KR20170075630A - Soluble methane monooxygenase protein and method for reducing concentration of fluorinated methane in sample - Google Patents

Soluble methane monooxygenase protein and method for reducing concentration of fluorinated methane in sample Download PDF

Info

Publication number
KR20170075630A
KR20170075630A KR1020160075832A KR20160075832A KR20170075630A KR 20170075630 A KR20170075630 A KR 20170075630A KR 1020160075832 A KR1020160075832 A KR 1020160075832A KR 20160075832 A KR20160075832 A KR 20160075832A KR 20170075630 A KR20170075630 A KR 20170075630A
Authority
KR
South Korea
Prior art keywords
ala
leu
glu
gly
val
Prior art date
Application number
KR1020160075832A
Other languages
Korean (ko)
Inventor
정유경
양동식
박진환
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US15/389,571 priority Critical patent/US20170183638A1/en
Publication of KR20170075630A publication Critical patent/KR20170075630A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13025Methane monooxygenase (1.14.13.25)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

가용성 메탄 모노옥시게나제 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물, 시료 중 CHnF4 -n(n은 0 내지 3의 정수)를 제거하는데 사용하기 위한 가용성 메탄 모노옥시게나제를 포함하는 조성물 및 시료 중 CHnF4 -n의 농도를 감소시키는 방법을 제공한다.A recombinant microorganism comprising a foreign gene encoding a soluble methane monooxygenase protein, a soluble methane monooxygenase for use in removing CH n F 4 -n (n is an integer from 0 to 3) A method for reducing the concentration of CH n F 4 -n in a composition and a sample.

Description

가용성 메탄 모노옥시게나제 단백질 및 그를 이용한 시료 중 플루오르화 메탄의 농도를 감소시키는 방법{Soluble methane monooxygenase protein and method for reducing concentration of fluorinated methane in sample}[0001] The present invention relates to a soluble methane monooxygenase protein and a method for reducing the concentration of fluorinated methane in a sample using the same,

가용성 메탄 모노옥시게나제 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물, 시료 중 CHnF4 -n (n은 0 내지 3의 정수)를 제거하는데 사용하기 위한 가용성 메탄 모노옥시게나제 단백질을 포함하는 조성물, 및 상기 단백질을 이용하여 시료 중 CHnF4 -n의 농도를 감소시키는 방법에 관한 것이다.A recombinant microorganism comprising a foreign gene encoding a soluble methane monooxygenase protein, a soluble methane monooxygenase protein for use in removing CH n F 4 -n (n is an integer from 0 to 3) in the sample And a method for reducing the concentration of CH n F 4 -n in a sample using the protein.

지구의 온난화를 가속시키는 온실가스의 배출은 심각한 환경 문제 중의 하나이며 이를 규제하고 방지하기 위해서 온실가스 배출량에 대한 규제가 강화되고 있다. 이 중 퍼플루오로카르본(perfluorocarbons: PFCs), 히드로플루오로카르본(hydrofluorocarbons: HFCs), 설퍼 헥사플루오리드(sulfur hexafluoride: SF6)와 같은 불화가스 (fluorinated gas: F-가스)는 절대 배출량은 낮으나 반감기가 길고 지구온난화 계수가 월등히 높아 더욱 심각한 영향을 미치는 것으로 보고되고 있다. F-가스의 주요 배출원인 반도체 및 전자 산업 분야 등에서 F-가스의 발생량은 온실가스 배출 할당량을 초과하여 증가 추세에 있고 이에 따라 온실가스 분해 및 배출권 구입에 필요한 비용 부담이 매년 증가하고 있는 상황이다. Emissions of greenhouse gases that accelerate global warming are one of the most serious environmental problems, and regulations on greenhouse gas emissions are being tightened to regulate and prevent them. Among these, fluorinated gas (F-gas) such as perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF 6 ) Has a low half-life and a high global warming potential. In the semiconductor and electronics industries, which are major sources of F-gas, the amount of F-gas generated is increasing more than the GHG emission quota, and thus the burden of purchasing greenhouse gas decomposition and emission rights is increasing every year.

하지만, 기존의 F-가스 분해는 열분해 또는 촉매열산화 공정을 이용하고 있으나 제한된 분해율 및 2차 유해물질 배출, 고비용 등의 한계가 존재한다. 이를 해결하기 위해 미생물 생촉매를 이용한 생물학적 F-가스 분해 공정의 도입으로 기존의 화학적 분해 공정의 한계를 극복하고 보다 경제적이고 친환경적인 F-가스의 처리가 가능할 것으로 보인다.However, existing F-gas decomposition uses pyrolysis or catalytic thermal oxidation process, but there are limitations such as limited decomposition rate, secondary harmful substance discharge, and high cost. In order to solve this problem, biological F-gas decomposition process using microbial biocatalyst is expected to overcome the limitation of conventional chemical decomposition process and to be able to treat more economical and environmentally friendly F-gas.

가용성 메탄 모노옥시게나제(soluble methane monooxygenase: sMMO)는 옥시도리덕타제 효소로서, 히드록실라제, 리덕타제, 및 조절요소의 3가지 요소를 포함한다. 히드록실라제 요소는 MmoX, MmoY, 및 MmoZ로 이루어진 히드록실라제 요소 단량체가 이량체를 이루고 있다. 리덕타제 요소인 MmoC는 보결 분자단(prosthetic group)을 포함하며 NADH를 NAD+로 산화시킨다. 조절요소인 MmoB는 리덕타제 요소로부터 히드록실라제 요소로 전자를 전달하는데 관여한다. MmoD도 sMMO의 요소이나 그의 정확한 기능에 대해서는 알려져 있지 않다.Soluble methane monooxygenase (sMMO) is an oxidoreductase enzyme, which contains three components: hydroxylase, reductase, and regulatory elements. The hydroxyl group element is a dimer of a hydroxyl group element monomer composed of MmoX, MmoY, and MmoZ. The reductase element, MmoC, contains a prosthetic group and oxidizes NADH to NAD +. The regulatory element, MmoB, is involved in transferring electrons from the reductase element to the hydroxylase element. MmoD is not known about the elements of sMMO or its exact function.

현재까지, 가용성 메탄 모노옥시게나제가 시료 중 플루오르화 메탄을 제거하는 것을 촉매하는지에 대해서는 알려져 있지 않다. To date, it is not known whether soluble methane monooxygenase catalyzes removal of fluorinated methane in a sample.

일 양상은 가용성 메탄 모노옥시게나제 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물을 제공한다. One aspect provides a recombinant microorganism comprising a foreign gene encoding a soluble methane monooxygenase protein.

다른 양상은 시료 중 CHnF4 -n (n은 0 내지 3의 정수)를 제거하는데 사용하기 위한, 가용성 메탄 모노옥시게나제 단백질을 포함하는 조성물을 제공한다. Another aspect provides a composition comprising a soluble methane monooxygenase protein for use in removing CH n F 4 -n (where n is an integer from 0 to 3) in a sample.

다른 양상은 가용성 메탄 모노옥시게나제 단백질을 CHnF4 -n (n은 0 내지 3의 정수) 함유 시료와 접촉시켜 시료 중 CHnF4 -n의 농도를 감소시키는 단계;를 포함하는, 시료 중 CHnF4 -n의 농도를 감소시키는 방법을 제공한다.Another aspect relates to a method of reducing the concentration of CH n F 4 -n in a sample by contacting a soluble methane monooxygenase protein with a sample containing CH n F 4 -n (n is an integer from 0 to 3) Thereby reducing the concentration of CH n F 4 -n in the sample.

일 양상은, 가용성 메탄 모노옥시게나제(soluble methane monooxygenase: sMMO) 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물을 제공한다. One aspect provides a recombinant microorganism comprising a foreign gene encoding soluble methane monooxygenase (sMMO) protein.

상기 재조합 미생물에 있어서, 상기 sMMO 단백질이 EC 1.14.13.25에 속하는 것일 수 있다. 상기 sMMO 단백질이 Methylococcus capsulatus (Bath) 유래의 것일 수 있다. 상기 sMMO 단백질이 MmoX, MmoY와 MmoZ의 복합체, MmoB, MmoC, 및 MmoD를 포함하는 것일 수 있다. MmoD는 OrfY로도 명명될 수 있다. MmoX, MmoY, MmoZ, MmoB, MmoC, 및 MmoD는 각각 서열번호 1, 3, 5, 7, 9, 및 11의 아미노산 서열을 갖는 것일 수 있다. MmoX, MmoY, MmoZ, MmoB, MmoC, 및 MmoD를 코딩하는 폴리뉴클레오티드는 각각 서열번호 2, 4, 6, 8, 10, 12의 뉴클레오티드 서열을 갖는 것일 수 있다. 상기 재조합 미생물에 있어서, 상기 유전자는 서열번호 2의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 4의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 6의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 8의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 10의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 및 서열번호 12의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드를 포함하는 것일 수 있다. 상기 재조합 미생물에 있어서, 상기 유전자는 서열번호 31의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드 중에 포함되어 있는 것일 수 있다. 즉, 상기 재조합 미생물은 서열번호 31의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드를 포함하는 것일 수 있다.In the recombinant microorganism, the sMMO protein may belong to EC 1.14.13.25. The sMMO protein may be derived from Methylococcus capsulatus (Bath). The sMMO protein may be one comprising a complex of MmoX, MmoY and MmoZ, MmoB, MmoC, and MmoD. MmoD can also be named OrfY. MmoX, MmoY, MmoZ, MmoB, MmoC, and MmoD may have the amino acid sequences of SEQ ID NOS: 1, 3, 5, 7, 9 and 11, respectively. The polynucleotides encoding MmoX, MmoY, MmoZ, MmoB, MmoC, and MmoD may have the nucleotide sequences of SEQ ID NOS: 2, 4, 6, 8, 10 and 12, respectively. Wherein the gene comprises a polynucleotide having the nucleotide sequence of SEQ ID NO: 2, a polynucleotide having the nucleotide sequence of SEQ ID NO: 4, a polynucleotide having the nucleotide sequence of SEQ ID NO: 6, a polynucleotide having the nucleotide sequence of SEQ ID NO: A polynucleotide having the nucleotide sequence of SEQ ID NO: 10, and a polynucleotide having the nucleotide sequence of SEQ ID NO: 12. In the recombinant microorganism, the gene may be contained in a polynucleotide having a nucleotide sequence of SEQ ID NO: 31. That is, the recombinant microorganism may comprise a polynucleotide having the nucleotide sequence of SEQ ID NO: 31.

상기 재조합 미생물은 MmoG를 코딩하는 외래 유전자를 더 포함하는 것일 수 있다. MmoG는 서열번호 13의 아미노산 서열을 갖는 것일 수 있다. MmoG를 코딩하는 폴리뉴클레오티드는 서열번호 14의 뉴클레오티드 서열을 갖는 것일 수 있다.
The recombinant microorganism may further comprise a foreign gene encoding MmoG. MmoG may have the amino acid sequence of SEQ ID NO: 13. The polynucleotide encoding MmoG may be the one having the nucleotide sequence of SEQ ID NO: 14.

상기 재조합 미생물은 Escherichia 속에 속하는 것일 수 있다. 상기 Escherichia 미생물은 대장균일 수 있다. 상기 재조합 미생물은 서열번호 31의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드가 도입된 것일 수 있다.
The recombinant microorganism may belong to the genus Escherichia. The Escherichia microorganism may be E. coli. The recombinant microorganism may be one in which a polynucleotide having the nucleotide sequence of SEQ ID NO: 31 has been introduced.

다른 양상은 시료 중 CHnF4 -n (n은 0 내지 3의 정수)를 제거하는데 사용하기 위한, 가용성 메탄 모노옥시게나제(sMMO) 단백질을 포함하는 조성물을 제공한다. Another aspect provides a composition comprising a soluble methane monooxygenase (sMMO) protein for use in removing CH n F 4 -n (n is an integer from 0 to 3) in a sample.

상기 조성물에 있어서, CHnF4 -n는 예를 들면, CHF3, CH2F2, CH3F, 또는 CF4일 수 있다. 용어 "제거"는 시료 중의 CHnF4 -n의 농도를 감소시키는 것을 포함한다. 상기 감소는 완전한 제거를 포함한다. In this composition, CH n F 4 -n can be, for example, CHF 3 , CH 2 F 2 , CH 3 F, or CF 4 . The term "removal" includes reducing the concentration of CH n F 4 -n in the sample. The reduction includes complete removal.

상기 조성물에 있어서, 상기 sMMO 단백질이 EC 1.14.13.25에 속하는 것일 수 있다. 상기 sMMO 단백질이 Methylococcus capsulatus (Bath) 유래의 것일 수 있다. 상기 sMMO 단백질이 MmoX, MmoY와 MmoZ의 복합체, MmoB, MmoC, 및 MmoD를 포함하는 것일 수 있다. MmoX, MmoY, MmoZ, MmoB, MmoC, 및 MmoD는 각각 서열번호 1, 3, 5, 7, 9, 및 11의 아미노산 서열을 갖는 것일 수 있다. MmoX, MmoY, MmoZ, MmoB, MmoC, 및 MmoD를 코딩하는 폴리뉴클레오티드에 대해서는 전술된 바와 같다.In the above composition, the sMMO protein may belong to EC 1.14.13.25. The sMMO protein may be derived from Methylococcus capsulatus (Bath). The sMMO protein may be one comprising a complex of MmoX, MmoY and MmoZ, MmoB, MmoC, and MmoD. MmoX, MmoY, MmoZ, MmoB, MmoC, and MmoD may have the amino acid sequences of SEQ ID NOS: 1, 3, 5, 7, 9 and 11, respectively. The polynucleotides encoding MmoX, MmoY, MmoZ, MmoB, MmoC, and MmoD are as described above.

상기 조성물에 있어서, sMMO 단백질이, 상기 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물로부터 발현되는 것일 수 있다. 상기 조성물은 상기 재조합 미생물, 그의 파쇄물(lysate), 또는 상기 파쇄물의 수용성 물질 분획을 포함하는 것일 수 있다. 상기 재조합 미생물은 Escherichia 속 미생물일 수 있다. 상기 Escherichia 속 미생물은 대장균일 수 있다. 상기 재조합 미생물에 포함된 외래 유전자는 서열번호 2의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 4의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 6의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 8의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 10의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 및 서열번호 12의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드를 포함하는 것일 수 있다. 상기 재조합 미생물에 포함된 외래 유전자는 서열번호 31의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드 중에 포함되어 있는 것일 수 있다. 상기 재조합 미생물은 서열번호 31의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드가 도입된 것일 수 있다.In such a composition, the sMMO protein may be expressed from a recombinant microorganism comprising a foreign gene encoding the protein. The composition may comprise the recombinant microorganism, a lysate thereof, or a water soluble fraction of the lysate. The recombinant microorganism may be Escherichia genus. The microorganism Escherichia may be E. coli. The foreign gene contained in the recombinant microorganism is a polynucleotide having a nucleotide sequence of SEQ ID NO: 2, a polynucleotide having a nucleotide sequence of SEQ ID NO: 4, a polynucleotide having a nucleotide sequence of SEQ ID NO: 6, a polynucleotide having a nucleotide sequence of SEQ ID NO: A polynucleotide having the nucleotide sequence of SEQ ID NO: 10, and a polynucleotide having the nucleotide sequence of SEQ ID NO: 12. The foreign gene contained in the recombinant microorganism may be contained in a polynucleotide having the nucleotide sequence of SEQ ID NO: 31. The recombinant microorganism may be one in which a polynucleotide having the nucleotide sequence of SEQ ID NO: 31 has been introduced.

상기 조성물에 있어서, 상기 CHnF4 -n 제거는 CHnF4 -n (n은 0 내지 3의 정수)의 C-F의 결합을 절단하거나, CHnF4 -n를 다른 물질로 전환하거나, 세포 내에 축적하여, CHnF4 -n의 농도를 줄이는 것을 포함하는 것일 수 있다. 상기 전환은 CHnF4 -n에 히드록실기와 같은 친수성 기를 도입하는 것, 또는 탄소-탄소 이중 결합 또는 탄소-탄소 삼중결합을 도입하는 것일 수 있다. In the composition, the ratio of the CH n F 4 -n Removal may be accomplished by cleaving the bond of CF n F 4 -n (where n is an integer from 0 to 3), or converting CH n F 4 -n to another substance, or accumulating it in the cell to increase the concentration of CHnF 4 -n ≪ / RTI > The conversion may be to introduce a hydrophilic group such as a hydroxyl group into CH n F 4 -n , or to introduce a carbon-carbon double bond or a carbon-carbon triple bond.

상기 조성물에 있어서, 상기 시료는 액체 또는 기체 상태일 수 있다. 상기 시료는 공장 폐수 또는 폐기체일 수 있다. In the composition, the sample may be in a liquid or gaseous state. The sample may be factory waste water or waste.

또한, 상기 조성물은 에틸 아세테이트를 제거하는데 이용될 수 있다.
In addition, the composition can be used to remove ethyl acetate.

다른 양상은 가용성 메탄 모노옥시게나제(sMMO) 단백질을 CHnF4 -n (n은 0 내지 3의 정수) 함유 시료와 접촉시켜 시료 중 CHnF4 -n (n은 0 내지 3의 정수)의 농도를 감소시키는 단계;를 포함하는, 시료 중 CHnF4 -n의 농도를 감소시키는 방법을 제공한다.The concentration of the further aspect is soluble methane mono oxide dioxygenase claim (sMMO) 4 -n CHnF protein (n is an integer of 0 to 3) is contacted with a sample containing the sample CHnF 4 -n (n is an integer of 0 to 3) decreasing; containing, provides a method for reducing the concentration of the sample of CHnF 4 -n.

상기 방법에 있어서, 상기 접촉은 밀폐된 용기 중에서 수행되는 것일 수 있다. 상기 접촉은 기체 시료와 sMMO 단백질 함유 액체를 접촉시키는 기체-액체 접촉일 수 있다. 또한, 상기 접촉은 액체 시료와 sMMO 단백질 함유 액체를 접촉시키는 액체-액체 접촉일 수 있다. 상기 액체-액체 접촉은 혼합하는 것을 포함한다. In the above method, the contact may be performed in an airtight container. The contacting may be a gas-liquid contact contacting the gaseous sample with the sMMO protein containing liquid. The contact may also be a liquid-liquid contact contacting the liquid sample with the sMMO protein containing liquid. The liquid-liquid contact includes mixing.

상기 방법에 있어서, sMMO 단백질이, 상기 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물로부터 발현되는 것일 수 있다. 상기 조성물은 상기 재조합 미생물, 그의 파쇄물, 또는 상기 파쇄물의 수용성 물질 분획을 포함하는 것일 수 있다. 상기 재조합 미생물은 Escherichia 속 미생물일 수 있다. 상기 Escherichichia 속 미생물은 대장균일 수 있다. 상기 재조합 미생물에 포함된 외래 유전자에 대해서는 전술된 바와 같다.In this method, the sMMO protein may be expressed from a recombinant microorganism comprising a foreign gene encoding the protein. The composition may comprise the recombinant microorganism, a lysate thereof, or a water soluble fraction of the lysate. The recombinant microorganism may be Escherichia genus. The microorganism Escherichichia can be E. coli. The foreign gene contained in the recombinant microorganism is as described above.

상기 방법에 있어서, 상기 접촉은 밀폐된 용기 중에서 재조합 미생물이 생존가능한 조건에서 수행되는 것일 수 있다. 상기 생존가능한 조건은 재조합 미생물이 증식가능한 조건 또는 휴지 상태(resting state)로 있게 하는 조건일 수 있다. 이 경우, 상기 접촉은 CHnF4 -n의 존재하에서 미생물을 배양하는 것일 수 있다. 상기 배양은 호기 또는 혐기 조건에서 수행되는 것일 수 있다. In the above method, the contacting may be carried out under conditions in which the recombinant microorganism can survive in the closed container. Said viable condition may be a condition allowing the recombinant microorganism to be in a reproducible condition or in a resting state. In this case, the contacting may be to cultivate the microorganism in the presence of CH n F 4 -n . The culture may be carried out under aerobic or anaerobic conditions.

상기 방법에 있어서, 상기 시료는 액체 또는 기체 상태일 수 있다. 상기 시료는 공장 폐수 또는 폐기체일 수 있다.In the above method, the sample may be in a liquid or gaseous state. The sample may be factory waste water or waste.

또한, 상기 방법은 에틸 아세테이트를 제거하는데 이용될 수 있다.
In addition, the process can be used to remove ethyl acetate.

일 양상에 따른 재조합 미생물은 시료 중 CHnF4 -n를 제거하는데 사용될 수 있다. Recombinant microorganisms according to one aspect can be used to remove CH n F 4 -n in the sample.

다른 양상에 따른 sMMO 단백질을 포함하는 조성물은 시료 중 CHnF4 -n를 제거하는데 사용될 수 있다.A composition comprising a sMMO protein according to another aspect can be used to remove CH n F 4 -n in the sample.

다른 양상에 따른 시료 중 CHnF4 -n의 농도를 감소시키는 방법은 시료 중 CHnF4-n의 농도를 효율적으로 감소시킬 수 있다.A method of reducing the concentration of CH n F 4 -n in a sample according to another aspect can effectively reduce the concentration of CH n F 4-n in the sample.

도 1a는 pET28a-mmoXYBZDC 벡터의 벡터 지도를 나타낸다.
도 1b는 pETDuet-mmoXY-ZD 벡터의 벡터 지도를 나타낸다.
도 1c는 pACYCDuet-mmoBC 벡터의 벡터 지도를 나타낸다.
도 1d는 pACYCDuet-mmoG-BC 벡터의 벡터 지도를 나타낸다.
도 2는 CHF3 함유 기체와 접촉된 배지 중에서 재조합 대장균을 배양한 경우, 헤드스페이스 중의 CHF3의 농도 변화를 나타낸다.
도 3은 CHCl3 함유 배지 중에서 재조합 대장균을 배양한 경우, 헤드스페이스 중의 CHCl3의 농도 변화를 나타낸다.
도 4는 CF4 함유 기체와 접촉된 배지 중에서 재조합 대장균 BL21/pET28a-mmoXYBZDC을 7일 동안 배양한 경우, 헤드스페이스 중의 CF4의 시간에 따른 변화를 나타낸다.
Figure 1a shows a vector map of the pET28a-mmoXYBZDC vector.
Figure 1B shows a vector map of the pETDuet-mmoXY-ZD vector.
Figure 1c shows a vector map of the pACYCDuet-mmoBC vector.
Figure 1d shows a vector map of the pACYCDuet-mmoG-BC vector.
2 shows variation in the concentration of CHF 3 in the case of cultivation of recombinant E. coli in a culture medium in contact with the gas containing CHF 3, the headspace.
Figure 3 when a culture of recombinant E. coli in CHCl 3 containing medium, shows a change in concentration of the CHCl 3 in the head space.
4 is CF 4, if containing the recombinant E. coli BL21 / pET28a-mmoXYBZDC out of the medium in contact with the substrate were incubated for seven days, shows a change with time of the CF 4 in the head space.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.

실시예Example 1:  One: sMMOsMMO 유전자를 발현하는 재조합 대장균 및 그를 이용한 시료 중 할로메탄의 제거 Removal of halomethane in a recombinant E. coli expressing a gene and a sample using the recombinant E. coli

본 실시예에서는 sMMO 유전자를 발현하는 재조합 대장균을 제작하고, 그를 이용하여 시료 중 할로메탄, 즉, CHF3 또는 CHCl3의 제거 효과를 확인하였다.In this Example, a recombinant Escherichia coli expressing sMMO gene was prepared, and the removal effect of halomethane, i.e., CHF 3 or CHCl 3 , in the sample was confirmed using the recombinant E. coli.

(1) (One) sMMOsMMO 유전자를 발현하는 재조합 대장균의 제작 Production of recombinant Escherichia coli expressing the gene

Methylococcus capsulatus (Bath) 균주로부터 sMMO 유전자, 즉, mmoX, mmoY, mmoZ, mmoB, mmoC, mmoD, 및 mmoG 유전자를 각각 증폭하였다. mmoX, mmoY, mmoZ, mmoB, mmoC, mmoD, 및 mmoG 유전자는 각각 서열번호 2, 4, 6, 8, 10, 12, 및 14의 뉴클레오티드 서열을 갖고 있으며, 이들은 각각 서열번호 1, 3, 5, 7, 9, 11, 및 13의 아미노산 서열을 코딩한다. 구체적으로, Methylococcus capsulatus (Bath) 균주의 염색체 DNA (ATCC 33009D-5)를 주형으로 하고, 서열번호 15 및 16의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR을 수행하여 서열번호 31의 mmoX, mmoY, mmoZ, mmoB, mmoC, 및 mmoD 유전자를 모두 포함하는 부위를 증폭하였다. 상기 증폭된 유전자 조각을 제한효소 NcoI 및 XhoI 를 사용하여 절단된 pET28a (Novagen, Cat. No. 69864-3)와 InFusion Cloning Kit (Clontech Laboratories, Inc.)를 통해 연결하여 pET28a-mmoXYBZDC 벡터를 제조하였다. 도 1a는 pET28a-mmoXYBZDC 벡터의 벡터 지도를 나타낸다.MmOX, mmoY, mmoZ, mmoB, mmoC, mmoD, and mmoG genes were amplified from Methylococcus capsulatus (Bath) strain. 2, 4, 6, 8, 10, 12, and 14, respectively, which have the nucleotide sequences of SEQ ID NOS: 1, 3, 5, 7, 9, 11, and 13, respectively. Specifically, PCR was carried out using the chromosomal DNA (ATCC 33009D-5) of the strain of Methylococcus capsulatus (Bath) as a template and the primer set of the nucleotide sequences of SEQ ID NOs: 15 and 16 to obtain the following primers: mmoX, mmoY, mmoZ , mmoB, mmoC, and mmoD genes were amplified. The amplified gene fragment was ligated with pET28a (Novagen, Cat. No. 69864-3) digested with restriction enzymes NcoI and XhoI through an InFusion Cloning Kit (Clontech Laboratories, Inc.) to prepare pET28a-mmoXYBZDC vector . Figure 1a shows a vector map of the pET28a-mmoXYBZDC vector.

또한, 대장균 리보좀 결합 부위(ribosome binding site: RBS)를 사용하여 sMMO 유전자를 발현시키기 위해 mmoX, mmoY, mmoZ, mmoB, mmoC, 및 mmoD를 각각 증폭하여 발현 벡터에 삽입하였다. 서열번호 17 및 18의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoX 유전자 조각 및 서열번호 19 및 20의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoY 유전자 조각을 주형으로 하여 서열번호 17 및 20의 뉴클레오티드 서열의 프라이머 세트를 사용하여 mmoX 및 mmoY 유전자를 포함하는 부위를 증폭하였다. 상기 증폭된 유전자 조각을 제한효소 NcoI 및 HindIII를 사용하여 절단된 pETDuet (Novagen, Cat. No. 71146-3)와 InFusion Cloning Kit (Clontech Laboratories, Inc.)를 통해 연결하여 pETDuet-mmoXY 벡터를 제조하였다. 또한, 서열번호 21 및 22의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoZ 유전자 조각 및 서열번호 23 및 24의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoD 유전자 조각을 주형으로 하여 서열번호 21 및 24의 뉴클레오티드 서열의 프라이머 세트를 사용하여 mmoZ 및 mmoD 유전자를 포함하는 부위를 증폭하였다. 상기 증폭된 유전자 조각을 제한효소 NdeI 및 XhoI를 사용하여 절단된 pETDuet-mmoXY 와 InFusion Cloning Kit (Clontech Laboratories, Inc.)를 통해 연결하여 pETDuet-mmoXY-ZD 벡터를 제조하였다. 도 1b는 pETDuet-mmoXY-ZD 벡터의 벡터 지도를 나타낸다.MmoX, mmoY, mmoZ, mmoB, mmoC, and mmoD were amplified and inserted into the expression vector to express the sMMO gene using a ribosome binding site (RBS). Nos. 17 and 20 were prepared using the PCR-amplified mmoX gene fragment using the primer set of the nucleotide sequences of SEQ ID Nos. 17 and 18 and the primer set of the nucleotide sequences of SEQ ID Nos. 19 and 20 as a template, Was used to amplify the region containing the mmoX and mmoY genes. The amplified gene fragment was ligated with pETDuet (Novagen, Cat. No. 71146-3) cut with restriction enzymes NcoI and HindIII through an InFusion Cloning Kit (Clontech Laboratories, Inc.) to prepare a pETDuet-mmoXY vector . The mmoZ gene fragment PCR-amplified using the primer set of the nucleotide sequences of SEQ ID NOS: 21 and 22 and the primer set of the nucleotide sequences of SEQ ID NOS: 23 and 24 were used as a template, And a primer set of 24 nucleotide sequences were used to amplify sites containing the mmoZ and mmoD genes. The amplified gene fragment was ligated with pETDuet-mmoXY digested with restriction enzymes NdeI and XhoI through an InFusion Cloning Kit (Clontech Laboratories, Inc.) to prepare pETDuet-mmoXY-ZD vector. Figure 1B shows a vector map of the pETDuet-mmoXY-ZD vector.

서열번호 25 및 26의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoB 유전자 조각 및 서열번호 27 및 28의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoC 유전자 조각을 주형으로 하여 서열번호 25 및 28의 뉴클레오티드 서열의 프라이머 세트를 사용하여 mmoB 및 mmoC 유전자를 포함하는 부위를 증폭하였다. 상기 증폭된 유전자 조각을 제한효소 NdeI 및 EcoRV를 사용하여 절단된 pACYCDuet (Novagen, Cat. No. 71147-3)와 InFusion Cloning Kit (Clontech Laboratories, Inc.)를 통해 연결하여 pACYCDuet-mmoBC 벡터를 제조하였다. 도 1c는 pACYCDuet-mmoBC 벡터의 벡터 지도를 나타낸다.Nos. 25 and 28, using a primer set of the nucleotide sequences of SEQ ID Nos. 25 and 26 as a template, and a primer set of the nucleotide sequences of SEQ ID Nos. 27 and 28 as primers of the mmoB gene fragment PCR amplified using the primer set of the nucleotide sequence of SEQ ID Nos. Were used to amplify the region containing the mmoB and mmoC genes. The amplified gene fragment was ligated with pACYCDuet (Novagen, Cat. No. 71147-3) cut with restriction enzymes NdeI and EcoRV through an InFusion Cloning Kit (Clontech Laboratories, Inc.) to prepare a pACYCDuet-mmoBC vector . Figure 1c shows a vector map of the pACYCDuet-mmoBC vector.

서열번호 29 및 30의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoG 유전자 조각을 제한효소 NcoI 및 HindIII를 사용하여 절단된 pACYCDuet (Novagen, Cat. No. 71147-3)와 InFusion Cloning Kit (Clontech Laboratories, Inc.)를 통해 연결하여 pACYCDuet-mmoG 벡터를 제조하였다. 또한, 서열번호 25 및 26의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoB 유전자 조각 및 서열번호 27 및 28의 뉴클레오티드 서열의 프라이머 세트를 사용하여 PCR 증폭된 mmoC 유전자 조각을 주형으로 하여 서열번호 25 및 28의 뉴클레오티드 서열의 프라이머 세트를 사용하여 mmoB 및 mmoC 유전자를 포함하는 부위를 증폭하였다. 상기 증폭된 유전자 조각을 제한효소 NdeI 및 EcoRV를 사용하여 절단된 pACYCDuet-mmoG와 InFusion Cloning Kit (Clontech Laboratories, Inc.)를 통해 연결하여 pACYCDuet-mmoG-BC 벡터를 제조하였다. 도 1d는 pACYCDuet-mmoG-BC 벡터의 벡터 지도를 나타낸다.PCR-amplified mmoG gene fragments were amplified by PCR using pACYCDuet (Novagen, Cat. No. 71147-3) and InFusion Cloning Kit (Clontech Laboratories, Inc.) cut with restriction enzymes NcoI and HindIII using primer sets of the nucleotide sequences of SEQ ID NOs: , Inc.) to prepare pACYCDuet-mmoG vector. Further, a mmoB gene fragment PCR-amplified using the primer set of the nucleotide sequences of SEQ ID Nos. 25 and 26 and a primer set of the nucleotide sequences of SEQ ID Nos. 27 and 28 were used as templates, And primer sets of 28 nucleotide sequences were used to amplify sites containing the mmoB and mmoC genes. The amplified gene fragment was ligated with pACYCDuet-mmoG digested with restriction enzymes NdeI and EcoRV through an InFusion Cloning Kit (Clontech Laboratories, Inc.) to prepare a pACYCDuet-mmoG-BC vector. Figure 1d shows a vector map of the pACYCDuet-mmoG-BC vector.

다음으로, 제작된 pETDuet-mmoXY-ZD 벡터 및 pACYCDuet-mmoBC 벡터, pETDuet-mmoXY-ZD 및 pACYCDuet-mmoG-BC 벡터, 및 pET28a-mmoXYBZDC 벡터를 각각 대장균 BL21 균주에 열충격 (heat shock) 방법에 의하여 도입하고, 100 ㎍/mL의 암피실린(ampicillin) 및 35 ㎍/mL의 클로람페니콜(chloramphenicol) 또는 50 ㎍/mL의 카나미신(kanamycin)이 포함된 LB 평판 배지 중에서 배양하여, 암피실린 및 클로람페니콜 내성 또는 카나미신 내성을 보이는 균주를 선별하였다. 최종적으로 선별된 3종의 균주를 각각 재조합 대장균 BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoBC, BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoG-BC, 및 BL21/pET28a-mmoXYBZDC로 명명하였다. Next, the prepared pETDuet-mmoXY-ZD vector and pACYCDuet-mmoBC vector, pETDuet-mmoXY-ZD and pACYCDuet-mmoG-BC vector, and pET28a-mmoXYBZDC vector were respectively introduced into Escherichia coli BL21 strain by heat shock method And cultured in an LB plate medium containing 100 / / mL of ampicillin and 35 / / mL of chloramphenicol or 50 / / mL of kanamycin to obtain ampicillin and chloramphenicol resistance or kanamycin resistance Were selected. The three finally selected strains were named as recombinant Escherichia coli BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoBC, BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoG-BC and BL21 / pET28a-mmoXYBZDC, respectively.

(2) (2) sMMOsMMO 유전자를 발현하는 재조합 대장균에 의한 시료 중  In a sample by recombinant E. coli expressing the gene CHFCHF 33 또는  or CHClCHCl3 33 제거 효과 Removal effect

본 절에서는 (1)절에서 제작된 sMMO 유전자가 도입된 재조합 대장균 BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoBC, BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoG-BC, 및 BL21/pET28a-mmoXYBZDC가 시료 중 CHF3 또는 CHCl3를 제거하는데 미치는 효과를 확인하였다. 대조군으로, sMMO 유전자를 포함하지 않은 공(empty)벡터가 도입된 대장균 BL21/pETDuet+pACYCDuet 또는 BL21/pET28a를 이용하였다.In this section, recombinant Escherichia coli BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoBC, BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoG-BC and BL21 / pET28a-mmoXYBZDC The effect on the removal of CHF 3 or CHCl 3 in the sample was confirmed. As a control, Escherichia coli BL21 / pETDuet + pACYCDuet or BL21 / pET28a in which an empty vector containing no sMMO gene was introduced was used.

구체적으로, 재조합 대장균 BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoBC, BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoG-BC, 및 BL21/pET28a-mmoXYBZDC를 각각 Terrific Broth(TB) 배지에서 30℃에서 230 rpm으로 교반하면서 배양하여, OD600 0.5 정도에서 IPTG 0.1 mM, 페릭 시트레이트 0.1 mg/ml, 페러스 술페이트 0.1 mg/ml, 페릭 암모늄 술페이트 0.1 mg/ml, 및 시스테인 1 mM을 첨가한 후, 25℃에서 230 rpm으로 교반하면서 밤새 배양하였다. 각 재조합 대장균에 대하여, 세포를 회수하고 세포 농도가 OD600이 2.5가 되도록 글루코스 4 g/L를 포함하는 M9 배지로 현탁하였다. 이 세포액을 60ml 혈청 병(serum bottle)에 10ml를 첨가하고 밀봉하였다. 상기 TB 배지는 증류수 1L 당 트립톤 12 g, 효모 추출물 24 g, 글리세롤 5 g, 및 포스페이트 버퍼 89 mM의 성분을 포함하였다. 또한, 상기 M9 배지는 증류수 1L 당 Na2HPO4 6g, KH2PO4 3g, NaCl 0.5g, 및 NH4Cl 1g을 포함하였다.Specifically, recombinant E. coli BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoBC, BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoG- BC, and BL21 / pET28a-mmoXYBZDC were cultured in Terrific Broth rpm. After adding 0.1 mM IPTG, 0.1 mg / ml of ferric citrate, 0.1 mg / ml of ferul sulfate, 0.1 mg / ml of ferric ammonium sulfate and 1 mM of cysteine at an OD 600 of about 0.5 , And cultured overnight at 25 ° C with stirring at 230 rpm. For each recombinant E. coli, the cells were collected and suspended in M9 medium containing 4 g / L of glucose to a cell concentration of 2.5 at OD 600 . 10 ml of this cell solution was added to a 60 ml serum bottle and sealed. The TB medium contained 12 g of tryptone per liter of distilled water, 24 g of yeast extract, 5 g of glycerol, and 89 mM of phosphate buffer. The M9 medium also contained 6 g of Na 2 HPO 4 , 3 g of KH 2 PO 4 , 0.5 g of NaCl and 1 g of NH 4 Cl per liter of distilled water.

다음으로, CHF3의 경우는 기체 상의 CHF3를 헤드스페이스 중 1000 ppm이 되도록 주사기를 사용하여 혈청병의 캡의 고무 재질을 통하여 주입하였다. 또한, CHCl3의 경우는 액체 상의 CHCl3를 배지 중 0.02 mM이 되도록 주사기를 사용하여 혈청병의 캡의 고무 재질을 통하여 주입하였다. 그 후, 상기 혈청병을 30℃에서 200rpm으로 교반하면서 CHF3의 경우 94시간 동안 배양하고, CHCl3의 경우 25시간 동안 배양하였다. 실험은 3배수로 반복하였다. Next, in the case of CHF 3, using a syringe so that the CHF 3 to 1000 ppm of the head space of the gas phase was injected through the rubber cap of the serum sickness. In the case of CHCl 3 , the liquid phase of CHCl 3 was injected through the rubber material of the cap of the serum bottle using a syringe so as to be 0.02 mM in the medium. Then, the serum bottle was incubated for 94 hours in the case of CHF 3 and for 25 hours in the case of CHCl 3 with stirring at 200 rpm at 30 ° C. The experiment was repeated in triplicate.

배양 중 일정한 시간 후 혈청병 중 배지가 포함되지 않은 헤드스페이스 중의 기체를 1.0 ml 헤드스페이스용 주사기를 사용하여 0.5 ml를 채취하여, GC(Agilent 7890, Palo Alto, CA, USA)에 주입하였다. 주입된 CHF3 또는 CHCl3는 CP-PoraBOND Q 칼럼(25m length, 0.32mm i.d., 5um film thickness, Agilent)을 통해 분리되었고, MSD(Agilent 5973, Palo Alto, CA, USA)를 통해 CHF3 또는 CHCl3 농도 변화를 분석하였다. 운반 기체는 헬륨을 사용하였고 1.5 ml/min 속도로 칼럼에 흘려 보냈다. GC 조건은 주입구 온도 250℃, 초기 온도 40℃에 2분간 유지하고, 290 ℃까지 20℃/min으로 승온시켰다. MS 조건은 70eV의 이온화 에너지, interface 온도 280℃, ion source 온도 230℃, 및 quadrupole 온도 150℃이었다.After a certain period of incubation, 0.5 ml of the gas in the headspace containing no serum medium was collected using a 1.0 ml headspace syringe and injected into GC (Agilent 7890, Palo Alto, CA, USA). The injected CHF 3 or CHCl 3 is PoraBOND CP-Q column were separated through (25m length, 0.32mm id, 5um film thickness, Agilent), MSD CHF 3 or CHCl through (Agilent 5973, Palo Alto, CA , USA) 3 The concentration changes were analyzed. The carrier gas was helium and flowed to the column at a rate of 1.5 ml / min. The GC conditions were maintained at an inlet temperature of 250 캜 and an initial temperature of 40 캜 for 2 minutes and a temperature of 20 캜 / min up to 290 캜. MS conditions were 70eV ionization energy, interface temperature 280 ℃, ion source temperature 230 ℃, and quadrupole temperature 150 ℃.

도 2는 CHF3 함유 기체와 접촉된 배지 중에서 재조합 대장균을 배양한 경우, 헤드스페이스 중의 CHF3의 농도 변화를 나타낸다. 도 2에서 1은 대조군, 2 내지 4는 각각 재조합 대장균 BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoBC, BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoG-BC, 및 BL21/pET28a-mmoXYBZDC을 사용한 실험을 나타낸다. 도 2에 나타낸 바와 같이, 재조합 대장균 BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoBC를 94 시간 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CHF3의 농도가 약 10% 감소하였다. 또한, 재조합 대장균 BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoG-BC 및 BL21/pET28a-mmoXYBZDC을 94 시간 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CHF3의 농도가 둘 모두 약 15% 감소하였다.2 shows variation in the concentration of CHF 3 in the case of cultivation of recombinant E. coli in a culture medium in contact with the gas containing CHF 3, the headspace. In FIG. 2, 1 is a control group, 2 to 4 are experiments using recombinant E. coli BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoBC, BL21 / pETDuet-mmoXY-ZD + pACYCDuet- mmoG- BC, and BL21 / pET28a-mmoXYBZDC . As shown in FIG. 2, when the recombinant E. coli BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoBC was cultured for 94 hours, the concentration of CHF 3 in the headspace decreased by about 10% as compared with the control. In addition, when the recombinant E. coli BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoG-BC and BL21 / pET28a-mmoXYBZDC were cultured for 94 hours, the concentration of CHF 3 in the headspace was reduced by about 15% as compared with the control.

도 3은 CHCl3 함유 배지 중에서 재조합 대장균을 배양한 경우, 헤드스페이스 중의 CHCl3의 농도 변화를 나타낸다. 도 3에서 1 내지 4는 도 2에 대해 기재된 바와 같다. 도 3에 나타낸 바와 같이, 재조합 대장균 BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoBC 및 BL21/pETDuet-mmoXY-ZD+pACYCDuet-mmoG-BC를 25시간 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CHCl3의 농도가 약 20% 감소하고, BL21/pET28a-mmoXYBZDC를 25시간 동안 배양한 경우에도 이와 유사한 수준으로 CHCl3의 농도가 감소하였다.
Figure 3 when a culture of recombinant E. coli in CHCl 3 containing medium, shows a change in concentration of the CHCl 3 in the head space. In Fig. 3, 1 to 4 are as described in Fig. 3, the case of culturing the recombinant E. coli BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoBC and BL21 / pETDuet-mmoXY-ZD + pACYCDuet-mmoG-BC for 25 hours, CHCl in the headspace than in the control group 3 Was reduced by about 20%, and the concentration of CHCl 3 decreased to similar levels when BL21 / pET28a-mmoXYBZDC was cultured for 25 hours.

실시예Example 2:  2: sMMOsMMO 유전자를 발현하는 재조합 대장균에 의한 시료 중  In a sample by recombinant E. coli expressing the gene CFCF 44 제거 효과 Removal effect

본 절에서는 실시예1(1)에서 제작된 sMMO 유전자가 도입된 재조합 대장균 BL21/pET28a-mmoXYBZDC가 시료 중 CF4를 제거하는데 미치는 효과를 확인하였다. 대조군으로, sMMO 유전자를 포함하지 않은 공 벡터가 도입된 대장균 BL21/pET28a를 이용하였다.In this section, the effect of recombinant Escherichia coli BL21 / pET28a-mmoXYBZDC containing the sMMO gene prepared in Example 1 (1) on the removal of CF 4 in the sample was confirmed. As a control, Escherichia coli BL21 / pET28a into which a vector free of sMMO gene was introduced was used.

실험은 실시예1(2)에서 CHF3에 대하여 수행된 과정에서, CHF3 대신에 CF4를 사용하고, 기체 상의 CF4를 헤드스페이스 대비 1,000ppm이 되도록 주사기를 사용하여 혈청병의 캡의 고무 재질을 통하여 주입하고, 그 후, 상기 혈청병을 30℃에서 200rpm으로 교반하면서 7일 동안 배양한 것을 제외하고는 동일하게 수행하였다. 그 결과는 도 4에 나타낸 바와 같다.The experiment in Example 1 (2) in the process performed with respect to the CHF 3, CHF 3 instead of the rubber cap of the serum sickness using a syringe using a CF 4, and such that the head space than 1,000ppm the CF 4 of the gas phase in the , And then the serum bottle was incubated for 7 days with stirring at 30 DEG C at 200 rpm. The results are shown in Fig.

도 4는 CF4 함유 기체와 접촉된 배지 중에서 재조합 대장균 BL21/pET28a-mmoXYBZDC을 7일 동안 배양한 경우, 헤드스페이스 중의 CF4의 시간에 따른 변화를 나타낸다. 도 4에서, NC는 음성 대조군, 'MMO'는 대장균 BL21/pET28a-mmoXYBZDC 를 사용한 실험을 나타낸다. 도 4에 나타낸 바와 같이, 7일 동안 배양한 경우, 대조군에 비하여 헤드스페이스 중의 CF4의 농도가 3.42% 감소하였다.4 is CF 4, if containing the recombinant E. coli BL21 / pET28a-mmoXYBZDC out of the medium in contact with the substrate were incubated for seven days, shows a change with time of the CF 4 in the head space. In FIG. 4, NC represents a negative control, and 'MMO' represents an experiment using E. coli BL21 / pET28a-mmoXYBZDC. 4, in one case, and decreased the concentration of CF 4 in the headspace than in the control group cultured for 7 days 3.42% as shown in FIG.

<110> SAMSUNG ELECTRONICS CO., LTD. <120> Soluble methane monooxygenase protein and method for reducing concentration of fluorinated methane in sample <130> PN114343 <160> 31 <170> KopatentIn 2.0 <210> 1 <211> 527 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 1 Met Ala Leu Ser Thr Ala Thr Lys Ala Ala Thr Asp Ala Leu Ala Ala 1 5 10 15 Asn Arg Ala Pro Thr Ser Val Asn Ala Gln Glu Val His Arg Trp Leu 20 25 30 Gln Ser Phe Asn Trp Asp Phe Lys Asn Asn Arg Thr Lys Tyr Ala Thr 35 40 45 Lys Tyr Lys Met Ala Asn Glu Thr Lys Glu Gln Phe Lys Leu Ile Ala 50 55 60 Lys Glu Tyr Ala Arg Met Glu Ala Val Lys Asp Glu Arg Gln Phe Gly 65 70 75 80 Ser Leu Gln Asp Ala Leu Thr Arg Leu Asn Ala Gly Val Arg Val His 85 90 95 Pro Lys Trp Asn Glu Thr Met Lys Val Val Ser Asn Phe Leu Glu Val 100 105 110 Gly Glu Tyr Asn Ala Ile Ala Ala Thr Gly Met Leu Trp Asp Ser Ala 115 120 125 Gln Ala Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu 130 135 140 Ile Arg His Thr His Gln Cys Ala Tyr Val Asn Tyr Tyr Phe Ala Lys 145 150 155 160 Asn Gly Gln Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Thr 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ser Asp Gly Phe 180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Leu Asn Leu Gln Leu Val Gly 195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala 210 215 220 Ala Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Ile Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser 245 250 255 Ile Ala Asn Asp Pro Ala Ser Ala Lys Tyr Leu Asn Thr Asp Leu Asn 260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Met 275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr 290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Gly Lys Tyr Gly Val Glu Ser Pro Arg Ser Leu Lys Asp Ala Lys 325 330 335 Gln Asp Ala Tyr Trp Ala His His Asp Leu Tyr Leu Leu Ala Tyr Ala 340 345 350 Leu Trp Pro Thr Gly Phe Phe Arg Leu Ala Leu Pro Asp Gln Glu Glu 355 360 365 Met Glu Trp Phe Glu Ala Asn Tyr Pro Gly Trp Tyr Asp His Tyr Gly 370 375 380 Lys Ile Tyr Glu Glu Trp Arg Ala Arg Gly Cys Glu Asp Pro Ser Ser 385 390 395 400 Gly Phe Ile Pro Leu Met Trp Phe Ile Glu Asn Asn His Pro Ile Tyr 405 410 415 Ile Asp Arg Val Ser Gln Val Pro Phe Cys Pro Ser Leu Ala Lys Gly 420 425 430 Ala Ser Thr Leu Arg Val His Glu Tyr Asn Gly Gln Met His Thr Phe 435 440 445 Ser Asp Gln Trp Gly Glu Arg Met Trp Leu Ala Glu Pro Glu Arg Tyr 450 455 460 Glu Cys Gln Asn Ile Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu 465 470 475 480 Val Ile Ala Glu Leu His Gly Leu Arg Ser Asp Gly Lys Thr Leu Ile 485 490 495 Ala Gln Pro His Val Arg Gly Asp Lys Leu Trp Thr Leu Asp Asp Ile 500 505 510 Lys Arg Leu Asn Cys Val Phe Lys Asn Pro Val Lys Ala Phe Asn 515 520 525 <210> 2 <211> 1584 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 2 atggcactta gcaccgcaac caaggccgcg acggacgcgc tggctgccaa tcgggcaccc 60 accagcgtga atgcacagga agtgcaccgt tggctccaga gcttcaactg ggatttcaag 120 aacaaccgga ccaagtacgc caccaagtac aagatggcga acgagaccaa ggaacagttc 180 aagctgatcg ccaaggaata tgcgcgcatg gaggcagtca aggacgaaag gcagttcggt 240 agcctgcagg atgcgctgac ccgcctcaac gccggtgttc gcgttcatcc gaagtggaac 300 gagaccatga aagtggtttc gaacttcctg gaagtgggcg aatacaacgc catcgccgct 360 accgggatgc tgtgggattc cgcccaggcg gcggaacaga agaacggcta tctggcccag 420 gtgttggatg aaatccgcca cacccaccag tgtgcctacg tcaactacta cttcgcgaag 480 aacggccagg acccggccgg tcacaacgat gctcgccgca cccgtaccat cggtccgctg 540 tggaagggca tgaagcgcgt gttttccgac ggcttcattt ccggcgacgc cgtggaatgc 600 tccctcaacc tgcagctggt gggtgaggcc tgcttcacca atccgctgat cgtcgcagtg 660 accgaatggg ctgccgccaa cggcgatgaa atcaccccga cggtgttcct gtcgatcgag 720 accgacgaac tgcgccacat ggccaacggt taccagaccg tcgtttccat cgccaacgat 780 ccggcttccg ccaagtatct caacacggac ctgaacaacg ccttctggac ccagcagaag 840 tacttcacgc cggtgttggg catgctgttc gagtatggct ccaagttcaa ggtcgagccg 900 tgggtcaaga cgtggaaccg ctgggtgtac gaggactggg gcggcatctg gatcggccgt 960 ctgggcaagt acggggtgga gtcgccgcgc agcctcaagg acgccaagca ggacgcttac 1020 tgggctcacc acgacctgta tctgctggct tatgcgctgt ggccgaccgg cttcttccgt 1080 ctggcgctgc cggatcagga agaaatggag tggttcgagg ccaactaccc cggctggtac 1140 gaccactacg gcaagatcta cgaggaatgg cgcgcccgcg gttgcgagga tccgtcctcg 1200 ggcttcatcc cgctgatgtg gttcatcgaa aacaaccatc ccatctacat cgatcgcgtg 1260 tcgcaagtgc cgttctgccc gagcttggcc aagggcgcca gcaccctgcg cgtgcacgag 1320 tacaacggcc agatgcacac cttcagcgac cagtggggcg agcgcatgtg gctggccgag 1380 ccggagcgct acgagtgcca gaacatcttc gaacagtacg aaggacgcga actgtcggaa 1440 gtgatcgccg aactgcacgg gctgcgcagt gatggcaaga ccctgatcgc ccagccgcat 1500 gtccgtggcg acaagctgtg gacgttggac gatatcaaac gcctgaactg cgtcttcaag 1560 aacccggtga aggcattcaa ttga 1584 <210> 3 <211> 389 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 3 Met Ser Met Leu Gly Glu Arg Arg Arg Gly Leu Thr Asp Pro Glu Met 1 5 10 15 Ala Ala Val Ile Leu Lys Ala Leu Pro Glu Ala Pro Leu Asp Gly Asn 20 25 30 Asn Lys Met Gly Tyr Phe Val Thr Pro Arg Trp Lys Arg Leu Thr Glu 35 40 45 Tyr Glu Ala Leu Thr Val Tyr Ala Gln Pro Asn Ala Asp Trp Ile Ala 50 55 60 Gly Gly Leu Asp Trp Gly Asp Trp Thr Gln Lys Phe His Gly Gly Arg 65 70 75 80 Pro Ser Trp Gly Asn Glu Thr Thr Glu Leu Arg Thr Val Asp Trp Phe 85 90 95 Lys His Arg Asp Pro Leu Arg Arg Trp His Ala Pro Tyr Val Lys Asp 100 105 110 Lys Ala Glu Glu Trp Arg Tyr Thr Asp Arg Phe Leu Gln Gly Tyr Ser 115 120 125 Ala Asp Gly Gln Ile Arg Ala Met Asn Pro Thr Trp Arg Asp Glu Phe 130 135 140 Ile Asn Arg Tyr Trp Gly Ala Phe Leu Phe Asn Glu Tyr Gly Leu Phe 145 150 155 160 Asn Ala His Ser Gln Gly Ala Arg Glu Ala Leu Ser Asp Val Thr Arg 165 170 175 Val Ser Leu Ala Phe Trp Gly Phe Asp Lys Ile Asp Ile Ala Gln Met 180 185 190 Ile Gln Leu Glu Arg Gly Phe Leu Ala Lys Ile Val Pro Gly Phe Asp 195 200 205 Glu Ser Thr Ala Val Pro Lys Ala Glu Trp Thr Asn Gly Glu Val Tyr 210 215 220 Lys Ser Ala Arg Leu Ala Val Glu Gly Leu Trp Gln Glu Val Phe Asp 225 230 235 240 Trp Asn Glu Ser Ala Phe Ser Val His Ala Val Tyr Asp Ala Leu Phe 245 250 255 Gly Gln Phe Val Arg Arg Glu Phe Phe Gln Arg Leu Ala Pro Arg Phe 260 265 270 Gly Asp Asn Leu Thr Pro Phe Phe Ile Asn Gln Ala Gln Thr Tyr Phe 275 280 285 Gln Ile Ala Lys Gln Gly Val Gln Asp Leu Tyr Tyr Asn Cys Leu Gly 290 295 300 Asp Asp Pro Glu Phe Ser Asp Tyr Asn Arg Thr Val Met Arg Asn Trp 305 310 315 320 Thr Gly Lys Trp Leu Glu Pro Thr Ile Ala Ala Leu Arg Asp Phe Met 325 330 335 Gly Leu Phe Ala Lys Leu Pro Ala Gly Thr Thr Asp Lys Glu Glu Ile 340 345 350 Thr Ala Ser Leu Tyr Arg Val Val Asp Asp Trp Ile Glu Asp Tyr Ala 355 360 365 Ser Arg Ile Asp Phe Lys Ala Asp Arg Asp Gln Ile Val Lys Ala Val 370 375 380 Leu Ala Gly Leu Lys 385 <210> 4 <211> 1170 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 4 atgagcatgt taggagaaag acgccgcggt ctgaccgatc cggaaatggc ggccgtcatt 60 ttgaaggcgc ttcctgaagc tccgctggac ggcaacaaca agatgggtta tttcgtcacc 120 ccccgctgga aacgcttgac ggaatatgaa gccctgaccg tttatgcgca gcccaacgcc 180 gactggatcg ccggcggcct ggactggggc gactggaccc agaaattcca cggcggccgc 240 ccttcctggg gcaacgagac cacggagctg cgcaccgtcg actggttcaa gcaccgtgac 300 ccgctccgcc gttggcatgc gccgtacgtc aaggacaagg ccgaggaatg gcgctacacc 360 gaccgcttcc tgcagggtta ctccgccgac ggtcagatcc gggcgatgaa cccgacctgg 420 cgggacgagt tcatcaaccg gtattggggc gccttcctgt tcaacgaata cggattgttc 480 aacgctcatt cgcagggcgc ccgggaggcg ctgtcggacg taacccgcgt cagcctggct 540 ttctggggct tcgacaagat cgacatcgcc cagatgatcc aactcgaacg gggtttcctc 600 gccaagatcg tacccggttt cgacgagtcc acagcggtgc cgaaggccga atggacgaac 660 ggggaggtct acaagagcgc ccgtctggcc gtggaagggc tgtggcagga ggtgttcgac 720 tggaacgaga gcgctttctc ggtgcacgcc gtctatgacg cgctgttcgg tcagttcgtc 780 cgccgcgagt tctttcagcg gctggctccc cgcttcggcg acaatctgac gccattcttc 840 atcaaccagg cccagacata cttccagatc gccaagcagg gcgtacagga tctgtattac 900 aactgtctgg gtgacgatcc ggagttcagc gattacaacc gtaccgtgat gcgcaactgg 960 accggcaagt ggctggagcc cacgatcgcc gctctgcgcg acttcatggg gctgtttgcg 1020 aagctgccgg cgggcaccac tgacaaggaa gaaatcaccg cgtccctgta ccgggtggtc 1080 gacgactgga tcgaggacta cgccagcagg atcgacttca aggcggaccg cgatcagatc 1140 gttaaagcgg ttctggcagg attgaaataa 1170 <210> 5 <211> 170 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 5 Met Ala Lys Leu Gly Ile His Ser Asn Asp Thr Arg Asp Ala Trp Val 1 5 10 15 Asn Lys Ile Ala Gln Leu Asn Thr Leu Glu Lys Ala Ala Glu Met Leu 20 25 30 Lys Gln Phe Arg Met Asp His Thr Thr Pro Phe Arg Asn Ser Tyr Glu 35 40 45 Leu Asp Asn Asp Tyr Leu Trp Ile Glu Ala Lys Leu Glu Glu Lys Val 50 55 60 Ala Val Leu Lys Ala Arg Ala Phe Asn Glu Val Asp Phe Arg His Lys 65 70 75 80 Thr Ala Phe Gly Glu Asp Ala Lys Ser Val Leu Asp Gly Thr Val Ala 85 90 95 Lys Met Asn Ala Ala Lys Asp Lys Trp Glu Ala Glu Lys Ile His Ile 100 105 110 Gly Phe Arg Gln Ala Tyr Lys Pro Pro Ile Met Pro Val Asn Tyr Phe 115 120 125 Leu Asp Gly Glu Arg Gln Leu Gly Thr Arg Leu Met Glu Leu Arg Asn 130 135 140 Leu Asn Tyr Tyr Asp Thr Pro Leu Glu Glu Leu Arg Lys Gln Arg Gly 145 150 155 160 Val Arg Val Val His Leu Gln Ser Pro His 165 170 <210> 6 <211> 513 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 6 atggcgaaac tgggtataca cagcaacgac acccgcgacg cctgggtgaa caagatcgcg 60 cagctcaaca ccctggaaaa agcggccgag atgctgaagc agttccggat ggaccacacc 120 acgccgttcc gcaacagcta cgaactggac aacgactacc tctggatcga ggccaagctc 180 gaagagaagg tcgccgtcct caaggcacgc gccttcaacg aggtggactt ccgtcataag 240 accgctttcg gcgaggatgc caagtccgtt ctggacggca ccgtcgcgaa gatgaacgcg 300 gccaaggaca agtgggaggc ggagaagatc catatcggtt tccgccaggc ctacaagccg 360 ccgatcatgc cggtgaacta tttcctggac ggcgagcgtc agttggggac ccggctgatg 420 gaactgcgca acctcaacta ctacgacacg ccgctggaag aactgcgcaa acagcgcggt 480 gtgcgggtgg tgcatctgca gtcgccgcac tga 513 <210> 7 <211> 141 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 7 Met Ser Val Asn Ser Asn Ala Tyr Asp Ala Gly Ile Met Gly Leu Lys 1 5 10 15 Gly Lys Asp Phe Ala Asp Gln Phe Phe Ala Asp Glu Asn Gln Val Val 20 25 30 His Glu Ser Asp Thr Val Val Leu Val Leu Lys Lys Ser Asp Glu Ile 35 40 45 Asn Thr Phe Ile Glu Glu Ile Leu Leu Thr Asp Tyr Lys Lys Asn Val 50 55 60 Asn Pro Thr Val Asn Val Glu Asp Arg Ala Gly Tyr Trp Trp Ile Lys 65 70 75 80 Ala Asn Gly Lys Ile Glu Val Asp Cys Asp Glu Ile Ser Glu Leu Leu 85 90 95 Gly Arg Gln Phe Asn Val Tyr Asp Phe Leu Val Asp Val Ser Ser Thr 100 105 110 Ile Gly Arg Ala Tyr Thr Leu Gly Asn Lys Phe Thr Ile Thr Ser Glu 115 120 125 Leu Met Gly Leu Asp Arg Lys Leu Glu Asp Tyr His Ala 130 135 140 <210> 8 <211> 426 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 8 atgagcgtaa acagcaacgc atacgacgcc ggcatcatgg gcctgaaagg caaggacttc 60 gccgatcagt tctttgccga cgaaaaccaa gtggtccatg aaagcgacac ggtcgttctg 120 gtcctcaaga agtcggacga gatcaatacc tttatcgagg agatccttct gacggactac 180 aagaagaacg tcaatccgac ggtaaacgtg gaagaccgcg cgggttactg gtggatcaag 240 gccaacggca agatcgaggt cgattgcgac gagatttccg agctgttggg gcggcagttc 300 aacgtctacg acttcctcgt cgacgtttcc tccaccatcg gccgggccta taccctgggc 360 aacaagttca ccattaccag tgagctgatg ggcctggacc gcaagctcga agactatcac 420 gcttaa 426 <210> 9 <211> 348 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 9 Met Gln Arg Val His Thr Ile Thr Ala Val Thr Glu Asp Gly Glu Ser 1 5 10 15 Leu Arg Phe Glu Cys Arg Ser Asp Glu Asp Val Ile Thr Ala Ala Leu 20 25 30 Arg Gln Asn Ile Phe Leu Met Ser Ser Cys Arg Glu Gly Gly Cys Ala 35 40 45 Thr Cys Lys Ala Leu Cys Ser Glu Gly Asp Tyr Asp Leu Lys Gly Cys 50 55 60 Ser Val Gln Ala Leu Pro Pro Glu Glu Glu Glu Glu Gly Leu Val Leu 65 70 75 80 Leu Cys Arg Thr Tyr Pro Lys Thr Asp Leu Glu Ile Glu Leu Pro Tyr 85 90 95 Thr His Cys Arg Ile Ser Phe Gly Glu Val Gly Ser Phe Glu Ala Glu 100 105 110 Val Val Gly Leu Asn Trp Val Ser Ser Asn Thr Val Gln Phe Leu Leu 115 120 125 Gln Lys Arg Pro Asp Glu Cys Gly Asn Arg Gly Val Lys Phe Glu Pro 130 135 140 Gly Gln Phe Met Asp Leu Thr Ile Pro Gly Thr Asp Val Ser Arg Ser 145 150 155 160 Tyr Ser Pro Ala Asn Leu Pro Asn Pro Glu Gly Arg Leu Glu Phe Leu 165 170 175 Ile Arg Val Leu Pro Glu Gly Arg Phe Ser Asp Tyr Leu Arg Asn Asp 180 185 190 Ala Arg Val Gly Gln Val Leu Ser Val Lys Gly Pro Leu Gly Val Phe 195 200 205 Gly Leu Lys Glu Arg Gly Met Ala Pro Arg Tyr Phe Val Ala Gly Gly 210 215 220 Thr Gly Leu Ala Pro Val Val Ser Met Val Arg Gln Met Gln Glu Trp 225 230 235 240 Thr Ala Pro Asn Glu Thr Arg Ile Tyr Phe Gly Val Asn Thr Glu Pro 245 250 255 Glu Leu Phe Tyr Ile Asp Glu Leu Lys Ser Leu Glu Arg Ser Met Arg 260 265 270 Asn Leu Thr Val Lys Ala Cys Val Trp His Pro Ser Gly Asp Trp Glu 275 280 285 Gly Glu Gln Gly Ser Pro Ile Asp Ala Leu Arg Glu Asp Leu Glu Ser 290 295 300 Ser Asp Ala Asn Pro Asp Ile Tyr Leu Cys Gly Pro Pro Gly Met Ile 305 310 315 320 Asp Ala Ala Cys Glu Leu Val Arg Ser Arg Gly Ile Pro Gly Glu Gln 325 330 335 Val Phe Phe Glu Lys Phe Leu Pro Ser Gly Ala Ala 340 345 <210> 10 <211> 1047 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 10 atgcagcgag ttcacactat cacggcggtg acggaggatg gcgaatcgct ccgcttcgaa 60 tgccgttcgg acgaggacgt catcaccgcc gccctgcgcc agaacatctt tctgatgtcg 120 tcctgccggg agggcggctg tgcgacctgc aaggccttgt gcagcgaagg ggactacgac 180 ctcaagggct gcagcgttca ggcgctgccg ccggaagagg aggaggaagg gttggtgttg 240 ttgtgccgga cctacccgaa gaccgacctg gaaatcgaac tgccctatac ccattgccgc 300 atcagttttg gtgaggtcgg cagtttcgag gcggaggtcg tcggcctcaa ctgggtttcg 360 agcaacaccg tccagtttct tttgcagaag cggcccgacg agtgcggcaa ccgtggcgtg 420 aaattcgaac ccggtcagtt catggacctg accatccccg gcaccgatgt ctcccgctcc 480 tactcgccgg cgaaccttcc taatcccgaa ggccgcctgg agttcctgat ccgcgtgtta 540 ccggagggac ggttttcgga ctacctgcgc aatgacgcgc gtgtcggaca ggtcctctcg 600 gtcaaagggc cactgggcgt gttcggtctc aaggagcggg gcatggcgcc gcgctatttc 660 gtggccggcg gcaccgggtt ggcgccggtg gtctcgatgg tgcggcagat gcaggagtgg 720 accgcgccga acgagacccg catctatttc ggtgtgaaca ccgagccgga attgttctac 780 atcgacgagc tcaaatccct ggaacgatcg atgcgcaatc tcaccgtgaa ggcctgtgtc 840 tggcacccga gcggggactg ggaaggcgag cagggctcgc ccatcgatgc gttgcgggaa 900 gacctggagt cctccgacgc caacccggac atttatttgt gcggtccgcc gggcatgatc 960 gatgccgcct gcgagctggt acgcagccgc ggtatccccg gcgaacaggt cttcttcgaa 1020 aaattcctgc cgtccggggc ggcctaa 1047 <210> 11 <211> 103 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 11 Met Val Glu Ser Ala Phe Gln Pro Phe Ser Gly Asp Ala Asp Glu Trp 1 5 10 15 Phe Glu Glu Pro Arg Pro Gln Ala Gly Phe Phe Pro Ser Ala Asp Trp 20 25 30 His Leu Leu Lys Arg Asp Glu Thr Tyr Ala Ala Tyr Ala Lys Asp Leu 35 40 45 Asp Phe Met Trp Arg Trp Val Ile Val Arg Glu Glu Arg Ile Val Gln 50 55 60 Glu Gly Cys Ser Ile Ser Leu Glu Ser Ser Ile Arg Ala Val Thr His 65 70 75 80 Val Leu Asn Tyr Phe Gly Met Thr Glu Gln Arg Ala Pro Ala Glu Asp 85 90 95 Arg Thr Gly Gly Val Gln His 100 <210> 12 <211> 312 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 12 atggtcgaat cggcatttca gccattttcg ggcgacgcag acgaatggtt cgaggaacca 60 cggccccagg ccggtttctt cccttccgcg gactggcatc tgctcaaacg ggacgagacc 120 tacgcagcct atgccaagga tctcgatttc atgtggcggt gggtcatcgt ccgggaagaa 180 aggatcgtcc aggagggttg ctcgatcagc ctggagtcgt cgatccgcgc cgtgacgcac 240 gtactgaatt attttggtat gaccgaacaa cgcgccccgg cagaggaccg gaccggcgga 300 gttcaacatt ga 312 <210> 13 <211> 559 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 13 Met Ala Lys Glu Val Val Tyr Arg Gly Ser Ala Arg Gln Arg Met Met 1 5 10 15 Gln Gly Ile Glu Ile Leu Ala Arg Ala Ala Ile Pro Thr Leu Gly Ala 20 25 30 Thr Gly Pro Ser Val Met Ile Gln His Arg Ala Asp Gly Leu Pro Pro 35 40 45 Ile Ser Thr Arg Asp Gly Val Thr Val Ala Asn Ser Ile Val Leu Lys 50 55 60 Asp Arg Val Ala Asn Leu Gly Ala Arg Leu Leu Arg Asp Val Ala Gly 65 70 75 80 Thr Met Ser Arg Glu Ala Gly Asp Gly Thr Thr Thr Ala Ile Val Leu 85 90 95 Ala Arg His Ile Ala Arg Glu Met Phe Lys Ser Leu Ala Val Gly Ala 100 105 110 Asp Pro Ile Ala Leu Lys Arg Gly Ile Asp Arg Ala Val Ala Arg Val 115 120 125 Ser Glu Asp Ile Gly Ala Arg Ala Trp Arg Gly Asp Lys Glu Ser Val 130 135 140 Ile Leu Gly Val Ala Ala Val Ala Thr Lys Gly Glu Pro Gly Val Gly 145 150 155 160 Arg Leu Leu Leu Glu Ala Leu Asp Ala Val Gly Val His Gly Ala Val 165 170 175 Ser Ile Glu Leu Gly Gln Arg Arg Glu Asp Leu Leu Asp Val Val Asp 180 185 190 Gly Tyr Arg Trp Glu Lys Gly Tyr Leu Ser Pro Tyr Phe Val Thr Asp 195 200 205 Arg Ala Arg Glu Leu Ala Glu Leu Glu Asp Val Tyr Leu Leu Met Thr 210 215 220 Asp Arg Glu Val Val Asp Phe Ile Asp Leu Val Pro Leu Leu Glu Ala 225 230 235 240 Val Thr Glu Ala Gly Gly Ser Leu Leu Ile Ala Ala Asp Arg Val His 245 250 255 Glu Lys Ala Leu Ala Gly Leu Leu Leu Asn His Val Arg Gly Val Phe 260 265 270 Lys Ala Val Ala Val Thr Ala Pro Gly Phe Gly Asp Lys Arg Pro Asn 275 280 285 Arg Leu Leu Asp Leu Ala Ala Leu Thr Gly Gly Arg Ala Val Leu Glu 290 295 300 Ala Gln Gly Asp Arg Leu Asp Arg Val Thr Leu Ala Asp Leu Gly Arg 305 310 315 320 Val Arg Arg Ala Val Val Ser Ala Asp Asp Thr Ala Leu Leu Gly Ile 325 330 335 Pro Gly Thr Glu Ala Ser Arg Ala Arg Leu Glu Gly Leu Arg Leu Glu 340 345 350 Ala Glu Gln Tyr Arg Ala Leu Lys Pro Gly Gln Gly Ser Ala Thr Gly 355 360 365 Arg Leu His Glu Leu Glu Glu Ile Glu Ala Arg Ile Val Gly Leu Ser 370 375 380 Gly Lys Ser Ala Val Tyr Arg Val Gly Gly Val Thr Asp Val Glu Met 385 390 395 400 Lys Glu Arg Met Val Arg Ile Glu Asn Ala Tyr Arg Ser Val Val Ser 405 410 415 Ala Leu Glu Glu Gly Val Leu Pro Gly Gly Gly Val Gly Phe Leu Gly 420 425 430 Ser Met Pro Val Leu Ala Glu Leu Glu Ala Arg Asp Ala Asp Glu Ala 435 440 445 Arg Gly Ile Gly Ile Val Arg Ser Ala Leu Thr Glu Pro Leu Arg Ile 450 455 460 Ile Gly Glu Asn Ser Gly Leu Ser Gly Glu Ala Val Val Ala Lys Val 465 470 475 480 Met Asp His Ala Asn Pro Gly Trp Gly Tyr Asp Gln Glu Ser Gly Ser 485 490 495 Phe Cys Asp Leu His Ala Arg Gly Ile Trp Asp Ala Ala Lys Val Leu 500 505 510 Arg Leu Ala Leu Glu Lys Ala Ala Ser Val Ala Gly Thr Phe Leu Thr 515 520 525 Thr Glu Ala Val Val Leu Glu Ile Pro Asp Thr Asp Ala Phe Ala Gly 530 535 540 Phe Ser Ala Glu Trp Ala Ala Ala Thr Arg Glu Asp Pro Arg Val 545 550 555 <210> 14 <211> 1680 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 14 atggcaaagg aagtggttta cagggggagt gcgcggcagc gcatgatgca aggcatcgag 60 atactcgcgc gggcggcgat accgacgctg ggagccaccg gccccagcgt catgatccag 120 caccgcgccg atggcctgcc ccccatttcg acgcgggacg gcgtcacggt ggctaactcc 180 atcgtactca aggaccgtgt cgcgaatctc ggtgcccggc tgctgcggga cgtcgccggc 240 accatgtccc gcgaagcagg ggatggcacc accaccgcca tcgtgctggc ccgccatatc 300 gcccgggaga tgttcaagag cctcgccgtc ggtgccgatc ccatcgctct caagcgtggt 360 atcgaccgtg ccgtcgcccg cgtgagcgag gacatcgggg ctcgggcctg gcgcggcgac 420 aaggaatcgg tcatcctggg ggtggccgcg gtggcgacca agggcgagcc gggcgtgggc 480 cggctgctgc tggaggcgct ggacgcggtc ggcgtccatg gcgccgtgtc gatcgaactg 540 gggcagcggc gcgaggacct gctcgacgtg gtcgacgggt atcgttggga aaaaggttat 600 ctgtcgccct attttgtgac cgatcgggct cgcgagctgg ccgaactcga agacgtctac 660 ctcttgatga ccgatcggga ggtggtcgat ttcatcgatt tggtacccct gctggaggcg 720 gtgaccgagg ctggtggcag cctcctgatc gccgccgacc gtgtccacga gaaggcactg 780 gccggccttt tgctcaatca cgttcgcggc gtcttcaagg ccgtcgcggt caccgcgccc 840 gggttcggcg acaagcggcc gaaccgcctt ttggatctgg cggcgttgac cggtgggcgg 900 gcggtcctgg aagcccaggg cgaccgattg gaccgggtca cgctggccga cctggggcgg 960 gtgcggcggg cggtcgtcag cgctgacgac accgcgctgc tcggcatacc gggcaccgaa 1020 gcctcccggg cccgcttgga gggtttgcgc ctggaagcgg agcagtaccg ggcgctcaag 1080 cccggtcagg gatcggcgac ggggcgcttg cacgagctcg aggaaatcga ggcccggatc 1140 gtcggtctga gcggcaagtc cgcggtctac cgcgtgggcg gcgtgaccga cgtggagatg 1200 aaggagcgga tggtacggat cgaaaatgcc taccgctcgg tggtgtctgc actggaggag 1260 ggggtgttgc ccggcggcgg tgtcgggttt ctgggcagca tgcccgtttt ggccgagctg 1320 gaagcgcgcg atgccgacga agcacgcggc atcggcatcg tccgttccgc gctgacggag 1380 cccctccgga tcatcggaga aaattcggga ctgtcagggg aggccgtcgt cgccaaggtc 1440 atggatcacg ccaatcccgg ttggggttac gatcaggaaa gcggaagttt ctgcgacctc 1500 cacgccaggg gcatttggga tgccgccaag gtgctcaggc tggccctgga aaaagccgcg 1560 tcggtggccg gcacgtttct caccaccgaa gccgtggtac tggagattcc ggacactgac 1620 gctttcgccg gtttcagtgc ggagtgggcc gccgcgaccc gggaggatcc gcgggtctaa 1680 1680 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 aagaaggaga tataccatgg cacttagcac cgcaac 36 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gtggtggtgg tggtgctcga ttaggccgcc ccggacggca 40 <210> 17 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 aagaaggaga tataccatgg cacttagcac cgcaac 36 <210> 18 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gaattctgtt tcctgtgtga ttaattgaat gccttcacc 39 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tcacacagga aacagaattc atgagcatgt taggagaaa 39 <210> 20 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 cattatgcgg ccgcaagctt tatttcaatc ctgccaga 38 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 aagaaggaga tatacatatg gcgaaactgg gtatac 36 <210> 22 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gaattctgtt tcctgtgtga ttagtgcggc gactgcaga 39 <210> 23 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 tcacacagga aacagaattc atggtcgaat cggcatttc 39 <210> 24 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gtttctttac cagactcgat taatgttgaa ctccgccggt 40 <210> 25 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 aagaaggaga tatacatatg agcgtaaaca gcaacg 36 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 atgtatatct ccttcttata ttaagcgtga tagtcttcg 39 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 tataagaagg agatatacat atgcagcgag ttcacacta 39 <210> 28 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gatcgcgtgg ccggccgatt taggccgccc cggacggca 39 <210> 29 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 taataaggag atataccatg gcaaaggaag tggttt 36 <210> 30 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 cattatgcgg ccgcaagctt tagacccgcg gatcctcc 38 <210> 31 <211> 5324 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 31 atggcactta gcaccgcaac caaggccgcg acggacgcgc tggctgccaa tcgggcaccc 60 accagcgtga atgcacagga agtgcaccgt tggctccaga gcttcaactg ggatttcaag 120 aacaaccgga ccaagtacgc caccaagtac aagatggcga acgagaccaa ggaacagttc 180 aagctgatcg ccaaggaata tgcgcgcatg gaggcagtca aggacgaaag gcagttcggt 240 agcctgcagg atgcgctgac ccgcctcaac gccggtgttc gcgttcatcc gaagtggaac 300 gagaccatga aagtggtttc gaacttcctg gaagtgggcg aatacaacgc catcgccgct 360 accgggatgc tgtgggattc cgcccaggcg gcggaacaga agaacggcta tctggcccag 420 gtgttggatg aaatccgcca cacccaccag tgtgcctacg tcaactacta cttcgcgaag 480 aacggccagg acccggccgg tcacaacgat gctcgccgca cccgtaccat cggtccgctg 540 tggaagggca tgaagcgcgt gttttccgac ggcttcattt ccggcgacgc cgtggaatgc 600 tccctcaacc tgcagctggt gggtgaggcc tgcttcacca atccgctgat cgtcgcagtg 660 accgaatggg ctgccgccaa cggcgatgaa atcaccccga cggtgttcct gtcgatcgag 720 accgacgaac tgcgccacat ggccaacggt taccagaccg tcgtttccat cgccaacgat 780 ccggcttccg ccaagtatct caacacggac ctgaacaacg ccttctggac ccagcagaag 840 tacttcacgc cggtgttggg catgctgttc gagtatggct ccaagttcaa ggtcgagccg 900 tgggtcaaga cgtggaaccg ctgggtgtac gaggactggg gcggcatctg gatcggccgt 960 ctgggcaagt acggggtgga gtcgccgcgc agcctcaagg acgccaagca ggacgcttac 1020 tgggctcacc acgacctgta tctgctggct tatgcgctgt ggccgaccgg cttcttccgt 1080 ctggcgctgc cggatcagga agaaatggag tggttcgagg ccaactaccc cggctggtac 1140 gaccactacg gcaagatcta cgaggaatgg cgcgcccgcg gttgcgagga tccgtcctcg 1200 ggcttcatcc cgctgatgtg gttcatcgaa aacaaccatc ccatctacat cgatcgcgtg 1260 tcgcaagtgc cgttctgccc gagcttggcc aagggcgcca gcaccctgcg cgtgcacgag 1320 tacaacggcc agatgcacac cttcagcgac cagtggggcg agcgcatgtg gctggccgag 1380 ccggagcgct acgagtgcca gaacatcttc gaacagtacg aaggacgcga actgtcggaa 1440 gtgatcgccg aactgcacgg gctgcgcagt gatggcaaga ccctgatcgc ccagccgcat 1500 gtccgtggcg acaagctgtg gacgttggac gatatcaaac gcctgaactg cgtcttcaag 1560 aacccggtga aggcattcaa ttgaaacggg tgtcgggctc cgtcacaggg cggggcccga 1620 cgcacgatcg ttcgatcaac ctcaaaccaa aaaggaacat cgatatgagc atgttaggag 1680 aaagacgccg cggtctgacc gatccggaaa tggcggccgt cattttgaag gcgcttcctg 1740 aagctccgct ggacggcaac aacaagatgg gttatttcgt caccccccgc tggaaacgct 1800 tgacggaata tgaagccctg accgtttatg cgcagcccaa cgccgactgg atcgccggcg 1860 gcctggactg gggcgactgg acccagaaat tccacggcgg ccgcccttcc tggggcaacg 1920 agaccacgga gctgcgcacc gtcgactggt tcaagcaccg tgacccgctc cgccgttggc 1980 atgcgccgta cgtcaaggac aaggccgagg aatggcgcta caccgaccgc ttcctgcagg 2040 gttactccgc cgacggtcag atccgggcga tgaacccgac ctggcgggac gagttcatca 2100 accggtattg gggcgccttc ctgttcaacg aatacggatt gttcaacgct cattcgcagg 2160 gcgcccggga ggcgctgtcg gacgtaaccc gcgtcagcct ggctttctgg ggcttcgaca 2220 agatcgacat cgcccagatg atccaactcg aacggggttt cctcgccaag atcgtacccg 2280 gtttcgacga gtccacagcg gtgccgaagg ccgaatggac gaacggggag gtctacaaga 2340 gcgcccgtct ggccgtggaa gggctgtggc aggaggtgtt cgactggaac gagagcgctt 2400 tctcggtgca cgccgtctat gacgcgctgt tcggtcagtt cgtccgccgc gagttctttc 2460 agcggctggc tccccgcttc ggcgacaatc tgacgccatt cttcatcaac caggcccaga 2520 catacttcca gatcgccaag cagggcgtac aggatctgta ttacaactgt ctgggtgacg 2580 atccggagtt cagcgattac aaccgtaccg tgatgcgcaa ctggaccggc aagtggctgg 2640 agcccacgat cgccgctctg cgcgacttca tggggctgtt tgcgaagctg ccggcgggca 2700 ccactgacaa ggaagaaatc accgcgtccc tgtaccgggt ggtcgacgac tggatcgagg 2760 actacgccag caggatcgac ttcaaggcgg accgcgatca gatcgttaaa gcggttctgg 2820 caggattgaa ataatagagg aactattacg atgagcgtaa acagcaacgc atacgacgcc 2880 ggcatcatgg gcctgaaagg caaggacttc gccgatcagt tctttgccga cgaaaaccaa 2940 gtggtccatg aaagcgacac ggtcgttctg gtcctcaaga agtcggacga gatcaatacc 3000 tttatcgagg agatccttct gacggactac aagaagaacg tcaatccgac ggtaaacgtg 3060 gaagaccgcg cgggttactg gtggatcaag gccaacggca agatcgaggt cgattgcgac 3120 gagatttccg agctgttggg gcggcagttc aacgtctacg acttcctcgt cgacgtttcc 3180 tccaccatcg gccgggccta taccctgggc aacaagttca ccattaccag tgagctgatg 3240 ggcctggacc gcaagctcga agactatcac gcttaaggag aatgacatgg cgaaactggg 3300 tatacacagc aacgacaccc gcgacgcctg ggtgaacaag atcgcgcagc tcaacaccct 3360 ggaaaaagcg gccgagatgc tgaagcagtt ccggatggac cacaccacgc cgttccgcaa 3420 cagctacgaa ctggacaacg actacctctg gatcgaggcc aagctcgaag agaaggtcgc 3480 cgtcctcaag gcacgcgcct tcaacgaggt ggacttccgt cataagaccg ctttcggcga 3540 ggatgccaag tccgttctgg acggcaccgt cgcgaagatg aacgcggcca aggacaagtg 3600 ggaggcggag aagatccata tcggtttccg ccaggcctac aagccgccga tcatgccggt 3660 gaactatttc ctggacggcg agcgtcagtt ggggacccgg ctgatggaac tgcgcaacct 3720 caactactac gacacgccgc tggaagaact gcgcaaacag cgcggtgtgc gggtggtgca 3780 tctgcagtcg ccgcactgaa gggaggaagt ctcgccctgg acgcgacggc atcgccgtga 3840 agtccagggg gcagggatgc cgttccgggc cggcaggctg gcccggaatc tctggttttc 3900 agggggcgtg ccggtccacg gctcccccct ccatctttcg taaggaaatc accatggtcg 3960 aatcggcatt tcagccattt tcgggcgacg cagacgaatg gttcgaggaa ccacggcccc 4020 aggccggttt cttcccttcc gcggactggc atctgctcaa acgggacgag acctacgcag 4080 cctatgccaa ggatctcgat ttcatgtggc ggtgggtcat cgtccgggaa gaaaggatcg 4140 tccaggaggg ttgctcgatc agcctggagt cgtcgatccg cgccgtgacg cacgtactga 4200 attattttgg tatgaccgaa caacgcgccc cggcagagga ccggaccggc ggagttcaac 4260 attgaacagg taagtttatg cagcgagttc acactatcac ggcggtgacg gaggatggcg 4320 aatcgctccg cttcgaatgc cgttcggacg aggacgtcat caccgccgcc ctgcgccaga 4380 acatctttct gatgtcgtcc tgccgggagg gcggctgtgc gacctgcaag gccttgtgca 4440 gcgaagggga ctacgacctc aagggctgca gcgttcaggc gctgccgccg gaagaggagg 4500 aggaagggtt ggtgttgttg tgccggacct acccgaagac cgacctggaa atcgaactgc 4560 cctataccca ttgccgcatc agttttggtg aggtcggcag tttcgaggcg gaggtcgtcg 4620 gcctcaactg ggtttcgagc aacaccgtcc agtttctttt gcagaagcgg cccgacgagt 4680 gcggcaaccg tggcgtgaaa ttcgaacccg gtcagttcat ggacctgacc atccccggca 4740 ccgatgtctc ccgctcctac tcgccggcga accttcctaa tcccgaaggc cgcctggagt 4800 tcctgatccg cgtgttaccg gagggacggt tttcggacta cctgcgcaat gacgcgcgtg 4860 tcggacaggt cctctcggtc aaagggccac tgggcgtgtt cggtctcaag gagcggggca 4920 tggcgccgcg ctatttcgtg gccggcggca ccgggttggc gccggtggtc tcgatggtgc 4980 ggcagatgca ggagtggacc gcgccgaacg agacccgcat ctatttcggt gtgaacaccg 5040 agccggaatt gttctacatc gacgagctca aatccctgga acgatcgatg cgcaatctca 5100 ccgtgaaggc ctgtgtctgg cacccgagcg gggactggga aggcgagcag ggctcgccca 5160 tcgatgcgtt gcgggaagac ctggagtcct ccgacgccaa cccggacatt tatttgtgcg 5220 gtccgccggg catgatcgat gccgcctgcg agctggtacg cagccgcggt atccccggcg 5280 aacaggtctt cttcgaaaaa ttcctgccgt ccggggcggc ctaa 5324 <110> SAMSUNG ELECTRONICS CO., LTD. <120> Soluble methane monooxygenase protein and method for reducing          concentration of fluorinated methane in sample <130> PN114343 <160> 31 <170> Kopatentin 2.0 <210> 1 <211> 527 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 1 Met Ala Leu Ser Thr Ala Thr Lys Ala Ala Thr Asp Ala Leu Ala Ala   1 5 10 15 Asn Arg Ala Pro Thr Ser Val Asn Ala Gln Glu Val His Arg Trp Leu              20 25 30 Gln Ser Phe Asn Trp Asp Phe Lys Asn Asn Arg Thr Lys Tyr Ala Thr          35 40 45 Lys Tyr Lys Met Ala Asn Glu Thr Lys Glu Gln Phe Lys Leu Ile Ala      50 55 60 Lys Glu Tyr Ala Arg Met Glu Ala Val Lys Asp Glu Arg Gln Phe Gly  65 70 75 80 Ser Leu Gln Asp Ala Leu Thr Arg Leu Asn Ala Gly Val Arg Val His                  85 90 95 Pro Lys Trp Asn Glu Thr Met Lys Val Val Ser Asn Phe Leu Glu Val             100 105 110 Gly Glu Tyr Asn Ale Ala Ala Thr Gly Met Leu Trp Asp Ser Ala         115 120 125 Gln Ala Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu     130 135 140 Ile Arg His Thr His Gln Cys Ala Tyr Val Asn Tyr Tyr Phe Ala Lys 145 150 155 160 Asn Gly Gln Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Thr                 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ser Asp Gly Phe             180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Leu Asn Leu Gln Leu Val Gly         195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala     210 215 220 Ala Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Ile Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser                 245 250 255 Ile Ala Asn Asp Pro Ala Ser Ala Lys Tyr Leu Asn Thr Asp Leu Asn             260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Met         275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr     290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Gly Lys Tyr Gly Val Glu Ser Pro Arg Ser Leu Lys Asp Ala Lys                 325 330 335 Gln Asp Ala Tyr Trp Ala His His Asp Leu Tyr Leu Leu Ala Tyr Ala             340 345 350 Leu Trp Pro Thr Gly Phe Phe Arg Leu Ala Leu Pro Asp Gln Glu Glu         355 360 365 Met Glu Trp Phe Glu Ala Asn Tyr Pro Gly Trp Tyr Asp His Tyr Gly     370 375 380 Lys Ile Tyr Glu Glu Trp Arg Ala Arg Gly Cys Glu Asp Pro Ser Ser 385 390 395 400 Gly Phe Ile Pro Leu Met Trp Phe Ile Glu Asn Asn His Pro Ile Tyr                 405 410 415 Ile Asp Arg Val Ser Gln Val Pro Phe Cys Pro Ser Leu Ala Lys Gly             420 425 430 Ala Ser Thr Leu Arg Val His Glu Tyr Asn Gly Gln Met His Thr Phe         435 440 445 Ser Asp Gln Trp Gly Glu Arg Met Trp Leu Ala Glu Pro Glu Arg Tyr     450 455 460 Glu Cys Gln Asn Ile Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu 465 470 475 480 Val Ile Ala Glu Leu His Gly Leu Arg Ser Asp Gly Lys Thr Leu Ile                 485 490 495 Ala Gln Pro His Val Arg Gly Asp Lys Leu Trp Thr Leu Asp Asp Ile             500 505 510 Lys Arg Leu Asn Cys Val Phe Lys Asn Pro Val Lys Ala Phe Asn         515 520 525 <210> 2 <211> 1584 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 2 atggcactta gcaccgcaac caaggccgcg acggacgcgc tggctgccaa tcgggcaccc 60 accagcgtga atgcacagga agtgcaccgt tggctccaga gcttcaactg ggatttcaag 120 aacaaccgga ccaagtacgc caccaagtac aagatggcga acgagaccaa ggaacagttc 180 aagctgatcg ccaaggaata tgcgcgcatg gaggcagtca aggacgaaag gcagttcggt 240 agcctgcagg atgcgctgac ccgcctcaac gccggtgttc gcgttcatcc gaagtggaac 300 gagaccatga aagtggtttc gaacttcctg gaagtgggcg aatacaacgc catcgccgct 360 accgggatgc tgtgggattc cgcccaggcg gcggaacaga agaacggcta tctggcccag 420 gtgttggatg aaatccgcca cacccaccag tgtgcctacg tcaactacta cttcgcgaag 480 aacggccagg acccggccgg tcacaacgat gctcgccgca cccgtaccat cggtccgctg 540 tggaagggca tgaagcgcgt gttttccgac ggcttcattt ccggcgacgc cgtggaatgc 600 tccctcaacc tgcagctggt gggtgaggcc tgcttcacca atccgctgat cgtcgcagtg 660 accgaatggg ctgccgccaa cggcgatgaa atcaccccga cggtgttcct gtcgatcgag 720 accgacgaac tgcgccacat ggccaacggt taccagaccg tcgtttccat cgccaacgat 780 ccggcttccg ccaagtatct caacacggac ctgaacaacg ccttctggac ccagcagaag 840 tacttcacgc cggtgttggg catgctgttc gagtatggct ccaagttcaa ggtcgagccg 900 tgggtcaaga cgtggaaccg ctgggtgtac gaggactggg gcggcatctg gatcggccgt 960 ctgggcaagt acggggtgga gtcgccgcgc agcctcaagg acgccaagca ggacgcttac 1020 tgggctcacc acgacctgta tctgctggct tatgcgctgt ggccgaccgg cttcttccgt 1080 ctggcgctgc cggatcagga agaaatggag tggttcgagg ccaactaccc cggctggtac 1140 gaccactacg gcaagatcta cgaggaatgg cgcgcccgcg gttgcgagga tccgtcctcg 1200 ggcttcatcc cgctgatgtg gttcatcgaa aacaaccatc ccatctacat cgatcgcgtg 1260 tcgcaagtgc cgttctgccc gagcttggcc aagggcgcca gcaccctgcg cgtgcacgag 1320 tacaacggcc agatgcacac cttcagcgac cagtggggcg agcgcatgtg gctggccgag 1380 ccggagcgct acgagtgcca gaacatcttc gaacagtacg aaggacgcga actgtcggaa 1440 gtgatcgccg aactgcacgg gctgcgcagt gatggcaaga ccctgatcgc ccagccgcat 1500 gtccgtggcg acaagctgtg gacgttggac gatatcaaac gcctgaactg cgtcttcaag 1560 aacccggtga aggcattcaa ttga 1584 <210> 3 <211> 389 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 3 Met Ser Met Leu Gly Glu Arg Arg Gly Leu Thr Asp Pro Glu Met   1 5 10 15 Ala Ala Val Ile Leu Lys Ala Leu Pro Glu Ala Pro Leu Asp Gly Asn              20 25 30 Asn Lys Met Gly Tyr Phe Val Thr Pro Arg Trp Lys Arg Leu Thr Glu          35 40 45 Tyr Glu Ala Leu Thr Val Tyr Ala Gln Pro Asn Ala Asp Trp Ile Ala      50 55 60 Gly Gly Leu Asp Trp Gly Asp Trp Thr Gln Lys Phe His Gly Gly Arg  65 70 75 80 Pro Ser Trp Gly Asn Glu Thr Thr Glu Leu Arg Thr Val Asp Trp Phe                  85 90 95 Lys His Arg Asp Pro Leu Arg Arg Trp His Ala Pro Tyr Val Lys Asp             100 105 110 Lys Ala Glu Glu Trp Arg Tyr Thr Asp Arg Phe Leu Gln Gly Tyr Ser         115 120 125 Ala Asp Gly Gln Ile Arg Ala Met Asn Pro Thr Trp Arg Asp Glu Phe     130 135 140 Ile Asn Arg Tyr Trp Gly Ala Phe Leu Phe Asn Glu Tyr Gly Leu Phe 145 150 155 160 Asn Ala His Ser Gln Gly Ala Arg Glu Ala Leu Ser Asp Val Thr Arg                 165 170 175 Val Ser Leu Ala Phe Trp Gly Phe Asp Lys Ile Asp Ile Ala Gln Met             180 185 190 Ile Gln Leu Glu Arg Gly Phe Leu Ala Lys Ile Val Pro Gly Phe Asp         195 200 205 Glu Ser Thr Ala Val Pro Lys Ala Glu Trp Thr Asn Gly Glu Val Tyr     210 215 220 Lys Ser Ala Arg Leu Ala Val Glu Gly Leu Trp Gln Glu Val Phe Asp 225 230 235 240 Trp Asn Glu Ser Ala Phe Ser Val His Ala Val Tyr Asp Ala Leu Phe                 245 250 255 Gly Gln Phe Val Arg Arg Glu Phe Phe Gln Arg Leu Ala Pro Arg Phe             260 265 270 Gly Asp Asn Leu Thr Pro Phe Phe Ile Asn Gln Ala Gln Thr Tyr Phe         275 280 285 Gln Ile Ala Lys Gln Gly Val Gln Asp Leu Tyr Tyr Asn Cys Leu Gly     290 295 300 Asp Asp Pro Glu Phe Ser Asp Tyr Asn Arg Thr Val Met Arg Asn Trp 305 310 315 320 Thr Gly Lys Trp Leu Glu Pro Thr Ile Ala Ala Leu Arg Asp Phe Met                 325 330 335 Gly Leu Phe Ala Lys Leu Pro Ala Gly Thr Thr Asp Lys Glu Glu Ile             340 345 350 Thr Ala Ser Leu Tyr Arg Val Val Asp Asp Trp Ile Glu Asp Tyr Ala         355 360 365 Ser Arg Ile Asp Phe Lys Ala Asp Arg Asp Gln Ile Val Lys Ala Val     370 375 380 Leu Ala Gly Leu Lys 385 <210> 4 <211> 1170 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 4 atgagcatgt taggagaaag acgccgcggt ctgaccgatc cggaaatggc ggccgtcatt 60 ttgaaggcgc ttcctgaagc tccgctggac ggcaacaaca agatgggtta tttcgtcacc 120 ccccgctgga aacgcttgac ggaatatgaa gccctgaccg tttatgcgca gcccaacgcc 180 gactggatcg ccggcggcct ggactggggc gactggaccc agaaattcca cggcggccgc 240 ccttcctggg gcaacgagac cacggagctg cgcaccgtcg actggttcaa gcaccgtgac 300 ccgctccgcc gttggcatgc gccgtacgtc aaggacaagg ccgaggaatg gcgctacacc 360 gccgcttcc tgcagggtta ctccgccgac ggtcagatcc gggcgatgaa cccgacctgg 420 cgggacgagt tcatcaaccg gtattggggc gccttcctgt tcaacgaata cggattgttc 480 aacgctcatt cgcagggcgc ccgggaggcg ctgtcggacg taacccgcgt cagcctggct 540 ttctggggct tcgacaagat cgacatcgcc cagatgatcc aactcgaacg gggtttcctc 600 gccaagatcg tacccggttt cgacgagtcc acagcggtgc cgaaggccga atggacgaac 660 ggggaggtct acaagagcgc ccgtctggcc gtggaagggc tgtggcagga ggtgttcgac 720 tggaacgaga gcgctttctc ggtgcacgcc gtctatgacg cgctgttcgg tcagttcgtc 780 cgccgcgagt tctttcagcg gctggctccc cgcttcggcg acaatctgac gccattcttc 840 atcaaccagg cccagacata cttccagatc gccaagcagg gcgtacagga tctgtattac 900 aactgtctgg gtgacgatcc ggagttcagc gattacaacc gtaccgtgat gcgcaactgg 960 accggcaagt ggctggagcc cacgatcgcc gctctgcgcg acttcatggg gctgtttgcg 1020 aagctgccgg cgggcaccac tgacaaggaa gaaatcaccg cgtccctgta ccgggtggtc 1080 gacgactgga tcgaggacta cgccagcagg atcgacttca aggcggaccg cgatcagatc 1140 gttaaagcgg ttctggcagg attgaaataa 1170 <210> 5 <211> 170 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 5 Met Ala Lys Leu Gly Ile His Ser Asn Asp Thr Arg Asp Ala Trp Val   1 5 10 15 Asn Lys Ile Ala Gln Leu Asn Thr Leu Glu Lys Ala Ala Glu Met Leu              20 25 30 Lys Gln Phe Arg Met Asp His Thr Thr Pro Phe Arg Asn Ser Tyr Glu          35 40 45 Leu Asp Asn Asp Tyr Leu Trp Ile Glu Ala Lys Leu Glu Glu Lys Val      50 55 60 Ala Val Leu Lys Ala Arg Ala Phe Asn Glu Val Asp Phe Arg His Lys  65 70 75 80 Thr Ala Phe Gly Glu Asp Ala Lys Ser Val Leu Asp Gly Thr Val Ala                  85 90 95 Lys Met Asn Ala Ala Lys Asp Lys Trp Glu Ala Glu Lys Ile His Ile             100 105 110 Gly Phe Arg Gln Ala Tyr Lys Pro Pro Ile Met Pro Val Asn Tyr Phe         115 120 125 Leu Asp Gly Glu Arg Gln Leu Gly Thr Arg Leu Met Glu Leu Arg Asn     130 135 140 Leu Asn Tyr Tyr Asp Thr Pro Leu Glu Glu Leu Arg Lys Gln Arg Gly 145 150 155 160 Val Arg Val Val His Leu Gln Ser Pro His                 165 170 <210> 6 <211> 513 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 6 atggcgaaac tgggtataca cagcaacgac acccgcgacg cctgggtgaa caagatcgcg 60 cagctcaaca ccctggaaaa agcggccgag atgctgaagc agttccggat ggaccacacc 120 acgccgttcc gcaacagcta cgaactggac aacgactacc tctggatcga ggccaagctc 180 gaagagaagg tcgccgtcct caaggcacgc gccttcaacg aggtggactt ccgtcataag 240 accgctttcg gcgaggatgc caagtccgtt ctggacggca ccgtcgcgaa gatgaacgcg 300 gccaaggaca agtgggaggc ggagaagatc catatcggtt tccgccaggc ctacaagccg 360 ccgatcatgc cggtgaacta tttcctggac ggcgagcgtc agttggggac ccggctgatg 420 gaactgcgca acctcaacta ctacgacacg ccgctggaag aactgcgcaa acagcgcggt 480 gtgcgggtgg tgcatctgca gtcgccgcac tga 513 <210> 7 <211> 141 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 7 Met Ser Val Asn Ser Asn Ala Tyr Asp Ala Gly Ile Met Gly Leu Lys   1 5 10 15 Gly Lys Asp Phe Ala Asp Gln Phe Phe Ala Asp Glu Asn Gln Val Val              20 25 30 His Glu Ser Asp Thr Val Val Leu Val Leu Lys Lys Ser Asp Glu Ile          35 40 45 Asn Thr Phe Ile Glu Glu Ile Leu Leu Thr Asp Tyr Lys Lys Asn Val      50 55 60 Asn Pro Thr Val Asn Val Glu Asp Arg Ala Gly Tyr Trp Trp Ile Lys  65 70 75 80 Ala Asn Gly Lys Ile Glu Val Asp Cys Asp Glu Ile Ser Glu Leu Leu                  85 90 95 Gly Arg Gln Phe Asn Val Tyr Asp Phe Leu Val Asp Val Ser Ser Thr             100 105 110 Ile Gly Arg Ala Tyr Thr Leu Gly Asn Lys Phe Thr Ile Thr Ser Glu         115 120 125 Leu Met Gly Leu Asp Arg Lys Leu Glu Asp Tyr His Ala     130 135 140 <210> 8 <211> 426 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 8 atgagcgtaa acagcaacgc atacgacgcc ggcatcatgg gcctgaaagg caaggacttc 60 gccgatcagt tctttgccga cgaaaaccaa gtggtccatg aaagcgacac ggtcgttctg 120 gtcctcaaga agtcggacga gatcaatacc tttatcgagg agatccttct gacggactac 180 aagaagaacg tcaatccgac ggtaaacgtg gaagaccgcg cgggttactg gtggatcaag 240 gccaacggca agatcgaggt cgattgcgac gagatttccg agctgttggg gcggcagttc 300 aacgtctacg acttcctcgt cgacgtttcc tccaccatcg gccgggccta taccctgggc 360 aacaagttca ccattaccag tgagctgatg ggcctggacc gcaagctcga agactatcac 420 gcttaa 426 <210> 9 <211> 348 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 9 Met Gln Arg Val His Thr Ile Thr Ala Val Thr Glu Asp Gly Glu Ser   1 5 10 15 Leu Arg Phe Glu Cys Arg Ser Asp Glu Asp Val Ile Thr Ala Ala Leu              20 25 30 Arg Gln Asn Ile Phe Leu Met Ser Ser Cys Arg Glu Gly Gly Cys Ala          35 40 45 Thr Cys Lys Ala Leu Cys Ser Glu Gly Asp Tyr Asp Leu Lys Gly Cys      50 55 60 Ser Val Gln Ala Leu Pro Pro Glu Glu Glu Glu Glu Leu Val Leu  65 70 75 80 Leu Cys Arg Thr Tyr Pro Lys Thr Asp Leu Glu Ile Glu Leu Pro Tyr                  85 90 95 Thr His Cys Arg Ile Ser Phe Gly Glu Val Gly Ser Phe Glu Ala Glu             100 105 110 Val Val Gly Leu Asn Trp Val Ser Ser Asn Thr Val Gln Phe Leu Leu         115 120 125 Gln Lys Arg Pro Asp Glu Cys Gly Asn Arg Gly Val Lys Phe Glu Pro     130 135 140 Gly Gln Phe Met Asp Leu Thr Ile Pro Gly Thr Asp Val Ser Ser Ser 145 150 155 160 Tyr Ser Pro Ala Asn Leu Pro Asn Pro Glu Gly Arg Leu Glu Phe Leu                 165 170 175 Ile Arg Val Leu Pro Glu Gly Arg Phe Ser Asp Tyr Leu Arg Asn Asp             180 185 190 Ala Arg Val Gly Gln Val Leu Ser Val Lys Gly Pro Leu Gly Val Phe         195 200 205 Gly Leu Lys Glu Arg Gly Met Ala Pro Arg Tyr Phe Val Ala Gly Gly     210 215 220 Thr Gly Leu Ala Pro Val Val Ser Met Val Arg Gln Met Gln Glu Trp 225 230 235 240 Thr Ala Pro Asn Glu Thr Arg Ile Tyr Phe Gly Val Asn Thr Glu Pro                 245 250 255 Glu Leu Phe Tyr Ile Asp Glu Leu Lys Ser Leu Glu Arg Ser Met Arg             260 265 270 Asn Leu Thr Val Lys Ala Cys Val Trp His Pro Ser Gly Asp Trp Glu         275 280 285 Gly Glu Gln Gly Ser Pro Ile Asp Ala Leu Arg Glu Asp Leu Glu Ser     290 295 300 Ser Asp Ala Asn Pro Asp Ile Tyr Leu Cys Gly Pro Pro Gly Met Ile 305 310 315 320 Asp Ala Cys Glu Leu Val Arg Ser Ser Gly Ile Pro Gly Glu Gln                 325 330 335 Val Phe Phe Glu Lys Phe Leu Pro Ser Gly Ala Ala             340 345 <210> 10 <211> 1047 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 10 atgcagcgag ttcacactat cacggcggtg acggaggatg gcgaatcgct ccgcttcgaa 60 tgccgttcgg acgaggacgt catcaccgcc gccctgcgcc agaacatctt tctgatgtcg 120 tcctgccggg agggcggctg tgcgacctgc aaggccttgt gcagcgaagg ggactacgac 180 ctcaagggct gcagcgttca ggcgctgccg ccggaagagg aggaggaagg gttggtgttg 240 ttgtgccgga cctacccgaa gaccgacctg gaaatcgaac tgccctatac ccattgccgc 300 atcagttttg gtgaggtcgg cagtttcgag gcggaggtcg tcggcctcaa ctgggtttcg 360 agcaacaccg tccagtttct tttgcagaag cggcccgacg agtgcggcaa ccgtggcgtg 420 aaattcgaac ccggtcagtt catggacctg accatccccg gcaccgatgt ctcccgctcc 480 tactcgccgg cgaaccttcc taatcccgaa ggccgcctgg agttcctgat ccgcgtgtta 540 ccggagggac ggttttcgga ctacctgcgc aatgacgcgc gtgtcggaca ggtcctctcg 600 gtcaaagggc cactgggcgt gttcggtctc aaggagcggg gcatggcgcc gcgctatttc 660 gtggccggcg gcaccgggtt ggcgccggtg gtctcgatgg tgcggcagat gcaggagtgg 720 accgcgccga acgagacccg catctatttc ggtgtgaaca ccgagccgga attgttctac 780 atcgacgagc tcaaatccct ggaacgatcg atgcgcaatc tcaccgtgaa ggcctgtgtc 840 tggcacccga gcggggactg ggaaggcgag cagggctcgc ccatcgatgc gttgcgggaa 900 gacctggagt cctccgacgc caacccggac atttatttgt gcggtccgcc gggcatgatc 960 gatgccgcct gcgagctggt acgcagccgc ggtatccccg gcgaacaggt cttcttcgaa 1020 aaattcctgc cgtccggggc ggcctaa 1047 <210> 11 <211> 103 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 11 Met Val Glu Ser Ala Phe Gln Pro Phe Ser Gly Asp Ala Asp Glu Trp   1 5 10 15 Phe Glu Glu Pro Arg Pro Gln Ala Gly Phe Phe Pro Ser Ala Asp Trp              20 25 30 His Leu Leu Lys Arg Asp Glu Thr Tyr Ala Ala Tyr Ala Lys Asp Leu          35 40 45 Asp Phe Met Trp Arg Trp Val Ile Val Arg Glu Glu Arg Ile Val Gln      50 55 60 Glu Gly Cys Ser Ile Ser Leu Glu Ser Ser Ile Arg Ala Val Thr His  65 70 75 80 Val Leu Asn Tyr Phe Gly Met Thr Glu Gln Arg Ala Pro Ala Glu Asp                  85 90 95 Arg Thr Gly Gly Val Gln His             100 <210> 12 <211> 312 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 12 atggtcgaat cggcatttca gccattttcg ggcgacgcag acgaatggtt cgaggaacca 60 cggccccagg ccggtttctt cccttccgcg gactggcatc tgctcaaacg ggacgagacc 120 tacgcagcct atgccaagga tctcgatttc atgtggcggt gggtcatcgt ccgggaagaa 180 aggatcgtcc aggagggttg ctcgatcagc ctggagtcgt cgatccgcgc cgtgacgcac 240 gtactgaatt attttggtat gaccgaacaa cgcgccccgg cagaggaccg gaccggcgga 300 gttcaacatt ga 312 <210> 13 <211> 559 <212> PRT <213> Methylococcus capsulatus (Bath) <400> 13 Met Ala Lys Glu Val Val Tyr Arg Gly Ser Ala Arg Gln Arg Met Met   1 5 10 15 Gln Gly Ile Glu Ile Leu Ala Arg Ala Ala Ile Pro Thr Leu Gly Ala              20 25 30 Thr Gly Pro Ser Val Met Ile Gln His Arg Ala Asp Gly Leu Pro Pro          35 40 45 Ile Ser Thr Arg Asp Gly Val Thr Val Ala Asn Ser Ile Val Leu Lys      50 55 60 Asp Arg Val Ala Asn Leu Gly Ala Arg Leu Leu Arg Asp Val Ala Gly  65 70 75 80 Thr Met Ser Arg Glu Ala Gly Asp Gly Thr Thr Thr Ala Ile Val Leu                  85 90 95 Ala Arg His Ile Ala Arg Glu Met Phe Lys Ser Leu Ala Val Gly Ala             100 105 110 Asp Pro Ile Ala Leu Lys Arg Gly Ile Asp Arg Ala Val Ala Arg Val         115 120 125 Ser Glu Asp Ile Gly Ala Arg Ala Trp Arg Gly Asp Lys Glu Ser Val     130 135 140 Ile Leu Gly Val Ala Ala Val Ala Thr Lys Gly Glu Pro Gly Val Gly 145 150 155 160 Arg Leu Leu Leu Glu Ala Leu Asp Ala Val Gly Val His Gly Ala Val                 165 170 175 Ser Ile Glu Leu Gly Gln Arg Arg Glu Asp Leu Leu Asp Val Val Asp             180 185 190 Gly Tyr Arg Trp Glu Lys Gly Tyr Leu Ser Pro Tyr Phe Val Thr Asp         195 200 205 Arg Ala Arg Glu Leu Ala Glu Leu Glu Asp Val Tyr Leu Leu Met Thr     210 215 220 Asp Arg Glu Val Val Asp Phe Ile Asp Leu Val Pro Leu Leu Glu Ala 225 230 235 240 Val Thr Glu Ala Gly Gly Ser Leu Leu Ile Ala Ala Asp Arg Val His                 245 250 255 Glu Lys Ala Leu Ala Gly Leu Leu Leu Asn His Val Arg Gly Val Phe             260 265 270 Lys Ala Val Ala Val Thr Ala Pro Gly Phe Gly Asp Lys Arg Pro Asn         275 280 285 Arg Leu Leu Asp Leu Ala Ala Leu Thr Gly Gly Arg Ala Val Leu Glu     290 295 300 Ala Gln Gly Asp Arg Leu Asp Arg Val Thr Leu Ala Asp Leu Gly Arg 305 310 315 320 Val Arg Arg Ala Val Val Ser Ala Asp Asp Thr Ala Leu Leu Gly Ile                 325 330 335 Pro Gly Thr Glu Ala Ser Arg Ala Arg Leu Glu Gly Leu Arg Leu Glu             340 345 350 Ala Glu Gln Tyr Arg Ala Leu Lys Pro Gly Gln Gly Ser Ala Thr Gly         355 360 365 Arg Leu His Glu Leu Glu Glu Ile Glu Ala Arg Ile Val Gly Leu Ser     370 375 380 Gly Lys Ser Ala Val Tyr Arg Val Gly Gly Val Thr Asp Val Glu Met 385 390 395 400 Lys Glu Arg Met Val Arg Ile Glu Asn Ala Tyr Arg Ser Val Val Ser                 405 410 415 Ala Leu Glu Gly Gly Val Leu Pro Gly Gly Gly Val Gly Phe Leu Gly             420 425 430 Ser Met Pro Val Leu Ala Glu Leu Glu Ala Arg Asp Ala Asp Glu Ala         435 440 445 Arg Gly Ile Gly Ile Val Arg Ser Ala Leu Thr Glu Pro Leu Arg Ile     450 455 460 Ile Gly Glu Asn Ser Gly Leu Ser Gly Glu Ala Val Val Ala Lys Val 465 470 475 480 Met Asp His Ala Asn Pro Gly Trp Gly Tyr Asp Gln Glu Ser Gly Ser                 485 490 495 Phe Cys Asp Leu His Ala Arg Gly Ile Trp Asp Ala Ala Lys Val Leu             500 505 510 Arg Leu Ala Leu Glu Lys Ala Ala Ser Val Ala Gly Thr Phe Leu Thr         515 520 525 Thr Glu Ala Val Val Leu Glu Ile Pro Asp Thr Asp Ala Phe Ala Gly     530 535 540 Phe Ser Ala Glu Trp Ala Ala Ala Thr Arg Glu Asp Pro Arg Val 545 550 555 <210> 14 <211> 1680 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 14 atggcaaagg aagtggttta cagggggagt gcgcggcagc gcatgatgca aggcatcgag 60 atactcgcgc gggcggcgat accgacgctg ggagccaccg gccccagcgt catgatccag 120 caccgcgccg atggcctgcc ccccatttcg acgcgggacg gcgtcacggt ggctaactcc 180 atcgtactca aggaccgtgt cgcgaatctc ggtgcccggc tgctgcggga cgtcgccggc 240 accatgtccc gcgaagcagg ggatggcacc accaccgcca tcgtgctggc ccgccatatc 300 gcccgggaga tgttcaagag cctcgccgtc ggtgccgatc ccatcgctct caagcgtggt 360 atcgaccgtg ccgtcgcccg cgtgagcgag gacatcgggg ctcgggcctg gcgcggcgac 420 aaggaatcgg tcatcctggg ggtggccgcg gtggcgacca agggcgagcc gggcgtgggc 480 cggctgctgc tggaggcgct ggacgcggtc ggcgtccatg gcgccgtgtc gatcgaactg 540 gggcagcggc gcgaggacct gctcgacgtg gtcgacgggt atcgttggga aaaaggttat 600 ctgtcgccct attttgtgac cgatcgggct cgcgagctgg ccgaactcga agacgtctac 660 ctcttgatga ccgatcggga ggtggtcgat ttcatcgatt tggtacccct gctggaggcg 720 gtgaccgagg ctggtggcag cctcctgatc gccgccgacc gtgtccacga gaaggcactg 780 gccggccttt tgctcaatca cgttcgcggc gtcttcaagg ccgtcgcggt caccgcgccc 840 gggttcggcg acaagcggcc gaaccgcctt ttggatctgg cggcgttgac cggtgggcgg 900 gcggtcctgg aagcccaggg cgaccgattg gaccgggtca cgctggccga cctggggcgg 960 gtgcggcggg cggtcgtcag cgctgacgac accgcgctgc tcggcatacc gggcaccgaa 1020 gcctcccggg cccgcttgga gggtttgcgc ctggaagcgg agcagtaccg ggcgctcaag 1080 cccggtcagg gatcggcgac ggggcgcttg cacgagctcg aggaaatcga ggcccggatc 1140 gtcggtctga gcggcaagtc cgcggtctac cgcgtgggcg gcgtgaccga cgtggagatg 1200 aaggagcgga tggtacggat cgaaaatgcc taccgctcgg tggtgtctgc actggaggag 1260 ggggtgttgc ccggcggcgg tgtcgggttt ctgggcagca tgcccgtttt ggccgagctg 1320 gaagcgcgcg atgccgacga agcacgcggc atcggcatcg tccgttccgc gctgacggag 1380 cccctccgga tcatcggaga aaattcggga ctgtcagggg aggccgtcgt cgccaaggtc 1440 atggatcacg ccaatcccgg ttggggttac gatcaggaaa gcggaagttt ctgcgacctc 1500 cacgccaggg gcatttggga tgccgccaag gtgctcaggc tggccctgga aaaagccgcg 1560 tcggtggccg gcacgtttct caccaccgaa gccgtggtac tggagattcc ggacactgac 1620 gctttcgccg gtttcagtgc ggagtgggcc gccgcgaccc gggaggatcc gcgggtctaa 1680                                                                         1680 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 aagaaggaga tataccatgg cacttagcac cgcaac 36 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gtggtggtgg tggtgctcga ttaggccgcc ccggacggca 40 <210> 17 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 aagaaggaga tataccatgg cacttagcac cgcaac 36 <210> 18 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gaattctgtt tcctgtgtga ttaattgaat gccttcacc 39 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tcacacagga aacagaattc atgagcatgt taggagaaa 39 <210> 20 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 cattatgcgg ccgcaagctt tatttcaatc ctgccaga 38 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 aagaaggaga tatacatatg gcgaaactgg gtatac 36 <210> 22 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gaattctgtt tcctgtgtga ttagtgcggc gactgcaga 39 <210> 23 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 tcacacagga aacagaattc atggtcgaat cggcatttc 39 <210> 24 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gtttctttac cagactcgat taatgttgaa ctccgccggt 40 <210> 25 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 aagaaggaga tatacatatg agcgtaaaca gcaacg 36 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 atgtatatct ccttcttata ttaagcgtga tagtcttcg 39 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 tataagaagg agatatacat atgcagcgag ttcacacta 39 <210> 28 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gatcgcgtgg ccggccgatt taggccgccc cggacggca 39 <210> 29 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 taataaggag atataccatg gcaaaggaag tggttt 36 <210> 30 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 cattatgcgg ccgcaagctt tagacccgcg gatcctcc 38 <210> 31 <211> 5324 <212> DNA <213> Methylococcus capsulatus (Bath) <400> 31 atggcactta gcaccgcaac caaggccgcg acggacgcgc tggctgccaa tcgggcaccc 60 accagcgtga atgcacagga agtgcaccgt tggctccaga gcttcaactg ggatttcaag 120 aacaaccgga ccaagtacgc caccaagtac aagatggcga acgagaccaa ggaacagttc 180 aagctgatcg ccaaggaata tgcgcgcatg gaggcagtca aggacgaaag gcagttcggt 240 agcctgcagg atgcgctgac ccgcctcaac gccggtgttc gcgttcatcc gaagtggaac 300 gagaccatga aagtggtttc gaacttcctg gaagtgggcg aatacaacgc catcgccgct 360 accgggatgc tgtgggattc cgcccaggcg gcggaacaga agaacggcta tctggcccag 420 gtgttggatg aaatccgcca cacccaccag tgtgcctacg tcaactacta cttcgcgaag 480 aacggccagg acccggccgg tcacaacgat gctcgccgca cccgtaccat cggtccgctg 540 tggaagggca tgaagcgcgt gttttccgac ggcttcattt ccggcgacgc cgtggaatgc 600 tccctcaacc tgcagctggt gggtgaggcc tgcttcacca atccgctgat cgtcgcagtg 660 accgaatggg ctgccgccaa cggcgatgaa atcaccccga cggtgttcct gtcgatcgag 720 accgacgaac tgcgccacat ggccaacggt taccagaccg tcgtttccat cgccaacgat 780 ccggcttccg ccaagtatct caacacggac ctgaacaacg ccttctggac ccagcagaag 840 tacttcacgc cggtgttggg catgctgttc gagtatggct ccaagttcaa ggtcgagccg 900 tgggtcaaga cgtggaaccg ctgggtgtac gaggactggg gcggcatctg gatcggccgt 960 ctgggcaagt acggggtgga gtcgccgcgc agcctcaagg acgccaagca ggacgcttac 1020 tgggctcacc acgacctgta tctgctggct tatgcgctgt ggccgaccgg cttcttccgt 1080 ctggcgctgc cggatcagga agaaatggag tggttcgagg ccaactaccc cggctggtac 1140 gaccactacg gcaagatcta cgaggaatgg cgcgcccgcg gttgcgagga tccgtcctcg 1200 ggcttcatcc cgctgatgtg gttcatcgaa aacaaccatc ccatctacat cgatcgcgtg 1260 tcgcaagtgc cgttctgccc gagcttggcc aagggcgcca gcaccctgcg cgtgcacgag 1320 tacaacggcc agatgcacac cttcagcgac cagtggggcg agcgcatgtg gctggccgag 1380 ccggagcgct acgagtgcca gaacatcttc gaacagtacg aaggacgcga actgtcggaa 1440 gtgatcgccg aactgcacgg gctgcgcagt gatggcaaga ccctgatcgc ccagccgcat 1500 gtccgtggcg acaagctgtg gacgttggac gatatcaaac gcctgaactg cgtcttcaag 1560 aacccggtga aggcattcaa ttgaaacggg tgtcgggctc cgtcacaggg cggggcccga 1620 cgcacgatcg ttcgatcaac ctcaaaccaa aaaggaacat cgatatgagc atgttaggag 1680 aaagacgccg cggtctgacc gatccggaaa tggcggccgt cattttgaag gcgcttcctg 1740 aagctccgct ggacggcaac aacaagatgg gttatttcgt caccccccgc tggaaacgct 1800 tgacggaata tgaagccctg accgtttatg cgcagcccaa cgccgactgg atcgccggcg 1860 gcctggactg gggcgactgg acccagaaat tccacggcgg ccgcccttcc tggggcaacg 1920 agaccacgga gctgcgcacc gtcgactggt tcaagcaccg tgacccgctc cgccgttggc 1980 atgcgccgta cgtcaaggac aaggccgagg aatggcgcta caccgaccgc ttcctgcagg 2040 gttactccgc cgacggtcag atccgggcga tgaacccgac ctggcgggac gagttcatca 2100 accggtattg gggcgccttc ctgttcaacg aatacggatt gttcaacgct cattcgcagg 2160 gcgcccggga ggcgctgtcg gacgtaaccc gcgtcagcct ggctttctgg ggcttcgaca 2220 agatcgacat cgcccagatg atccaactcg aacggggttt cctcgccaag atcgtacccg 2280 gtttcgacga gtccacagcg gtgccgaagg ccgaatggac gaacggggag gtctacaaga 2340 gcgcccgtct ggccgtggaa gggctgtggc aggaggtgtt cgactggaac gagagcgctt 2400 tctcggtgca cgccgtctat gacgcgctgt tcggtcagtt cgtccgccgc gagttctttc 2460 agcggctggc tccccgcttc ggcgacaatc tgacgccatt cttcatcaac caggcccaga 2520 catacttcca gatcgccaag cagggcgtac aggatctgta ttacaactgt ctgggtgacg 2580 atccggagtt cagcgattac aaccgtaccg tgatgcgcaa ctggaccggc aagtggctgg 2640 agcccacgat cgccgctctg cgcgacttca tggggctgtt tgcgaagctg ccggcgggca 2700 ccactgacaa ggaagaaatc accgcgtccc tgtaccgggt ggtcgacgac tggatcgagg 2760 actacgccag caggatcgac ttcaaggcgg accgcgatca gatcgttaaa gcggttctgg 2820 caggattgaa ataatagagg aactattacg atgagcgtaa acagcaacgc atacgacgcc 2880 ggcatcatgg gcctgaaagg caaggacttc gccgatcagt tctttgccga cgaaaaccaa 2940 gtggtccatg aaagcgacac ggtcgttctg gtcctcaaga agtcggacga gatcaatacc 3000 tttatcgagg agatccttct gacggactac aagaagaacg tcaatccgac ggtaaacgtg 3060 gaagaccgcg cgggttactg gtggatcaag gccaacggca agatcgaggt cgattgcgac 3120 gagatttccg agctgttggg gcggcagttc aacgtctacg acttcctcgt cgacgtttcc 3180 tccaccatcg gccgggccta taccctgggc aacaagttca ccattaccag tgagctgatg 3240 ggcctggacc gcaagctcga agactatcac gcttaaggag aatgacatgg cgaaactggg 3300 tatacacagc aacgacaccc gcgacgcctg ggtgaacaag atcgcgcagc tcaacaccct 3360 ggaaaaagcg gccgagatgc tgaagcagtt ccggatggac cacaccacgc cgttccgcaa 3420 cagctacgaa ctggacaacg actacctctg gatcgaggcc aagctcgaag agaaggtcgc 3480 cgtcctcaag gcacgcgcct tcaacgaggt ggacttccgt cataagaccg ctttcggcga 3540 ggatgccaag tccgttctgg acggcaccgt cgcgaagatg aacgcggcca aggacaagtg 3600 ggaggcggag aagatccata tcggtttccg ccaggcctac aagccgccga tcatgccggt 3660 gaactatttc ctggacggcg agcgtcagtt ggggacccgg ctgatggaac tgcgcaacct 3720 caactactac gacacgccgc tggaagaact gcgcaaacag cgcggtgtgc gggtggtgca 3780 tctgcagtcg ccgcactgaa gggaggaagt ctcgccctgg acgcgacggc atcgccgtga 3840 agtccagggg gcagggatgc cgttccgggc cggcaggctg gcccggaatc tctggttttc 3900 agggggcgtg ccggtccacg gctcccccct ccatctttcg taaggaaatc accatggtcg 3960 aatcggcatt tcagccattt tcgggcgacg cagacgaatg gttcgaggaa ccacggcccc 4020 aggccggttt cttcccttcc gcggactggc atctgctcaa acgggacgag acctacgcag 4080 cctatgccaa ggatctcgat ttcatgtggc ggtgggtcat cgtccgggaa gaaaggatcg 4140 tccaggaggg ttgctcgatc agcctggagt cgtcgatccg cgccgtgacg cacgtactga 4200 attattttgg tatgaccgaa caacgcgccc cggcagagga ccggaccggc ggagttcaac 4260 attgaacagg taagtttatg cagcgagttc acactatcac ggcggtgacg gaggatggcg 4320 aatcgctccg cttcgaatgc cgttcggacg aggacgtcat caccgccgcc ctgcgccaga 4380 acatctttct gatgtcgtcc tgccgggagg gcggctgtgc gacctgcaag gccttgtgca 4440 gcgaagggga ctacgacctc aagggctgca gcgttcaggc gctgccgccg gaagaggagg 4500 aggaagggtt ggtgttgttg tgccggacct acccgaagac cgacctggaa atcgaactgc 4560 cctataccca ttgccgcatc agttttggtg aggtcggcag tttcgaggcg gaggtcgtcg 4620 gcctcaactg ggtttcgagc aacaccgtcc agtttctttt gcagaagcgg cccgacgagt 4680 gcggcaaccg tggcgtgaaa ttcgaacccg gtcagttcat ggacctgacc atccccggca 4740 ccgatgtctc ccgctcctac tcgccggcga accttcctaa tcccgaaggc cgcctggagt 4800 tcctgatccg cgtgttaccg gagggacggt tttcggacta cctgcgcaat gacgcgcgtg 4860 tcggacaggt cctctcggtc aaagggccac tgggcgtgtt cggtctcaag gagcggggca 4920 tggcgccgcg ctatttcgtg gccggcggca ccgggttggc gccggtggtc tcgatggtgc 4980 ggcagatgca ggagtggacc gcgccgaacg agacccgcat ctatttcggt gtgaacaccg 5040 agccggaatt gttctacatc gacgagctca aatccctgga acgatcgatg cgcaatctca 5100 ccgtgaaggc ctgtgtctgg cacccgagcg gggactggga aggcgagcag ggctcgccca 5160 tcgatgcgtt gcgggaagac ctggagtcct ccgacgccaa cccggacatt tatttgtgcg 5220 gtccgccggg catgatcgat gccgcctgcg agctggtacg cagccgcggt atccccggcg 5280 aacaggtctt cttcgaaaaa ttcctgccgt ccggggcggc ctaa 5324

Claims (18)

가용성 메탄 모노옥시게나제(soluble methane monooxygenase: sMMO) 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물로서, 상기 미생물이 대장균인 것인 미생물.A recombinant microorganism comprising a foreign gene encoding a soluble methane monooxygenase (sMMO) protein, wherein the microorganism is Escherichia coli. 청구항 1에 있어서, 상기 sMMO 단백질이 EC 1.14.13.25에 속하는 것인 미생물.The microorganism according to claim 1, wherein the sMMO protein belongs to EC 1.14.13.25. 청구항 1에 있어서, 상기 sMMO 단백질이 Methylococcus capsulatus (Bath) 유래인 것인 미생물.The method of claim 1, wherein the sMMO protein is selected from the group consisting of Methylococcus capsulatus (Bath). 청구항 1에 있어서, 상기 sMMO 단백질이 MmoX, MmoY와 MmoZ의 복합체, MmoB, MmoC, 및 MmoD를 포함하고, MmoX, MmoY, MmoZ, MmoB, MmoC, 및 MmoD는 각각 서열번호 1, 3, 5, 7, 9, 및 11의 아미노산 서열을 갖는 것인 미생물. The method of claim 1, wherein the sMMO protein comprises a complex of MmoX, MmoY and MmoZ, MmoB, MmoC, and MmoD, and MmoX, MmoY, MmoZ, MmoB, MmoC, and MmoD include SEQ ID NOS: 1, , 9, and 11, respectively. 청구항 1에 있어서, 상기 유전자가 서열번호 2의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 4의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 6의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 8의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 10의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 및 서열번호 12의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드를 포함하는 것인 미생물.3. The polynucleotide of claim 1, wherein the gene comprises a polynucleotide having the nucleotide sequence of SEQ ID NO: 2, a polynucleotide having the nucleotide sequence of SEQ ID NO: 4, a polynucleotide having the nucleotide sequence of SEQ ID NO: 6, A polynucleotide having a nucleotide sequence of SEQ ID NO: 10, and a polynucleotide having a nucleotide sequence of SEQ ID NO: 12. 청구항 1에 있어서, 상기 유전자가 서열번호 31의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드 중에 포함되어 있는 것인 미생물.The microorganism according to claim 1, wherein the gene is contained in a polynucleotide having a nucleotide sequence of SEQ ID NO: 31. 청구항 1에 있어서, 상기 미생물이 MmoG를 코딩하는 외래 유전자를 더 포함하고, MmoG가 서열번호 13의 아미노산 서열을 갖는 것인 미생물.The microorganism according to claim 1, wherein the microorganism further comprises a foreign gene coding for MmoG, and MmoG has an amino acid sequence of SEQ ID NO: 13. 시료 중 CHnF4 -n (n은 0 내지 3의 정수)를 제거하는데 사용하기 위한, 가용성 메탄 모노옥시게나제(sMMO) 단백질을 포함하는 조성물. A composition comprising a soluble methane monooxygenase (sMMO) protein for use in removing CH n F 4 -n (n is an integer from 0 to 3) in a sample. 청구항 8에 있어서, 상기 sMMO 단백질이 MmoX, MmoY와 MmoZ의 복합체, MmoB, MmoC, 및 MmoD를 포함하고, MmoX, MmoY, MmoZ, MmoB, MmoC, 및 MmoD는 각각 서열번호 1, 3, 5, 7, 9, 및 11의 아미노산 서열을 갖는 것인 조성물.The method of claim 8, wherein the sMMO protein comprises a complex of MmoX, MmoY and MmoZ, MmoB, MmoC, and MmoD, and MmoX, MmoY, MmoZ, MmoB, MmoC, and MmoD include SEQ ID NOS: 1, , 9, and 11, respectively. 청구항 8에 있어서, 상기 sMMO 단백질이, 상기 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물로부터 발현되는 것이고, 상기 조성물이 상기 미생물, 그의 파쇄물(lysate), 또는 상기 파쇄물의 수용성 물질 분획을 포함하고 있는 것인 조성물.9. The method of claim 8, wherein the sMMO protein is expressed from a recombinant microorganism comprising a foreign gene encoding the protein, wherein the composition comprises the microorganism, a lysate thereof, or a water soluble fraction of the lysate &Lt; / RTI &gt; 청구항 10에 있어서, 상기 미생물이 Escherichia 속 미생물인 것인 조성물.11. The composition of claim 10, wherein the microorganism is an Escherichia genus. 청구항 10에 있어서, 상기 유전자가 서열번호 2의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 4의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 6의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 8의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 서열번호 10의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 및 서열번호 12의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드를 포함하는 것인 조성물.11. The polynucleotide of claim 10, wherein the gene comprises a polynucleotide having a nucleotide sequence of SEQ ID NO: 2, a polynucleotide having a nucleotide sequence of SEQ ID NO: 4, a polynucleotide having a nucleotide sequence of SEQ ID NO: 6, A polynucleotide having the nucleotide sequence of SEQ ID NO: 10, and a polynucleotide having the nucleotide sequence of SEQ ID NO: 12. 청구항 8에 있어서, 상기 CHnF4 -n의 제거가 CHnF4 -n (n은 0 내지 3의 정수)의 C-F의 결합을 절단하거나, CHnF4 -n를 다른 물질로 전환하거나, 세포 내에 축적하여, CHnF4-n의 농도를 줄이는 것을 포함하는 것인 조성물. The method according to claim 8, wherein the removal of CH n F -n 4 is CH n F -n 4 cutting the binding of the CF (n is an integer of 0 to 3), or switch the CH n F -n 4 with other material, or , And accumulating in the cell to reduce the concentration of CH n F 4-n . 가용성 메탄 모노옥시게나제(sMMO) 단백질을 CHnF4 -n (n은 0 내지 3의 정수) 함유 시료와 접촉시켜 시료 중 CHnF4 -n (n은 0 내지 3의 정수)의 농도를 감소시키는 단계;를 포함하는, 시료 중 CHnF4 -n의 농도를 감소시키는 방법.Soluble methane mono-oxide concentration of the dioxygenase (sMMO) protein to CH n F 4 -n (n is an integer of 0 to 3) containing the sample is contacted with a sample of CH n F 4 -n (n is an integer of 0 to 3) Wherein the concentration of CH n F 4 -n in the sample is reduced. 청구항 14에 있어서, 상기 sMMO 단백질이 MmoX, MmoY와 MmoZ의 복합체, MmoB, MmoC, 및 MmoD를 포함하고, MmoX, MmoY, MmoZ, MmoB, MmoC, 및 MmoD는 각각 서열번호 1, 3, 5, 7, 9, 및 11의 아미노산 서열을 갖는 것인 방법.The method of claim 14, wherein the sMMO protein comprises a complex of MmoX, MmoY and MmoZ, MmoB, MmoC, and MmoD, and MmoX, MmoY, MmoZ, MmoB, MmoC, and MmoD include SEQ ID NOS: 1, , 9, and 11, respectively. 청구항 14에 있어서, 상기 sMMO 단백질이, 상기 단백질을 코딩하는 외래 유전자를 포함하는 재조합 미생물로부터 발현되는 것이고, 상기 접촉이 상기 미생물, 그의 파쇄물, 또는 상기 파쇄물의 수용성 물질 분획을 상기 시료와 접촉시키는 것인 방법.15. The method of claim 14, wherein the sMMO protein is expressed from a recombinant microorganism comprising a foreign gene encoding the protein, wherein the contacting comprises contacting the microorganism, its lysate, or a water soluble fraction of the lysate with the sample / RTI &gt; 청구항 16에 있어서, 상기 접촉이 CHnF4 -n의 존재하에서 상기 미생물을 배양하는 것인 방법. 17. The method of claim 16, wherein the contacting is to culture the microorganism in the presence of CH n F 4 -n . 청구항 16에 있어서, 상기 접촉이 밀폐된 용기 중 상기 미생물이 생존가능한 조건에서 수행되는 것인 방법. 17. The method of claim 16, wherein the contacting is performed in a closed vessel in which the microorganism is viable.
KR1020160075832A 2015-12-23 2016-06-17 Soluble methane monooxygenase protein and method for reducing concentration of fluorinated methane in sample KR20170075630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/389,571 US20170183638A1 (en) 2015-12-23 2016-12-23 Soluble methane monooxygenase protein variant and method of reducing concentration of fluorinated methane in sample using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150185093 2015-12-23
KR20150185093 2015-12-23

Publications (1)

Publication Number Publication Date
KR20170075630A true KR20170075630A (en) 2017-07-03

Family

ID=59357671

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160075832A KR20170075630A (en) 2015-12-23 2016-06-17 Soluble methane monooxygenase protein and method for reducing concentration of fluorinated methane in sample

Country Status (1)

Country Link
KR (1) KR20170075630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220012052A (en) 2020-07-22 2022-02-03 김진열 Fasten a snap umbrella
KR20220153205A (en) 2021-05-11 2022-11-18 김민석 an umbrella that can be replaced by a tick button

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220012052A (en) 2020-07-22 2022-02-03 김진열 Fasten a snap umbrella
KR20220153205A (en) 2021-05-11 2022-11-18 김민석 an umbrella that can be replaced by a tick button

Similar Documents

Publication Publication Date Title
US10344286B2 (en) Microorganism including gene encoding protein having hydroxylase activity and method of reducing concentration of fluorinated methane in sample using the same
Sriprang et al. Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase
Jo et al. Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration
Mock et al. Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica
Ridley et al. Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions
US10150080B2 (en) Microorganism including gene encoding protein having dehalogenase activity and method of reducing concentration of fluorinated methane in sample using the same
Zhu et al. Alamethicin suppresses methanogenesis and promotes acetogenesis in bioelectrochemical systems
Susanti et al. A genetic system for Methanocaldococcus jannaschii: an evolutionary deeply rooted hyperthermophilic methanarchaeon
EP3178922B1 (en) Bacterial cytochrome p450 protein variant and method of reducing concentration of fluorinated methane in sample using the same
Abdul Halim et al. Formate-dependent heterodisulfide reduction in a Methanomicrobiales archaeon
US20180104647A1 (en) Recombinant microorganism including genetic modification that increases 2-haloacid dehalogenase activity and method of reducing concentration of fluorinated methane in sample by using the same
KR20170075630A (en) Soluble methane monooxygenase protein and method for reducing concentration of fluorinated methane in sample
Johnson et al. Coenzyme F420-dependent sulfite reductase-enabled sulfite detoxification and use of sulfite as a sole sulfur source by Methanococcus maripaludis
US8835153B2 (en) Process and genes for expression and overexpression of active [FeFe] hydrogenases
US20170183638A1 (en) Soluble methane monooxygenase protein variant and method of reducing concentration of fluorinated methane in sample using the same
KR20180023735A (en) Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample
KR20180023736A (en) Soluble methane monooxygenase protein variant and method for reducing concentration of fluorinated methane in sample
US10036072B2 (en) Mercury methylation genes in bacteria and archaea
KR20180023734A (en) Bacterial cytochrome 450 protein variant and method for reducing concentration of fluorinated methane in sample
KR20170067125A (en) Bacterial cytochrome 450 protein and method for reducing concentration of fluorinated methane in sample
US20190024092A1 (en) Bacillus bombysepticus sf3 decomposing fluorine-containing compound, recombinant microorganism including gene derived from bacillus bombysepticus and method of reducing concentration of fluorine-containing compound in sample by using bacillus bombysepticus
KR20180041008A (en) Dehalogenase variant, polynucleotide coding the variant, microorganism including genetic modification having the polynucleotide, composition including the microorganism and method for reducing concentration of fluorinated methane in sample using the same
JP4349669B2 (en) Liquid reagent for ammonia measurement
EP3450551A1 (en) Haloacid dehalogenase superfamily protein variant and method of reducing the concentration of a fluorine-containing compound in a sample using the same
US11078499B2 (en) Host cells and methods for producing toluene biochemically