KR20180021222A - Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA - Google Patents

Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA Download PDF

Info

Publication number
KR20180021222A
KR20180021222A KR1020187004667A KR20187004667A KR20180021222A KR 20180021222 A KR20180021222 A KR 20180021222A KR 1020187004667 A KR1020187004667 A KR 1020187004667A KR 20187004667 A KR20187004667 A KR 20187004667A KR 20180021222 A KR20180021222 A KR 20180021222A
Authority
KR
South Korea
Prior art keywords
column
less
nuclear
layer
solder
Prior art date
Application number
KR1020187004667A
Other languages
Korean (ko)
Other versions
KR102315758B1 (en
Inventor
히로요시 가와사키
다카히로 롭폰기
다이스케 소마
이사무 사토
유지 가와마타
Original Assignee
센주긴조쿠고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 센주긴조쿠고교 가부시키가이샤 filed Critical 센주긴조쿠고교 가부시키가이샤
Publication of KR20180021222A publication Critical patent/KR20180021222A/en
Application granted granted Critical
Publication of KR102315758B1 publication Critical patent/KR102315758B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3615N-compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11825Plating, e.g. electroplating, electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/1358Plural coating layers being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/1358Plural coating layers being stacked
    • H01L2224/13582Two-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13657Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/1366Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/1369Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01026Iron [Fe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01048Cadmium [Cd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0109Thorium [Th]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01092Uranium [U]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10242Metallic cylinders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • H05K3/4015Surface contacts, e.g. bumps using auxiliary conductive elements, e.g. pieces of metal foil, metallic spheres

Abstract

비커스 경도가 낮고, 또한 산술 평균 조도가 작은 Cu 칼럼, Cu 핵 칼럼, 납땜 조인트 및 실리콘 관통 전극을 제공한다. 본 발명에 관한 Cu 칼럼(1)은, 순도가 99.9% 이상 99.995% 이하이고, 산술 평균 조도가 0.3㎛ 이하이고, 비커스 경도가 20HV 이상 60HV 이하이다. Cu 칼럼(1)은, 솔더링의 온도에서 용융되지 않고, 일정한 스탠드 오프 높이(기판 사이의 공간)를 확보할 수 있으므로, 3차원 실장이나 협피치 실장에 적합하게 사용된다.A Cu column, a Cu nuclear column, a solder joint, and a silicon through electrode having a low Vickers hardness and a small arithmetic average roughness. The Cu column (1) according to the present invention has a purity of 99.9% or more and 99.995% or less, an arithmetic average roughness of 0.3 m or less, and Vickers hardness of 20HV or more and 60HV or less. The Cu column 1 is suitable for three-dimensional mounting or narrow pitch mounting because it can maintain a constant standoff height (space between the substrates) without melting at the temperature of soldering.

Description

Cu 칼럼, Cu 핵 칼럼, 납땜 조인트 및 실리콘 관통 전극 {Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA}Cu column, Cu nuclear column, brazed joint, and silicon penetration electrode {Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA}

본 발명은, Cu 칼럼, Cu 핵 칼럼, 납땜 조인트 및 실리콘 관통 전극에 관한 것이다.The present invention relates to a Cu column, a Cu nuclear column, a solder joint and a silicon penetration electrode.

최근, 소형 정보 기기의 발달에 의해, 탑재되는 전자 부품에서는 급속한 소형화가 진행되고 있다. 전자 부품은, 소형화의 요구에 의해 접속 단자의 협소화나 실장 면적의 축소화에 대응하기 위해, 이면에 전극이 설치된 볼 그리드 어레이(이하, 「BGA」라고 칭함)가 적용되어 있다.BACKGROUND ART [0002] In recent years, with the development of compact information devices, electronic components to be mounted are rapidly becoming smaller and smaller. A ball grid array (hereinafter referred to as " BGA ") in which electrodes are provided on the back surface is applied to electronic parts in order to cope with the miniaturization of connection terminals and the reduction in mounting area.

BGA를 적용한 전자 부품에는, 예를 들어 반도체 패키지가 있다. 반도체 패키지에서는, 전극을 갖는 반도체 칩이 수지로 밀봉되어 있다. 반도체 칩의 전극에는, 땜납 범프가 형성되어 있다. 이 땜납 범프는, 땜납 볼을 반도체 칩의 전극에 접합함으로써 형성되어 있다. BGA를 적용한 반도체 패키지는, 가열에 의해 용융된 땜납 범프와 프린트 기판의 도전성 랜드가 접합함으로써, 프린트 기판에 탑재된다. 또한, 더한층의 고밀도 실장의 요구에 대응하기 위해, 반도체 패키지가 높이 방향으로 적층된 3차원 고밀도 실장이 개발되어 있다.The electronic parts to which the BGA is applied include, for example, a semiconductor package. In a semiconductor package, a semiconductor chip having an electrode is sealed with a resin. Solder bumps are formed on the electrodes of the semiconductor chip. The solder bumps are formed by bonding the solder balls to the electrodes of the semiconductor chip. The semiconductor package to which the BGA is applied is mounted on the printed board by bonding the solder bumps melted by heating and the conductive lands of the printed board. Further, in order to cope with the demand for higher-density packaging, a three-dimensional high-density packaging in which semiconductor packages are stacked in the height direction has been developed.

그러나, 3차원 고밀도 실장이 이루어진 반도체 패키지에 BGA를 적용한 경우, 반도체 패키지의 자중에 의해 땜납 볼이 찌부러져 버리는 경우가 있다. 만일 그러한 일이 발생하면, 기판 사이의 적절한 공간을 유지할 수 없게 된다.However, when BGA is applied to a semiconductor package having three-dimensionally high-density mounting, the solder balls may be crushed by the weight of the semiconductor package. If such a situation occurs, the appropriate space between the substrates can not be maintained.

따라서, 땜납 페이스트를 사용하여 전자 부품의 전극 상에 Cu 볼을 전기적으로 접합하는 땜납 범프가 검토되고 있다. Cu 볼을 사용하여 형성된 땜납 범프는, 전자 부품이 프린트 기판에 실장될 때, 반도체 패키지의 중량이 땜납 범프에 가해져도, 땜납의 융점에서는 용융되지 않는 Cu 볼에 의해 반도체 패키지를 지지할 수 있다. 따라서, 반도체 패키지의 자중에 의해 땜납 범프가 찌부러지는 일이 없다.Therefore, a solder bump for electrically bonding a Cu ball to an electrode of an electronic component using a solder paste has been studied. The solder bumps formed using the Cu balls can support the semiconductor package by the Cu balls which do not melt at the melting point of the solder even when the weight of the semiconductor package is applied to the solder bumps when the electronic component is mounted on the printed board. Therefore, the solder bumps are not crushed by the weight of the semiconductor package.

그런데, 상술한 Cu 볼을 사용한 경우에는 이하와 같은 문제가 있었다. Cu 볼에서는, 기판 사이의 스탠드 오프 높이가 Cu 볼의 구경이 되므로, 요구되는 스탠드 오프 높이를 실현하려고 하면 Cu 볼의 횡폭이 커져 버려, 협피치화 실장에 대응할 수 없는 경우가 있었다. 또한, 일반적으로 반도체 패키지에 있어서는, 반도체 칩이 리드 프레임의 다이 패드 전극부에 다이 본드용 땜납 재료를 사용하여 접합된 후, 수지로 밀봉된다. 이 반도체 패키지를 프린트 기판에 실장하는 경우에는, 다이 본드용 땜납 재료와는 상이한 실장용 땜납 재료가 사용되고 있다. 그 이유는, 반도체 패키지를 기판에 실장할 때의 실장용 땜납 재료의 가열 조건에 의해, 다이 본드용 땜납 재료가 녹지 않도록 하기 위해서이다. 이와 같이, 다이 본드용 땜납 재료와 실장용 땜납 재료에 상이한 재료가 사용되는 경우, 각 기판의 열팽창 계수에 차가 발생하므로, 환경 온도 등의 변화에 의해 땜납 범프와의 접합부에 응력(열 스트레스)이 발생해 버려, TCT(온도 사이클 시험) 신뢰성이 저하되어 버리는 경우가 있었다.However, when the above-described Cu balls are used, the following problems have been encountered. In the Cu ball, since the standoff height between the substrates becomes the diameter of the Cu ball, if the required standoff height is to be achieved, the width of the Cu ball becomes large, which makes it impossible to cope with the narrow pitch mounting. In general, in the semiconductor package, the semiconductor chip is bonded to the die pad electrode portion of the lead frame using a die-bonding solder material, and then sealed with a resin. When this semiconductor package is mounted on a printed circuit board, a packaging solder material different from the solder material for die bonding is used. This is because the solder material for die bonding is not melted by the heating conditions of the solder material for mounting when the semiconductor package is mounted on the board. When a different material is used for the die bonding solder material and the mounting soldering material as described above, a difference occurs in the thermal expansion coefficient of each substrate, so that a stress (thermal stress) is applied to the bonding portion with the solder bump And the reliability of the TCT (temperature cycle test) is lowered in some cases.

그로 인해, 최근에는, 땜납 볼보다 협피치화가 가능하고, 또한 TCT 신뢰성의 향상을 도모하는 것이 가능한 Cu 칼럼이 개발되고 있다. 또한, 동일한 피치의 Cu 볼과 Cu 칼럼을 비교한 경우, 볼 형상보다 칼럼 형상의 쪽이 안정적으로 전극 사이를 지지할 수 있으므로, 이 점에서도 Cu 칼럼의 채용이 검토되고 있다. 예를 들어, 특허문헌 1 내지 5에는, 구리나 땜납 등으로 이루어지는 기둥상의 칼럼이 기재되어 있다. 특허문헌 6에는, 비커스 경도가 55HV 이하인, 세라믹 기판과 유리 에폭시 기판을 접합하기 위한 구리 칼럼이 기재되어 있다.Therefore, in recent years, Cu columns capable of narrowing the pitches of the solder balls and improving the reliability of TCT have been developed. Further, when Cu balls having the same pitch and a Cu column are compared, since the column shape can be stably supported between the electrodes rather than the ball shape, the adoption of a Cu column is also considered in this respect. For example, Patent Literatures 1 to 5 describe columnar columns made of copper, solder, or the like. Patent Document 6 describes a copper column for bonding a ceramic substrate and a glass epoxy substrate having a Vickers hardness of 55 HV or less.

일본 특허 공개 평7-66209호 공보Japanese Patent Application Laid-Open No. 7-66209 일본 특허 제3344295호Japanese Patent No. 3344295 일본 특허 공개 제2000-232119호 공보Japanese Patent Application Laid-Open No. 2000-232119 일본 특허 제4404063호Japanese Patent No. 4404063 일본 특허 공개 제2009-1474호 공보Japanese Patent Application Laid-Open No. 2009-1474 일본 특허 공개 제2011-176124호 공보Japanese Patent Application Laid-Open No. 11-176124

그러나, 상기 특허문헌 1 내지 6에 따르면, 협피치화 실장에 대응할 수 있음과 함께 열 스트레스를 억제할 수 있지만, Cu 칼럼의 산술 평균 조도에 대해서는 전혀 개시되어 있지 않다. 그로 인해, 특허문헌 1 내지 6의 Cu 칼럼을 사용한 경우에는, Cu 칼럼을 기판 상에 배열할 때의 Cu 칼럼의 유동성이 저하되어 버리거나, 실장 시에 있어서의 Cu 칼럼과 전극의 밀착성이 저하되어 버리거나 하는 등의 문제가 발생하는 경우가 있었다.However, according to the above Patent Documents 1 to 6, it is possible to cope with the narrow pitch mounting and to suppress the heat stress, but the arithmetic average roughness of the Cu column is not disclosed at all. Therefore, when the Cu column of Patent Documents 1 to 6 is used, the flowability of the Cu column when the Cu column is arranged on the substrate is lowered, the adhesiveness between the Cu column and the electrode at the time of mounting is lowered And the like.

따라서, 본 발명은 상기 과제를 해결하기 위해, 비커스 경도가 낮고, 또한 산술 평균 조도가 작은 Cu 칼럼, Cu 핵 칼럼, 납땜 조인트 및 실리콘 관통 전극을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a Cu column, a Cu nuclear column, a solder joint, and a silicon penetrating electrode having a low Vickers hardness and a small arithmetic average roughness.

본 발명자들은, Cu 칼럼에 대해 선정을 행하였다. Cu 칼럼의 비커스 경도가 20HV 이상 60HV 이하이며, 또한 산술 평균 조도가 0.3㎛ 이하이면 본 발명의 과제 해결을 위한 바람직한 Cu 칼럼 등이 얻어지는 것을 발견하였다.The present inventors made a selection for a Cu column. It has been found that a preferable Cu column or the like for solving the problems of the present invention can be obtained if the Vickers hardness of the Cu column is 20HV to 60HV and the arithmetic average roughness is 0.3μm or less.

여기서, 본 발명은 다음과 같다.Here, the present invention is as follows.

(1) 순도가 99.9% 이상 99.995% 이하이고, 산술 평균 조도가 0.3㎛ 이하이고, 비커스 경도가 20HV 이상 60HV 이하인 Cu 칼럼.(1) A Cu column having a purity of not less than 99.9% and not more than 99.995%, an arithmetic mean roughness of not more than 0.3 mu m, and Vickers hardness of not less than 20HV and not more than 60HV.

(2) α선량이 0.0200cph/㎠ 이하인 상기 (1)에 기재된 Cu 칼럼.(2) The Cu column according to (1) above, wherein the? Dose is 0.0200 cph / cm 2 or less.

(3) 상면 및 저면의 직경이 1∼1000㎛이고, 높이가 1∼3000㎛인 기둥체로 이루어지는 상기 (1) 또는 (2)에 기재된 Cu 칼럼.(3) The Cu column according to (1) or (2) above, wherein the upper and lower faces have a diameter of 1 to 1000 mu m and a height of 1 to 3000 mu m.

(4) 플럭스층이 피복되어 있는 상기 (1) 내지 (3) 중 어느 하나에 기재된 Cu 칼럼.(4) The Cu column according to any one of (1) to (3), wherein the flux layer is coated.

(5) 이미다졸 화합물을 함유하는 유기 피막이 피복되어 있는 상기 (1) 내지 (3) 중 어느 한 항에 기재된 Cu 칼럼.(5) The Cu column according to any one of (1) to (3), wherein an organic film containing an imidazole compound is coated.

(6) 상기 (1) 내지 (4) 중 어느 하나에 기재된 Cu 칼럼과, 상기 Cu 칼럼을 피복하는 땜납층을 구비하는 Cu 핵 칼럼.(6) A Cu nuclear column having the Cu column according to any one of (1) to (4) and a solder layer covering the Cu column.

(7) 상기 (1) 내지 (4) 중 어느 하나에 기재된 Cu 칼럼과, 상기 Cu 칼럼을 피복하는 Ni, Fe 및 Co로부터 선택되는 1원소 이상으로 이루어지는 도금층을 구비하는 Cu 핵 칼럼.(7) A Cu nuclear column comprising a Cu column according to any one of (1) to (4), and a plating layer composed of one or more elements selected from Ni, Fe and Co covering the Cu column.

(8) 상기 도금층을 피복하는 땜납층을 더 구비하는 상기 (7)에 기재된 Cu 핵 칼럼.(8) The Cu nuclear column according to (7), further comprising a solder layer covering the plating layer.

(9) α선량이 0.0200cph/㎠ 이하인 상기 (6) 내지 (8) 중 어느 하나에 기재된 Cu 핵 칼럼.(9) The Cu nuclear column according to any one of (6) to (8), wherein the? Dose is 0.0200 cph / cm 2 or less.

(10) 플럭스층이 피복되어 있는 상기 (6) 내지 (9) 중 어느 하나에 기재된 Cu 핵 칼럼.(10) The Cu nuclear column according to any one of (6) to (9), wherein the flux layer is coated.

(11) 상기 (1) 내지 (5) 중 어느 하나에 기재된 Cu 칼럼을 사용한 납땜 조인트.(11) A soldering joint using the Cu column according to any one of (1) to (5).

(12) 상기 (1) 내지 (5) 중 어느 하나에 기재된 Cu 칼럼을 사용한 실리콘 관통 전극.(12) A silicon penetrating electrode using the Cu column according to any one of (1) to (5).

(13) 상기 (6) 내지 (10) 중 어느 하나에 기재된 Cu 핵 칼럼을 사용한 납땜 조인트.(13) A soldering joint using the Cu nuclear column according to any one of (6) to (10).

(14) 상기 (6) 내지 (10) 중 어느 하나에 기재된 Cu 핵 칼럼을 사용한 실리콘 관통 전극.(14) A silicon penetrating electrode using the Cu nuclear column according to any one of (6) to (10).

본 발명에 따르면, Cu 칼럼의 비커스 경도가 20HV 이상 60HV 이하이므로, 내 낙하 충격성을 향상시킬 수 있음과 함께 기판 사이의 적절한 공간을 유지할 수 있다. 또한, Cu 칼럼의 산술 평균 조도가 0.3㎛ 이하이므로, Cu 칼럼을 기판 상에 배열할 때의 유동성을 향상시킬 수 있음과 함께, 실장 시에 있어서의 Cu 칼럼과 전극의 밀착성을 향상시킬 수 있다.According to the present invention, since the Vickers hardness of the Cu column is not less than 20HV and not more than 60HV, the drop impact resistance can be improved and an appropriate space between the substrates can be maintained. In addition, since the arithmetic mean roughness of the Cu column is 0.3 m or less, the flowability when the Cu column is arranged on the substrate can be improved, and the adhesion between the Cu column and the electrode at the time of mounting can be improved.

도 1은 본 발명에 관한 Cu 칼럼의 구성 예를 도시하는 도면이다.
도 2는 본 발명에 관한 Cu 핵 칼럼의 구성 예를 도시하는 도면이다.
도 3은 어닐링 처리 시에 있어서의 온도와 시간의 관계를 나타내는 도면이다.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a configuration example of a Cu column according to the present invention. FIG.
Fig. 2 is a diagram showing a configuration example of a Cu nuclear column according to the present invention. Fig.
Fig. 3 is a diagram showing the relationship between temperature and time in the annealing process. Fig.

본 발명을 이하에 더 상세하게 설명한다. 본 명세서에 있어서, Cu 칼럼의 조성에 관한 단위(ppm, ppb 및 %)는, 특별히 지정하지 않는 한 Cu 칼럼의 질량에 대한 비율(질량ppm, 질량ppb 및 질량%)을 나타낸다.The present invention is described in more detail below. In the present specification, the units (ppm, ppb and%) concerning the composition of the Cu column represent the ratio (mass ppm, mass ppb and mass%) to the mass of the Cu column, unless otherwise specified.

도 1에 도시하는 본 발명에 관한 Cu 칼럼(1)은, 순도가 99.9% 이상 99.995% 이하이고, 산술 평균 조도가 0.3㎛ 이하이고, 비커스 경도가 20HV 이상 60HV 이하이다. Cu 칼럼(1)은, 예를 들어 원기둥 형상으로 이루어진다. Cu 칼럼(1)은, 솔더링의 온도에서 용융되지 않고, 일정한 스탠드 오프 높이(기판 사이의 공간)를 확보할 수 있으므로, 3차원 실장이나 협피치 실장에 적합하게 사용할 수 있다.The Cu column 1 according to the present invention shown in Fig. 1 has a purity of 99.9% or more and 99.995% or less, an arithmetic average roughness of 0.3 m or less, and Vickers hardness of 20HV or more and 60HV or less. The Cu column 1 has, for example, a cylindrical shape. The Cu column 1 can be used suitably for three-dimensional mounting or narrow pitch mounting because it can maintain a constant standoff height (space between substrates) without melting at the temperature of soldering.

·Cu 칼럼의 산술 평균 조도: 0.3㎛ 이하Arithmetic mean roughness of Cu column: 0.3 탆 or less

Cu 칼럼(1)의 산술 평균 조도는 0.3㎛ 이하이고, 더욱 바람직하게는, 0.2㎛ 이하이다. Cu 칼럼(1)의 산술 평균 조도가 0.3㎛ 이하인 경우, Cu 칼럼(1)의 결정립의 크기도 작아지므로, Cu 칼럼(1)의 표면을 더 매끄러운 모양(평탄)으로 할 수 있다. 이에 의해, Cu 칼럼(1)을 마운터 등에 의해 기판 상에 배열할 때의 Cu 칼럼(1)의 유동성을 향상시킬 수 있음과 함께, 실장 시에 있어서의 Cu 칼럼(1)과 기판 상의 전극의 밀착성의 향상을 도모할 수도 있다.The arithmetic average roughness of the Cu column 1 is 0.3 탆 or less, and more preferably 0.2 탆 or less. When the arithmetic average roughness of the Cu column 1 is 0.3 탆 or less, the size of the crystal grains of the Cu column 1 becomes small, and thus the surface of the Cu column 1 can be made smoother (flat). This makes it possible to improve the fluidity of the Cu column 1 when the Cu column 1 is arranged on the substrate by a mounter or the like and to improve the adhesion between the Cu column 1 and the electrodes on the substrate at the time of mounting May be improved.

·비커스 경도 20HV 이상 60HV 이하· Vickers hardness 20HV or more and 60HV or less

본 발명에 관한 Cu 칼럼(1)의 비커스 경도는, 60HV 이하인 것이 바람직하다. 비커스 경도가 60HV 이하인 경우, 외부로부터의 응력에 대한 내구성이 높아져, 내 낙하 충격성이 향상됨과 함께 크랙이 발생하기 어려워지기 때문이다. 또한, 3차원 실장의 범프나 조인트의 형성 시에 가압 등의 보조력을 부여한 경우에 있어서, 유연성이 높은 Cu 칼럼(1)을 사용함으로써, 전극 찌부러짐 등을 야기시킬 가능성을 저하시킬 수 있기 때문이다.The Vickers hardness of the Cu column (1) according to the present invention is preferably 60 HV or less. When the Vickers hardness is 60 HV or less, the durability against external stress is increased, and the drop impact resistance is improved and cracks are less likely to occur. Further, when an auxiliary force such as pressing is applied at the time of forming bumps or joints in a three-dimensional mounting, the possibility of causing electrode crushing or the like can be reduced by using the Cu column 1 having high flexibility to be.

또한, 본 발명에 관한 Cu 칼럼(1)의 비커스 경도는, 적어도 일반적인 땜납의 비커스 경도 10∼20HV보다 큰 값인 것이 필요하고, 바람직하게는 20HV 이상이다. Cu 칼럼(1)의 비커스 경도가 20HV 이상인 경우, 3차원 실장에 있어서 반도체 칩 등의 자중에 의한 Cu 칼럼(1) 자체의 변형(찌부러짐)을 방지하여, 기판 사이의 적절한 공간(스탠드 오프 높이)을 유지할 수 있다. 또한, Cu 필러 등과 같이, 도금 공정이 불필요하므로, Cu 칼럼(1)의 비커스 경도를 20HV 이상으로 함으로써 전극 등의 협피치화를 실현할 수 있다.The Vickers hardness of the Cu column 1 according to the present invention is required to be at least larger than the Vickers hardness of 10 to 20 HV of a general solder, and preferably 20 HV or more. When the Vickers hardness of the Cu column 1 is 20 HV or more, deformation (crushing) of the Cu column 1 itself due to the weight of the semiconductor chip or the like in the three-dimensional mounting is prevented and the proper space ). Further, since the plating process is unnecessary as in the case of a Cu filler or the like, the Vickers hardness of the Cu column 1 can be made 20 HV or more, thereby realizing narrow pitch of electrodes and the like.

본 실시예에서는, Cu 칼럼(1)을 제조한 후, 제조한 Cu 칼럼(1)의 결정 성장을 촉진시킴으로써 비커스 경도가 60HV 이하로 되는 Cu 칼럼(1)을 제조한다. Cu 칼럼(1)의 결정 성장을 촉진시키는 수단으로서는, 예를 들어 어닐링 처리를 들 수 있다. 제조 후의 Cu 칼럼(1)을 어닐링 처리하면, Cu 조직이 재결정화되어 결정립이 성장함으로써, Cu 칼럼(1)의 유연성이 향상된다. 한편, 불순물을 일정량 함유한 Cu 칼럼(1), 예를 들어 순도가 3N, 4N, 4N5인 Cu 칼럼(1)을 사용하는 경우에는, 함유한 불순물이 Cu 칼럼(1) 표면에 있어서 결정립의 과도한 성장을 억제하므로 결정립은 일정값 이하의 크기로 억제된다. 이에 의해, 저비커스 경도이며, 또한 저산술 평균 조도의 2가지의 조건을 양립한 Cu 칼럼을 제공할 수 있다.In this embodiment, after the Cu column 1 is produced, a Cu column 1 is obtained in which the Vickers hardness is 60 HV or less by promoting the crystal growth of the produced Cu column 1. As a means for promoting the crystal growth of the Cu column 1, for example, an annealing treatment can be mentioned. When the Cu column 1 after the production is annealed, the Cu structure is recrystallized to grow crystal grains, so that the flexibility of the Cu column 1 is improved. On the other hand, in the case of using a Cu column 1 containing a certain amount of impurities, for example, a Cu column 1 having purity of 3N, 4N and 4N5, impurities contained in the Cu column 1 have an excessive The crystal grains are suppressed to a size smaller than a predetermined value. Thereby, it is possible to provide a Cu column compatible with both of the two conditions of low Vickers hardness and low arithmetic mean roughness.

·U: 5ppb 이하, Th: 5ppb 이하U: 5 ppb or less, Th: 5 ppb or less

U 및 Th는 방사성 원소이며, 소프트 에러를 억제하기 위해서는 이들의 함유량을 억제할 필요가 있다. U 및 Th의 함유량은, Cu 칼럼(1)의 α선량을 0.0200cph/㎠ 이하로 하기 위해, 각각 5ppb 이하로 할 필요가 있다. 또한, 현재 또는 장래의 고밀도 실장에서의 소프트 에러를 억제하는 관점에서, U 및 Th의 함유량은, 바람직하게는 각각 2ppb 이하이다.U and Th are radioactive elements. In order to suppress soft errors, it is necessary to suppress their contents. The contents of U and Th must be 5 ppb or less in order to make the? Dose of the Cu column 1 0.0200 cph / cm 2 or less. Further, from the viewpoint of suppressing the soft error in the present or future high-density mounting, the content of U and Th is preferably 2 ppb or less, respectively.

·Cu 칼럼의 순도: 99.9% 이상 99.995% 이하Purity of Cu column: 99.9% or more and 99.995% or less

본 발명을 구성하는 Cu 칼럼(1)은 순도가 99.9% 이상 99.995% 이하인 것이 바람직하다. Cu 칼럼(1)의 순도가 이 범위이면, 충분한 양의 불순물 원소의 결정 핵을 Cu 중에 확보할 수 있으므로, Cu 칼럼(1)의 산술 평균 조도를 작게 할 수 있다. 한편, 불순물 원소가 적으면, 상대적으로 결정 핵으로 되는 것이 적고, 입성장이 억제되지 않고 어느 방향성을 갖고 성장하므로, Cu 칼럼(1)의 산술 평균 조도가 커져 버린다. Cu 칼럼(1)의 순도의 하한값은 특별히 한정되지 않지만, α선량을 억제하고, 순도의 저하에 의한 Cu 칼럼(1)의 전기 전도도나 열전도율의 열화를 억제하는 관점에서, 바람직하게는 99.9% 이상이다. 불순물 원소로서는, Sn, Sb, Bi, Zn, As, Ag, Cd, Ni, Pb, Au, P, S, In, Co, Fe, U, Th 등을 들 수 있다.The Cu column (1) constituting the present invention preferably has a purity of 99.9% or more and 99.995% or less. When the purity of the Cu column 1 is within this range, the crystal nuclei of a sufficient amount of the impurity element can be ensured in Cu, so that the arithmetic average roughness of the Cu column 1 can be reduced. On the other hand, when the amount of the impurity element is small, the arithmetic average roughness of the Cu column 1 becomes large because it is relatively rarely formed into a crystal nucleus, and the grain growth is not suppressed and grows in any direction. The lower limit of the purity of the Cu column 1 is not particularly limited but is preferably 99.9% or more from the viewpoint of suppressing the? Dose and suppressing the deterioration of the electrical conductivity and the thermal conductivity of the Cu column 1 due to the decrease in purity to be. Examples of the impurity element include Sn, Sb, Bi, Zn, As, Ag, Cd, Ni, Pb, Au, P, S, In, Co, Fe, U and Th.

·α선량: 0.0200cph/㎠ 이하? Dose: 0.0200 cph / cm 2 or less

본 발명을 구성하는 Cu 칼럼(1)의 α선량은, 0.0200cph/㎠ 이하이다. 이것은, 전자 부품의 고밀도 실장에 있어서 소프트 에러가 문제로 되지 않을 정도의 α선량이다. α선량은, 더한층의 고밀도 실장에서의 소프트 에러를 억제하는 관점에서, 더욱 바람직하게는 0.0010cph/㎠ 이하이다.The? Dose of the Cu column (1) constituting the present invention is 0.0200 cph / cm 2 or less. This is an alpha dose at which soft error does not become a problem in high-density mounting of electronic components. The alpha dose is more preferably 0.0010 cph / cm < 2 > or less from the viewpoint of suppressing the soft error in the further high density mounting.

·불순물 원소의 함유량이 합계로 1ppm 이상· The content of impurity element is 1 ppm or more in total

본 발명을 구성하는 Cu 칼럼(1)은, 불순물 원소로서 Sn, Sb, Bi, Zn, As, Ag, Cd, Ni, Pb, Au, P, S, In, Co, Fe, U, Th 등을 함유하지만, 불순물 원소의 함유량이 합계로 1ppm 이상 함유한다. 또한, 불순물 원소인 Pb 및 Bi의 함유량은, 최대한 낮은 쪽이 바람직하다.The Cu column (1) constituting the present invention contains Sn, Sb, Bi, Zn, As, Ag, Cd, Ni, Pb, Au, P, S, In, Co, Fe, , But the content of the impurity element is 1 ppm or more in total. The content of Pb and Bi, which are the impurity elements, is preferably as low as possible.

·Cu 칼럼의 상면 및 저면의 직경: 1∼1000㎛, Cu 칼럼의 높이: 1∼3000㎛Diameter of upper and lower surfaces of Cu column: 1 to 1000 占 퐉 Height of Cu column: 1 to 3000 占 퐉

본 발명에 관한 Cu 칼럼(1)의 상면 및 저면의 직경 φ는 1∼1000㎛인 것이 바람직하고, 특히 파인 피치에 사용하는 경우는 1∼300μ가 보다 바람직하고, 더욱 바람직하게는 1∼200㎛이고, 가장 바람직한 것은 1∼100㎛이다. 그리고, Cu 칼럼(1)의 높이 L은 1∼3000㎛인 것이 바람직하고, 특히 파인 피치에 사용하는 경우는 1∼300μ가 보다 바람직하고, 더욱 바람직하게는 1∼200㎛이고, 가장 바람직한 것은 1∼100㎛이다(도 1 참조). Cu 칼럼(1)의 직경 φ 및 높이 L이 상기 범위인 경우, 단자 사이를 협피치로 한 실장이 가능해지므로, 접속 단락을 억제할 수 있음과 함께 반도체 패키지의 소형화 및 고집적화를 도모할 수 있다.The diameter? Of the upper and lower surfaces of the Cu column 1 according to the present invention is preferably 1 to 1000 占 퐉, more preferably 1 to 300 占 퐉, more preferably 1 to 200 占 퐉, And most preferably 1 to 100 mu m. The height L of the Cu column 1 is preferably 1 to 3000 占 퐉, more preferably 1 to 300 占 퐉, more preferably 1 to 200 占 퐉, and most preferably 1 (See Fig. 1). When the diameter ϕ and the height L of the Cu column 1 are in the above range, mounting with a narrow pitch between the terminals becomes possible, so that the connection short circuit can be suppressed and the semiconductor package can be downsized and highly integrated.

또한, 본 발명에 관한 Cu 칼럼(1)의 최표면의 산술 평균 조도가 0.3㎛ 이하로 되도록, 땜납 도금층이나 Ni 도금층, Fe 도금층, Co 도금층, 이미다졸 화합물을 함유하는 유기 피막층을, Cu 칼럼(1)의 최표면에 피복해도 된다. 본 발명에 관한 Cu 칼럼(1)에 산술 평균 조도가 0.3㎛ 이하로 되는 최표면층을 형성하면, 마운터 등에 의해 기판 상에 배열할 때의 Cu 칼럼(1)의 유동성을 향상시켜, 실장 시에 있어서의 Cu 칼럼(1)과 기판 상의 전극의 밀착성의 향상을 도모할 수 있음과 함께, Cu 칼럼(1) 자체의 비커스 경도가 20HV 이상 60HV 이하이므로, Cu 칼럼(1) 실장 후의 내 낙하 충격성을 향상시켜, 기판 사이의 적절한 공간을 유지한다고 하는 본원의 과제 해결을 달성할 수 있다.An organic coating layer containing a solder coating layer, a Ni plating layer, an Fe coating layer, a Co plating layer and an imidazole compound was formed on a Cu column (1) so that the arithmetic average roughness of the outermost surface of the Cu column (1) 1 may be coated on the outermost surface. When the outermost layer having an arithmetic average roughness of 0.3 탆 or less is formed in the Cu column 1 according to the present invention, the flowability of the Cu column 1 when arranged on a substrate by a mount or the like is improved, The adhesion between the Cu column 1 of the Cu column 1 and the electrode on the substrate can be improved and the Vickers hardness of the Cu column 1 itself is 20 HV or more and 60 HV or less so that the drop impact resistance after the mounting of the Cu column 1 is improved The problem of the present invention that the appropriate space between the substrates is maintained can be achieved.

또한, 본 발명에 관한 Cu 칼럼(1) 또는 Cu 핵 칼럼의 최표면을 플럭스층으로 피복하는 경우는, 플럭스층은 땜납층이나 Ni 도금층에 비해 연성이 있으므로, 유동성에 크게 영향을 미치지 않고, 실장 시에 있어서의 Cu 칼럼(1)과 기판 상의 전극의 밀착성에 대해서도, 플럭스층이 전극에 압박 접촉되었을 때, 플럭스층은 변형되므로, 플럭스층의 산술 평균 조도가 아니라, Cu 칼럼(1) 또는 Cu 핵 칼럼 자체의 산술 평균 조도가 관계된다. 따라서, 플럭스로 피복한 Cu 칼럼(1), 또는 Cu 핵 칼럼의 산술 평균 조도가 0.3㎛ 이하이면, 플럭스층으로 피복한 Cu 칼럼(1), 또는 Cu 핵 칼럼의 산술 평균 조도가 0.3㎛를 초과하고 있었다고 해도, 기판 상에 배열할 때의 Cu 칼럼(1)의 유동성은 그다지 악화되는 일이 없어, 실장 시에 있어서의 Cu 칼럼(1)과 기판 상의 전극의 밀착성의 향상을 도모할 수 있음과 함께, Cu 칼럼(1) 자체의 비커스 경도가 20HV 이상 60HV 이하이므로, Cu 칼럼(1) 실장 후의 내 낙하 충격성을 향상시켜, 기판 사이의 적절한 공간을 유지한다고 하는 본원의 과제 해결을 달성할 수 있다.In the case where the outermost surface of the Cu column (1) or the Cu nuclear column according to the present invention is coated with the flux layer, since the flux layer is more ductile than the solder layer or the Ni plating layer, The adhesion between the Cu column 1 and the electrode on the substrate at the time when the flux layer is pressed against the electrode is not affected by the arithmetic average roughness of the flux layer, The arithmetic average roughness of the nuclear column itself is related. Therefore, when the arithmetic average roughness of the Cu column 1 coated with the flux or the Cu nuclear column is 0.3 탆 or less, the Cu column 1 coated with the flux layer or the Cu nuclear column has an arithmetic mean roughness exceeding 0.3 탆 The fluidity of the Cu column 1 at the time of arrangement on the substrate does not deteriorate much so that the adhesion between the Cu column 1 and the electrode on the substrate at the time of mounting can be improved, In addition, since the Vickers hardness of the Cu column 1 itself is 20HV or more and 60HV or less, it is possible to improve the drop impact resistance after the mounting of the Cu column 1 and to maintain the proper space between the substrates .

예를 들어, 본 발명에 관한 Cu 칼럼(1)의 표면을 단일의 금속 또는 합금으로 이루어지는 금속층에 의해 피복함으로써, Cu 칼럼(1) 및 금속층으로 이루어지는 Cu 핵 칼럼을 구성할 수 있다. 도 2에 도시하는 바와 같이, Cu 핵 칼럼(3)은, Cu 칼럼(1)과, 이 Cu 칼럼(1)의 표면을 피복하는 땜납층(2)(금속층)을 구비하고 있다. 땜납층(2)의 조성은, 합금의 경우, Sn을 주성분으로 하는 납땜 합금의 합금 조성이면 특별히 한정되지 않는다. 또한, 땜납층(2)으로서는, Sn 도금 피막이어도 된다. 예를 들어, Sn, Sn-Ag 합금, Sn-Cu 합금, Sn-Ag-Cu 합금, Sn-In 합금 및 이들에 소정의 합금 원소를 첨가한 것을 들 수 있다. 모두 Sn의 함유량이 40질량% 이상이다. 또한, 특히 α선량을 지정하지 않는 경우에는, 땜납층(2)으로서, Sn-Bi 합금, Sn-Pb 합금도 사용할 수 있다. 첨가하는 합금 원소로서는, 예를 들어 Ag, Cu, In, Ni, Co, Sb, Ge, P, Fe 등이 있다. 이들 중에서도, 땜납층(2)의 합금 조성은, 낙하 충격 특성의 관점에서, 바람직하게는 Sn-3Ag-0.5Cu 합금이다. 땜납층(2)의 두께는 특별히 제한되지 않지만, 바람직하게는 편측에서 100㎛ 이하이면 충분하다. 일반적으로는 편측에서 20∼50㎛이면 된다.For example, by covering the surface of the Cu column 1 according to the present invention with a metal layer made of a single metal or an alloy, a Cu nuclear column comprising a Cu column 1 and a metal layer can be formed. As shown in Fig. 2, the Cu nuclear column 3 has a Cu column 1 and a solder layer 2 (metal layer) covering the surface of the Cu column 1. The composition of the solder layer (2) is not particularly limited as long as it is an alloy composition of a solder alloy containing Sn as a main component in the case of an alloy. The solder layer 2 may be a Sn-plated film. For example, Sn, Sn-Ag alloy, Sn-Cu alloy, Sn-Ag-Cu alloy, Sn-In alloy and a predetermined alloying element added thereto are listed. The content of Sn is 40 mass% or more. In the case where the? Dose is not particularly specified, a Sn-Bi alloy or an Sn-Pb alloy may be used as the solder layer 2. [ Examples of alloying elements to be added include Ag, Cu, In, Ni, Co, Sb, Ge, P, and Fe. Among them, the alloy composition of the solder layer 2 is preferably Sn-3Ag-0.5Cu alloy from the viewpoint of drop impact characteristics. Thickness of the solder layer 2 is not particularly limited, but preferably 100 mu m or less on one side is sufficient. Generally, it may be 20 to 50 mu m on one side.

