * | 2011-03-14 | 2012-10-11 | Toshiba Corp | Semiconductor light-emitting element |
JP2014195055A (en) * | 2013-02-28 | 2014-10-09 | Nichia Chem Ind Ltd | Semiconductor light-emitting element |
KR20150116251A (en) * | 2014-04-07 | 2015-10-15 | 엘지이노텍 주식회사 | Light emitting device and lighting system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190129345A (en) * | 2018-05-10 | 2019-11-20 | 엘지이노텍 주식회사 | Semiconductor device |
WO2020005009A1 (en) * | 2018-06-29 | 2020-01-02 | 엘지이노텍 주식회사 | Semiconductor device |
KR20200002487A (en) * | 2018-06-29 | 2020-01-08 | 엘지이노텍 주식회사 | Smeiconductor device |
US11984532B2 (en) | 2018-06-29 | 2024-05-14 | Suzhou Lekin Semiconductor Co., Ltd. | Semiconductor device having recesses forming areas |
Also Published As
Publication number | Publication date |
---|---|
KR102577859B1 (en) | 2023-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10734552B2 (en) | Semiconductor device having a light emitting structure | |
JP7290849B2 (en) | Semiconductor device and semiconductor device package including the same | |
JP2018529230A (en) | Light emitting device and light emitting device package including the same | |
CN109997234B (en) | Semiconductor element and semiconductor element package including the same | |
KR102524303B1 (en) | semiconductor device | |
KR102568298B1 (en) | Semiconductor device | |
KR102564198B1 (en) | Semiconductor device | |
KR102656815B1 (en) | Smeiconductor device | |
US10971651B2 (en) | Semiconductor device and semiconductor device package including same | |
KR102577859B1 (en) | Semiconductor device and semiconductor device package including the same | |
KR102402917B1 (en) | Semiconductor device | |
KR102648472B1 (en) | Semiconductor device and semiconductor device package including the same | |
KR102582184B1 (en) | Semiconductor device and semiconductor device package including the same | |
KR102551894B1 (en) | Semiconductor device | |
KR102632215B1 (en) | Semiconductor device and semiconductor device package including the same | |
KR102619743B1 (en) | Semiconductor device | |
KR102521625B1 (en) | Semiconductor device | |
KR102552889B1 (en) | Semiconductor device, semiconductor device package and mathod for manufacturing the same | |
KR20200025757A (en) | Smeiconductor device and method for manufacturing the same | |
KR20190000034A (en) | Semiconductor device | |
KR20180128230A (en) | Semiconductor device and method for manufacturing semiconductor device | |
KR20190005660A (en) | Semiconductor device | |
KR20180049678A (en) | Semiconductor device and semiconductor device package including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |