KR20180023734A - Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample - Google Patents
Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample Download PDFInfo
- Publication number
- KR20180023734A KR20180023734A KR1020160109543A KR20160109543A KR20180023734A KR 20180023734 A KR20180023734 A KR 20180023734A KR 1020160109543 A KR1020160109543 A KR 1020160109543A KR 20160109543 A KR20160109543 A KR 20160109543A KR 20180023734 A KR20180023734 A KR 20180023734A
- Authority
- KR
- South Korea
- Prior art keywords
- leu
- ala
- glu
- amino acid
- val
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/84—Biological processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/14—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
- C12Y114/14001—Unspecific monooxygenase (1.14.14.1)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/59—Biological synthesis; Biological purification
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
박테리아 시토크롬 P450 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물, 시료 중 CHnF4-n (n은 0 내지 3의 정수)으로 표시되는 플루오로메탄을 제거하는데 사용하기 위한 재조합 P450 단백질을 포함하는 조성물 및 시료 중 CHnF4-n의 농도를 감소시키는 방법에 관한 것이다.A recombinant microorganism comprising a foreign gene encoding a bacterial cytochrome P450 protein, a composition comprising a recombinant P450 protein for use in removing fluoromethane represented by CHnF4-n (n is an integer from 0 to 3) in a sample, Lt; RTI ID = 0.0 > CHnF4-n. ≪ / RTI >
지구의 온난화를 가속시키는 온실가스의 배출은 심각한 환경 문제 중의 하나이며 이를 규제하고 방지하기 위해서 온실가스 배출량에 대한 규제가 강화되고 있다. 이 중 퍼플루오로카본(perfluorocarbons:PFCs), 히드로플루오로카본(hydrofluorocarbons:HFCs), 술퍼 헥사플루오리드(SF6)와 같은 불화가스 (F-가스)는 절대 배출량은 낮으나 반감기가 길고 지구온난화 계수가 월등히 높아 더욱 심각한 영향을 미치는 것으로 보고되고 있다. F-가스의 주요 배출원인 반도체 및 전자 산업 분야 등에서 F-가스의 발생량은 온실가스 배출 할당량을 초과하여 증가 추세에 있고 이에 따라 온실가스 분해 및 배출권 구입에 필요한 비용 부담이 매년 증가하고 있는 상황이다. Emissions of greenhouse gases that accelerate global warming are one of the most serious environmental problems, and regulations on greenhouse gas emissions are being tightened to regulate and prevent them. Of these, fluorinated gas (F-gas) such as perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfohexafluoride (SF6) has low absolute emissions but a long half- And it is reported to have a more serious effect. In the semiconductor and electronics industries, which are major sources of F-gas, the amount of F-gas generated is increasing more than the GHG emission quota, and thus the burden of purchasing greenhouse gas decomposition and emission rights is increasing every year.
하지만, 기존의 F-가스 분해는 열분해 또는 촉매열산화 공정을 이용하고 있으나 제한된 분해율 및 2차 유해물질 배출, 고비용 등의 한계가 존재한다. 이를 해결하기 위해 미생물 생촉매를 이용한 생물학적 F-가스 분해 공정의 도입으로 기존의 화학적 분해 공정의 한계를 극복하고 보다 경제적이고 친환경적인 F-가스의 처리가 가능할 것으로 보인다. However, existing F-gas decomposition uses pyrolysis or catalytic thermal oxidation process, but there are limitations such as limited decomposition rate, secondary harmful substance discharge, and high cost. In order to solve this problem, biological F-gas decomposition process using microbial biocatalyst is expected to overcome the limitation of conventional chemical decomposition process and to be able to treat more economical and environmentally friendly F-gas.
시토크롬 P450 (CYP)은 헴 보조인자(heme cofactor)를 포함한 단백질의 수퍼패밀리에 속하며, 헤모단백질(hemoprotein)이다. 시토크롬 P450은 효소 반응에서 기질로서 다양한 작고 큰 분자를 기질로서 사용한다. 시토크롬 P450은 일반적으로, 넓게 P450 함유 시스템으로 카테고리화된, 전자 전달 사슬 (electron transfer chain)의 말단 옥시다제 효소이다. Cytochrome P450 (CYP) belongs to the superfamily of proteins, including the heme cofactor, and is a hemoprotein. Cytochrome P450 uses a variety of small and large molecules as substrates in the enzyme reaction. Cytochrome P450 is generally the terminal oxidase enzyme of the electron transfer chain, broadly categorized as a system containing P450.
박테리아 시토크롬 P450은 종종 가용성 효소이며, 다양한 대사 과정에 관여한다. 대장균과 같은 일부 박테리아는 시토크롬 P450을 포함하고 있지 않다. P. putida 유래의 시토크롬 P450 (CYP101)은 2Fe-2S 클러스터-함유 단백질 보조요소(cofactor)인 푸티다레독신(putidaredoxin)으로부터 2개 전자 전달 단계를 구성하는 캄포르-히드록실화 촉매 사이클(camphor-hydroxylating catalytic cycle)의 일부분이다. Bacterial cytochrome P450 is often a soluble enzyme and is involved in a variety of metabolic processes. Some bacteria, such as E. coli, do not contain cytochrome P450. Cytochrome P450 (CYP101) from P. putida is a camphor-hydroxylation catalytic cycle that constitutes two electron transfer steps from a 2Fe-2S cluster-containing protein cofactor, putidaredoxin. hydroxylating catalytic cycle.
B.megaterium 유래의 시토크롬 P450 BM3 (CYP102)은 ω-1 내지 ω-3 위치에서 여러 긴 사슬 지방산의 NADPH-의존성 히드록실화를 촉매한다. 시토크롬 P450 BM3은 CYP 도메인과 전자 공여 보조인자 (electron donating cofactor) 사이에 천연 융합 단백질(natural fusion protein)로 구성된다. Cytochrome P450 BM3 (CYP102) from B. megaterium catalyzes NADPH-dependent hydroxylation of several long chain fatty acids at the omega-1 to omega-3 positions. Cytochrome P450 BM3 is composed of a natural fusion protein between the CYP domain and an electron donating cofactor.
그러나, 박테리아 시토크롬 P450이 시료 중의 불화 메탄을 제거하는 것을 촉매하는지는 알려져 있지 않다. However, it is not known whether the bacterial cytochrome P450 catalyzes the removal of fluorinated methane in the sample.
일 양상은 박테리아 시토크롬 P450 단백질 또는 그의 변이체를 코딩하는 외래 유전자를 포함하는 재조합 미생물을 제공한다. One aspect provides a recombinant microorganism comprising a foreign gene encoding a bacterial cytochrome P450 protein or a variant thereof.
다른 양상은 시료 중 CHnF4-n (n은 0 내지 3의 정수)으로 표시되는 플루오로메탄을 제거하는데 사용하기 위한 재조합 P450 단백질 또는 그의 변이체를 포함하는 조성물을 제공한다. Another aspect provides a composition comprising a recombinant P450 protein or variant thereof for use in removing fluoromethane represented by CHnF4-n (n is an integer from 0 to 3) in a sample.
다른 양상은 재조합 P450 단백질 또는 그의 변이체를 CHnF4-n (n은 0 내지 3의 정수)으로 표시되는 플루오로메탄 함유 시료와 접촉시켜 시료 중 플루오로메탄의 농도를 감소시키는 단계;를 포함하는, 시료 중 CHnF4-n의 농도를 감소시키는 방법을 제공한다.Another aspect includes contacting the recombinant P450 protein or variant thereof with a fluoromethane-containing sample represented by CHnF4-n, where n is an integer from 0 to 3, to reduce the concentration of fluoromethane in the sample. Lt; RTI ID = 0.0 > CHnF4-n. ≪ / RTI >
다른 양상은 박테리아 시토크롬 P450 단백질의 변이체 및 그를 코딩하는 폴리뉴클레오티드를 제공한다. Another aspect provides variants of the bacterial cytochrome P450 protein and polynucleotides encoding the same.
일 양상은 박테리아 시토크롬 P450 단백질 또는 그의 변이체를 코딩하는 외래 유전자를 포함하는 재조합 미생물을 제공한다. One aspect provides a recombinant microorganism comprising a foreign gene encoding a bacterial cytochrome P450 protein or a variant thereof.
상기 재조합 미생물에 있어서, 상기 시토크롬 P450 단백질은 EC 1.14.15.1 또는 EC 1.14.14.1에 속하는 것일 수 있다. 상기 시토크롬 P450 단백질은 P450Cam 또는 P450BM3일 수 있다. P450Cam은 Pseudomonas putida PpG786 유래의 것일 수 있다. P450BM3은 Bacillus megaterium (ATCC 14581) 유래의 것일 수 있다. 상기 시토크롬 P450CAM 단백질은 CamA, CamB, 및 CamC의 복합체의 형태로 박테리아 CYP101 시스템을 구성할 수 있다. CamA는 FAD 함유 레덕타제(reductase)일 수 있다. CamA는 NADH 또는 NADPH 의존성일 수 있다. 상기 CamA는 EC 1.18.1.5에 속하는 것일 수 있다. CamB는 [2Fe2S]타입의 페레독신(ferredoxin)일 수 있다. CamC는 P450Cam(CYP101) 또는 P450Cam이라고도 하며, 시토크롬 450을 포함하고, EC 1.14.15.1에 속하는 것일 수 있다. CamA, CamB, 및 CamC는 각각 서열번호 2, 4, 및 6의 아미노산 서열을 갖는 것일 수 있다. CamA, CamB, 및 CamC를 코딩하는 유전자는 각각 서열번호 1, 3, 및 5의 뉴클레오티드 서열을 갖는 것일 수 있다. 상기 변이체는 서열번호 6의 아미노산 서열의 F351 위치에 해당하는 아미노산 잔기에서 아미노산 변경(alteration)을 갖고 EC 1.14.15.1에 속하는 활성을 갖는 것일 수 있다. 상기 아미노산 변경은 F351 위치에 해당하는 아미노산 잔기를 다른 아미노산, 예를 들면, 19개 천연 아미노산으로 치환한 것일 수 있다. 상기 변이체는 서열번호 6의 F351 위치에 해당하는 아미노산 잔기를 Y, T, N, Q, H, 또는 D로 치환한 것일 수 있다. EC 1.14.15.1는 (+)-캄포르+환원된 푸티다레독신 +O2 ⇔ (+)-엑소-5-히드록시캄포르+산화된 푸티다레독신 + H2O의 반응을 촉매하는 효소를 나타낼 수 있다. 상기 변이체는 서열번호 6의 아미노산을 갖는 P450CAM에서 F351을 다른 아미노산, 예를 들면, 19개 천연 아미노산으로 치환한 것일 수 있다. 상기 변이체는 서열번호 6의 아미노산을 갖는 P450CAM은 F351Y, F351T, F351N, F351Q, F351H, 또는 F351D 치환을 갖는 것일 수 있다. 상기 P450CAM 변이체를 코딩하는 유전자는 서열번호 6의 아미노산을 갖는 P450CAM에서 F351Y, F351T, F351N, F351Q, F351H, 또는 F351D 치환을 갖는 변이체를 코딩하는 유전자일 수 있다. 이 유전자는 서열번호 51, 52, 53, 54, 55, 또는 56의 뉴클레오티드 서열을 갖는 것일 수 있다. 상기 미생물은 CamA를 코딩하는 유전자 및 CamB를 코딩하는 유전자를 더 포함할 수 있다.In the recombinant microorganism, the cytochrome P450 protein may belong to EC 1.14.15.1 or EC 1.14.14.1. The cytochrome P450 protein may be P450Cam or P450 BM3 . P450Cam may be derived from Pseudomonas putida PpG786. P450 BM3 may be derived from Bacillus megaterium (ATCC 14581). The cytochrome P450 CAM protein can constitute a bacterial CYP101 system in the form of a complex of CamA, CamB, and CamC. CamA can be a FAD-containing reductase. CamA may be NADH or NADPH dependent. The CamA may belong to EC 1.18.1.5. CamB may be ferredoxin of the [2Fe2S] type. CamC may also be referred to as P450Cam (CYP101) or P450Cam, including cytochrome 450 and belonging to EC 1.14.15.1. CamA, CamB, and CamC may be those having the amino acid sequences of SEQ ID NOS: 2, 4, and 6, respectively. The genes encoding CamA, CamB, and CamC may be those having the nucleotide sequences of SEQ ID NOS: 1, 3, and 5, respectively. The mutant may have an amino acid alteration at the amino acid residue corresponding to the F351 position of the amino acid sequence of SEQ ID NO: 6 and have an activity belonging to EC 1.14.15.1. The amino acid modification may be such that the amino acid residue corresponding to the F351 position is replaced with another amino acid, for example, 19 natural amino acids. The mutant may be one obtained by substituting Y, T, N, Q, H, or D for the amino acid residue corresponding to the F351 position in SEQ ID NO: EC 1.14.15.1 represents an enzyme that catalyzes the reaction of (+) - camphor + reduced putidaradexine + O2 ⇔ (+) - exo-5-hydroxycamphor + oxidized putidaradoxine + H 2 O . The mutant may be F351 substituted with another amino acid, for example, 19 natural amino acids in P450CAM having the amino acid sequence of SEQ ID NO: 6. The mutant may be one having an amino acid sequence of SEQ ID NO: 6 with a substitution of F351Y, F351T, F351N, F351Q, F351H, or F351D. The gene encoding the P450CAM mutant may be a gene encoding a mutant having F351Y, F351T, F351N, F351Q, F351H, or F351D substitution in P450CAM having the amino acid sequence of SEQ ID NO: 6. This gene may be one having the nucleotide sequence of SEQ ID NO: 51, 52, 53, 54, 55, or 56. The microorganism may further comprise a gene encoding CamA and a gene encoding CamB.
P450BM3은 서열번호 8의 아미노산 서열을 갖는 폴리펩티드일 수 있다. P450BM3를 코딩하는 유전자는 서열번호 7의 뉴클레오티드 서열의 갖는 것일 수 있다. 상기 변이체는 서열번호 8의 아미노산 서열의 N320 위치에 해당하는 아미노산 잔기에서 아미노산 변경(alteration)을 갖고 EC 1.14.14.1에 속하는 활성을 갖는 것일 수 있다. 상기 아미노산 변경은 N320 위치에 해당하는 아미노산 잔기를 다른 아미노산, 예를 들면, 19개 천연 아미노산으로 치환한 것일 수 있다. 상기 변이체는 서열번호 8의 N320 위치에 해당하는 아미노산 잔기를 W, F, G, P, S, 또는 E로 치환한 것일 수 있다. 상기 변이체는 서열번호 8의 아미노산을 갖는 P450BM3에서 N320을 다른 아미노산, 예를 들면, 19개 천연 아미노산으로 치환한 것일 수 있다. 상기 변이체는 서열번호 8의 아미노산을 갖는 P450BM3에서 N320W, N320F, N320G, N320P, N320S, 또는 N320E 치환을 갖는 것일 수 있다. 상기 P450BM3 변이체를 코딩하는 유전자는 서열번호 8의 아미노산을 갖는 P450BM3에서 N320W, N320F, N320G, N320P, N320S, 또는 N320E 치환을 갖는 변이체를 코딩하는 유전자일 수 있다. 이 유전자는 서열번호 45, 46, 47, 48, 49, 또는 50의 뉴클레오티드 서열을 갖는 것일 수 있다. "EC 1.14.14.1"란 하기 반응을 촉매하는 것일 수 있다.P450 BM3 may be a polypeptide having the amino acid sequence of SEQ ID NO: 8. The gene encoding P450 BM3 may be the one having the nucleotide sequence of SEQ ID NO: 7. The mutant may have an amino acid alteration at the amino acid residue corresponding to the N320 position of the amino acid sequence of SEQ ID NO: 8 and have an activity belonging to EC 1.14.14.1. The amino acid modification may be such that the amino acid residue corresponding to the N320 position is replaced with another amino acid, for example, 19 natural amino acids. The mutant may be one obtained by substituting the amino acid residue corresponding to the N320 position of SEQ ID NO: 8 with W, F, G, P, S, or E. The mutant may be one in which N320 is replaced with another amino acid, for example, 19 natural amino acids in P450BM3 having the amino acid sequence of SEQ ID NO: 8. The mutant may be one having N320W, N320F, N320G, N320P, N320S, or N320E substitution in P450BM3 with the amino acid sequence of SEQ ID NO: The gene encoding the P450BM3 mutant may be a gene encoding a mutant having N320W, N320F, N320G, N320P, N320S, or N320E substitution in P450BM3 having the amino acid sequence of SEQ ID NO: This gene may be one having the nucleotide sequence of SEQ ID NO: 45, 46, 47, 48, 49, or 50. "EC 1.14.14.1" may be one which catalyzes the following reaction.
RH+ 환원된 NADPH---헤모단백질 레덕타제(hemoprotein reductase)+O2=ROH+산화된 NADPH---헤모단백질 레덕타제+H2ORH + Reduced NADPH --- hemoprotein reductase + O 2 = ROH + oxidized NADPH --- hemoprotein reductase + H 2 O
본 명세서에 사용된 용어 "해당하는(corresponding)"은, BLAST 페어와이즈 정렬, 또는 잘 알려진 리프만-피어슨 단백질 정렬(Lipman-Pearson Protein Alignment) 프로그램과 같은 당업계에서 수용될 수 있는(art-acceptable) 단백질 정렬 프로그램(protein alignment program)을 하기 정렬 파라미터을 가지고 이용하여 관심 대상 단백질과 표준 단백질의 아미노산 서열(예, 서열번호 6 또는 서열번호 8)을 정렬하였을 때, 표준 단백질의 언급된 위치(예, 서열번호 6의 F351 위치 또는 서열번호 8의 N320 위치)와 정렬하는 관심 대상 단백질의 아미노산 위치를 나타낸다. 표준서열이 저장된 데이터베이스(DB)는 NCBI의 RefSeq non-redundant proteins일 수 있다. 서열의 정렬에 사용되는 파라미터는 다음과 같을 수 있다: Ktuple=2, Gap Penalty=4, 및 Gap length penalty=12. 이때는 상기 "해당하는" 서열에 포함되는 범위는 E-value 0.00001 및 H-value 0.001의 범위 속하는 것일 수 있다.The term "corresponding ", as used herein, refers to an art-acceptable protein, such as a BLAST pairwise alignment, or a well-known Lipman-Pearson Protein Alignment program, When a protein alignment program is used with the following alignment parameters to align the amino acid sequence (e.g., SEQ ID NO: 6 or SEQ ID NO: 8) of a standard protein with a protein of interest, The F351 position of SEQ ID NO: 6 or the N320 position of SEQ ID NO: 8). The database (DB) in which the standard sequence is stored may be the RefSeq non-redundant proteins of NCBI. The parameters used for alignment of the sequences may be as follows: Ktuple = 2, Gap Penalty = 4, and Gap length penalty = 12. In this case, the range included in the "corresponding" sequence may be within the range of E-value 0.00001 and H-value 0.001.
상기 정렬 조건에 따라 얻어진 서열번호 6의 아미노산 서열의 F351 위치에 해당하는 아미노산 잔기를 갖는 단백질 (이하,이들을 "P450CAM의 호모로그(homolog)"라 한다)의 예는 아래 표 1, 2, 및 3과 같다. Examples of proteins having an amino acid residue corresponding to the F351 position of the amino acid sequence of SEQ ID NO: 6 (hereinafter referred to as "homolog of P450CAM ") obtained according to the above alignment conditions are shown in Tables 1, 2 and 3 Respectively.
또한, 상기 정렬 조건에 따라 얻어진 서열번호 8의 아미노산 서열의 N320 위치에 해당하는 아미노산 잔기를 갖는 단백질 (이하,이들을 "P450BM3의 호모로그(homolog)"라 한다)의 예는 아래 표 4, 및 5와 같다. Examples of proteins having an amino acid residue corresponding to the N320 position of the amino acid sequence of SEQ ID NO: 8 (hereinafter referred to as "homologue of P450BM3 ") obtained according to the above alignment conditions are shown in Tables 4 and 5 .
상기 재조합 미생물은 박테리아 또는 진균(fungi)일 수 있다. 상기 박테리아는 그람 양성 또는 그람 음성 박테리아일 수 있다. 상기 그람 음성 박테리아는 엔테로박테리아세(Enterobacteriaceae) 패밀리에 속하는 것일 수 있다. 상기 그람 음성 박테리아는 에스케리키아(Escherichia) 속, 살모넬라(Samonella) 속, 잔토모나스(Xanthomonas) 속 또는 슈도모나스(Pseudomonas) 속에 속하는 것일 수 있다. 상기 에스케리키아 속 미생물은 대장균일 수 있다. 잔토박터 속 미생물은 잔토박터 아우토트로피쿠스를 포함하는 것일 수 있다. 그람 양성 박테리아는 코리네박테리움(Corynebacterium) 속, 또는 바실러스(Bacillus) 속에 속하는 것일 수 있다. The recombinant microorganism may be bacteria or fungi. The bacteria may be gram-positive or gram-negative bacteria. The gram negative bacterium may belong to the Enterobacteriaceae family. The gram negative bacterium may be one belonging to the genus Escherichia, the genus Samonella, the genus Xanthomonas or the genus Pseudomonas. The Escherichia genus microorganism may be E. coli. The microorganism in Zanthomobacter may be Zantho bacteriototrophicus. Gram-positive bacteria may be of the genus Corynebacterium, or of the genus Bacillus.
상기 재조합 미생물은 NADPH를 생성하는 반응을 촉매하는 효소로서, 상기 반응에 의하여 세포 내의 NADPH의 수준을 증가시키는 효소의 수준을 증가시키는 유전적 변형 (genetic modification)을 갖는 것일 수 있다. 상기 유전적 변형은 내재적 유전자의 증폭, 및 외래 유전자의 도입을 포함한다. 상기 효소는 EC 1.1.1.49에 속하는 단백질일 수 있다. 상기 효소는 글루코스-6-포스페이트 데히드로게나제(G6PD 또는 G6PDH)일 수 있다. 상기 재조합 미생물은 G6PDH를 코딩하는 외래 유전자를 더 포함하는 것일 수 있다. The recombinant microorganism may be an enzyme that catalyzes the reaction to produce NADPH, and has a genetic modification that increases the level of the enzyme that increases the level of NADPH in the cell by the reaction. The genetic modification includes amplification of an endogenous gene and introduction of a foreign gene. The enzyme may be a protein belonging to EC 1.1.1.49. The enzyme may be a glucose-6-phosphate dehydrogenase (G6PD or G6PDH). The recombinant microorganism may further comprise a foreign gene encoding G6PDH.
다른 양상은 시료 중 CHnF4-n (n은 0 내지 3의 정수)으로 표시되는 플루오로메탄을 제거하는데 사용하기 위한 재조합 P450 단백질 또는 그의 변이체를 포함하는 조성물을 제공한다. 달리 언급이 없으면, 상기 재조합 P450 단백질 또는 그의 변이체는 상기한 바와 같다.Another aspect provides a composition comprising a recombinant P450 protein or variant thereof for use in removing fluoromethane represented by CHnF4-n (n is an integer from 0 to 3) in a sample. Unless otherwise stated, the recombinant P450 protein or its variants are as described above.
상기 조성물에 있어서, CHnF4-n으로 표시되는 플루오로메탄은 예를 들면, CHF3, CH2F2, CH3F, 또는 CF4일 수 있다. 용어 "제거"는 시료 중의 플루오로메탄의 농도를 감소시키는 것을 포함한다. 상기 감소는 완전하게 제거하는 것을 포함한다. In the above compositions, fluoro-n represented by CHnF4 methane, for example, CHF 3, CH 2 F 2, may be CH 3 F, or CF 4. The term "removal" includes reducing the concentration of fluoromethane in the sample. The reduction includes removing completely.
상기 조성물에 있어서, 상기 재조합 P450 단백질 또는 그의 변이체는 발현된 박테리아 시토크롬 P450 단백질을 포함하고 있는 재조합 미생물, 그 파쇄물(lysate), 그 파쇄물의 수용성 물질 분획, 또는 재조합 P450 단백질의 형태일 수 있다. 박테리아 시토크롬 P450 또는 그의 변이체는 외래 유전자로부터 발현된 것일 수 있다. In such a composition, the recombinant P450 protein or variant thereof may be in the form of a recombinant microorganism, a lysate thereof, a water-soluble substance fraction of the lysate thereof, or a recombinant P450 protein, which contains the expressed bacterial cytochrome P450 protein. The bacterial cytochrome P450 or variant thereof may be one expressed from a foreign gene.
상기 재조합 미생물은 박테리아 또는 진균(fungi)일 수 있다. 상기 박테리아는 그람 양성 또는 그람 음성 박테리아일 수 있다. 상기 그람 음성 박테리아는 엔테로박테리아세(Enterobacteriaceae) 패밀리에 속하는 것일 수 있다. 상기 그람 음성 박테리아는 에스케리키아(Escherichia) 속, 살모넬라(Samonella) 속, 잔토모나스(Xanthomonas) 속 또는 슈도모나스(Pseudomonas) 속에 속하는 것일 수 있다. 상기 에스케리키아 속 미생물은 대장균일 수 있다. 잔토박터 속 미생물은 잔토박터 아우토트로피쿠스를 포함하는 것일 수 있다. 그람 양성 박테리아는 코리네박테리움(Corynebacterium) 속, 또는 바실러스(Bacillus) 속에 속하는 것일 수 있다. The recombinant microorganism may be bacteria or fungi. The bacteria may be gram-positive or gram-negative bacteria. The gram negative bacterium may belong to the Enterobacteriaceae family. The gram negative bacterium may be one belonging to the genus Escherichia, the genus Samonella, the genus Xanthomonas or the genus Pseudomonas. The Escherichia genus microorganism may be E. coli. The microorganism in Zanthomobacter may be Zantho bacteriototrophicus. Gram-positive bacteria may be of the genus Corynebacterium, or of the genus Bacillus.
상기 조성물에 있어서, 상기 제거는 플루오로메탄의 C-F의 결합을 절단하거나, 플루오로메탄을 다른 물질로 전환하거나, 세포 내에 축적하여, 플루오로화 메탄의 농도를 줄이는 것을 포함하는 것일 수 있다. 상기 전환은 플루오로화 메탄에 히드록실기와 같은 친수성 기를 도입하는 것, 또는 탄소-탄소 이중 결합 또는 탄소-탄소 삼중결합을 도입하는 것일 수 있다. In such a composition, the removal may include cutting the binding of C-F of fluoromethane, converting fluoromethane to another material, or accumulating it in the cell to reduce the concentration of fluoromethane. The conversion may be by introducing a hydrophilic group such as a hydroxyl group into the fluorinated methane, or introducing a carbon-carbon double bond or a carbon-carbon triple bond.
상기 조성물에 있어서, 상기 시료는 액체 또는 기체 상태일 수 있다. 상기 시료는 공장 폐수 또는 폐기체일 수 있다. In the composition, the sample may be in a liquid or gaseous state. The sample may be factory waste water or waste.
다른 양상은 재조합 P450 단백질 또는 그의 변이체를 CHnF4-n (n은 0 내지 3의 정수)으로 표시되는 플루오로메탄 함유 시료와 접촉시켜 시료 중 플루오로메탄의 농도를 감소시키는 단계;를 포함하는, 시료 중 플루오로메탄의 농도를 감소시키는 방법을 제공한다. 달리 언급이 없으면, 상기 재조합 P450 단백질 또는 그의 변이체는 상기한 바와 같다.Another aspect includes contacting the recombinant P450 protein or variant thereof with a fluoromethane-containing sample represented by CHnF4-n, where n is an integer from 0 to 3, to reduce the concentration of fluoromethane in the sample. Lt; RTI ID = 0.0 > fluoromethane. ≪ / RTI > Unless otherwise stated, the recombinant P450 protein or its variants are as described above.
상기 방법에 있어서, 상기 접촉은 밀폐된 용기 중에서 수행되는 것일 수 있다. 상기 접촉은 기체 시료와 재조합 P450 단백질 또는 그의 변이체 함유 액체를 접촉시키는 기체-액체 접촉일 수 있다. 또한, 상기 접촉은 액체 시료와 재조합 P450 단백질 또는 그의 변이체 함유 액체를 접촉시키는 액체-액체 접촉일 수 있다. 상기 액체-액체 접촉은 혼합하는 것을 포함한다. In the above method, the contact may be performed in an airtight container. The contacting may be a gas-liquid contact contacting the gaseous sample with a liquid containing the recombinant P450 protein or variant thereof. In addition, the contacting may be a liquid-liquid contact contacting the liquid sample with a liquid containing the recombinant P450 protein or its variants. The liquid-liquid contact includes mixing.
상기 방법에 있어서, 상기 재조합 P450 단백질 또는 그의 변이체는 발현된 박테리아 시토크롬 P450 단백질을 포함하고 있는 재조합 미생물, 그 파쇄물(lysate), 그 파쇄물의 수용성 물질 분획, 또는 재조합 P450 단백질의 형태인 것일 수 있다.In this method, the recombinant P450 protein or a variant thereof may be in the form of a recombinant microorganism, a lysate thereof, a water-soluble substance fraction of the lysate thereof, or a recombinant P450 protein, which contains the expressed bacterial cytochrome P450 protein.
상기 방법에 있어서, 상기 접촉은 밀폐된 용기 중에서 재조합 미생물이 생존가능한 조건에서 수행되는 것일 수 있다. 상기 생존가능한 조건은 재조합 미생물이 증식가능한 조건 또는 휴지 상태(resting sate)로 있게 하는 조건일 수 있다. 이 경우, 상기 접촉은 플루오로메탄의 존재하에서 미생물을 배양하는 것일 수 있다. 상기 배양은 호기 또는 혐기 조건에서 수행되는 것일 수 있다. In the above method, the contacting may be carried out under conditions in which the recombinant microorganism can survive in the closed container. The viable condition may be a condition allowing the recombinant microorganism to be in a proliferative state or a resting state. In this case, the contacting may be to culture the microorganism in the presence of fluoromethane. The culture may be carried out under aerobic or anaerobic conditions.
상기 재조합 미생물은 박테리아 또는 진균(fungi)일 수 있다. 상기 박테리아는 그람 양성 또는 그람 음성 박테리아일 수 있다. 상기 그람 음성 박테리아는 엔테로박테리아세(Enterobacteriaceae) 패밀리에 속하는 것일 수 있다. 상기 그람 음성 박테리아는 에스케리키아(Escherichia) 속, 살모넬라(Samonella) 속, 잔토모나스(Xanthomonas) 속 또는 슈도모나스(Pseudomonas) 속에 속하는 것일 수 있다. 상기 에스케리키아 속 미생물은 대장균일 수 있다. 잔토박터 속 미생물은 잔토박터 아우토트로피쿠스를 포함하는 것일 수 있다. 그람 양성 박테리아는 코리네박테리움(Corynebacterium) 속, 또는 바실러스(Bacillus) 속에 속하는 것일 수 있다. The recombinant microorganism may be bacteria or fungi. The bacteria may be gram-positive or gram-negative bacteria. The gram negative bacterium may belong to the Enterobacteriaceae family. The gram negative bacterium may be one belonging to the genus Escherichia, the genus Samonella, the genus Xanthomonas or the genus Pseudomonas. The Escherichia genus microorganism may be E. coli. The microorganism in Zanthomobacter may be Zantho bacteriototrophicus. Gram-positive bacteria may be of the genus Corynebacterium, or of the genus Bacillus.
상기 방법에 있어서, 상기 시료는 액체 또는 기체 상태일 수 있다. 상기 시료는 공장 폐수 또는 폐기체일 수 있다. In the above method, the sample may be in a liquid or gaseous state. The sample may be factory waste water or waste.
다른 양상은 박테리아 시토크롬 P450 단백질의 변이체 및 그를 코딩하는 폴리뉴클레오티드를 제공한다. Another aspect provides variants of the bacterial cytochrome P450 protein and polynucleotides encoding the same.
상기 변이체는 서열번호 6의 아미노산 서열의 F351 위치에 해당하는 아미노산 잔기에서 아미노산 변경(alteration)을 갖고 EC 1.14.15.1에 속하는 활성을 갖는 것일 수 있다. 상기 변이체는 서열번호 6의 아미노산을 갖는 P450CAM의 camC에서 F351을 다른 아미노산, 예를 들면, 19개 천연 아미노산으로 치환한 것일 수 있다. 상기 변이체는 서열번호 6의 아미노산을 갖는 P450CAM의 camC에서 F351Y, F351T, F351N, F351Q, F351H, 또는 F351D 치환을 갖는 것일 수 있다. 상기 변이체는 서열번호 8의 아미노산 서열의 N320 위치에 해당하는 아미노산 잔기에서 아미노산 변경(alteration)을 갖고 EC 1.14.14.1에 속하는 것일 수 있다. 상기 변이체는 서열번호 8의 아미노산을 갖는 P450BM3에서 N320을 다른 아미노산, 예를 들면, 19개 천연 아미노산으로 치환한 것일 수 있다. 상기 변이체는 서열번호 8의 아미노산을 갖는 P450BM3에서 N320W, N320F,N320G,N320P,N320S,또는 N320E 치환을 갖는 것일 수 있다. The mutant may have an amino acid alteration at the amino acid residue corresponding to the F351 position of the amino acid sequence of SEQ ID NO: 6 and have an activity belonging to EC 1.14.15.1. The mutant may be F351 substituted with another amino acid, for example, 19 natural amino acids, in the camC of P450CAM having the amino acid sequence of SEQ ID NO: 6. The mutant may be one having a F351Y, F351T, F351N, F351Q, F351H, or F351D substitution in the camC of P450CAM having the amino acid sequence of SEQ ID NO: 6. The variant may have an alteration in the amino acid residue corresponding to the N320 position of the amino acid sequence of SEQ ID NO: 8 and belong to EC 1.14.14.1. The mutant may be one in which N320 is replaced with another amino acid, for example, 19 natural amino acids in P450BM3 having the amino acid sequence of SEQ ID NO: 8. The mutant may be one having N320W, N320F, N320G, N320P, N320S, or N320E substitution in P450BM3 with the amino acid sequence of SEQ ID NO:
상기 변이체를 코딩하는 폴리뉴클레오티드는 벡터 중에 포함된 것일 수 있다. 상기 벡터는 폴리뉴클레오티드를 미생물 내로 도입하는데 사용될 수 있는 것이면 어느 것이나 포함된다. 상기 벡터는 플라스미드 또는 바이러스 벡터일 수 있다.The polynucleotide encoding the mutant may be contained in a vector. Such vectors include any that can be used to introduce polynucleotides into microorganisms. The vector may be a plasmid or a viral vector.
일 양상에 따른 재조합 미생물은 시료 중 CHnF4-n으로 표시되는 플루오로메탄을 제거하는데 사용될 수 있다. Recombinant microorganisms according to one aspect can be used to remove fluoromethane represented by CHnF4-n in the sample.
일 양상에 따른 재조합 P450 단백질의 변이체는 시료 중 플루오로메탄을 제거하는데 사용될 수 있다. Variants of the recombinant P450 protein according to one embodiment can be used to remove fluoromethane in the sample.
다른 양상에 따른 재조합 P450 단백질 또는 그의 변이체를 포함하는 조성물은 시료 중 플루오로메탄을 제거하는데 사용될 수 있다.A composition comprising a recombinant P450 protein or variant thereof according to another aspect can be used to remove fluoromethane in the sample.
다른 양상에 따른 시료 중 플루오로메탄의 농도를 감소시키는 방법은 시료 중 플루오로메탄의 농도를 효율적으로 감소시킬 수 있다.A method of reducing the concentration of fluoromethane in a sample according to another aspect may effectively reduce the concentration of fluoromethane in the sample.
도 1은 pETDuet-camC-camAB 벡터의 벡터 지도를 나타낸다.
도 2는 CHF3 함유 기체와 접촉된 배지 중에서 대장균 BL21/pETDuet-camC-camAB를 배양한 경우, 헤드스페이스 중의 CHF3의 시간에 따른 변화를 나타낸다.
도 3a는 CHCl3 함유 배지 중에서 대장균 BL21/pETDuet-camC-camAB를 배양한 경우, 헤드스페이스 중의 CHCl3의 시간에 따른 변화를 나타낸다.
도 3b는 CF4 함유 기체와 접촉된 배지 중에서 대장균 BL21/pETDuet-camC-camAB를 배양한 경우, 헤드스페이스 중의 CF4의 시간에 따른 변화를 나타낸다.
도 3c는 돌연변이 camC 유전자가 도입된 대장균 BL21/pETDuet-camCmt-camAB의 시간에 따른 시료 중 CF4 정도를 나타낸다.
도 4는 pET28a-P450BM3 벡터의 벡터 지도를 나타낸다.
도 5는 pACYCDuet-zwf 벡터의 벡터 지도를 나타낸다.
도 6은 CHF3 함유 기체와 접촉된 용액 중에서 재조합 대장균 BL21/pET28a-P450BM3 또는 재조합 대장균 BL21/pET28a-P450BM3+pACYCDuet-zwf를 배양한 경우, 헤드스페이스 중의 CHF3의 시간에 따른 변화를 나타낸다.
도 7은 CHCl3 함유 용액 중에서 대장균 BL21/pET28a-P450BM3를 배양한 경우, 헤드스페이스 중의 CHCl3의 시간에 따른 변화를 나타낸다.
도 8은 CF4 함유 기체와 접촉된 배지 중에서 대장균 BL21/pET28a-P450BM3 균주를 7일 동안 배양한 경우, 헤드스페이스 중의 CF4의 시간에 따른 변화를 나타낸다.
도 9는 돌연변이 P450BM3 유전자가 도입된 대장균 BL21/pET28a-P450BM3mt의 시간에 따른 시료 중 CF4 정도를 나타낸다. Figure 1 shows a vector map of the pETDuet-camC-camAB vector.
Fig. 2 shows changes with time in CHF 3 in the head space when Escherichia coli BL21 / pETDuet-camC-camAB was cultured in a medium in contact with CHF 3 -containing gas.
Figure 3a is when a culture of E. coli BL21 / pETDuet-camC-camAB from 3 CHCl containing medium, shows a change with time of the CHCl 3 in the head space.
FIG. 3B shows the change with time of CF 4 in the head space when Escherichia coli BL21 / pETDuet-camC-camAB was cultured in a medium in contact with CF 4 -containing gas.
FIG. 3C shows the degree of CF 4 in the sample with time of the E. coli BL21 / pETDuet-camCmt-camAB into which the mutant camC gene was introduced.
FIG. 4 is a graph showing the effect of the pET28a-P450 BM3 Represents a vector map of a vector.
Figure 5 shows the pACYCDuet-zwf Represents a vector map of a vector.
6 shows a change with time of the CHF 3 containing case of culturing the solution from recombinant E. coli BL21 / pET28a-P450 BM3 or recombinant E. coli BL21 / pET28a-P450 BM3 + pACYCDuet-zwf contact with the gas, the headspace of the CHF 3 .
7 is a case of culturing Escherichia coli BL21 / pET28a-P450 BM3 in CHCl 3 containing solution, it shows the variation with time of the CHCl 3 in the head space.
8 is CF 4, if contained in the medium in contact with a base in the E. coli BL21 / pET28a-P450 BM3 strains were cultured for 7 days, it shows a change with time of the CF 4 in the head space.
FIG. 9 shows the degree of CF 4 in the sample with time of the E. coli BL21 / pET28a-P450BM3mt into which the mutant P450BM3 gene was introduced.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.
실시예Example 1: One: P450P450 CAMCAM 유전자를 발현하는 재조합 대장균 및 그를 이용한 시료 중 할로메탄의 제거 Removal of halomethane in a recombinant E. coli expressing a gene and a sample using the recombinant E. coli
본 실시예에서는 P450CAM 유전자를 발현하는 재조합 대장균을 제작하고, 그를 이용하여 시료 중 할로메탄, 즉, CHF3, CF4 또는 CHCl3의 제거 효과를 확인하였다.In this Example, a recombinant Escherichia coli expressing P450 CAM gene was prepared, and the removal effect of halomethane, i.e., CHF 3 , CF 4 or CHCl 3 , in the sample was confirmed using the recombinant E. coli.
(1) (One) P450P450 CAMCAM 유전자를 발현하는 재조합 대장균의 제작 Production of recombinant Escherichia coli expressing the gene
P450CAM 유전자는 Pseudomonas putida PpG786 균주의 CAM 플라스미드로부터 camC, camA, 및 camB 유전자를 증폭하였다. camC, camA, 및 camB 유전자는 각각 서열번호 5, 서열번호 1, 및 서열번호 3의 뉴클레오티드를 갖고 있으며 이들 유전자는 각각 서열번호 6, 서열번호 2, 및 서열번호 4의 아미노산 서열을 코딩한다. 구체적으로, P. putida PpG786 균주 DSM 7162를 LB 배지 중에서 30℃에서 230 rpm으로 교반하면서 밤새 배양한 후, 총 DNA 추출 키트(total DNA extraction kit)(Invitrogen Biotechnology)를 사용한 방법으로 CAM 플라스미드를 분리하고, 이 CAM 플라스미드를 주형으로 하고, 서열번호 11 및 12의 뉴클레오티드 서열의 프라이머 세트; 서열번호 13 및 14의 뉴클레오티드 서열의 프라이머 세트; 및 서열번호 15 및 16의 뉴클레오티드 서열의 프라이머 세트를 각각 프라이머로 하여 PCR을 수행하여, camA, camB, 및 camC 유전자를 각각 증폭하여 얻었다. The P450 CAM gene amplified the camC, camA, and camB genes from the CAM plasmid of Pseudomonas putida PpG786. The camC, camA, and camB genes have the nucleotides of SEQ ID NO: 5, SEQ ID NO: 1 and SEQ ID NO: 3, respectively, and these genes encode the amino acid sequences SEQ ID NO: 6, SEQ ID NO: 2 and SEQ ID NO: 4, respectively. Specifically, the P. putida PpG786 strain DSM 7162 was cultured in LB medium at 30 ° C with stirring at 230 rpm overnight, and the CAM plasmid was isolated by a total DNA extraction kit (Invitrogen Biotechnology) , A primer set of the nucleotide sequences of SEQ ID NOS: 11 and 12, using this CAM plasmid as a template; A primer set of the nucleotide sequences of SEQ ID NOS: 13 and 14; And a primer set of the nucleotide sequences of SEQ ID NOS: 15 and 16, respectively, to obtain amplified camA, camB, and camC genes, respectively.
서열번호 11 및 12의 뉴클레오티드 서열의 프라이머 세트를 사용한 PCR에 의하여 증폭된 camC 유전자는 제한효소 NcoI 및 HindII를 사용하여 절단된 pETDuet (Novagen, Cat. No.71146-3)와 InFusion Cloning Kit (Clontech Laboratories, Inc.)를 통해 연결하여 pETDuet-camC 벡터를 제조하였다. 또한, 제조된 pETDuet-camC 벡터를 제한효소 NdeI 및 XhoI를 사용하여 절단하고, 상기 증폭된 camA 유전자와 상기 증폭된 camB 유전자 단편과 InFusion Cloning Kit를 통해 연결하여 pETDuet-camC-camAB 벡터를 제조하였다. The camC gene amplified by PCR using the primer set of the nucleotide sequences of SEQ ID NOS: 11 and 12 was amplified by PCR using pETDuet (Novagen, Cat. No. 71146-3) and InFusion Cloning Kit (Clontech Laboratories , Inc.) to prepare a pETDuet-camC vector. The pETDuet-camC vector was digested with restriction enzymes NdeI and XhoI, and the amplified camA gene was ligated with the amplified camB gene fragment through an InFusion Cloning Kit to prepare a pETDuet-camC-camAB vector.
도 1은 pETDuet-camC-camAB 벡터의 벡터 지도를 나타낸다. Figure 1 shows a vector map of the pETDuet-camC-camAB vector.
다음으로, 제작된 pETDuet-camC-camAB 벡터를 대장균 BL21 균주에 열충격 (heat shock) 방법에 의하여 도입하고, 암피실린 100㎍/mL이 포함된 LB 평판 배지 중에서 배양하여, 암피실린 내성을 보이는 균주를 선별하였다. 최종적으로 선별된 균주를 재조합 대장균 BL21/pETDuet-camC-camAB로 명명하였다. Next, the prepared pETDuet-camC-camAB vector was introduced into a strain of Escherichia coli BL21 by heat shock method and cultured in an LB plate medium containing 100 μg / mL of ampicillin to select an ampicillin resistant strain . Finally, the selected strains were named as recombinant E. coli BL21 / pETDuet-camC-camAB.
(2) (2) P450P450 CAMCAM 유전자를 발현하는 재조합 대장균에 의한 시료 중 In a sample by recombinant E. coli expressing the gene CHFCHF 33 또는 CHCl Or CHCl 33 제거 효과 Removal effect
본 절에서는 (1)절에서 제작된 P450CAM 유전자가 도입된 대장균 BL21/pETDuet-camC-camAB 균주가 시료 중 CHF3 또는 CHCl3를 제거하는데 미치는 효과를 확인하였다. 구체적으로, 대장균 BL21/pETDuet-camC-camAB를 TB 배지에서 30℃에서 230rpm으로 교반하면서 배양하여, OD600=0.5 정도에서 IPTG 0.5mM를 첨가한 후, 25℃에서 230rpm으로 교반하면서 밤새 배양하였다. 이 세포를 회수하고 OD600=2.5의 세포 농도가 되도록 4g/L 글루코스가 보충된 M9 배지 중에 현탁하였다. 이 세포액 10ml를 60ml 혈청병에 첨가하고 밀봉하였다. 상기 TB (Terrific broth) 배지는 증류수 1L 당 트립톤(tryptone) 12 g, 효모 추출물(yeast extract) 24 g, 글리세롤(glycerol) 5 g, 및 포스페이트 버퍼(phosphate buffer) 89mM의 성분을 포함하였다. 또한, 상기 M9 배지는 증류수 1L 당 Na2HPO4 6g, KH2PO4 3g, NaCl 0.5g, 및 NH4Cl 1g의 성분을 포함하였다. In this section, the effect of the E. coli BL21 / pETDuet-camC-camAB strain introduced with the P450 CAM gene prepared in (1) on the removal of CHF 3 or CHCl 3 in the sample was confirmed. Specifically, Escherichia coli BL21 / pETDuet-camC-camAB was cultured in TB medium at 30 ° C with stirring at 230 rpm, 0.5 mM IPTG was added at OD 600 = 0.5, and the mixture was incubated overnight at 25 ° C with stirring at 230 rpm. The cells were harvested and suspended in M9 medium supplemented with 4 g / L glucose to a cell concentration of OD 600 = 2.5. 10 ml of this cell solution was added to a 60 ml serum bottle and sealed. The TB (Terrific broth) medium contained 12 g of tryptone per liter of distilled water, 24 g of yeast extract, 5 g of glycerol, and 89 mM of phosphate buffer. In addition, the M9 medium contained components of 6 g of Na 2 HPO 4 , 3 g of KH 2 PO 4 , 0.5 g of NaCl, and 1 g of NH 4 Cl per liter of distilled water.
다음으로, 기체 상의 CHF3를 헤드스페이스 대비 200ppm이 되도록 주사기를 사용하여 혈청병의 캡의 탄성 재질(rubber stopper)을 통하여 주입하였다. 또한, 액체 상의 CHCl3를 배지 중 0.02mM이 되도록 주사기를 사용하여 혈청병의 캡의 탄성 재질을 통하여 주입하였다. 그 후, 상기 혈청병을 30℃에서 200rpm으로 교반하면서 18 시간 내지 152 시간 동안 배양하였다. 실험은 3배수 (triplicate)로 하였다. Next, CHF 3 in the gaseous phase was injected through a rubber stopper of the cap of the sera bottle using a syringe so as to be 200 ppm relative to the head space. In addition, CHCl 3 in the liquid phase was injected through the elastic material of the cap of the serum bottle using a syringe to 0.02 mM in the medium. The serum bottle was then incubated for 18 to 152 hours at 30 DEG C with stirring at 200 rpm. The experiment was conducted in triplicate.
배양 중 일정한 시간 간격으로 혈청병 중 배지가 포함되지 않은 헤드스페이스 중의 기체를 1.0ml 헤드스페이스용 주사기를 사용하여 0.5ml를 채취하여, GC(Agilent 7890, Palo Alto, CA, USA)에 주입하였다. 주입된 CHF3 또는 CHCl3는 CP-PoraBOND Q 칼럼(25m length, 0.32mm i.d., 5um film thickness, Agilent)을 통해 분리되었고, 질량 분석(mass spectrometry)(Agilent 5973, Palo Alto, CA, USA)를 통해 CHF3 또는 CHCl3 농도 변화를 분석하였다. 운반 기체는 헬륨을 사용하였고 1.5ml/min 속도로 칼럼에 흘려 보냈다. 기체 크로마토그라피(GC) 조건은 주입구 온도 250℃, 초기 온도 40℃에 2분간 유지하고, 290℃까지 20℃/min으로 승온시켰다. 질량 분석 조건은 70eV의 이온화 에너지, interface 온도 280℃, ion source 온도 230℃, 및 quadrupole 온도 150℃였다.0.5 ml of the gas in the headspace containing no medium in the sera was collected in a 1.0 ml headspace syringe and injected into GC (Agilent 7890, Palo Alto, CA, USA) at regular intervals during the incubation. The injected CHF 3 or CHCl 3 was isolated via a CP-PoraBOND Q column (25 m length, 0.32 mm id, 5 μm film thickness, Agilent) and mass spectrometry (Agilent 5973, Palo Alto, over CHF 3, or CHCl 3 The concentration changes were analyzed. The carrier gas was helium and flowed to the column at a rate of 1.5 ml / min. Gas chromatography (GC) conditions were maintained at an inlet temperature of 250 ° C and an initial temperature of 40 ° C for 2 minutes, and the temperature was increased to 290 ° C at 20 ° C / min. Mass spectrometry conditions were 70eV ionization energy, interface temperature 280 ℃, ion source temperature 230 ℃, and quadrupole temperature 150 ℃.
도 2는 CHF3 함유 기체와 접촉된 배지 중에서 대장균 BL21/pETDuet-camC-camAB를 배양한 경우, 헤드스페이스 중의 CHF3의 시간에 따른 변화를 나타낸다. Fig. 2 shows changes with time in CHF 3 in the head space when Escherichia coli BL21 / pETDuet-camC-camAB was cultured in a medium in contact with CHF 3 -containing gas.
도 3a은 CHCl3 함유 배지 중에서 대장균 BL21/pETDuet-camC-camAB를 배양한 경우, 헤드스페이스 중의 CHCl3의 시간에 따른 변화를 나타낸다. 도 2, 도 3a 및 도 3b에서, NC는 음성 대조군, 'CAM'은 대장균 BL21/pETDuet-camC-camAB를 사용한 실험을 나타낸다. 도 2에 나타낸 바와 같이, 62시간 및 152 시간 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CHF3의 농도는 각각 5.6% 및 17.3% 감소하였다. 또한, 도 3a에 나타낸 바와 같이, 18시간 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CHCl3의 농도는 14.8% 감소하였다. Figure 3a is when a culture of E. coli BL21 / pETDuet-camC-camAB from 3 CHCl containing medium, shows a change with time of the CHCl 3 in the head space. In FIGS. 2, 3A and 3B, NC represents a negative control, and 'CAM' represents an experiment using E. coli BL21 / pETDuet-camC-camAB. As shown in FIG. 2, when cultured for 62 hours and 152 hours, the concentration of CHF 3 in the head space was decreased by 5.6% and 17.3%, respectively, as compared with the control. In addition, as shown in FIG. 3A, when cultured for 18 hours, the concentration of CHCl 3 in the head space was 14.8% lower than that of the control group.
(3) (3) P450P450 CAMCAM 유전자를 발현하는 재조합 대장균의 시료 중 In a sample of recombinant E. coli expressing the gene CFCF 44 제거 효과 Removal effect
본 절에서는 (1)절에서 제작된 P450CAM 유전자가 도입된 대장균 BL21/pETDuet-camC-camAB 균주가 시료 중 CF4를 제거하는데 미치는 효과를 확인하였다. In this section (1) section is the P450 CAM Gene E. coli BL21 / pETDuet-camC-camAB strain produced in a confirmed the effect of the removal of CF 4 in the sample.
실험은 (2)절에서 CHF3에 대하여 수행된 과정과 동일하게 수행하였으나, CHF3 대신에 CF4를 사용하고, 기체 상의 CF4를 헤드스페이스 대비 1000ppm이 되도록 주사기를 사용하여 혈청병의 캡의 탄성 재질을 통하여 주입하였다. 그 후, 상기 혈청병을 30℃에서 200rpm으로 교반하면서 7일 동안 배양한 것을 제외하고는 동일하게 수행하였다. 그 결과는 도 3b에 나타낸 바와 같다.The experiment was carried out in the same manner as the procedure performed for CHF 3 in the section (2), except that CF 4 was used instead of CHF 3 , and the elasticity of cap of the serum bottle was measured using a syringe so that CF 4 on the gas phase was 1000 ppm relative to the head space And injected through the material. Thereafter, the sera were incubated for 7 days while stirring at 30 DEG C at 200 rpm. The result is as shown in Fig. 3B.
도 3b는 CF4 함유 기체와 접촉된 배지 중에서 대장균 BL21/pETDuet-camC-camAB를 배양한 경우, 헤드스페이스 중의 CF4의 시간에 따른 변화를 나타낸다. 도 3b에 나타낸 바와 같이, 7일 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CF4의 농도는 3.57% 감소하였다.FIG. 3B shows the change with time of CF 4 in the head space when Escherichia coli BL21 / pETDuet-camC-camAB was cultured in a medium in contact with CF 4 -containing gas. As it is shown in Figure 3b, if the culture for 7 days the concentration of CF 4 in the headspace than in the control group decreased by 3.57%.
(4) (4) P450P450 CAMCAM 돌연변이 유전자를 발현하는 재조합 대장균 및 그의 시료 중 The recombinant E. coli expressing the mutant gene and its sample CFCF 44 제거 효과 Removal effect
본 절에서는 P450CAM의 시료 중 플루오로메탄 제거 활성을 개선하기 위하여 돌연변이체를 제작하였다. 서열번호 6의 아미노산 서열 중 351번 위치의 페닐알라닌(phenylalanine)(이하 "F351"이라고도 함)을 다른 19개 천연 아미노산으로 치환(이하 "F351X"라고도 한다. 여기서, X는 페닐알라닌 외의 19개 천연 아미노산을 나타낸다.)하고, 얻어진 돌연변이체를 코딩하는 유전자를 대장균에 도입하여 얻어진 대장균의 시료 중 CF4 제거 활성을 확인하였다. camC는 헴 도메인(heme domain)에 해당하며, F351은 여러 종 유래의 camC의 아미노산 서열 중 보존된 아미노산(conserved amino acid) 중의 하나이다. In this section, mutants were prepared to improve the fluoromethane removal activity of P450 CAM samples. (Hereinafter also referred to as " F351X ") in which the phenylalanine (hereinafter also referred to as "F351") at position 351 in the amino acid sequence of SEQ ID NO: 6 is replaced with another 19 natural amino acid It represents.), which was confirmed CF 4 removal activity of the samples of the E. coli obtained by introducing a gene encoding a mutant obtained in E. coli. camC corresponds to the heme domain and F351 is one of the conserved amino acids of the amino acid sequence of camC from various species.
(4.1) 19개 돌연변이체의 제조(4.1) Preparation of 19 mutants
서열번호 6의 F354X 돌연변이체의 제작은 QuikChange II Site-Directed Mutagenesis Kit(Agilent Technology, USA)를 사용하여 이루어졌다. 상기 Kit를 사용한 위치-지향 돌연변이 유발 방법은 가장 높은 신뢰도(highest fidelity)를 갖는 두 플라스미드 가닥의 돌연변이유발성 프라이머-지향된 복제(mutagenic primer-directed replication)를 위하여 PfuUlta 고-신뢰도(high-fidelity:HF) DNA 폴리머라제를 사용하여 수행된다. 기본 과정은 원하는 삽입체(insert)를 가진 수퍼코일된 이중가닥 DNA(dsDNA) 벡터 및 둘다 원하는 돌연변이를 포함하는, 두 개 합성 올리고뉴클레오티드 프라이머를 이용한다. 상기 벡터의 마주보는 가닥(opposite strand)에 각각 상보적인 상기 올리고뉴클레오티드 프라이머들은 프라이머 치환(primer displacement) 없이, PfuUlta HF DNA 폴리머라제에 의한 온도 순환(temperature cycling) 동안 연장된다. 상기 올리고뉴클레오티드 프라이머들의 연장으로 인하여, 스태거 닉(staggered nick)을 포함한 돌연변이된 플라스미드가 생성된다. 상기 온도 순환 후, 산물을 DpnI으로 처리한다. DpnI 엔도뉴클레아제(표적 서열: 5'-Gm6ATC-3')는 메틸화 및 헤미메틸화 DNA에 특이적이고 부모(parental) DNA 주형을 분해하여 돌연변이-함유 합성된 DNA를 선택하기 위하여 사용된다. 그 후 원하는 돌연변이를 포함한 이 닉이 생성된 벡터 DNA는 XL1-Blue 수퍼콤페텐트 세포에 형질도입된다. F351X 돌연변이 유발을 위하여 사용된 각 프라이머 세트 중 시료 중 야생형 대장균 대비 플루오로메탄을 제거하는 활성이 증가된 것에 대한 것은 다음 표 6에 기재하였다.The F354X mutant of SEQ ID NO: 6 was prepared using the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technology, USA). The position-directed mutagenesis method using the kit described above can be used for PfuUlta high-fidelity PCR for mutagenic primer-directed replication of two plasmid strands with the highest fidelity. HF) DNA polymerase. The basic procedure utilizes two synthetic oligonucleotide primers, including a supercoiled double stranded DNA (dsDNA) vector with the desired insert and both of the desired mutations. The oligonucleotide primers, each complementary to the opposite strand of the vector, are extended during temperature cycling by the PfuUlta HF DNA polymerase, without primer displacement. Due to the extension of the oligonucleotide primers, a mutated plasmid containing a staggered nick is generated. After the temperature cycling, the product is treated with DpnI . DpnI endonuclease (target sequence: 5'-Gm 6 ATC-3 ') is specific for methylated and hemimethylated DNA and is used to digest parental DNA templates to select mutant-containing synthesized DNA. The nicked vector DNA containing the desired mutation is then transduced into XL1-Blue supercompetent cells. The increase in the activity of removing fluoromethane compared to wild-type E. coli among the primer sets used for F351X mutagenesis is shown in Table 6 below.
구체적으로, (1)에서 제작된 pETDuet-camC-camAB 벡터를 주형으로 하고, 상기 표 6에 기재된 각 프라이머 세트를 프라이머로 하고 PfuUlta HF DNA 폴리머라제를 사용한 PCR을 통하여 돌연변이된 벡터를 얻었다. 이 벡터 산물을 DpnI으로 처리하여 돌연변이-함유 합성된 DNA를 선택하였다. 그 후 얻어진 원하는 돌연변이를 포함한 벡터 DNA를 XL1-Blue 수퍼콤페텐트 세포에 형질도입하여, pETDuet-camCmt-camAB 벡터를 클로닝하였다. Specifically, a mutated vector was obtained by PCR using the pETDuet-camC-camAB vector prepared in (1) as a template and PCR using PfuUlta HF DNA polymerase with each of the primer sets described in Table 6 as a primer. This vector product was treated with DpnI to select mutant-containing synthesized DNA. Then vector DNA containing the desired mutation obtained was transformed into XL1-Blue supercompetent cells to clone the pETDuet-camCmt-camAB vector.
마지막으로, 클로닝된 pETDuet-camCmt-camAB 벡터와 pETDuet-camCwt-camAB 벡터를 (1)에 기재된 바와 동일한 과정을 거쳐서 대장균 BL21 균주에 도입하여 최종적으로 선별된 균주를 재조합 대장균 BL21/pETDuet-camCmt-camAB로 명명하였다.Finally, the cloned pETDuet-camCmt-camAB vector and the pETDuet-camCwt-camAB vector were introduced into E. coli BL21 strain through the same procedure as described in (1), and the finally selected strain was introduced into recombinant E. coli BL21 / pETDuet-camCmt-camAB Respectively.
(4.2) 재조합 대장균 (4.2) Recombinant E. coli BL21BL21 // pETDuetpETDuet -- camCmtcamCmt -- camABCAMAB 의 시료 중 Of the sample CFCF 44 제거 효과 Removal effect
본 절에서는 (4.1)절에서 제작된 돌연변이 camC 유전자가 도입된 대장균 BL21/pETDuet-camCmt-camAB가 시료 중 CF4를 제거하는데 미치는 효과를 확인하였다. In this section (4.1) the mutated camC introduced E. coli BL21 / pETDuet-camCmt-camAB gene produced in the section was confirmed the effect of the removal of CF 4 in the sample.
실험은 (2)절에서 CHF3에 대하여 수행된 과정과 동일하게 수행하였으나, CHF3 대신에 CF4를 사용하고, 기체 상의 CF4를 헤드스페이스 대비 1000ppm이 되도록 주사기를 사용하여 혈청병의 캡의 탄성 재질을 통하여 주입하였다. 그 후, 상기 혈청병을 30℃에서 230rpm으로 교반하면서 6일 동안 배양한 것을 제외하고는 동일하게 수행하였다. 그 결과는 표 7에 나타낸 바와 같다.The experiment was carried out in the same manner as the procedure performed for CHF 3 in the section (2), except that CF 4 was used instead of CHF 3 , and the elasticity of cap of the serum bottle was measured using a syringe so that CF 4 on the gas phase was 1000 ppm relative to the head space And injected through the material. Thereafter, the sera were incubated for 6 days at 30 DEG C with stirring at 230 rpm. The results are shown in Table 7.
표 7에서 대조군은 pETDuet-camCmt-camAB 벡터 대신 pETDuet 벡터가 도입된 대장균이며, F351*는 야생형 camC를 나타낸다. In Table 7, the control group is Escherichia coli introduced with pETDuet vector instead of pETDuet-camCmt-camAB vector, and F351 * represents wild-type camC.
또한, 본 절에서는 (4.1)절에서 제작된 돌연변이 camC 유전자가 도입된 대장균 BL21/pETDuet-camCmt-camAB 20mL(OD600=3.0)을 175mL 플라스크에 주입하고 CHF3 대신에 CF4를 사용하고, 기체 상의 CF4를 헤드스페이스 대비 1000ppm이 되도록 주입하고, 상기 혈청병을 30℃에서 230rpm으로 교반하면서 6일 동안 배양한 것을 제외하고는 실험은 (2)절에서 CHF3에 대하여 수행된 과정과 동일하게 배양하여 시간에 따른 CF4 잔여율(residual rate) 즉, CF4 잔존량 백분율(CF4 remaining, %)을 확인하였다. 그 결과는 도 3c에 나타내었다.In this section, 20 mL (OD 600 = 3.0) of Escherichia coli BL21 / pETDuet-camCmt-camAB with the mutant camC gene prepared in Section 4.1 was injected into a 175 mL flask, CF 4 was used instead of CHF 3 , and the experiment was the same culture and the process performed for the CHF 3 (2) section, except that the incubation on the CF 4 for injection so that 1000ppm headspace compared and, while stirring the serum sickness in 30 ℃ to
도 3c는 돌연변이 camC 유전자가 도입된 대장균 BL21/pETDuet-camCmt-camAB의 시간에 따른 시료 중 CF4 정도를 나타낸다. 도 3c에 나타낸 바와 같이, 6일 배양한 경우, 재조합 대장균 P450CAM 균주 즉, F351N 및 F351H 돌연변이 유전자를 함유하는 균주는 대조군 대비 CF4의 수준을 7.02% 및 8.92% 더 감소시켰으나 야생형 균주는 대조군 대비 CF4의 수준을 3.14% 더 감소시켰다.FIG. 3C shows the degree of CF 4 in the sample with time of the E. coli BL21 / pETDuet-camCmt-camAB into which the mutant camC gene was introduced. As shown in Figure 3c, when cultured 6 days, sikyeoteuna recombinant E. coli P450CAM strain i.e., F351N and the strain containing F351H mutant gene further reduce the level of the control group compared to CF 4 7.02% and 8.92% wild-type strain is CF control group compared to 4 level by 3.14%.
실시예Example 2: 2: P450P450 BM3BM3 유전자를 발현하는 재조합 대장균 및 그를 이용한 시료 중 할로메탄의 제거 Removal of halomethane in a recombinant E. coli expressing a gene and a sample using the recombinant E. coli
본 실시예에서는 P450BM3 유전자를 발현하는 재조합 대장균을 제작하고, 그를 이용하여 시료 중 할로메탄, 즉, CHF3, CF4 또는 CHCl3의 제거 효과를 확인하였다.In this Example, a recombinant Escherichia coli expressing P450 BM3 gene was prepared, and the removal effect of halomethane, i.e., CHF 3 , CF 4 or CHCl 3 , in the sample was confirmed using the recombinant E. coli.
(1) (One) P450P450 BM3BM3 유전자를 발현하는 재조합 대장균의 제작 Production of recombinant Escherichia coli expressing the gene
P450BM3 유전자는 Bacillus megaterium (ATCC 14581) 균주의 P450BM3 유전자를 증폭하였다. P450BM3 유전자는 서열번호 7의 뉴클레오티드 서열을 각각 갖고 서열번호 8의 아미노산 서열을 코딩한다. 구체적으로, B.megaterium (ATCC 14581)를 LB 배지 중에서 30℃에서 230rpm으로 교반하면서 밤새 배양한 후, 총 DNA 추출 키트 (total DNA extraction kit)(Invitrogen Biotechnology)를 사용한 방법으로 게놈 DNA를 분리하고, 이 게놈 DNA를 주형으로 하고, 서열번호 17 및 18의 뉴클레오티드 서열을 프라이머 세트로 하여 PCR을 수행하여, P450BM3 유전자를 증폭하여 얻었다. 증폭된 P450BM3 유전자는 제한효소 NcoI 및 XhoI를 사용하여 절단된 pET28a (Novagen, Cat. No.69864-3)와 InFusion Cloning Kit (Clontech Laboratories, Inc.)를 통해 연결하여 pET28a-P450BM3 벡터를 제조하였다. 도 4는 pET28a-P450BM3 벡터의 벡터 지도를 나타낸다. P450 BM3 gene was amplified P450 BM3 gene of Bacillus megaterium (ATCC 14581) strain. The P450 BM3 gene encodes the amino acid sequence of SEQ ID NO: 8, respectively, having the nucleotide sequence of SEQ ID NO: 7. Specifically, B. megaterium (ATCC 14581) was cultured in LB medium at 30 ° C with stirring at 230 rpm overnight. Then, genomic DNA was isolated using a total DNA extraction kit (Invitrogen Biotechnology) PCR was performed using the genomic DNA as a template and the nucleotide sequences of SEQ ID NOS: 17 and 18 as a primer set to obtain P450 BM3 gene. The amplified P450 BM3 gene was ligated with pET28a (Novagen, Cat. No. 69864-3) cleaved with restriction enzymes NcoI and XhoI through an InFusion Cloning Kit (Clontech Laboratories, Inc.) to produce pET28a-P450 BM3 vector Respectively. Figure 4 shows a vector map of pET28a-P450 BM3 vector.
또한, 세포 내 NADPH 양을 증가시키기 위해 E. coli K12(MG1655)의 글루코스 6-포스페이트 데히드로게나제(glucose 6-phosphate dehydrogenase)를 코딩하는 zwf 유전자를 증폭하였다. Zwf 유전자는 서열번호 9의 뉴클레오티드 서열을 갖고 서열번호 10의 아미노산 서열을 코딩한다. 구체적으로, E. coli를 LB 배지 중에서 37℃에서 230rpm으로 교반하면서 밤새 배양한 후, 총 DNA 추출 키트 (total DNA extraction kit)(Invitrogen Biotechnology)를 사용한 방법으로 게놈 DNA를 분리하고, 이 게놈 DNA를 주형으로 하고, 서열번호 19 및 20의 뉴클레오티드 서열을 프라이머 세트로 하여 PCR을 수행하여, zwf 유전자를 증폭하여 얻었다. 증폭된 zwf 유전자는 제한효소 NcoI 및 SacI를 사용하여 절단된 pACYCDuet(Novagen, Cat. No. 71147-3)와 InFusion Cloning Kit(Clontech Laboratories, Inc.)를 통해 연결하여 pACYCDuet-zwf 벡터를 제조하였다. In addition, zwf gene encoding glucose 6-phosphate dehydrogenase of E. coli K12 (MG1655) was amplified to increase intracellular NADPH content. The Zwf gene has the nucleotide sequence of SEQ ID NO: 9 and encodes the amino acid sequence of SEQ ID NO: 10. Specifically, E. coli was cultured in LB medium at 37 ° C with stirring at 230 rpm overnight. Then, genomic DNA was isolated using a total DNA extraction kit (Invitrogen Biotechnology), and the genomic DNA PCR was carried out using the nucleotide sequences of SEQ ID NOs: 19 and 20 as a template and the zwf gene was amplified. The amplified zwf gene was ligated to the pACYCDuet (Novagen, Cat. No. 71147-3) cut with restriction enzymes NcoI and SacI through an InFusion Cloning Kit (Clontech Laboratories, Inc.) to produce the pACYCDuet-zwf vector.
도 5는 pACYCDuet-zwf 벡터의 벡터 지도를 나타낸다.Figure 5 shows the pACYCDuet-zwf Represents a vector map of a vector.
다음으로, 제작된 pET28a-P450BM3 벡터를 대장균 BL21에 열 충격(heat shock) 방법으로 도입하고, 카나미신 50㎍/mL이 포함된 LB 평판 배지에 배양하여, 카나미신 내성을 보이는 균주를 선별하였다. 최종적으로 선별된 균주를 재조합 대장균 BL21/pET28a-P450BM3로 명명하였다. Next, the produced pET28a-P450 BM3 vector was introduced into Escherichia coli BL21 by a heat shock method and cultured in an LB plate medium containing 50 μg / mL kanamycin, to select strains showing kanamycin resistance . The finally selected strains were named recombinant E. coli BL21 / pET28a-P450 BM3 .
또한, 제작된 pET28a-P450BM3 벡터와 pACYCDuet-zwf 벡터를 대장균 BL21 균주에 열 충격 방법으로 도입하고, 카나미신 50㎍/mL과 클로람페니콜 35㎍/mL이 포함된 LB 평판 배지에 배양하여, 카나미신과 클로람페니콜 내성을 보이는 균주를 선별하였다. 최종적으로 선별된 균주를 재조합 대장균 BL21/pET28a-P450BM3+pACYCDuet-zwf로 명명하였다The prepared pET28a-P450 BM3 vector and pACYCDuet-zwf vector were introduced into Escherichia coli strain BL21 by heat shock method and cultured in LB plate medium containing 50 μg / ml kanamycin and 35 μg / ml chloramphenicol to obtain kanamycin And chloramphenicol resistant strains were selected. The finally selected strains were named recombinant E. coli BL21 / pET28a-P450 BM3 + pACYCDuet-zwf
(2) (2) P450P450 BM3BM3 유전자를 발현하는 재조합 대장균의 시료 중 In a sample of recombinant E. coli expressing the gene CHFCHF 33 또는 or CHClCHCl3 33 제거 효과 Removal effect
본 절에서는 (1)절에서 제작된 P450BM3 유전자가 도입된 재조합 대장균 BL21/pET28a-P450BM3 균주 또는 BL21/pET28a-P450BM3+pACYCDuet-zwf 균주가 시료 중 CHF3 또는 CHCl3를 제거하는데 미치는 효과를 확인하였다.In this section, the effect of recombinant Escherichia coli BL21 / pET28a-P450 BM3 strain or BL21 / pET28a-P450 BM3 + pACYCDuet-zwf strain introduced with P450 BM3 gene prepared in section (1) on the removal of CHF 3 or CHCl 3 Respectively.
구체적으로, 대장균 BL21/pET28a-P450BM3 또는 BL21/pET28a-P450BM3+pACYCDuet-zwf 균주를 TB 배지에서 30℃에서 230rpm으로 교반하면서 배양하여 OD600=0.5 정도에서 IPTG 0.2mM을 첨가한 후, 25℃에서 230rpm으로 교반하면서 밤새 배양하였다. 이 세포를 수확하고, 세포 농도 OD600= 2.5가 되도록 M9 배지 중에 현탁하였다. 이 세포액 10ml을 60ml 혈청 병에 첨가하고 밀봉하였다. 상기 TB 배지 및 M9 배지는 실시예 1에 기재된 바와 같다. Specifically, Escherichia coli BL21 / pET28a-P450 BM3 Or BL21 / pET28a-P450 BM3 + pACYCDuet-zwf strain was cultured in TB medium at 30 ° C with stirring at 230 rpm, 0.2mM IPTG was added at OD 600 = 0.5, and then cultured overnight at 25 ° C with stirring at 230 rpm. The cells were harvested and suspended in M9 medium to a cell concentration OD 600 = 2.5. 10 ml of this cell solution was added to a 60 ml serum bottle and sealed. The TB medium and the M9 medium are as described in Example 1. [
다음으로, 기체 상의 CHF3를 헤드스페이스 대비 200ppm이 되도록 주사기를 사용하여 혈청병의 캡의 탄성 재질(rubber stopper)을 통하여 주입하였다. 또한, 액체 상의 CHCl3를 배지 중 0.02mM이 되도록 주사기를 사용하여 혈청병의 캡의 탄성 재질을 통하여 주입하였다. 그 후, 상기 혈청병을 30℃에서 230rpm으로 교반하면서 15 시간 내지 142 시간 동안 배양하였다. 실험은 3배수 (triplicate)로 하였다. Next, CHF 3 in the gaseous phase was injected through a rubber stopper of the cap of the sera bottle using a syringe so as to be 200 ppm relative to the head space. In addition, CHCl 3 in the liquid phase was injected through the elastic material of the cap of the serum bottle using a syringe to 0.02 mM in the medium. The serum bottle was then incubated for 15 to 142 hours at 30 DEG C with stirring at 230 rpm. The experiment was conducted in triplicate.
배양 중 일정한 시간 간격으로 혈청병 중 헤드스페이스 중의 CHF3 또는 CHCl3를 실시예2의 (2)에 기술된 조건과 동일하게 하여 분석하였다.CHF 3 or CHCl 3 in the headspace of the sera was analyzed at the same time intervals during the culture in the same manner as described in Example 2 (2).
도 6은 CHF3 함유 기체와 접촉된 배지 중에서 대장균 BL21/pET28a-P450BM3 또는 BL21/pET28a-P450BM3+pACYCDuet-zwf 균주를 142시간 배양한 경우, 헤드스페이스 중의 CHF3의 시간에 따른 변화를 나타낸다. FIG. 6 shows a change with time in CHF 3 in the headspace when E. coli BL21 / pET28a-P450 BM3 or BL21 / pET28a-P450 BM3 + pACYCDuet-zwf strains were cultured for 142 hours in medium contacted with CHF 3 -containing gas .
도 7은 CHCl3 함유 배지 중에서 대장균 BL21/pET28a-P450BM3을 15시간 배양한 경우, 헤드스페이스 중의 CHCl3의 변화를 나타낸다. 도 6, 도 7 및 8에서, NC는 음성 대조군, 'BM3'은 대장균 BL21/pET28a-P450BM3, 및 'BM3+Zwf'는 대장균 BL21/pET28a-P450BM3+pACYCDuet-zwf를 사용한 실험을 나타낸다. 도 6에 나타낸 바와 같이, 70시간 및 142시간 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CHF3의 농도는 대장균 BL21/pET28a-P450BM3, 및 대장균 BL21/pET28a-P450BM3+pACYCDuet-zwf에 대하여, 70시간 배양의 경우 각각 3.93% 및 4.57%, 및 142시간 배양의 경우 각각 4.15% 및 11.03% 감소하였다. 또한, 도 7에 나타낸 바와 같이, 15시간 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CHCl3의 농도는 4.1% 감소하였다.7 is a case of 15 hour incubation of E. coli BL21 / pET28a-P450 BM3 from 3 CHCl containing medium, shows the change in CHCl 3 in the head space. 6, 7 and 8, NC represents an experiment using negative control, 'BM3' represents an experiment using Escherichia coli BL21 / pET28a-P450 BM3 + pACYCDuet-zwf for Escherichia coli BL21 / pET28a-P450 BM3 and 'BM3 + Zwf'. As shown in FIG. 6, when cultured for 70 hours and 142 hours, the concentration of CHF 3 in the headspace was higher than that of the control group for Escherichia coli BL21 / pET28a-P450 BM3 and Escherichia coli BL21 / pET28a-P450 BM3 + pACYCDuet-zwf , 3.93% and 4.57% for 70 hour culture, and 4.15% and 11.03% for 142 hour culture, respectively. In addition, as shown in Figure 7, when cultured for 15 hours, the concentration of the CHCl 3 in the headspace than in the control group was decreased by 4.1%.
(3) (3) P450P450 BM3BM3 유전자를 발현하는 재조합 대장균의 시료 중 In a sample of recombinant E. coli expressing the gene CFCF 44 제거 효과 Removal effect
본 절에서는 (1)절에서 제작된 P450BM3 유전자가 도입된 재조합 대장균 BL21/pET28a-P450BM3 균주가 시료 중 CF4를 제거하는데 미치는 효과를 확인하였다.In this section, the effect of recombinant E. coli BL21 / pET28a-P450 BM3 strain introduced with P450 BM3 gene prepared in (1) on the removal of CF 4 in the sample was confirmed.
실험은 (2)절에서 CHF3에 대하여 수행된 과정과 동일하게 수행하였으나, CHF3 대신에 CF4를 사용하고, 기체 상의 CF4를 헤드스페이스 대비 1000ppm이 되도록 주사기를 사용하여 혈청병의 캡의 탄성 재질을 통하여 주입하고, 그 후, 상기 혈청병을 30℃에서 200rpm으로 교반하면서 7일 동안 배양한 것을 제외하고는 동일하게 수행하였다. 그 결과는 도 8에 나타낸 바와 같다.The experiment was carried out in the same manner as the procedure performed for CHF 3 in the section (2), except that CF 4 was used instead of CHF 3 , and the elasticity of cap of the serum bottle was measured using a syringe so that CF 4 on the gas phase was 1000 ppm relative to the head space , And then the serum cell was cultured for 7 days with stirring at 30 DEG C and 200 rpm. The results are shown in Fig.
도 8은 CF4 함유 기체와 접촉된 배지 중에서 대장균 BL21/pET28a-P450BM3 균주를 7일 동안 배양한 경우, 헤드스페이스 중의 CF4의 시간에 따른 변화를 나타낸다. 도 8에 나타낸 바와 같이, 7일 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CF4의 농도는 대장균 BL21/pET28a-P450BM3에 대하여, 3.03% 감소하였다. 8 is CF 4, if contained in the medium in contact with a base in the E. coli BL21 / pET28a-P450 BM3 strains were cultured for 7 days, it shows a change with time of the CF 4 in the head space. 8, when cultured for 7 days, the concentration of CF 4 in the headspace than in the control group decreased relative to the E. coli BL21 / pET28a-P450 BM3, 3.03 %.
(4) (4) P450P450 BM3BM3 돌연변이 유전자를 발현하는 재조합 대장균 및 그의 시료 중 The recombinant E. coli expressing the mutant gene and its sample CFCF 44 제거 효과 Removal effect
본 절에서는 P450BM3의 시료 중 플루오로메탄 제거 활성을 개선하기 위하여 돌연변이체를 제작하였다. 서열번호 8의 아미노산 서열 중 320번 위치의 아스파라긴(asparagine)(이하 "N320"이라고도 함)을 다른 19개 천연 아미노산으로 치환(이하 "N320X"라고도 한다. 여기서, X는 아스파라긴 외의 19개 천연 아미노산을 나타낸다.)하고, 얻어진 돌연변이체를 코딩하는 유전자를 대장균에 도입하여 얻어진 대장균의 시료 중 CF4 제거 활성을 확인하였다. N320은 헴 도메인 P450 옥시게나제 도메인에 포함되어 있으며, N320은 동일 기능을 갖는 효소의 아미노산 서열 중 보존된 아미노산(conserved amino acid) 중의 하나이다. In this section, mutants were prepared to improve the fluoromethane removal activity of P450 BM3 samples. Asparagine (hereinafter also referred to as " N320 ") at position 320 in the amino acid sequence of SEQ ID NO: 8 is replaced with another 19 natural amino acids (hereinafter also referred to as" N320X ", where X is at least 19 natural amino acids other than asparagine) It represents.), which was confirmed CF 4 removal activity of the samples of the E. coli obtained by introducing a gene encoding a mutant obtained in E. coli. N320 is contained in the heme domain P450 oxidase domain and N320 is one of the conserved amino acids of the amino acid sequence of the enzyme having the same function.
(4.1) 19개 돌연변이체의 제조(4.1) Preparation of 19 mutants
서열번호 8의 N320X 돌연변이체의 제작은 QuikChange II Site-Directed Mutagenesis Kit(Agilent Technology, USA)를 사용하여 이루어졌다. 상기 Kit를 사용한 돌연변이 유발법은 상기한 바와 같다. The N320X mutant of SEQ ID NO: 8 was prepared using the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technology, USA). Mutagenesis using the above Kit is as described above.
N320X 돌연변이 유발을 위하여 사용된 각 프라이머 세트 중 시료 중 야생형 대장균 대비 플루오로메탄을 제거하는 활성이 증가된 것에 대한 것은 다음 표 8에 기재하였다.The increase in the activity of removing fluoromethane compared to the wild-type E. coli in the sample among the respective primer sets used for N320X mutagenesis is shown in Table 8 below.
SEQ ID NOS: 33 and 34
구체적으로, (1)에서 제작된 pET28a-P450BM3 벡터를 주형으로 하고, 상기 표8에 기재된 각 프라이머 세트를 프라이머로 하고 PfuUlta HF DNA 폴리머라제를 사용한 PCR을 통하여 돌연변이된 벡터를 얻었다. 이 벡터 산물을 DpnI으로 처리하여 돌연변이-함유 합성된 DNA를 선택하였다. 그 후 얻어진 원하는 돌연변이를 포함한 벡터 DNA를 XL1-Blue 수퍼콤페텐트 세포에 형질도입하여, pET28a-P450BM3mt 벡터를 클로닝하였다. Specifically, the mutated vector was obtained by PCR using the pET28a-P450BM3 vector prepared in (1) as a template and each primer set described in Table 8 as a primer and using PfuUlta HF DNA polymerase. This vector product was treated with DpnI to select mutant-containing synthesized DNA. Then vector DNA containing the desired mutation obtained was transformed into XL1-Blue supercompetent cells to clone the pET28a-P450BM3mt vector.
마지막으로, 클로닝된 pET28a-P450BM3 벡터와 pET28a-P450BM3mt 벡터를 (1)에 기재된 바와 동일한 과정을 거쳐서 대장균 BL21 균주에 도입하여 최종적으로 선별된 균주를 재조합 대장균 BL21/pET28a-P450BM3mt로 명명하였다.Finally, the cloned pET28a-P450BM3 vector and the pET28a-P450BM3mt vector were introduced into E. coli BL21 strain through the same procedure as described in (1), and the finally selected strain was named recombinant E. coli BL21 / pET28a-P450BM3mt.
(4.2) 재조합 대장균 (4.2) Recombinant E. coli BL21BL21 // pET28apET28a -- P450BM3mtP450BM3mt 의 시료 중 Of the sample CFCF 44 제거 효과 Removal effect
본 절에서는 (4.1)절에서 제작된 돌연변이 P450BM3mt 유전자가 도입된 대장균 BL21/pET28a-P450BM3mt가 시료 중 CF4를 제거하는데 미치는 효과를 확인하였다. In this section, the effect of E. coli BL21 / pET28a-P450BM3mt with the mutant P450BM3mt gene prepared in (4.1) on the removal of CF 4 in the sample was confirmed.
실험은 (2)절에서 CHF3에 대하여 수행된 과정과 동일하게 수행하였으나, CHF3 대신에 CF4를 사용하고, 기체 상의 CF4를 헤드스페이스 대비 1000ppm이 되도록 주사기를 사용하여 혈청병의 캡의 탄성 재질을 통하여 주입하였다. 그 후, 상기 혈청병을 30℃에서 230rpm으로 교반하면서 6일 동안 배양한 것을 제외하고는 동일하게 수행하였다. 그 결과는 표 9에 나타낸 바와 같다.The experiment was carried out in the same manner as the procedure performed for CHF 3 in the section (2), except that CF 4 was used instead of CHF 3 , and the elasticity of cap of the serum bottle was measured using a syringe so that CF 4 on the gas phase was 1000 ppm relative to the head space And injected through the material. Thereafter, the sera were incubated for 6 days at 30 DEG C with stirring at 230 rpm. The results are shown in Table 9.
표 9에서 대조군은 pET28a-P450BM3mt 벡터 대신 pET28a 벡터가 도입된 대장균이며, N320*는 야생형 P450BM3를 나타낸다. In Table 9, the control group is E. coli in which the pET28a vector is introduced in place of the pET28a-P450BM3mt vector, and N320 * represents wild-type P450BM3.
또한, 본 절에서는 (4.1)절에서 제작된 돌연변이 P450BM3 유전자가 도입된 대장균 BL21/pET28a-P450BM3mt 100mL(OD600=15.0)을 250mL 플라스크에 주입하고 CHF3 대신에 CF4를 사용하고, 기체 상의 CF4를 헤드스페이스 대비 1000ppm이 되도록 주입하고, 상기 혈청병을 30℃에서 230rpm으로 교반하면서 48시간 동안 배양한 것을 제외하고는 실험은 (2)절에서 CHF3에 대하여 수행된 과정과 동일하게 배양하여 시간에 따른 CF4 잔여율(residual rate) 즉, CF4 잔존량 백분율(CF4 remaining, %)을 확인하였다. 그 결과는 도 9에 나타내었다.In this section, 100 mL (OD 600 = 15.0) of Escherichia coli BL21 / pET28a-P450BM3mt with the mutant P450BM3 gene prepared in Section 4.1 was injected into a 250 mL flask, CF 4 was used instead of CHF 3 , 4 was injected at a concentration of 1000 ppm relative to the head space and the serum was incubated for 48 hours with stirring at 230 rpm at 30 ° C. The experiment was carried out in the same manner as in the procedure performed for CHF 3 in (2) (CF4 remaining,%) of the remaining CF4 was determined. The results are shown in Fig.
도 9는 돌연변이 P450BM3 유전자가 도입된 대장균 BL21/pET28a-P450BM3mt의 시간에 따른 시료 중 CF4 정도를 나타낸다. 도 9에 나타낸 바와 같이, 48시간 배양한 경우, 재조합 대장균 P450BM3 균주 즉, N320E 돌연변이 유전자를 함유하는 균주는 대조군 대비 CF4의 수준을 14.3% 더 감소시켰으나 야생형 균주는 대조군 대비 CF4의 수준을 5.5% 더 감소시켰다.FIG. 9 shows the degree of CF 4 in the sample with time of the E. coli BL21 / pET28a-P450BM3mt into which the mutant P450BM3 gene was introduced. 9, the case of 48 hour incubation, recombinant E. coli P450BM3 strain that is, the strain containing the N320E mutation gene sikyeoteuna further reduce the level of the control group compared to CF 4 14.3% wild-type strain is the level of the control group compared to CF 4 5.5 %.
<110> Samsung Electronics Co., Ltd. <120> Bacterial cytochrome 450 protein and method for reducing concentration of fluorinated methane in sample <130> PN114290KR <160> 56 <170> KopatentIn 2.0 <210> 1 <211> 1269 <212> DNA <213> P. putida PpG786 strain DSM 7162 <400> 1 atgaacgcaa acgacaacgt ggtcatcgtc ggtaccggac tggctggcgt tgaggtcgcc 60 ttcggcctgc gcgccagcgg ctgggaaggc aatatccggt tggtggggga tgcgacggta 120 attccccatc acctaccacc gctatccaaa gcttacttgg ccggcaaagc cacagcggaa 180 agcctgtacc tgagaacccc agatgcctat gcagcgcaga acatccaact actcggaggc 240 acacaggtaa cggctatcaa ccgcgaccga cagcaagtaa tcctatcgga tggccgggca 300 ctggattacg accggctggt attggctacc ggagggcgtc caagacccct accggtggcc 360 agtggcgcag ttggaaaggc gaacaacttt cgatacctgc gcacactcga ggacgccgag 420 tgcattcgcc ggcagctgat tgcggataac cgtctggtgg tgattggtgg cggctacatt 480 ggccttgaag tggctgccac cgccatcaag gcgaacatgc acgtcaccct gcttgatacg 540 gcagcccggg ttctggagcg ggttaccgcc ccgccggtat cggcctttta cgagcaccta 600 caccgcgaag ccggcgttga catacgaacc ggcacgcagg tgtgcgggtt cgagatgtcg 660 accgaccaac agaaggttac tgccgtcctc tgcgaggacg gcacaaggct gccagcggat 720 ctggtaatcg ccgggattgg cctgatacca aactgcgagt tggccagtgc ggccggcctg 780 caggttgata acggcatcgt gatcaacgaa cacatgcaga cctctgatcc cttgatcatg 840 gccgtcggcg actgtgcccg atttcacagt cagctctatg accgctgggt gcgtatcgaa 900 tcggtgccca atgccttgga gcaggcacga aagatcgccg ccatcctctg tggcaaggtg 960 ccacgcgatg aggcggcgcc ctggttctgg tccgatcagt atgagatcgg attgaagatg 1020 gtcggactgt ccgaagggta cgaccggatc attgtccgcg gctctttggc gcaacccgac 1080 ttcagcgttt tctacctgca gggagaccgg gtattggcgg tcgatacagt gaaccgtcca 1140 gtggagttca accagtcaaa acaaataatc acggatcgtt tgccggttga accaaaccta 1200 ctcggtgacg aaagcgtgcc gttaaaggaa atcatcgccg ccgccaaagc tgaactgagt 1260 agtgcctaa 1269 <210> 2 <211> 422 <212> PRT <213> P. putida PpG786 strain DSM 7162 <400> 2 Met Asn Ala Asn Asp Asn Val Val Ile Val Gly Thr Gly Leu Ala Gly 1 5 10 15 Val Glu Val Ala Phe Gly Leu Arg Ala Ser Gly Trp Glu Gly Asn Ile 20 25 30 Arg Leu Val Gly Asp Ala Thr Val Ile Pro His His Leu Pro Pro Leu 35 40 45 Ser Lys Ala Tyr Leu Ala Gly Lys Ala Thr Ala Glu Ser Leu Tyr Leu 50 55 60 Arg Thr Pro Asp Ala Tyr Ala Ala Gln Asn Ile Gln Leu Leu Gly Gly 65 70 75 80 Thr Gln Val Thr Ala Ile Asn Arg Asp Arg Gln Gln Val Ile Leu Ser 85 90 95 Asp Gly Arg Ala Leu Asp Tyr Asp Arg Leu Val Leu Ala Thr Gly Gly 100 105 110 Arg Pro Arg Pro Leu Pro Val Ala Ser Gly Ala Val Gly Lys Ala Asn 115 120 125 Asn Phe Arg Tyr Leu Arg Thr Leu Glu Asp Ala Glu Cys Ile Arg Arg 130 135 140 Gln Leu Ile Ala Asp Asn Arg Leu Val Val Ile Gly Gly Gly Tyr Ile 145 150 155 160 Gly Leu Glu Val Ala Ala Thr Ala Ile Lys Ala Asn Met His Val Thr 165 170 175 Leu Leu Asp Thr Ala Ala Arg Val Leu Glu Arg Val Thr Ala Pro Pro 180 185 190 Val Ser Ala Phe Tyr Glu His Leu His Arg Glu Ala Gly Val Asp Ile 195 200 205 Arg Thr Gly Thr Gln Val Cys Gly Phe Glu Met Ser Thr Asp Gln Gln 210 215 220 Lys Val Thr Ala Val Leu Cys Glu Asp Gly Thr Arg Leu Pro Ala Asp 225 230 235 240 Leu Val Ile Ala Gly Ile Gly Leu Ile Pro Asn Cys Glu Leu Ala Ser 245 250 255 Ala Ala Gly Leu Gln Val Asp Asn Gly Ile Val Ile Asn Glu His Met 260 265 270 Gln Thr Ser Asp Pro Leu Ile Met Ala Val Gly Asp Cys Ala Arg Phe 275 280 285 His Ser Gln Leu Tyr Asp Arg Trp Val Arg Ile Glu Ser Val Pro Asn 290 295 300 Ala Leu Glu Gln Ala Arg Lys Ile Ala Ala Ile Leu Cys Gly Lys Val 305 310 315 320 Pro Arg Asp Glu Ala Ala Pro Trp Phe Trp Ser Asp Gln Tyr Glu Ile 325 330 335 Gly Leu Lys Met Val Gly Leu Ser Glu Gly Tyr Asp Arg Ile Ile Val 340 345 350 Arg Gly Ser Leu Ala Gln Pro Asp Phe Ser Val Phe Tyr Leu Gln Gly 355 360 365 Asp Arg Val Leu Ala Val Asp Thr Val Asn Arg Pro Val Glu Phe Asn 370 375 380 Gln Ser Lys Gln Ile Ile Thr Asp Arg Leu Pro Val Glu Pro Asn Leu 385 390 395 400 Leu Gly Asp Glu Ser Val Pro Leu Lys Glu Ile Ile Ala Ala Ala Lys 405 410 415 Ala Glu Leu Ser Ser Ala 420 <210> 3 <211> 324 <212> DNA <213> P. putida PpG786 strain DSM 7162 <400> 3 atgtctaaag tagtgtatgt gtcacatgat ggaacgcgtc gcgaactgga tgtggcggat 60 ggcgtcagcc tgatgcaggc tgcagtctcc aatggtatct acgatattgt cggtgattgt 120 ggcggcagcg ccagctgtgc cacctgccat gtctatgtga acgaagcgtt cacggacaag 180 gtgcccgccg ccaacgagcg ggaaatcggc atgctggagt gcgtcacggc cgaactgaag 240 ccgaacagca ggctctgctg ccagatcatc atgacgcccg agctggatgg catcgtggtc 300 gatgttcccg ataggcaatg gtaa 324 <210> 4 <211> 107 <212> PRT <213> P. putida PpG786 strain DSM 7162 <400> 4 Met Ser Lys Val Val Tyr Val Ser His Asp Gly Thr Arg Arg Glu Leu 1 5 10 15 Asp Val Ala Asp Gly Val Ser Leu Met Gln Ala Ala Val Ser Asn Gly 20 25 30 Ile Tyr Asp Ile Val Gly Asp Cys Gly Gly Ser Ala Ser Cys Ala Thr 35 40 45 Cys His Val Tyr Val Asn Glu Ala Phe Thr Asp Lys Val Pro Ala Ala 50 55 60 Asn Glu Arg Glu Ile Gly Met Leu Glu Cys Val Thr Ala Glu Leu Lys 65 70 75 80 Pro Asn Ser Arg Leu Cys Cys Gln Ile Ile Met Thr Pro Glu Leu Asp 85 90 95 Gly Ile Val Val Asp Val Pro Asp Arg Gln Trp 100 105 <210> 5 <211> 1248 <212> DNA <213> P. putida PpG786 strain DSM 7162 <400> 5 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc tttggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 6 <211> 415 <212> PRT <213> P. putida PpG786 strain DSM 7162 <400> 6 Met Thr Thr Glu Thr Ile Gln Ser Asn Ala Asn Leu Ala Pro Leu Pro 1 5 10 15 Pro His Val Pro Glu His Leu Val Phe Asp Phe Asp Met Tyr Asn Pro 20 25 30 Ser Asn Leu Ser Ala Gly Val Gln Glu Ala Trp Ala Val Leu Gln Glu 35 40 45 Ser Asn Val Pro Asp Leu Val Trp Thr Arg Cys Asn Gly Gly His Trp 50 55 60 Ile Ala Thr Arg Gly Gln Leu Ile Arg Glu Ala Tyr Glu Asp Tyr Arg 65 70 75 80 His Phe Ser Ser Glu Cys Pro Phe Ile Pro Arg Glu Ala Gly Glu Ala 85 90 95 Tyr Asp Phe Ile Pro Thr Ser Met Asp Pro Pro Glu Gln Arg Gln Phe 100 105 110 Arg Ala Leu Ala Asn Gln Val Val Gly Met Pro Val Val Asp Lys Leu 115 120 125 Glu Asn Arg Ile Gln Glu Leu Ala Cys Ser Leu Ile Glu Ser Leu Arg 130 135 140 Pro Gln Gly Gln Cys Asn Phe Thr Glu Asp Tyr Ala Glu Pro Phe Pro 145 150 155 160 Ile Arg Ile Phe Met Leu Leu Ala Gly Leu Pro Glu Glu Asp Ile Pro 165 170 175 His Leu Lys Tyr Leu Thr Asp Gln Met Thr Arg Pro Asp Gly Ser Met 180 185 190 Thr Phe Ala Glu Ala Lys Glu Ala Leu Tyr Asp Tyr Leu Ile Pro Ile 195 200 205 Ile Glu Gln Arg Arg Gln Lys Pro Gly Thr Asp Ala Ile Ser Ile Val 210 215 220 Ala Asn Gly Gln Val Asn Gly Arg Pro Ile Thr Ser Asp Glu Ala Lys 225 230 235 240 Arg Met Cys Gly Leu Leu Leu Val Gly Gly Leu Asp Thr Val Val Asn 245 250 255 Phe Leu Ser Phe Ser Met Glu Phe Leu Ala Lys Ser Pro Glu His Arg 260 265 270 Gln Glu Leu Ile Glu Arg Pro Glu Arg Ile Pro Ala Ala Cys Glu Glu 275 280 285 Leu Leu Arg Arg Phe Ser Leu Val Ala Asp Gly Arg Ile Leu Thr Ser 290 295 300 Asp Tyr Glu Phe His Gly Val Gln Leu Lys Lys Gly Asp Gln Ile Leu 305 310 315 320 Leu Pro Gln Met Leu Ser Gly Leu Asp Glu Arg Glu Asn Ala Cys Pro 325 330 335 Met His Val Asp Phe Ser Arg Gln Lys Val Ser His Thr Thr Phe Gly 340 345 350 His Gly Ser His Leu Cys Leu Gly Gln His Leu Ala Arg Arg Glu Ile 355 360 365 Ile Val Thr Leu Lys Glu Trp Leu Thr Arg Ile Pro Asp Phe Ser Ile 370 375 380 Ala Pro Gly Ala Gln Ile Gln His Lys Ser Gly Ile Val Ser Gly Val 385 390 395 400 Gln Ala Leu Pro Leu Val Trp Asp Pro Ala Thr Thr Lys Ala Val 405 410 415 <210> 7 <211> 3150 <212> DNA <213> Bacillus megaterium (ATCC 14581) <400> 7 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttaaac 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 8 <211> 1049 <212> PRT <213> Bacillus megaterium (ATCC 14581) <400> 8 Met Thr Ile Lys Glu Met Pro Gln Pro Lys Thr Phe Gly Glu Leu Lys 1 5 10 15 Asn Leu Pro Leu Leu Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys 20 25 30 Ile Ala Asp Glu Leu Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg 35 40 45 Val Thr Arg Tyr Leu Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp 50 55 60 Glu Ser Arg Phe Asp Lys Asn Leu Ser Gln Ala Leu Lys Phe Val Arg 65 70 75 80 Asp Phe Ala Gly Asp Gly Leu Phe Thr Ser Trp Thr His Glu Lys Asn 85 90 95 Trp Lys Lys Ala His Asn Ile Leu Leu Pro Ser Phe Ser Gln Gln Ala 100 105 110 Met Lys Gly Tyr His Ala Met Met Val Asp Ile Ala Val Gln Leu Val 115 120 125 Gln Lys Trp Glu Arg Leu Asn Ala Asp Glu His Ile Glu Val Pro Glu 130 135 140 Asp Met Thr Arg Leu Thr Leu Asp Thr Ile Gly Leu Cys Gly Phe Asn 145 150 155 160 Tyr Arg Phe Asn Ser Phe Tyr Arg Asp Gln Pro His Pro Phe Ile Thr 165 170 175 Ser Met Val Arg Ala Leu Asp Glu Ala Met Asn Lys Leu Gln Arg Ala 180 185 190 Asn Pro Asp Asp Pro Ala Tyr Asp Glu Asn Lys Arg Gln Phe Gln Glu 195 200 205 Asp Ile Lys Val Met Asn Asp Leu Val Asp Lys Ile Ile Ala Asp Arg 210 215 220 Lys Ala Ser Gly Glu Gln Ser Asp Asp Leu Leu Thr His Met Leu Asn 225 230 235 240 Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg 245 250 255 Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Val Pro 290 295 300 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp 355 360 365 Gly Asp Asp Val Glu Glu Phe Arg Pro Glu Arg Phe Glu Asn Pro Ser 370 375 380 Ala Ile Pro Gln His Ala Phe Lys Pro Phe Gly Asn Gly Gln Arg Ala 385 390 395 400 Cys Ile Gly Gln Gln Phe Ala Leu His Glu Ala Thr Leu Val Leu Gly 405 410 415 Met Met Leu Lys His Phe Asp Phe Glu Asp His Thr Asn Tyr Glu Leu 420 425 430 Asp Ile Lys Glu Thr Leu Thr Leu Lys Pro Glu Gly Phe Val Val Lys 435 440 445 Ala Lys Ser Lys Lys Ile Pro Leu Gly Gly Ile Pro Ser Pro Ser Thr 450 455 460 Glu Gln Ser Ala Lys Lys Val Arg Lys Lys Ala Glu Asn Ala His Asn 465 470 475 480 Thr Pro Leu Leu Val Leu Tyr Gly Ser Asn Met Gly Thr Ala Glu Gly 485 490 495 Thr Ala Arg Asp Leu Ala Asp Ile Ala Met Ser Lys Gly Phe Ala Pro 500 505 510 Gln Val Ala Thr Leu Asp Ser His Ala Gly Asn Leu Pro Arg Glu Gly 515 520 525 Ala Val Leu Ile Val Thr Ala Ser Tyr Asn Gly His Pro Pro Asp Asn 530 535 540 Ala Lys Gln Phe Val Asp Trp Leu Asp Gln Ala Ser Ala Asp Glu Val 545 550 555 560 Lys Gly Val Arg Tyr Ser Val Phe Gly Cys Gly Asp Lys Asn Trp Ala 565 570 575 Thr Thr Tyr Gln Lys Val Pro Ala Phe Ile Asp Glu Thr Leu Ala Ala 580 585 590 Lys Gly Ala Glu Asn Ile Ala Asp Arg Gly Glu Ala Asp Ala Ser Asp 595 600 605 Asp Phe Glu Gly Thr Tyr Glu Glu Trp Arg Glu His Met Trp Ser Asp 610 615 620 Val Ala Ala Tyr Phe Asn Leu Asp Ile Glu Asn Ser Glu Asp Asn Lys 625 630 635 640 Ser Thr Leu Ser Leu Gln Phe Val Asp Ser Ala Ala Asp Met Pro Leu 645 650 655 Ala Lys Met His Gly Ala Phe Ser Thr Asn Val Val Ala Ser Lys Glu 660 665 670 Leu Gln Gln Pro Gly Ser Ala Arg Ser Thr Arg His Leu Glu Ile Glu 675 680 685 Leu Pro Lys Glu Ala Ser Tyr Gln Glu Gly Asp His Leu Gly Val Ile 690 695 700 Pro Arg Asn Tyr Glu Gly Ile Val Asn Arg Val Thr Ala Arg Phe Gly 705 710 715 720 Leu Asp Ala Ser Gln Gln Ile Arg Leu Glu Ala Glu Glu Glu Lys Leu 725 730 735 Ala His Leu Pro Leu Ala Lys Thr Val Ser Val Glu Glu Leu Leu Gln 740 745 750 Tyr Val Glu Leu Gln Asp Pro Val Thr Arg Thr Gln Leu Arg Ala Met 755 760 765 Ala Ala Lys Thr Val Cys Pro Pro His Lys Val Glu Leu Glu Ala Leu 770 775 780 Leu Glu Lys Gln Ala Tyr Lys Glu Gln Val Leu Ala Lys Arg Leu Thr 785 790 795 800 Met Leu Glu Leu Leu Glu Lys Tyr Pro Ala Cys Glu Met Lys Phe Ser 805 810 815 Glu Phe Ile Ala Leu Leu Pro Ser Ile Arg Pro Arg Tyr Tyr Ser Ile 820 825 830 Ser Ser Ser Pro Arg Val Asp Glu Lys Gln Ala Ser Ile Thr Val Ser 835 840 845 Val Val Ser Gly Glu Ala Trp Ser Gly Tyr Gly Glu Tyr Lys Gly Ile 850 855 860 Ala Ser Asn Tyr Leu Ala Glu Leu Gln Glu Gly Asp Thr Ile Thr Cys 865 870 875 880 Phe Ile Ser Thr Pro Gln Ser Glu Phe Thr Leu Pro Lys Asp Pro Glu 885 890 895 Thr Pro Leu Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Arg 900 905 910 Gly Phe Val Gln Ala Arg Lys Gln Leu Lys Glu Gln Gly Gln Ser Leu 915 920 925 Gly Glu Ala His Leu Tyr Phe Gly Cys Arg Ser Pro His Glu Asp Tyr 930 935 940 Leu Tyr Gln Glu Glu Leu Glu Asn Ala Gln Ser Glu Gly Ile Ile Thr 945 950 955 960 Leu His Thr Ala Phe Ser Arg Met Pro Asn Gln Pro Lys Thr Tyr Val 965 970 975 Gln His Val Met Glu Gln Asp Gly Lys Lys Leu Ile Glu Leu Leu Asp 980 985 990 Gln Gly Ala His Phe Tyr Ile Cys Gly Asp Gly Ser Gln Met Ala Pro 995 1000 1005 Ala Val Glu Ala Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln Val 1010 1015 1020 Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys Gly 1025 1030 1035 1040 Arg Tyr Ala Lys Asp Val Trp Ala Gly 1045 <210> 9 <211> 1476 <212> DNA <213> E. coli K12 (MG1655) <400> 9 atggcggtaa cgcaaacagc ccaggcctgt gacctggtca ttttcggcgc gaaaggcgac 60 cttgcgcgtc gtaaattgct gccttccctg tatcaactgg aaaaagccgg tcagctcaac 120 ccggacaccc ggattatcgg cgtagggcgt gctgactggg ataaagcggc atataccaaa 180 gttgtccgcg aggcgctcga aactttcatg aaagaaacca ttgatgaagg tttatgggac 240 accctgagtg cacgtctgga tttttgtaat ctcgatgtca atgacactgc tgcattcagc 300 cgtctcggcg cgatgctgga tcaaaaaaat cgtatcacca ttaactactt tgccatgccg 360 cccagcactt ttggcgcaat ttgcaaaggg cttggcgagg caaaactgaa tgctaaaccg 420 gcacgcgtag tcatggagaa accgctgggg acgtcgctgg cgacctcgca ggaaatcaat 480 gatcaggttg gcgaatactt cgaggagtgc caggtttacc gtatcgacca ctatcttggt 540 aaagaaacgg tgctgaacct gttggcgctg cgttttgcta actccctgtt tgtgaataac 600 tgggacaatc gcaccattga tcatgttgag attaccgtgg cagaagaagt ggggatcgaa 660 gggcgctggg gctattttga taaagccggt cagatgcgcg acatgatcca gaaccacctg 720 ctgcaaattc tttgcatgat tgcgatgtct ccgccgtctg acctgagcgc agacagcatc 780 cgcgatgaaa aagtgaaagt actgaagtct ctgcgccgca tcgaccgctc caacgtacgc 840 gaaaaaaccg tacgcgggca atatactgcg ggcttcgccc agggcaaaaa agtgccggga 900 tatctggaag aagagggcgc gaacaagagc agcaatacag aaactttcgt ggcgatccgc 960 gtcgacattg ataactggcg ctgggccggt gtgccattct acctgcgtac tggtaaacgt 1020 ctgccgacca aatgttctga agtcgtggtc tatttcaaaa cacctgaact gaatctgttt 1080 aaagaatcgt ggcaggatct gccgcagaat aaactgacta tccgtctgca acctgatgaa 1140 ggcgtggata tccaggtact gaataaagtt cctggccttg accacaaaca taacctgcaa 1200 atcaccaagc tggatctgag ctattcagaa acctttaatc agacgcatct ggcggatgcc 1260 tatgaacgtt tgctgctgga aaccatgcgt ggtattcagg cactgtttgt acgtcgcgac 1320 gaagtggaag aagcctggaa atgggtagac tccattactg aggcgtgggc gatggacaat 1380 gatgcgccga aaccgtatca ggccggaacc tggggacccg ttgcctcggt ggcgatgatt 1440 acccgtgatg gtcgttcctg gaatgagttt gagtaa 1476 <210> 10 <211> 491 <212> PRT <213> E. coli K12 (MG1655) <400> 10 Met Ala Val Thr Gln Thr Ala Gln Ala Cys Asp Leu Val Ile Phe Gly 1 5 10 15 Ala Lys Gly Asp Leu Ala Arg Arg Lys Leu Leu Pro Ser Leu Tyr Gln 20 25 30 Leu Glu Lys Ala Gly Gln Leu Asn Pro Asp Thr Arg Ile Ile Gly Val 35 40 45 Gly Arg Ala Asp Trp Asp Lys Ala Ala Tyr Thr Lys Val Val Arg Glu 50 55 60 Ala Leu Glu Thr Phe Met Lys Glu Thr Ile Asp Glu Gly Leu Trp Asp 65 70 75 80 Thr Leu Ser Ala Arg Leu Asp Phe Cys Asn Leu Asp Val Asn Asp Thr 85 90 95 Ala Ala Phe Ser Arg Leu Gly Ala Met Leu Asp Gln Lys Asn Arg Ile 100 105 110 Thr Ile Asn Tyr Phe Ala Met Pro Pro Ser Thr Phe Gly Ala Ile Cys 115 120 125 Lys Gly Leu Gly Glu Ala Lys Leu Asn Ala Lys Pro Ala Arg Val Val 130 135 140 Met Glu Lys Pro Leu Gly Thr Ser Leu Ala Thr Ser Gln Glu Ile Asn 145 150 155 160 Asp Gln Val Gly Glu Tyr Phe Glu Glu Cys Gln Val Tyr Arg Ile Asp 165 170 175 His Tyr Leu Gly Lys Glu Thr Val Leu Asn Leu Leu Ala Leu Arg Phe 180 185 190 Ala Asn Ser Leu Phe Val Asn Asn Trp Asp Asn Arg Thr Ile Asp His 195 200 205 Val Glu Ile Thr Val Ala Glu Glu Val Gly Ile Glu Gly Arg Trp Gly 210 215 220 Tyr Phe Asp Lys Ala Gly Gln Met Arg Asp Met Ile Gln Asn His Leu 225 230 235 240 Leu Gln Ile Leu Cys Met Ile Ala Met Ser Pro Pro Ser Asp Leu Ser 245 250 255 Ala Asp Ser Ile Arg Asp Glu Lys Val Lys Val Leu Lys Ser Leu Arg 260 265 270 Arg Ile Asp Arg Ser Asn Val Arg Glu Lys Thr Val Arg Gly Gln Tyr 275 280 285 Thr Ala Gly Phe Ala Gln Gly Lys Lys Val Pro Gly Tyr Leu Glu Glu 290 295 300 Glu Gly Ala Asn Lys Ser Ser Asn Thr Glu Thr Phe Val Ala Ile Arg 305 310 315 320 Val Asp Ile Asp Asn Trp Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg 325 330 335 Thr Gly Lys Arg Leu Pro Thr Lys Cys Ser Glu Val Val Val Tyr Phe 340 345 350 Lys Thr Pro Glu Leu Asn Leu Phe Lys Glu Ser Trp Gln Asp Leu Pro 355 360 365 Gln Asn Lys Leu Thr Ile Arg Leu Gln Pro Asp Glu Gly Val Asp Ile 370 375 380 Gln Val Leu Asn Lys Val Pro Gly Leu Asp His Lys His Asn Leu Gln 385 390 395 400 Ile Thr Lys Leu Asp Leu Ser Tyr Ser Glu Thr Phe Asn Gln Thr His 405 410 415 Leu Ala Asp Ala Tyr Glu Arg Leu Leu Leu Glu Thr Met Arg Gly Ile 420 425 430 Gln Ala Leu Phe Val Arg Arg Asp Glu Val Glu Glu Ala Trp Lys Trp 435 440 445 Val Asp Ser Ile Thr Glu Ala Trp Ala Met Asp Asn Asp Ala Pro Lys 450 455 460 Pro Tyr Gln Ala Gly Thr Trp Gly Pro Val Ala Ser Val Ala Met Ile 465 470 475 480 Thr Arg Asp Gly Arg Ser Trp Asn Glu Phe Glu 485 490 <210> 11 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Primer: camA_F <400> 11 taagaaggag atatacatat gaacgcaaac gacaacg 37 <210> 12 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Primer: camA_R <400> 12 catgaattct gtttcctgtg tgattaggca ctactcagtt ca 42 <210> 13 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Primer: camB_F <400> 13 taatcacaca ggaaacagaa ttcatgtcta aagtagtgta tg 42 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer: camB_R <400> 14 ggtttcttta ccagactcga ttaccattgc ctatcgggaa 40 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Primer: camC_F <400> 15 aagaaggaga tataccatga cgactgaaac cataca 36 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer: camC_R <400> 16 gcattatgcg gccgcaagct ttataccgct ttggtagtcg 40 <210> 17 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Primer: P450bm3_F <400> 17 aagaaggaga tataccatga caattaaaga aatgcct 37 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer: P450bm3_R <400> 18 gtggtggtgg tggtgctcga ttacccagcc cacacgtctt 40 <210> 19 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Primer: Zwf_F <400> 19 ttaagaagga gatataccat ggcggtaacg caaacagc 38 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Primer: Zwf_R <400> 20 tcgacctgca ggcgcgccgt tactcaaact cattccagg 39 <210> 21 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351Y <400> 21 aaggtttcac acaccaccta tggccacggc agccatctg 39 <210> 22 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351Y <400> 22 cagatggctg ccgtggccat aggtggtgtg tgaaacctt 39 <210> 23 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351T <400> 23 aaggtttcac acaccaccac cggccacggc agccatctg 39 <210> 24 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351T <400> 24 cagatggctg ccgtggccgg tggtggtgtg tgaaacctt 39 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351N <400> 25 aaggtttcac acaccaccaa cggccacggc agccatctg 39 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351N <400> 26 cagatggctg ccgtggccgt tggtggtgtg tgaaacctt 39 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351Q <400> 27 aaggtttcac acaccaccca gggccacggc agccatctg 39 <210> 28 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351Q <400> 28 cagatggctg ccgtggccct gggtggtgtg tgaaacctt 39 <210> 29 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351H <400> 29 aaggtttcac acaccaccca tggccacggc agccatctg 39 <210> 30 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351H <400> 30 cagatggctg ccgtggccat gggtggtgtg tgaaacctt 39 <210> 31 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351D <400> 31 aaggtttcac acaccaccga tggccacggc agccatctg 39 <210> 32 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351D <400> 32 cagatggctg ccgtggccat cggtggtgtg tgaaacctt 39 <210> 33 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320W <400> 33 tatgtcggca tggtcttatg ggaagcgctg cgcttatgg 39 <210> 34 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320W <400> 34 ccataagcgc agcgcttccc ataagaccat gccgacata 39 <210> 35 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320F <400> 35 tatgtcggca tggtcttatt tgaagcgctg cgcttatgg 39 <210> 36 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320F <400> 36 ccataagcgc agcgcttcaa ataagaccat gccgacata 39 <210> 37 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320G <400> 37 tatgtcggca tggtcttagg cgaagcgctg cgcttatgg 39 <210> 38 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320G <400> 38 ccataagcgc agcgcttcgc ctaagaccat gccgacata 39 <210> 39 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320P <400> 39 tatgtcggca tggtcttacc ggaagcgctg cgcttatgg 39 <210> 40 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320P <400> 40 ccataagcgc agcgcttccg gtaagaccat gccgacata 39 <210> 41 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320S <400> 41 tatgtcggca tggtcttaag cgaagcgctg cgcttatgg 39 <210> 42 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320S <400> 42 ccataagcgc agcgcttcgc ttaagaccat gccgacata 39 <210> 43 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320E <400> 43 tatgtcggca tggtcttaga agaagcgctg cgcttatgg 39 <210> 44 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320E <400> 44 ccataagcgc agcgcttctt ctaagaccat gccgacata 39 <210> 45 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320W gene <400> 45 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttatgg 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 46 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320F gene <400> 46 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttattt 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 47 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320G <400> 47 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttaggc 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 48 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320P <400> 48 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttaccg 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 49 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320S <400> 49 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttaagc 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 50 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320E <400> 50 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttagaa 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 51 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351Y <400> 51 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc tatggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 52 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351T <400> 52 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc accggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 53 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351N <400> 53 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc aacggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 54 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351Q <400> 54 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc cagggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 55 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351H <400> 55 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc catggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 56 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351D <400> 56 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc gatggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <110> Samsung Electronics Co., Ltd. <120> Bacterial cytochrome 450 protein and method for reducing concentration of fluorinated methane in sample <130> PN114290KR <160> 56 <170> Kopatentin 2.0 <210> 1 <211> 1269 <212> DNA <213> P. putida PpG786 strain DSM 7162 <400> 1 atgaacgcaa acgacaacgt ggtcatcgtc ggtaccggac tggctggcgt tgaggtcgcc 60 ttcggcctgc gcgccagcgg ctgggaaggc aatatccggt tggtggggga tgcgacggta 120 attccccatc acctaccacc gctatccaaa gcttacttgg ccggcaaagc cacagcggaa 180 agcctgtacc tgagaacccc agatgcctat gcagcgcaga acatccaact actcggaggc 240 acacaggtaa cggctatcaa ccgcgaccga cagcaagtaa tcctatcgga tggccgggca 300 ctggattacg accggctggt attggctacc ggagggcgtc caagacccct accggtggcc 360 agtggcgcag ttggaaaggc gaacaacttt cgatacctgc gcacactcga ggacgccgag 420 tgcattcgcc ggcagctgat tgcggataac cgtctggtgg tgattggtgg cggctacatt 480 ggccttgaag tggctgccac cgccatcaag gcgaacatgc acgtcaccct gcttgatacg 540 gcagcccggg ttctggagcg ggttaccgcc ccgccggtat cggcctttta cgagcaccta 600 caccgcgaag ccggcgttga catacgaacc ggcacgcagg tgtgcgggtt cgagatgtcg 660 accgaccaac agaaggttac tgccgtcctc tgcgaggacg gcacaaggct gccagcggat 720 ctggtaatcg ccgggattgg cctgatacca aactgcgagt tggccagtgc ggccggcctg 780 caggttgata acggcatcgt gatcaacgaa cacatgcaga cctctgatcc cttgatcatg 840 gccgtcggcg actgtgcccg atttcacagt cagctctatg accgctgggt gcgtatcgaa 900 tcggtgccca atgccttgga gcaggcacga aagatcgccg ccatcctctg tggcaaggtg 960 ccacgcgatg aggcggcgcc ctggttctgg tccgatcagt atgagatcgg attgaagatg 1020 gtcggactgt ccgaagggta cgaccggatc attgtccgcg gctctttggc gcaacccgac 1080 ttcagcgttt tctacctgca gggagaccgg gtattggcgg tcgatacagt gaaccgtcca 1140 gtggagttca accagtcaaa acaaataatc acggatcgtt tgccggttga accaaaccta 1200 ctcggtgacg aaagcgtgcc gttaaaggaa atcatcgccg ccgccaaagc tgaactgagt 1260 agtgcctaa 1269 <210> 2 <211> 422 <212> PRT <213> P. putida PpG786 strain DSM 7162 <400> 2 Met Asn Ala Asn Asp Asn Val Val Ile Val Gly Thr Gly Leu Ala Gly 1 5 10 15 Val Glu Val Ala Phe Gly Leu Arg Ala Ser Gly Trp Glu Gly Asn Ile 20 25 30 Arg Leu Val Gly Asp Ala Thr Val Ile Pro His His Leu Pro Pro Leu 35 40 45 Ser Lys Ala Tyr Leu Ala Gly Lys Ala Thr Ala Glu Ser Leu Tyr Leu 50 55 60 Arg Thr Pro Asp Ala Tyr Ala Ala Gln Asn Ile Gln Leu Leu Gly Gly 65 70 75 80 Thr Gln Val Thr Ala Ile Asn Arg Asp Arg Gln Gln Val Ile Leu Ser 85 90 95 Asp Gly Arg Ala Leu Asp Tyr Asp Arg Leu Val Leu Ala Thr Gly Gly 100 105 110 Arg Pro Pro Leu Pro Val Ala Ser Gly Ala Val Gly Lys Ala Asn 115 120 125 Asn Phe Arg Tyr Leu Arg Thr Leu Glu Asp Ala Glu Cys Ile Arg Arg 130 135 140 Gln Leu Ile Ala Asp Asn Arg Leu Val Val Ile Gly Gly Gly Tyr Ile 145 150 155 160 Gly Leu Glu Val Ala Ala Thr Ala Ile Lys Ala Asn Met His Val Thr 165 170 175 Leu Leu Asp Thr Ala Ala Arg Val Leu Glu Arg Val Thr Ala Pro Pro 180 185 190 Val Ser Ala Phe Tyr Glu His Leu His Arg Glu Ala Gly Val Asp Ile 195 200 205 Arg Thr Gly Thr Gln Val Cys Gly Phe Glu Met Ser Thr Asp Gln Gln 210 215 220 Lys Val Thr Ala Val Leu Cys Glu Asp Gly Thr Arg Leu Pro Ala Asp 225 230 235 240 Leu Val Ile Ala Gly Ile Gly Leu Ile Pro Asn Cys Glu Leu Ala Ser 245 250 255 Ala Ala Gly Leu Glu Val Asp Asn Gly Ile Val Ile Asn Glu His Met 260 265 270 Gln Thr Ser Asp Pro Leu Ile Met Ala Val Gly Asp Cys Ala Arg Phe 275 280 285 His Ser Gln Leu Tyr Asp Arg Trp Val Arg Ile Glu Ser Val Pro Asn 290 295 300 Ala Leu Glu Gln Ala Arg Lys Ile Ala Ala Ile Leu Cys Gly Lys Val 305 310 315 320 Pro Arg Asp Glu Ala Ala Pro Trp Phe Trp Ser Asp Gln Tyr Glu Ile 325 330 335 Gly Leu Lys Met Val Gly Leu Ser Glu Gly Tyr Asp Arg Ile Ile Val 340 345 350 Arg Gly Ser Leu Ala Gln Pro Asp Phe Ser Val Phe Tyr Leu Gln Gly 355 360 365 Asp Arg Val Leu Ala Val Asp Thr Val Asn Arg Pro Val Glu Phe Asn 370 375 380 Gln Ser Lys Gln Ile Ile Thr Asp Arg Leu Pro Val Glu Pro Asn Leu 385 390 395 400 Leu Gly Asp Glu Ser Val Pro Leu Lys Glu Ile Ile Ala Ala Ala Lys 405 410 415 Ala Glu Leu Ser Ser Ala 420 <210> 3 <211> 324 <212> DNA <213> P. putida PpG786 strain DSM 7162 <400> 3 atgtctaaag tagtgtatgt gtcacatgat ggaacgcgtc gcgaactgga tgtggcggat 60 ggcgtcagcc tgatgcaggc tgcagtctcc aatggtatct acgatattgt cggtgattgt 120 ggcggcagcg ccagctgtgc cacctgccat gtctatgtga acgaagcgtt cacggacaag 180 gtgcccgccg ccaacgagcg ggaaatcggc atgctggagt gcgtcacggc cgaactgaag 240 ccgaacagca ggctctgctg ccagatcatc atgacgcccg agctggatgg catcgtggtc 300 gatgttcccg ataggcaatg gtaa 324 <210> 4 <211> 107 <212> PRT <213> P. putida PpG786 strain DSM 7162 <400> 4 Met Ser Lys Val Val Tyr Val Ser His Asp Gly Thr Arg Arg Glu Leu 1 5 10 15 Asp Val Ala Asp Gly Val Ser Leu Met Gln Ala Ala Val Ser Asn Gly 20 25 30 Ile Tyr Asp Ile Val Gly Asp Cys Gly Gly Ser Ala Ser Cys Ala Thr 35 40 45 Cys His Val Tyr Val Asn Glu Ala Phe Thr Asp Lys Val Pro Ala Ala 50 55 60 Asn Glu Arg Glu Ile Gly Met Leu Glu Cys Val Thr Ala Glu Leu Lys 65 70 75 80 Pro Asn Ser Arg Leu Cys Cys Gln Ile Ile Met Thr Pro Glu Leu Asp 85 90 95 Gly Ile Val Val Asp Val Pro Asp Arg Gln Trp 100 105 <210> 5 <211> 1248 <212> DNA <213> P. putida PpG786 strain DSM 7162 <400> 5 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc tttggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 6 <211> 415 <212> PRT <213> P. putida PpG786 strain DSM 7162 <400> 6 Met Thr Thr Glu Thr Ile Gln Ser Asn Ala Asn Leu Ala Pro Leu Pro 1 5 10 15 Pro His Val Pro Glu His Leu Val Phe Asp Phe Asp Met Tyr Asn Pro 20 25 30 Ser Asn Leu Ser Ala Gly Val Glu Glu Ala Trp Ala Val Leu Gln Glu 35 40 45 Ser Asn Val Pro Asp Leu Val Trp Thr Arg Cys Asn Gly Gly His Trp 50 55 60 Ile Ala Thr Arg Gly Gln Leu Ile Arg Glu Ala Tyr Glu Asp Tyr Arg 65 70 75 80 His Phe Ser Ser Glu Cys Pro Phe Ile Pro Arg Glu Ala Gly Glu Ala 85 90 95 Tyr Asp Phe Ile Pro Thr Ser Met Asp Pro Pro Glu Gln Arg Gln Phe 100 105 110 Arg Ala Leu Ala Asn Gln Val Val Gly Met Pro Val Val Asp Lys Leu 115 120 125 Glu Asn Arg Ile Gln Glu Leu Ala Cys Ser Leu Ile Glu Ser Leu Arg 130 135 140 Pro Gln Gly Gln Cys Asn Phe Thr Glu Asp Tyr Ala Glu Pro Phe Pro 145 150 155 160 Ile Arg Ile Phe Met Leu Leu Ala Gly Leu Pro Glu Glu Asp Ile Pro 165 170 175 His Leu Lys Tyr Leu Thr Asp Gln Met Thr Arg Pro Asp Gly Ser Met 180 185 190 Thr Phe Ala Glu Ala Lys Glu Ala Leu Tyr Asp Tyr Leu Ile Pro Ile 195 200 205 Ile Glu Gln Arg Arg Gln Lys Pro Gly Thr Asp Ile Ser Ile Val 210 215 220 Ala Asn Gly Gln Val Asn Gly Arg Pro Ile Thr Ser Asp Glu Ala Lys 225 230 235 240 Arg Met Cys Gly Leu Leu Leu Val Gly Gly Leu Asp Thr Val Val Asn 245 250 255 Phe Leu Ser Phe Ser Met Glu Phe Leu Ala Lys Ser Pro Glu His Arg 260 265 270 Gln Glu Leu Ile Glu Arg Pro Glu Arg Ile Pro Ala Ala Cys Glu Glu 275 280 285 Leu Leu Arg Arg Phe Ser Leu Val Ala Asp Gly Arg Ile Leu Thr Ser 290 295 300 Asp Tyr Glu Phe His Gly Val Gln Leu Lys Lys Gly Asp Gln Ile Leu 305 310 315 320 Leu Pro Gln Met Leu Ser Gly Leu Asp Glu Arg Glu Asn Ala Cys Pro 325 330 335 Met His Val Asp Phe Ser Arg Gln Lys Val Ser His Thr Thr Phe Gly 340 345 350 His Gly Ser His Leu Cys Leu Gly Gln His Leu Ala Arg Arg Glu Ile 355 360 365 Ile Val Thr Leu Lys Glu Trp Leu Thr Arg Ile Pro Asp Phe Ser Ile 370 375 380 Ala Pro Gly Ala Gln Ile Gln His Lys Ser Gly Ile Val Ser Gly Val 385 390 395 400 Gln Ala Leu Pro Leu Val Trp Asp Pro Ala Thr Thr Lys Ala Val 405 410 415 <210> 7 <211> 3150 <212> DNA <213> Bacillus megaterium (ATCC 14581) <400> 7 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttaaac 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 8 <211> 1049 <212> PRT <213> Bacillus megaterium (ATCC 14581) <400> 8 Met Thr Ile Lys Glu Met Pro Gln Pro Lys Thr Phe Gly Glu Leu Lys 1 5 10 15 Asn Leu Pro Leu Leu Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys 20 25 30 Ile Ala Asp Glu Leu Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg 35 40 45 Val Thr Arg Tyr Leu Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp 50 55 60 Glu Ser Arg Phe Asp Lys Asn Leu Ser Gln Ala Leu Lys Phe Val Arg 65 70 75 80 Asp Phe Ala Gly Asp Gly Leu Phe Thr Ser Trp Thr His Glu Lys Asn 85 90 95 Trp Lys Lys Ala His Asn Ile Leu Leu Pro Ser Phe Ser Gln Gln Ala 100 105 110 Met Lys Gly Tyr His Ala Met Met Val Asp Ile Ala Val Gln Leu Val 115 120 125 Gln Lys Trp Glu Arg Leu Asn Ala Asp Glu His Ile Glu Val Pro Glu 130 135 140 Asp Met Thr Arg Leu Thr Leu Asp Thr Ile Gly Leu Cys Gly Phe Asn 145 150 155 160 Tyr Arg Phe Asn Ser Phe Tyr Arg Asp Gln Pro His Pro Phe Ile Thr 165 170 175 Ser Met Val Arg Ala Leu Asp Glu Ala Met Asn Lys Leu Gln Arg Ala 180 185 190 Asn Pro Asp Asp Pro Ala Tyr Asp Glu Asn Lys Arg Gln Phe Gln Glu 195 200 205 Asp Ile Lys Val Met Asn Asp Leu Val Asp Lys Ile Ile Ala Asp Arg 210 215 220 Lys Ala Ser Gly Glu Gln Ser Asp Asp Leu Leu Thr His Met Leu Asn 225 230 235 240 Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg 245 250 255 Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Val Pro 290 295 300 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp 355 360 365 Gly Asp Asp Val Glu Glu Phe Arg Pro Glu Arg Phe Glu Asn Pro Ser 370 375 380 Ala Ile Pro Gln His Ala Phe Lys Pro Phe Gly Asn Gly Gln Arg Ala 385 390 395 400 Cys Ile Gly Gln Gln Phe Ala Leu His Glu Ala Thr Leu Val Leu Gly 405 410 415 Met Met Leu Lys His Phe Asp Phe Glu Asp His Thr Asn Tyr Glu Leu 420 425 430 Asp Ile Lys Glu Thr Leu Thr Leu Lys Pro Glu Gly Phe Val Val Lys 435 440 445 Ala Lys Ser Lys Lys Ile Pro Leu Gly Gly Ile Pro Ser Ser Ser Thr 450 455 460 Glu Gln Ser Ala Lys Lys Val Arg Lys Lys Ala Glu Asn Ala His Asn 465 470 475 480 Thr Pro Leu Leu Val Leu Tyr Gly Ser Asn Met Gly Thr Ala Glu Gly 485 490 495 Thr Ala Arg Asp Leu Ala Asp Ile Ala Met Ser Lys Gly Phe Ala Pro 500 505 510 Gln Val Ala Thr Leu Asp Ser His Ala Gly Asn Leu Pro Arg Glu Gly 515 520 525 Ala Val Leu Ile Val Thr Ala Ser Tyr Asn Gly His Pro Pro Asp Asn 530 535 540 Ala Lys Gln Phe Val Asp Trp Leu Asp Gln Ala Ser Ala Asp Glu Val 545 550 555 560 Lys Gly Val Arg Tyr Ser Val Phe Gly Cys Gly Asp Lys Asn Trp Ala 565 570 575 Thr Thr Gln Lys Val Pro Ala Phe Ile Asp Glu Thr Leu Ala Ala 580 585 590 Lys Gly Ala Glu Asn Ile Ala Asp Arg Gly Glu Ala Asp Ala Ser Asp 595 600 605 Asp Phe Glu Gly Thr Tyr Glu Glu Trp Arg Glu His Met Trp Ser Asp 610 615 620 Val Ala Tyr Phe Asn Leu Asp Ile Glu Asn Ser Glu Asp Asn Lys 625 630 635 640 Ser Thr Leu Ser Leu Gln Phe Val Asp Ser Ala Ala Asp Met Pro Leu 645 650 655 Ala Lys Met His Gly Ala Phe Ser Thr Asn Val Ala Ser Lys Glu 660 665 670 Leu Gln Gln Pro Gly Ser Ala Arg Ser Thr Arg His Leu Glu Ile Glu 675 680 685 Leu Pro Lys Glu Ala Ser Tyr Gln Glu Gly Asp His Leu Gly Val Ile 690 695 700 Pro Arg Asn Tyr Glu Gly Ile Val Asn Arg Val Thr Ala Arg Phe Gly 705 710 715 720 Leu Asp Ala Ser Gln Gln Ile Arg Leu Glu Ala Glu Glu Glu Lys Leu 725 730 735 Ala His Leu Pro Leu Ala Lys Thr Val Ser Val Glu Glu Leu Leu Gln 740 745 750 Tyr Val Glu Leu Gln Asp Pro Val Thr Arg Thr Gln Leu Arg Ala Met 755 760 765 Ala Ala Lys Thr Val Cys Pro Pro His Lys Val Glu Leu Glu Ala Leu 770 775 780 Leu Glu Lys Gln Ala Tyr Lys Glu Gln Val Leu Ala Lys Arg Leu Thr 785 790 795 800 Met Leu Glu Leu Leu Glu Lys Tyr Pro Ala Cys Glu Met Lys Phe Ser 805 810 815 Glu Phe Ile Ala Leu Leu Pro Ser Ile Arg Pro Arg Tyr Tyr Ser Ile 820 825 830 Ser Ser Ser Pro Arg Val Asp Glu Lys Gln Ala Ser Ile Thr Val Ser 835 840 845 Val Val Ser Gly Glu Ala Trp Ser Gly Tyr Gly Glu Tyr Lys Gly Ile 850 855 860 Ala Ser Asn Tyr Leu Ala Glu Leu Gln Glu Gly Asp Thr Ile Thr Cys 865 870 875 880 Phe Ile Ser Thr Pro Gln Ser Glu Phe Thr Leu Pro Lys Asp Pro Glu 885 890 895 Thr Pro Leu Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Arg 900 905 910 Gly Phe Val Gln Ala Arg Lys Gln Leu Lys Glu Gln Gly Gln Ser Leu 915 920 925 Gly Glu Ala His Leu Tyr Phe Gly Cys Arg Ser Pro His Glu Asp Tyr 930 935 940 Leu Tyr Gln Glu Glu Leu Glu Asn Ala Gln Ser Glu Gly Ile Ile Thr 945 950 955 960 Leu His Thr Ala Phe Ser Arg Met Pro Asn Gln Pro Lys Thr Tyr Val 965 970 975 Gln His Val Met Glu Gln Asp Gly Lys Lys Leu Ile Glu Leu Leu Asp 980 985 990 Gln Gly Ala His Phe Tyr Ile Cys Gly Asp Gly Ser Gln Met Ala Pro 995 1000 1005 Ala Val Glu Ala Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln Val 1010 1015 1020 Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys Gly 1025 1030 1035 1040 Arg Tyr Ala Lys Asp Val Trp Ala Gly 1045 <210> 9 <211> 1476 <212> DNA <213> E. coli K12 (MG1655) <400> 9 atggcggtaa cgcaaacagc ccaggcctgt gacctggtca ttttcggcgc gaaaggcgac 60 cttgcgcgtc gtaaattgct gccttccctg tatcaactgg aaaaagccgg tcagctcaac 120 ccggacaccc ggattatcgg cgtagggcgt gctgactggg ataaagcggc atataccaaa 180 gttgtccgcg aggcgctcga aactttcatg aaagaaacca ttgatgaagg tttatgggac 240 accctgagtg cacgtctgga tttttgtaat ctcgatgtca atgacactgc tgcattcagc 300 cgtctcggcg cgatgctgga tcaaaaaaat cgtatcacca ttaactactt tgccatgccg 360 cccagcactt ttggcgcaat ttgcaaaggg cttggcgagg caaaactgaa tgctaaaccg 420 gcacgcgtag tcatggagaa accgctgggg acgtcgctgg cgacctcgca ggaaatcaat 480 gatcaggttg gcgaatactt cgaggagtgc caggtttacc gtatcgacca ctatcttggt 540 aaagaaacgg tgctgaacct gttggcgctg cgttttgcta actccctgtt tgtgaataac 600 tgggacaatc gcaccattga tcatgttgag attaccgtgg cagaagaagt ggggatcgaa 660 gggcgctggg gctattttga taaagccggt cagatgcgcg acatgatcca gaaccacctg 720 ctgcaaattc tttgcatgat tgcgatgtct ccgccgtctg acctgagcgc agacagcatc 780 cgcgatgaaa aagtgaaagt actgaagtct ctgcgccgca tcgaccgctc caacgtacgc 840 gaaaaaaccg tacgcgggca atatactgcg ggcttcgccc agggcaaaaa agtgccggga 900 tatctggaag aagagggcgc gaacaagagc agcaatacag aaactttcgt ggcgatccgc 960 gtcgacattg ataactggcg ctgggccggt gtgccattct acctgcgtac tggtaaacgt 1020 ctgccgacca aatgttctga agtcgtggtc tatttcaaaa cacctgaact gaatctgttt 1080 aaagaatcgt ggcaggatct gccgcagaat aaactgacta tccgtctgca acctgatgaa 1140 ggcgtggata tccaggtact gaataaagtt cctggccttg accacaaaca taacctgcaa 1200 atcaccaagc tggatctgag ctattcagaa acctttaatc agacgcatct ggcggatgcc 1260 tatgaacgtt tgctgctgga aaccatgcgt ggtattcagg cactgtttgt acgtcgcgac 1320 gaagtggaag aagcctggaa atgggtagac tccattactg aggcgtgggc gatggacaat 1380 gatgcgccga aaccgtatca ggccggaacc tggggacccg ttgcctcggt ggcgatgatt 1440 acccgtgatg gtcgttcctg gaatgagttt gagtaa 1476 <210> 10 <211> 491 <212> PRT <213> E. coli K12 (MG1655) <400> 10 Met Ala Val Thr Gln Thr Ala Gln Ala Cys Asp Leu Val Ile Phe Gly 1 5 10 15 Ala Lys Gly Asp Leu Ala Arg Arg Lys Leu Leu Pro Ser Leu Tyr Gln 20 25 30 Leu Glu Lys Ala Gly Gln Leu Asn Pro Asp Thr Arg Ile Ile Gly Val 35 40 45 Gly Arg Ala Asp Trp Asp Lys Ala Ala Tyr Thr Lys Val Val Arg Glu 50 55 60 Ala Leu Glu Thr Phe Met Lys Glu Thr Ile Asp Glu Gly Leu Trp Asp 65 70 75 80 Thr Leu Ser Ala Arg Leu Asp Phe Cys Asn Leu Asp Val Asn Asp Thr 85 90 95 Ala Ala Phe Ser Arg Leu Gly Ala Met Leu Asp Gln Lys Asn Arg Ile 100 105 110 Thr Ile Asn Tyr Phe Ala Met Pro Pro Ser Thr Phe Gly Ala Ile Cys 115 120 125 Lys Gly Leu Gly Aly Lys Leu Asn Aly Lys Pro Ala Arg Val Val 130 135 140 Met Glu Lys Pro Leu Gly Thr Ser Leu Ala Thr Ser Gln Glu Ile Asn 145 150 155 160 Asp Gln Val Gly Glu Tyr Phe Glu Glu Cys Gln Val Tyr Arg Ile Asp 165 170 175 His Tyr Leu Gly Lys Glu Thr Val Leu Asn Leu Leu Ala Leu Arg Phe 180 185 190 Ala Asn Ser Leu Phe Val Asn Asn Trp Asp Asn Arg Thr Ile Asp His 195 200 205 Val Glu Ile Thr Val Ala Glu Glu Val Gly Ile Glu Gly Arg Trp Gly 210 215 220 Tyr Phe Asp Lys Ala Gly Gln Met Arg Asp Met Ile Gln Asn His Leu 225 230 235 240 Leu Gln Ile Leu Cys Met Ile Ala Met Ser Pro Pro Ser Asp Leu Ser 245 250 255 Ala Asp Ser Ile Arg Asp Glu Lys Val Lys Val Leu Lys Ser Leu Arg 260 265 270 Arg Ile Asp Arg Ser Asn Val Arg Glu Lys Thr Val Arg Gly Gln Tyr 275 280 285 Thr Ala Gly Phe Ala Gln Gly Lys Lys Val Pro Gly Tyr Leu Glu Glu 290 295 300 Glu Gly Ala Asn Lys Ser Ser Asn Thr Glu Thr Phe Val Ala Ile Arg 305 310 315 320 Val Asp Ile Asp Asn Trp Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg 325 330 335 Thr Gly Lys Arg Leu Pro Thr Lys Cys Ser Glu Val Val Val Tyr Phe 340 345 350 Lys Thr Pro Glu Leu Asn Leu Phe Lys Glu Ser Trp Gln Asp Leu Pro 355 360 365 Gln Asn Lys Leu Thr Ile Arg Leu Gln Pro Asp Glu Gly Val Asp Ile 370 375 380 Gln Val Leu Asn Lys Val Pro Gly Leu Asp His Lys His Asn Leu Gln 385 390 395 400 Ile Thr Lys Leu Asp Leu Ser Tyr Ser Glu Thr Phe Asn Gln Thr His 405 410 415 Leu Ala Asp Ala Tyr Glu Arg Leu Leu Leu Glu Thr Met Arg Gly Ile 420 425 430 Gln Ala Leu Phe Val Arg Arg Asp Glu Val Glu Glu Ala Trp Lys Trp 435 440 445 Val Asp Ser Ile Thr Glu Ala Trp Ala Met Asp Asn Asp Ala Pro Lys 450 455 460 Pro Tyr Gln Ala Gly Thr Trp Gly Pro Val Ala Ser Val Ala Met Ile 465 470 475 480 Thr Arg Asp Gly Arg Ser Trp Asn Glu Phe Glu 485 490 <210> 11 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Primer: CAM_F <400> 11 taagaaggag atatacatat gaacgcaaac gacaacg 37 <210> 12 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Primer: camA_R <400> 12 catgaattct gtttcctgtg tgattaggca ctactcagtt ca 42 <210> 13 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Primer: camB_F <400> 13 taatcacaca ggaaacagaa ttcatgtcta aagtagtgta tg 42 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer: camB_R <400> 14 ggtttcttta ccagactcga ttaccattgc ctatcgggaa 40 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Primer: camC_F <400> 15 aagaaggaga tataccatga cgactgaaac cataca 36 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer: camC_R <400> 16 gcattatgcg gccgcaagct ttataccgct ttggtagtcg 40 <210> 17 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Primer: P450bm3_F <400> 17 aagaaggaga tataccatga caattaaaga aatgcct 37 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer: P450bm3_R <400> 18 gtggtggtgg tggtgctcga ttacccagcc cacacgtctt 40 <210> 19 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Primer: Zwf_F <400> 19 ttaagaagga gatataccat ggcggtaacg caaacagc 38 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Primer: Zwf_R <400> 20 tcgacctgca ggcgcgccgt tactcaaact cattccagg 39 <210> 21 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351Y <400> 21 aaggtttcac acaccaccta tggccacggc agccatctg 39 <210> 22 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351Y <400> 22 cagatggctg ccgtggccat aggtggtgtg tgaaacctt 39 <210> 23 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351T <400> 23 aaggtttcac acaccaccac cggccacggc agccatctg 39 <210> 24 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351T <400> 24 cagatggctg ccgtggccgg tggtggtgtg tgaaacctt 39 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351N <400> 25 aaggtttcac acaccaccaa cggccacggc agccatctg 39 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351N <400> 26 cagatggctg ccgtggccgt tggtggtgtg tgaaacctt 39 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351Q <400> 27 aaggtttcac acaccaccca gggccacggc agccatctg 39 <210> 28 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351Q <400> 28 cagatggctg ccgtggccct gggtggtgtg tgaaacctt 39 <210> 29 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351H <400> 29 aaggtttcac acaccaccca tggccacggc agccatctg 39 <210> 30 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351H <400> 30 cagatggctg ccgtggccat gggtggtgtg tgaaacctt 39 <210> 31 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for F351D <400> 31 aaggtttcac acaccaccga tggccacggc agccatctg 39 <210> 32 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for F351D <400> 32 cagatggctg ccgtggccat cggtggtgtg tgaaacctt 39 <210> 33 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320W <400> 33 tatgtcggca tggtcttatg ggaagcgctg cgcttatgg 39 <210> 34 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320W <400> 34 ccataagcgc agcgcttccc ataagaccat gccgacata 39 <210> 35 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320F <400> 35 tatgtcggca tggtcttatt tgaagcgctg cgcttatgg 39 <210> 36 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320F <400> 36 ccataagcgc agcgcttcaa ataagaccat gccgacata 39 <210> 37 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320G <400> 37 tatgtcggca tggtcttagg cgaagcgctg cgcttatgg 39 <210> 38 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320G <400> 38 ccataagcgc agcgcttcgc ctaagaccat gccgacata 39 <210> 39 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320P <400> 39 tatgtcggca tggtcttacc ggaagcgctg cgcttatgg 39 <210> 40 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320P <400> 40 ccataagcgc agcgcttccg gtaagaccat gccgacata 39 <210> 41 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320S <400> 41 tatgtcggca tggtcttaag cgaagcgctg cgcttatgg 39 <210> 42 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320S <400> 42 ccataagcgc agcgcttcgc ttaagaccat gccgacata 39 <210> 43 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for N320E <400> 43 tatgtcggca tggtcttaga agaagcgctg cgcttatgg 39 <210> 44 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for N320E <400> 44 ccataagcgc agcgcttctt ctaagaccat gccgacata 39 <210> 45 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320W gene <400> 45 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttatgg 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 46 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320F gene <400> 46 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttattt 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 47 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320G <400> 47 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttaggc 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 48 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320P <400> 48 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttaccg 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 49 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320S <400> 49 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttaagc 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 50 <211> 3150 <212> DNA <213> Artificial Sequence <220> <223> P450BM3 N320E <400> 50 atgacaatta aagaaatgcc tcagccaaaa acgtttggag agcttaaaaa tttaccgtta 60 ttaaacacag ataaaccggt tcaagctttg atgaaaattg cggatgaatt aggagaaatc 120 tttaaattcg aggcgcctgg tcgtgtaacg cgctacttat caagtcagcg tctaattaaa 180 gaagcatgcg atgaatcacg ctttgataaa aacttaagtc aagcgcttaa atttgtacgt 240 gattttgcag gagacgggtt atttacaagc tggacgcatg aaaaaaattg gaaaaaagcg 300 cataatatct tacttccaag cttcagtcag caggcaatga aaggctatca tgcgatgatg 360 gtcgatatcg ccgtgcagct tgttcaaaag tgggagcgtc taaatgcaga tgagcatatt 420 gaagtaccgg aagacatgac acgtttaacg cttgatacaa ttggtctttg cggctttaac 480 tatcgcttta acagctttta ccgagatcag cctcatccat ttattacaag tatggtccgt 540 gcactggatg aagcaatgaa caagctgcag cgagcaaatc cagacgaccc agcttatgat 600 gaaaacaagc gccagtttca agaagatatc aaggtgatga acgacctagt agataaaatt 660 attgcagatc gcaaagcaag cggtgaacaa agcgatgatt tattaacgca tatgctaaac 720 ggaaaagatc cagaaacggg tgagccgctt gatgacgaga acattcgcta tcaaattatt 780 acattcttaa ttgcgggaca cgaaacaaca agtggtcttt tatcatttgc gctgtatttc 840 ttagtgaaaa atccacatgt attacaaaaa gcagcagaag aagcagcacg agttctagta 900 gatcctgttc caagctacaa acaagtcaaa cagcttaaat atgtcggcat ggtcttagaa 960 gaagcgctgc gcttatggcc aactgctcct gcgttttccc tatatgcaaa agaagatacg 1020 gtgcttggag gagaatatcc tttagaaaaa ggcgacgaac taatggttct gattcctcag 1080 cttcaccgtg ataaaacaat ttggggagac gatgtggaag agttccgtcc agagcgtttt 1140 gaaaatccaa gtgcgattcc gcagcatgcg tttaaaccgt ttggaaacgg tcagcgtgcg 1200 tgtatcggtc agcagttcgc tcttcatgaa gcaacgctgg tacttggtat gatgctaaaa 1260 cactttgact ttgaagatca tacaaactac gagctggata ttaaagaaac tttaacgtta 1320 aaacctgaag gctttgtggt aaaagcaaaa tcgaaaaaaa ttccgcttgg cggtattcct 1380 tcacctagca ctgaacagtc tgctaaaaaa gtacgcaaaa aggcagaaaa cgctcataat 1440 acgccgctgc ttgtgctata cggttcaaat atgggaacag ctgaaggaac ggcgcgtgat 1500 ttagcagata ttgcaatgag caaaggattt gcaccgcagg tcgcaacgct tgattcacac 1560 gccggaaatc ttccgcgcga aggagctgta ttaattgtaa cggcgtctta taacggtcat 1620 ccgcctgata acgcaaagca atttgtcgac tggttagacc aagcgtctgc tgatgaagta 1680 aaaggcgttc gctactccgt atttggatgc ggcgataaaa actgggctac tacgtatcaa 1740 aaagtgcctg cttttatcga tgaaacgctt gccgctaaag gggcagaaaa catcgctgac 1800 cgcggtgaag cagatgcaag cgacgacttt gaaggcacat atgaagaatg gcgtgaacat 1860 atgtggagtg acgtagcagc ctactttaac ctcgacattg aaaacagtga agataataaa 1920 tctactcttt cacttcaatt tgtcgacagc gccgcggata tgccgcttgc gaaaatgcac 1980 ggtgcgtttt caacgaacgt cgtagcaagc aaagaacttc aacagccagg cagtgcacga 2040 agcacgcgac atcttgaaat tgaacttcca aaagaagctt cttatcaaga aggagatcat 2100 ttaggtgtta ttcctcgcaa ctatgaagga atagtaaacc gtgtaacagc aaggttcggc 2160 ctagatgcat cacagcaaat ccgtctggaa gcagaagaag aaaaattagc tcatttgcca 2220 ctcgctaaaa cagtatccgt agaagagctt ctgcaatacg tggagcttca agatcctgtt 2280 acgcgcacgc agcttcgcgc aatggctgct aaaacggtct gcccgccgca taaagtagag 2340 cttgaagcct tgcttgaaaa gcaagcctac aaagaacaag tgctggcaaa acgtttaaca 2400 atgcttgaac tgcttgaaaa atacccggcg tgtgaaatga aattcagcga atttatcgcc 2460 cttctgccaa gcatacgccc gcgctattac tcgatttctt catcacctcg tgtcgatgaa 2520 aaacaagcaa gcatcacggt cagcgttgtc tcaggagaag cgtggagcgg atatggagaa 2580 tataaaggaa ttgcgtcgaa ctatcttgcc gagctgcaag aaggagatac gattacgtgc 2640 tttatttcca caccgcagtc agaatttacg ctgccaaaag accctgaaac gccgcttatc 2700 atggtcggac cgggaacagg cgtcgcgccg tttagaggct ttgtgcaggc gcgcaaacag 2760 ctaaaagaac aaggacagtc acttggagaa gcacatttat acttcggctg ccgttcacct 2820 catgaagact atctgtatca agaagagctt gaaaacgccc aaagcgaagg catcattacg 2880 cttcataccg ctttttctcg catgccaaat cagccgaaaa catacgttca gcacgtaatg 2940 gaacaagacg gcaagaaatt gattgaactt cttgatcaag gagcgcactt ctatatttgc 3000 ggagacggaa gccaaatggc acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac 3060 gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc 3120 cgatacgcaa aagacgtgtg ggctgggtaa 3150 <210> 51 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351Y <400> 51 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc tatggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 52 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351T <400> 52 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc accggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 53 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351N <400> 53 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc aacggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 54 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351Q <400> 54 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc cagggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 55 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351H <400> 55 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc catggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248 <210> 56 <211> 1248 <212> DNA <213> Artificial Sequence <220> <223> CamC F351D <400> 56 atgacgactg aaaccataca aagcaacgcc aatcttgccc ctctgccacc ccatgtgcca 60 gagcacctgg tattcgactt cgacatgtac aatccgtcga atctgtctgc cggcgtgcag 120 gaggcctggg cagttctgca agaatcaaac gtaccggatc tggtgtggac tcgctgcaac 180 ggcggacact ggatcgccac tcgcggccaa ctgatccgtg aggcctatga agattaccgc 240 cacttttcca gcgagtgccc gttcatccct cgtgaagccg gcgaagccta cgacttcatt 300 cccacctcga tggatccgcc cgagcagcgc cagtttcgtg cgctggccaa ccaagtggtt 360 ggcatgccgg tggtggataa gctggagaac cggatccagg agctggcctg ctcgctgatc 420 gagagcctgc gcccgcaagg acagtgcaac ttcaccgagg actacgccga acccttcccg 480 atacgcatct tcatgctgct cgcaggtcta ccggaagaag atatcccgca cttgaaatac 540 ctaacggatc agatgacccg tccggatggc agcatgacct tcgcagaggc caaggaggcg 600 ctctacgact atctgatacc gatcatcgag caacgcaggc agaagccggg aaccgacgct 660 atcagcatcg ttgccaacgg ccaggtcaat gggcgaccga tcaccagtga cgaagccaag 720 aggatgtgtg gcctgttact ggtcggcggc ctggatacgg tggtcaattt cctcagcttc 780 agcatggagt tcctggccaa aagcccggag catcgccagg agctgatcga gcgtcccgag 840 cgtattccag ccgcttgcga ggaactactc cggcgcttct cgctggttgc cgatggccgc 900 atcctcacct ccgattacga gtttcatggc gtgcaactga agaaaggtga ccagatcctg 960 ctaccgcaga tgctgtctgg cctggatgag cgcgaaaacg cctgcccgat gcacgtcgac 1020 ttcagtcgcc aaaaggtttc acacaccacc gatggccacg gcagccatct gtgccttggc 1080 cagcacctgg cccgccggga aatcatcgtc accctcaagg aatggctgac caggattcct 1140 gacttctcca ttgccccggg tgcccagatt cagcacaaga gcggcatcgt cagcggcgtg 1200 caggcactcc ctctggtctg ggatccggcg actaccaaag cggtataa 1248
Claims (19)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160109543A KR20180023734A (en) | 2016-08-26 | 2016-08-26 | Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample |
US15/372,327 US10358632B2 (en) | 2015-12-07 | 2016-12-07 | Bacterial cytochrome P450 protein variant and method of reducing concentration of fluorinated methane in sample using the same |
EP16202662.9A EP3178922B1 (en) | 2015-12-07 | 2016-12-07 | Bacterial cytochrome p450 protein variant and method of reducing concentration of fluorinated methane in sample using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160109543A KR20180023734A (en) | 2016-08-26 | 2016-08-26 | Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180023734A true KR20180023734A (en) | 2018-03-07 |
Family
ID=61689093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160109543A KR20180023734A (en) | 2015-12-07 | 2016-08-26 | Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20180023734A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112359027A (en) * | 2021-01-13 | 2021-02-12 | 凯莱英生命科学技术(天津)有限公司 | Cytochrome P450 enzyme mutant and application thereof |
-
2016
- 2016-08-26 KR KR1020160109543A patent/KR20180023734A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112359027A (en) * | 2021-01-13 | 2021-02-12 | 凯莱英生命科学技术(天津)有限公司 | Cytochrome P450 enzyme mutant and application thereof |
CN112359027B (en) * | 2021-01-13 | 2021-04-13 | 凯莱英生命科学技术(天津)有限公司 | Cytochrome P450 enzyme mutant and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mock et al. | Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica | |
Nagata et al. | Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane in Pseudomonas paucimobilis | |
US10344286B2 (en) | Microorganism including gene encoding protein having hydroxylase activity and method of reducing concentration of fluorinated methane in sample using the same | |
US10150080B2 (en) | Microorganism including gene encoding protein having dehalogenase activity and method of reducing concentration of fluorinated methane in sample using the same | |
EP3178922B1 (en) | Bacterial cytochrome p450 protein variant and method of reducing concentration of fluorinated methane in sample using the same | |
Ohhata et al. | An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil | |
Liu et al. | Novel L-cysteine-dependent maleylpyruvate isomerase in the gentisate pathway of Paenibacillus sp. strain NyZ101 | |
Wei et al. | Rational design of catechol-2, 3-dioxygenase for improving the enzyme characteristics | |
US20180104647A1 (en) | Recombinant microorganism including genetic modification that increases 2-haloacid dehalogenase activity and method of reducing concentration of fluorinated methane in sample by using the same | |
KR20180023735A (en) | Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample | |
Van den Bergh et al. | Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus | |
US20170183638A1 (en) | Soluble methane monooxygenase protein variant and method of reducing concentration of fluorinated methane in sample using the same | |
KR20180023734A (en) | Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample | |
Mihasan et al. | Evidence of a plasmid-encoded oxidative xylose-catabolic pathway in Arthrobacter nicotinovorans pAO1 | |
KR20170075630A (en) | Soluble methane monooxygenase protein and method for reducing concentration of fluorinated methane in sample | |
KR20180023736A (en) | Soluble methane monooxygenase protein variant and method for reducing concentration of fluorinated methane in sample | |
Di Salle et al. | A novel thermostable sulfite oxidase from Thermus thermophilus: characterization of the enzyme, gene cloning and expression in Escherichia coli | |
Fukuda et al. | Substrate recognition by 2-oxoacid: ferredoxin oxidoreductase from Sulfolobus sp. strain 7 | |
KR20170067125A (en) | Bacterial cytochrome 450 protein and method for reducing concentration of fluorinated methane in sample | |
KR20180041008A (en) | Dehalogenase variant, polynucleotide coding the variant, microorganism including genetic modification having the polynucleotide, composition including the microorganism and method for reducing concentration of fluorinated methane in sample using the same | |
KR20190030031A (en) | Haloacid dehalogenase hdl4a protein variant and method for reducing concentration of fluorine containing compound in sample | |
KR20190025362A (en) | Haloacid dehalogenase superfamily protein variant and method for reducing concentration of fluorine containing compound in sample | |
Gun et al. | Hyperthermophilic flavin reductase from Sulfolobus solfataricus P2: Production and biochemical characterization | |
CN112553173B (en) | Wild oxidase mutant and preparation method and application thereof | |
KR20200035787A (en) | 4-chlorobenzoyl coenzyme A dehalogenase and method for reducing concentration of fluorine containing compound in sample using the same |