또한, Cu 핵 칼럼에 있어서, Cu 칼럼(1)의 표면과 땜납층(2) 사이에 미리 Ni 도금층, Fe 도금층이나 Co 도금층 등을 형성할 수 있다. 이에 의해, 전극에의 접합 시에 있어서 땜납 중으로의 Cu의 확산을 저감시킬 수 있어, Cu 칼럼(1)의 Cu 용해를 억제할 수 있다. Ni 도금층, Fe 도금층이나 Co 도금층 등의 막 두께는 일반적으로는 편측 0.1∼20㎛이다.Further, in the Cu nuclear column, an Ni plating layer, an Fe plating layer, a Co plating layer, or the like can be formed in advance between the surface of the Cu column 1 and the solder layer 2. Thereby, it is possible to reduce the diffusion of Cu into the solder at the time of bonding to the electrode, and Cu dissolution of the Cu column 1 can be suppressed. The film thickness of the Ni plating layer, the Fe plating layer, the Co plating layer or the like is generally 0.1 to 20 mu m on one side.

또한, 상술한 Cu 핵 칼럼에 있어서, 땜납층(2)의 U 및 Th의 함유량은, Cu 핵 칼럼의 α선량을 0.0200cph/㎠ 이하로 하기 위해, 각각 5ppb 이하이다. 또한, 현재 또는 장래의 고밀도 실장에서의 소프트 에러를 억제하는 관점에서, U 및 Th의 함유량은, 바람직하게는 각각 2ppb 이하이다.In the above-described Cu nuclear column, the content of U and Th in the solder layer 2 is 5 ppb or less, respectively, in order to reduce the? Dose of the Cu nuclear column to 0.0200 cph / cm 2 or less. Further, from the viewpoint of suppressing the soft error in the present or future high-density mounting, the content of U and Th is preferably 2 ppb or less, respectively.

본 발명에 관한 Cu 핵 칼럼은, Cu 칼럼(1)과, 이 Cu 칼럼(1)을 피복하는 Ni, Fe 및 Co로부터 선택되는 1원소 이상으로 이루어지는 도금층(금속층)에 의해 구성할 수도 있다. 또한, Cu 핵 칼럼을 구성하는 도금층의 표면에, 땜납층을 피복해도 된다. 땜납층은, 상술한 땜납층과 마찬가지의 것을 채용할 수 있다.The Cu nuclear column according to the present invention may be constituted by a Cu column 1 and a plating layer (metal layer) composed of one or more elements selected from Ni, Fe and Co covering the Cu column 1. The surface of the plating layer constituting the Cu nuclear column may be coated with a solder layer. As the solder layer, the same solder layer as that described above can be employed.

본 발명에 관한 Cu 칼럼(1) 또는 Cu 핵 칼럼(3)은, 전극 사이를 접합하는 납땜 조인트의 형성에 사용할 수도 있다. 본 예에서는, 예를 들어 땜납 범프를 프린트 기판의 전극 상에 실장한 구조를 납땜 조인트라고 칭한다. 땜납 범프라 함은, 반도체 칩의 전극 상에 Cu 칼럼(1)이 실장된 구조이다.The Cu column (1) or the Cu nuclear column (3) according to the present invention can also be used for forming a solder joint joining electrodes. In this example, a structure in which, for example, a solder bump is mounted on an electrode of a printed circuit board is called a soldering joint. The solder bump is a structure in which the Cu column 1 is mounted on the electrode of the semiconductor chip.

또한, 본 발명에 관한 Cu 칼럼(1) 또는 Cu 핵 칼럼(3)은, 적층되는 반도체 칩 사이의 전극을 접속하기 위한 실리콘 관통 전극(through-silicon via: TSV)에 사용할 수도 있다. TSV는, 실리콘에 에칭에 의해 구멍을 뚫어, 구멍 중에 절연층, 그 위로부터 관통 도전체의 순으로 형성하고, 실리콘의 상하면을 연마하여, 관통 도전체를 상하면에서 노출시켜 제조된다. 이 공정 중 관통 도전체는, 종래, Cu 등을 도금법에 의해 구멍 중에 충전하여 형성하는 방법이 채용되어 있지만, 이 방법에서는, 실리콘 전체면을 도금액에 침지시키기 때문에, 불순물의 흡착이나 흡습의 우려가 있다. 따라서 본 발명의 칼럼을 직접 실리콘에 형성된 구멍에 높이 방향으로 삽입하여, 관통 도전체로서 사용할 수 있다. Cu 칼럼(1)을 실리콘에 삽입할 때에는, 땜납 페이스트 등의 땜납 재료에 의해 접합하도록 해도 되고, 또한 Cu 핵 칼럼을 실리콘에 삽입할 때에는, 플럭스만으로 접합시킬 수도 있다. 이에 의해 불순물의 흡착이나 흡습 등의 불량을 방지할 수 있고, 도금 공정을 생략함으로써, 제조 비용이나 제조 시간도 삭감할 수 있다.The Cu column 1 or Cu nuclear column 3 according to the present invention can also be used for a silicon-through-via (TSV) for connecting electrodes between semiconductor chips to be stacked. The TSV is manufactured by piercing silicon through etching, forming an insulating layer in the hole, a through conductor from above, and polishing the upper and lower surfaces of the silicon to expose the through conductor in the upper and lower surfaces. In this process, the through conductor is conventionally formed by filling Cu into the hole by a plating method. In this method, however, since the entire surface of the silicon is immersed in the plating solution, there is a fear of adsorption of impurities or moisture absorption have. Therefore, the column of the present invention can be inserted directly into the hole formed in silicon in the height direction, and can be used as a through conductor. When inserting the Cu column 1 into the silicon, it may be bonded by a solder material such as solder paste or may be bonded with only the flux when inserting the Cu nuclear column into the silicon. As a result, defects such as adsorption of impurities and moisture absorption can be prevented, and manufacturing cost and manufacturing time can be reduced by omitting the plating step.

또한, 상술한 Cu 칼럼(1)이나 Cu 핵 칼럼의 최표면을 플럭스층에 의해 피복해도 된다. 상술한 플럭스층은, Cu 칼럼(1)이나 땜납층 등의 금속 표면의 산화를 방지함과 함께 솔더링 시에 금속 산화막의 제거를 행하는 활성제로서 작용하는 화합물을 포함하는 1종류 혹은 복수 종류의 성분에 의해 구성된다. 예를 들어, 플럭스층은, 활성제로서 작용하는 화합물과, 활성 보조제로서 작용하는 화합물 등으로 이루어지는 복수의 성분에 의해 구성되어 있어도 된다.Further, the outermost surface of the Cu column (1) or the Cu nuclear column may be coated with the flux layer. The above-described flux layer is formed by adding one or more kinds of components including a compound that prevents oxidation of a metal surface such as a Cu column 1 or a solder layer and acts as an activator to remove the metal oxide film upon soldering . For example, the flux layer may be composed of a plurality of components composed of a compound acting as an activator and a compound acting as an activity auxiliary.

플럭스층을 구성하는 활성제로서는, 본 발명에서 요구되는 특성에 따라서 아민, 유기산, 할로겐 화합물 중 어느 하나, 복수의 아민의 조합, 복수의 유기산의 조합, 복수의 할로겐 화합물의 조합, 단일 혹은 복수의 아민, 유기산, 할로겐 화합물의 조합이 첨가된다.As the activator constituting the flux layer, any of amines, organic acids, halogen compounds, combinations of a plurality of amines, combinations of a plurality of organic acids, combinations of a plurality of halogen compounds, single or plural amines , A combination of an organic acid and a halogen compound is added.

플럭스층을 구성하는 활성 보조제로서는, 활성제의 특성에 따라서 에스테르, 아미드, 아미노산 중 어느 하나, 복수의 에스테르의 조합, 복수의 아미드의 조합, 복수의 아미노산의 조합, 단일 혹은 복수의 에스테르, 아미드, 아미노산의 조합이 첨가된다.As the active adjuvant constituting the flux layer, any one of esters, amides, and amino acids, a combination of a plurality of esters, a combination of a plurality of amides, a combination of a plurality of amino acids, a single or a plurality of esters, amides, amino acids Is added.

또한, 플럭스층은, 활성제로서 작용하는 화합물 등을, 리플로우 시의 열로부터 보호하기 위해, 로진이나 수지를 포함하는 것이어도 된다. 또한, 플럭스층은, 활성제로서 작용하는 화합물 등을, 땜납층에 고착시키는 수지를 포함하는 것이어도 된다.The flux layer may contain rosin or a resin in order to protect the compound or the like acting as an activator from heat during reflow. The flux layer may contain a resin that fixes a compound or the like serving as an activator to the solder layer.

플럭스층은, 단일 혹은 복수의 화합물로 이루어지는 단일층으로 구성되어도 된다. 또한, 플럭스층은, 복수의 화합물로 이루어지는 복수의 층으로 구성되어도 된다. 플럭스층을 구성하는 성분은, 고체의 상태로 땜납층의 표면에 부착되지만, 플럭스를 땜납층에 부착시키는 공정에서는, 플럭스가 액상 또는 가스상으로 되어 있을 필요가 있다.The flux layer may be composed of a single layer composed of a single compound or a plurality of compounds. Further, the flux layer may be composed of a plurality of layers made of a plurality of compounds. The component constituting the flux layer adheres to the surface of the solder layer in a solid state. However, in the step of adhering the flux to the solder layer, it is necessary that the flux is in a liquid phase or a gaseous phase.

이로 인해, 플럭스층을 구성하는 성분은, 용액으로 코팅하기 위해서는 용제에 가용일 필요가 있지만, 예를 들어 염을 형성하면, 용제 중에서 불용이 되는 성분이 존재한다. 액상의 플럭스 중에서 불용이 되는 성분이 존재함으로써, 침전물이 형성되는 등의 난 용해성 성분을 포함하는 플럭스에서는, 균일한 흡착이 곤란해진다. 이로 인해, 종래, 염을 형성하는 화합물을 혼합하여, 액상의 플럭스를 구성할 수는 없다.For this reason, the components constituting the flux layer need to be soluble in the solvent in order to coat with the solution. For example, when a salt is formed, there is a component that is insoluble in the solvent. The presence of the insoluble component in the liquid phase flux makes it difficult to uniformly adsorb the flux containing the poorly soluble component such as a precipitate. As a result, conventionally, it is impossible to mix a salt-forming compound to form a liquid-state flux.

이에 대해, 본 발명의 플럭스층을 구비한 Cu 칼럼(1)이나 Cu 핵 칼럼에서는, 1층씩 플럭스층을 형성하여 고체의 상태로 하고, 다층의 플럭스층을 형성할 수 있다. 이에 의해, 염을 형성하는 화합물을 사용하는 경우이며, 액상의 플럭스에서는 혼합할 수 없는 성분이라도, 플럭스층을 형성할 수 있다.On the other hand, in the Cu column (1) or Cu nuclear column having the flux layer of the present invention, a flux layer can be formed by one layer to form a solid state, and a multilayered flux layer can be formed. Thereby, a flux layer can be formed even when a compound that forms a salt is used, and even in the case of a component that can not be mixed in a liquid phase flux.

산화되기 쉬운 Cu 칼럼(1)이나 Cu 핵 칼럼의 표면이, 활성제로서 작용하는 플럭스층으로 피복됨으로써, 보관 시 등에, Cu 칼럼(1)의 표면 및 Cu 핵 칼럼의 땜납층 또는 금속층의 표면의 산화를 억제할 수 있다.The surfaces of the Cu column 1 and the Cu nuclear column, which are susceptible to oxidation, are covered with a flux layer serving as an activator, whereby the surface of the Cu column 1 and the surface of the solder layer or the metal layer of the Cu nuclear column Can be suppressed.

여기서, 플럭스와 금속의 색은 일반적으로 상이하고, Cu 칼럼(1) 등과 플럭스층의 색도 상이하므로, 색채도, 예를 들어 명도, 황색도, 적색도로 플럭스의 흡착량을 확인할 수 있다. 또한, 착색을 목적으로, 플럭스층을 구성하는 화합물에 색소를 혼합해도 된다.Here, the color of the flux and the metal generally differs, and since the chromaticity of the Cu column (1) and the like is different from that of the flux layer, the degree of coloring, such as brightness, yellowness, and red color, can be confirmed. Further, for the purpose of coloring, a dye may be mixed with a compound constituting the flux layer.

상술한 Cu 칼럼(1)을 이미다졸 화합물을 함유하는 유기 피막에 의해 피복해도 된다. 이에 의해, Cu 칼럼(1)의 최표면의 Cu층과 이미다졸 화합물이 결합함으로써, Cu 칼럼(1)의 표면에 OSP 피막(이미다졸 구리 착체)이 형성되어, Cu 칼럼(1)의 표면이 산화되는 것을 억제할 수 있다.The Cu column (1) described above may be coated with an organic film containing an imidazole compound. Thereby, the OSP coating (imidazole copper complex) is formed on the surface of the Cu column 1 by bonding the Cu layer on the outermost surface of the Cu column 1 and the imidazole compound, and the surface of the Cu column 1 Oxidation can be suppressed.

다음으로, 본 발명에 관한 Cu 칼럼(1)의 제조 방법의 일례를 설명한다. 재료가 되는 구리선을 준비하고, 준비한 구리선을 다이스를 통과시킴으로써 늘이고, 그 후, 절단기에 의해 소정의 길이로 구리선을 절단한다. 이와 같이 하여, 원기둥 형상으로 이루어지는 소정의 직경 φ 및 소정의 길이(높이 L)의 Cu 칼럼(1)을 제작한다. 또한, Cu 칼럼(1)의 제조 방법은, 본 실시 형태에 한정되는 일 없이, 다른 공지의 방법을 채용해도 된다.Next, an example of a manufacturing method of the Cu column 1 according to the present invention will be described. A copper wire as a material is prepared, and the prepared copper wire is extended by passing it through a die, and then the copper wire is cut to a predetermined length by a cutter. In this manner, a Cu column 1 having a predetermined diameter? And a predetermined length (height L) in a cylindrical shape is manufactured. Further, the manufacturing method of the Cu column 1 is not limited to this embodiment, and other known methods may be employed.

본 실시예에서는, 저산술 평균 조도 및 저비커스 경도의 Cu 칼럼(1)을 얻기 위해, 제작한 Cu 칼럼(1)에 대해 어닐링 처리를 실시한다. 어닐링 처리에서는, 어닐링 가능한 700℃에서 Cu 칼럼(1)을 소정 시간 가열하고, 그 후, 가열한 Cu 칼럼(1)을 긴 시간에 걸쳐 서랭한다. 이에 의해, Cu 칼럼(1)의 재결정을 행할 수 있어, 완만한 결정 성장을 촉진할 수 있다. 한편, Cu 칼럼(1)에 함유되는 불순물 원소가 결정립의 과도한 성장을 억제하므로, Cu 칼럼(1)의 극도의 산술 평균 조도의 저하는 일어나지 않는다.In this embodiment, the Cu column 1 is annealed to obtain a Cu column 1 having a low arithmetic average roughness and a low Vickers hardness. In the annealing process, the Cu column 1 is heated for a predetermined time at an annealing temperature of 700 占 폚, and then the heated Cu column 1 is cooled for a long time. Thereby, recrystallization of the Cu column 1 can be performed, and gentle crystal growth can be promoted. On the other hand, since the impurity element contained in the Cu column 1 suppresses the excessive growth of the crystal grains, the extreme arithmetic average roughness of the Cu column 1 is not lowered.

본 실시 형태에 따르면, Cu 칼럼(1)의 비커스 경도가 20HV 이상 60HV 이하이므로, 내 낙하 충격성을 향상시킬 수 있음과 함께 기판 사이의 적절한 공간을 유지할 수 있다. 또한, Cu 칼럼(1)의 산술 평균 조도가 0.3㎛ 이하이므로, Cu 칼럼(1)을 기판 상에 배열할 때의 유동성을 향상시킬 수 있음과 함께, 실장 시에 있어서의 Cu 칼럼(1)과 전극의 밀착성을 향상시킬 수 있다.According to the present embodiment, since the Vickers hardness of the Cu column 1 is not less than 20 HV and not more than 60 HV, the drop impact resistance can be improved and an appropriate space between the substrates can be maintained. In addition, since the arithmetic mean roughness of the Cu column 1 is 0.3 탆 or less, the flowability when the Cu column 1 is arranged on the substrate can be improved, and the Cu column 1 and the Cu column 1 The adhesion of the electrode can be improved.

실시예Example

이하에 본 발명의 실시예를 설명하지만, 본 발명은 이들에 한정되는 것은 아니다. 이하에 나타내는 실시예에서는, 순도가 상이한 복수의 구리선을 사용하여 복수의 Cu 칼럼을 제작하고, 이들 제작한 각 Cu 칼럼의 비커스 경도, 산술 평균 조도 및 α선량을 측정하였다.Examples of the present invention will be described below, but the present invention is not limited thereto. In the following examples, a plurality of Cu columns were fabricated using a plurality of copper wires having different purity, and Vickers hardness, arithmetic mean roughness, and alpha dose of each Cu column thus prepared were measured.

·Cu 칼럼의 제작· Fabrication of Cu column

순도가 99.9%, 99.99%, 99.995%인 구리선을 준비하였다. 다음으로, 이들 구리선을 다이스를 통과시킴으로써, 상면 및 저면의 직경 φ이 200㎛로 되도록 구리선을 늘이고, 그 후, 200㎛의 길이(높이 L)가 되는 위치에서 구리선을 절단함으로써, 목적으로 하는 Cu 칼럼을 제작하였다.Copper wires having purity of 99.9%, 99.99% and 99.995% were prepared. Next, these copper wires were passed through the dies to extend the copper wire so that the diameter? Of the top and bottom faces became 200 占 퐉, and thereafter, the copper wire was cut at a position where the length became 200 占 퐉 (height L) Column.

·산술 평균 조도· Arithmetic mean illumination

Cu 칼럼의 산술 평균 조도의 평가(화상 평가)는, KEYENCE사 제조의 레이저 현미경(형식 번호 VK-9510/JISB0601-1994 대응)을 사용하여 행하였다. 본 실시예에서는, Cu 칼럼의 상면의 가장 평탄한 부분을 중심으로 하여, 10×10㎛의 범위에서 측정하였다. Cu 칼럼의 z축 상(높이 방향)에 있어서의 측정 피치는 0.01㎛이다. 이러한 조건에서 Cu 칼럼의 산술 평균 조도 Ra로서, 임의의 10개소의 산술 평균 조도 Ra를 측정하고, 그것들의 산술 평균을 실제의 산술 평균 조도로서 사용하였다.Evaluation of the arithmetic mean roughness of the Cu column (image evaluation) was carried out using a laser microscope (corresponding to model number VK-9510 / JISB0601-1994) manufactured by KEYENCE. In this embodiment, the measurement was performed in the range of 10 10 m with the center of the most flat portion of the upper surface of the Cu column as the center. The measurement pitch on the z-axis (height direction) of the Cu column is 0.01 탆. Under these conditions, the arithmetic average roughness Ra of arbitrary 10 points was measured as the arithmetic average roughness Ra of the Cu column, and their arithmetic mean was used as the actual arithmetic average roughness.

또한, 산술 평균 조도 Ra는, Cu 칼럼의 저면이나 주위면을 측정해도 되고, Cu 칼럼의 상면, 저면 및 주위면의 각 측정값을 평균한 값을 측정값으로서 사용해도 된다. 또한, 상기 예에서는, Cu 칼럼의 표면을 평탄화하기 위해 초음파를 이용하였지만, 이것에 한정되는 것은 아니다. 예를 들어, Cu 칼럼의 표면을 가볍게 용해하여 평활화 가공을 촉진하는 용해성 액체에 Cu 칼럼을 침지시킬 수도 있다. 액체로서는, 술폰산계(메탄 술폰산 등)나 카르복실산계(옥살산 등)의 산성 용액을 사용할 수 있다.The arithmetic mean roughness Ra may be measured on the bottom surface or the peripheral surface of the Cu column, or a value obtained by averaging the measured values on the top, bottom and peripheral surfaces of the Cu column may be used as the measured value. In the above example, ultrasonic waves are used to planarize the surface of the Cu column, but the present invention is not limited thereto. For example, the Cu column may be immersed in a soluble liquid which slightly dissolves the surface of the Cu column to promote smoothing processing. As the liquid, an acidic solution of a sulfonic acid series (methanesulfonic acid, etc.) or a carboxylic acid series (oxalic acid, etc.) may be used.

·비커스 경도· Vickers hardness

Cu 칼럼의 비커스 경도는, 「비커스 경도 시험-시험 방법 JIS Z2244」에 준하여 측정하였다. 장치는, 아카시 세이사쿠쇼 제조의 마이크로비커스 경도 시험기, AKASHI 미소 경도계 MVK-F 12001-Q를 사용하였다.The Vickers hardness of the Cu column was measured in accordance with " Vickers Hardness Test-Test Method JIS Z2244 ". The apparatus used was a micro-Vickers hardness tester manufactured by Akashi Seisakusho Co., Ltd. and AKASHI micro-hardness tester MVK-F 12001-Q.

·α선량· Α dose

α선량의 측정 방법은 이하와 같다. α선량의 측정에는 가스 플로우 비례 계수기의 α선 측정 장치를 사용하였다. 측정 샘플은 300㎜×300㎜의 평면 깊이가 얕은 용기에 Cu 칼럼을 용기의 바닥이 보이지 않게 될 때까지 깐 것이다. 이 측정 샘플을 α선 측정 장치 내에 넣고, PR-10 가스 플로우에서 24시간 방치한 후, α선량을 측정하였다.The method of measuring the alpha dose is as follows. The α ray dose was measured by the α ray measuring device of the gas flow proportional counter. The measurement sample is a 300 mm x 300 mm plate with a shallow plane depth until the bottom of the container is no longer visible. The measurement sample was placed in an? -Ray measuring apparatus, left in a PR-10 gas flow for 24 hours, and the? Dose was measured.

또한, 측정에 사용한 PR-10 가스(아르곤 90%-메탄 10%)는, PR-10 가스를 가스 봄베에 충전하고 나서 3주일 이상 경과한 것이다. 3주일 이상 경과한 봄베를 사용한 것은, 가스 봄베에 진입하는 대기 중의 라돈에 의해 α선이 발생하지 않도록, JEDEC(Joint Electron Device Engineering Council)에서 정해진 JEDEC STANDARD-Alpha Radiation Measurement in Electronic Materials JESD221에 따랐기 때문이다.In addition, the PR-10 gas (90% argon-10% methane) used for the measurement was measured for 3 weeks or more after the PR-10 gas was charged into the gas cylinder. The use of a bomb that lasted more than three weeks was due to JEDEC STANDARD-Alpha Radiation Measurement in Electronic Materials JESD221 as set by the Joint Electron Device Engineering Council (JEDEC) to prevent α radiation from generating atmospheric radon entering the gas cylinder to be.

·실시예 1Example 1

순도 99.9%의 구리선을 사용하여 제조한 Cu 칼럼을 카본제 배트에 넣은 후, 이 배트를 연속 컨베이어식 전기 저항 가열로에 반입하여 어닐링 처리를 행하였다. 이때의 어닐링 조건을 도 3에 나타낸다. 또한, 노 내는, Cu 칼럼의 산화를 방지하기 위해 질소 가스 분위기로 하였다. 실온은 25℃로 하였다.A copper column manufactured using a copper wire having a purity of 99.9% was placed in a carbon-made bath, and then the batt was transferred to a continuous conveyor-type electric resistance heating furnace and annealed. The annealing conditions at this time are shown in Fig. In the furnace, a nitrogen gas atmosphere was used to prevent oxidation of the Cu column. The room temperature was set at 25 캜.

어닐링 조건으로서는, 도 3에 나타내는 바와 같이, 실온으로부터 700℃로 가열하는 승온 시간을 60분간으로 하고, 700℃에서 유지하는 유지 시간을 60분간으로 하고, 700℃로부터 실온으로 냉각하는 냉각 시간을 120분간으로 하였다. 노 내의 냉각은, 노 내에 설치한 냉각 팬을 사용하여 행하였다. 다음으로, 어닐링 처리가 실시된 Cu 칼럼을 희황산에 침지시킴으로써 산 처리를 행하였다. 이것은, 어닐링 처리에 의해 Cu 칼럼 표면에 형성된 산화막을 제거하기 위해서이다. 이와 같이 하여 얻어진 Cu 칼럼의 어닐링 처리가 있는 경우와 없는 경우의 비커스 경도, 산술 평균 조도 및 α선량을 하기 표 1에 나타낸다.As the annealing conditions, the heating time for heating from room temperature to 700 占 폚 is 60 minutes, the holding time for holding at 700 占 폚 is 60 minutes, the cooling time for cooling from 700 占 폚 to room temperature is 120 Minute. The cooling in the furnace was performed using a cooling fan provided in the furnace. Next, acid treatment was performed by immersing the Cu column subjected to the annealing treatment in dilute sulfuric acid. This is to remove the oxide film formed on the Cu column surface by the annealing process. Table 1 shows Vickers hardness, arithmetic average roughness and a dose in the case of the thus obtained Cu column with and without annealing treatment.

·실시예 2Example 2

실시예 2에서는, 순도가 99.99%인 구리선에 의해 제작된 Cu 칼럼에 대해 실시예 1과 마찬가지의 방법에 의해, 어닐링 처리를 행함과 함께 산화막 제거 처리를 행하였다. 그리고, 얻어진 Cu 칼럼의 비커스 경도, 산술 평균 조도 및 α선량을 측정하였다. 이들의 측정 결과를 하기 표 1에 나타낸다.In Example 2, the Cu column produced by the copper wire having a purity of 99.99% was subjected to the annealing treatment and the oxide film removal treatment in the same manner as in Example 1. Then, the Vickers hardness, arithmetic mean roughness and alpha dose of the obtained Cu column were measured. The results of these measurements are shown in Table 1 below.

실시예 3에서는, 순도가 99.995%인 구리선에 의해 제작된 Cu 칼럼에 대해 실시예 1과 마찬가지의 방법에 의해, 어닐링 처리를 행함과 함께 산화막 제거 처리를 행하였다. 그리고, 얻어진 Cu 칼럼의 비커스 경도, 산술 평균 조도 및 α선량을 측정하였다. 이들의 측정 결과를 하기 표 1에 나타낸다.In Example 3, the Cu column produced by the copper wire having a purity of 99.995% was subjected to the annealing treatment and the oxide film removal treatment in the same manner as in Example 1. Then, the Vickers hardness, arithmetic mean roughness and alpha dose of the obtained Cu column were measured. The results of these measurements are shown in Table 1 below.

·비교예 1Comparative Example 1

비교예 1에서는, 순도가 99.9%인 구리선에 의해 제작된 Cu 칼럼의 비커스 경도, 산술 평균 조도 및 α선량을 각각 측정하였다. 이들의 측정 결과를 하기 표 1에 나타낸다.In Comparative Example 1, the Vickers hardness, the arithmetic mean roughness and the? Dose of a Cu column made of a copper wire having a purity of 99.9% were respectively measured. The results of these measurements are shown in Table 1 below.

·비교예 2Comparative Example 2

비교예 2에서는, 순도가 99.99%인 구리선에 의해 제작된 Cu 칼럼의 비커스 경도, 산술 평균 조도 및 α선량을 각각 측정하였다. 이들의 측정 결과를 하기 표 1에 나타낸다.In Comparative Example 2, Vickers hardness, arithmetic mean roughness and alpha dose of a Cu column produced by copper wire having a purity of 99.99% were respectively measured. The results of these measurements are shown in Table 1 below.

·비교예 3Comparative Example 3

비교예 3에서는, 순도가 99.995%인 구리선에 의해 제작된 Cu 칼럼의 비커스 경도, 산술 평균 조도 및 α선량을 각각 측정하였다. 이들의 측정 결과를 하기 표 1에 나타낸다.In Comparative Example 3, the Vickers hardness, the arithmetic mean roughness and the? Dose of a Cu column produced by a copper wire having a purity of 99.995% were measured. The results of these measurements are shown in Table 1 below.

·비교예 4Comparative Example 4

비교예 4에서는, 순도가 99.995%를 초과하는 구리선에 의해 제작된 Cu 칼럼의 비커스 경도, 산술 평균 조도 및 α선량을 각각 측정하였다. 이들의 측정 결과를 하기 표 1에 나타낸다.In Comparative Example 4, Vickers hardness, arithmetic mean roughness and alpha dose of a Cu column produced by a copper wire having a purity exceeding 99.995% were respectively measured. The results of these measurements are shown in Table 1 below.

·비교예 5Comparative Example 5

비교예 5에서는, 순도가 99.995%를 초과하는 구리선에 의해 제작된 Cu 칼럼에 대해 실시예 1과 마찬가지의 방법에 의해, 어닐링 처리를 행함과 함께 산화막 제거 처리를 행하였다. 그리고, 얻어진 Cu 칼럼의 비커스 경도, 산술 평균 조도 및 α선량을 측정하였다. 이들의 측정 결과를 하기 표 1에 나타낸다.In Comparative Example 5, the Cu column produced by the copper wire having a purity exceeding 99.995% was subjected to the annealing treatment and the oxide film removing treatment in the same manner as in Example 1. [ Then, the Vickers hardness, arithmetic mean roughness and alpha dose of the obtained Cu column were measured. The results of these measurements are shown in Table 1 below.

Figure pat00001
Figure pat00001

표 1에 나타내는 바와 같이, 실시예 1에서는 Cu 칼럼의 산술 평균 조도가 0.10㎛가 되고, 실시예 2에서는 Cu 칼럼의 산술 평균 조도가 0.17㎛가 되고, 실시예 3에서는 Cu 칼럼의 산술 평균 조도가 0.28㎛가 되어, 모든 실시예에서 산술 평균 조도가 0.3㎛ 이하로 되었다. 또한, 실시예 1에서는 Cu 칼럼의 비커스 경도가 57.1이 되고, 실시예 2에서는 Cu 칼럼의 비커스 경도가 52.9가 되고, 실시예 3에서는 Cu 칼럼의 비커스 경도가 50.2가 되어, 모든 실시예에서 비커스 경도가 20HV 이상 60HV 이하로 되었다. 이들 결과로부터, 제조 시의 Cu 칼럼에 대해 어닐링 처리를 실시함으로써, 저비커스 경도이고 또한 저산술 평균 조도의 양방의 물성을 갖는 Cu 칼럼이 얻어지는 것이 확인되었다.As shown in Table 1, in Example 1, the arithmetic mean roughness of the Cu column was 0.10 m, in Example 2, the arithmetic mean roughness of the Cu column was 0.17 m, and in Example 3, the arithmetic mean roughness 0.28 mu m, and the arithmetic average roughness was 0.3 mu m or less in all Examples. In Example 1, the Vickers hardness of the Cu column was 57.1. In Example 2, the Vickers hardness of the Cu column was 52.9. In Example 3, the Vickers hardness of the Cu column was 50.2, Was 20HV or more and 60HV or less. From these results, it was confirmed that a Cu column having both physical properties of low Vickers hardness and low arithmetic average roughness was obtained by performing an annealing treatment on a Cu column at the time of production.

한편, 어닐링 처리를 Cu 칼럼에 실시하지 않는 비교예 1∼4에서는, Cu 칼럼의 산술 평균 조도에 대해서는 0.3㎛ 이하로 되었지만, 비커스 경도가 60HV 초과로 되어, 비커스 경도가 20HV 이상 60HV 이하에 관한 조건을 만족시키지 않는 것이 확인되었다. 또한, 비교예 5에서는, Cu 칼럼의 비커스 경도는 20HV 이상 60HV 이하의 범위 내로 되었지만, 산술 평균 조도가 0.3㎛ 초과로 되었다. 이에 의해, 제작 시의 Cu 칼럼에 어닐링 처리를 실시한 경우라도 고순도의 Cu 칼럼을 사용한 경우에는, 산술 평균 조도가 0.3㎛ 이하에 관한 조건을 만족시키지 않는 것이 확인되었다.On the other hand, in Comparative Examples 1 to 4 in which the annealing treatment was not performed on the Cu column, the arithmetic average roughness of the Cu column was 0.3 m or less, but the Vickers hardness exceeded 60 HV and the Vickers hardness was 20HV to 60HV Was not satisfied. In Comparative Example 5, the Vickers hardness of the Cu column was within the range of 20HV to 60HV, but the arithmetic average roughness exceeded 0.3μm. As a result, it was confirmed that even when the Cu column at the time of fabrication was subjected to an annealing treatment, when the Cu column of high purity was used, the condition regarding the arithmetic mean roughness of 0.3 탆 or less was not satisfied.

또한, 실시예 1∼3의 Cu 칼럼에서는, Cu 칼럼의 α선량이 0.0010cph/㎠ 이하 미만으로 되어, 이것은 <0.0200cph/㎠를 만족시키고, 더욱이 <0.0010cph/㎠를 만족시키는 결과인 것이 확인되었다.Further, in the Cu column of Examples 1 to 3, the? Dose of the Cu column was less than 0.0010 cph / cm 2, and it was confirmed that this satisfies <0.0200 cph / cm 2 and further satisfies <0.0010 cph / .

다음으로, 상술한 실시예 1의 어닐링 처리 후의 Cu 칼럼의 표면에 Sn-3Ag-0.5Cu 합금으로 이루어지는 땜납 도금층을 피복하여 Cu 핵 칼럼을 제작하고, 이 Cu 핵 칼럼과 Cu 핵 칼럼 제조 시에 사용한 도금액을 그대로 300cc의 비커에 채취하여 초음파기에 걸어 초음파를 60분간 조사하였다. 초음파기는 시판되고 있는 초음파 세정기(애즈원사 제조 US-CLEANER)를 사용하여, 출력 80W, 40㎑의 주파수에서 행하였다. 60분 경과 후 이온 교환수로 세정하고, 그 후 온풍 건조시켜, 제작한 Cu 핵 칼럼의 산술 평균 조도 및 α선량을 각각 측정하였다. 실시예 1∼3과 마찬가지로, Cu 핵 칼럼의 산술 평균 조도가 0.3㎛ 이하로 되었다. 또한, 실시예 1의 Cu 칼럼의 표면에 Ni 도금층을 피복한 Cu 핵 칼럼이나, 실시예 1의 Cu 칼럼의 표면에 Ni 도금층 및 땜납 도금층을 차례로 피복한 Cu 핵 칼럼에 대해서도, 상기한 바와 동일한 조건에서 초음파 처리를 행하여, 산술 평균 조도 및 α선량을 각각 측정한바, 실시예 1∼3과 마찬가지로, Cu 핵 칼럼의 산술 평균 조도가 0.3㎛ 이하로 되었다. 또한, 모든 경우에, α선량이 0.0010cph/㎠ 미만으로 되어, 이것은 <0.0200cph/㎠를 만족시키고, 더욱이 <0.0010cph/㎠를 만족시키는 결과인 것이 확인되었다.Next, a Cu nuclear column was fabricated by covering the surface of the Cu column after the annealing treatment of Example 1 described above with a solder plating layer made of a Sn-3Ag-0.5Cu alloy. The Cu nuclear column was used in the production of a Cu nuclear column The plating solution was directly sampled in a 300cc beaker, and ultrasonic waves were applied to the ultrasonic wave for 60 minutes. The ultrasonic wave was output at a frequency of 80 W at 40 kHz using a commercially available ultrasonic cleaner (US-CLEANER manufactured by Asuwa). After 60 minutes, the cells were washed with ion-exchanged water and then subjected to hot-air drying. The arithmetic average roughness and alpha dose of the produced Cu nuclear column were measured. As in Examples 1 to 3, the arithmetic average roughness of the Cu nuclear column was 0.3 탆 or less. The Cu nuclear column in which the Ni plating layer was coated on the surface of the Cu column of Example 1 or the Cu nuclear column in which the Ni plating layer and the solder plating layer were sequentially coated on the surface of the Cu column of Example 1 were subjected to the same conditions The arithmetic average roughness and the? Dose were respectively measured, and the arithmetic average roughness of the Cu nuclear column was 0.3 占 퐉 or less as in Examples 1 to 3. In all cases, the? Dose was less than 0.0010 cph / cm 2, which was found to satisfy <0.0200 cph / cm 2, and further satisfied <0.0010 cph / cm 2.

또한, 상기 Ni 도금층 대신에, Fe 도금층, Co 도금층을 피복한 경우라도, Ni 도금층을 피복한 Cu 핵 칼럼과 마찬가지로, 산술 평균 조도가 0.3㎛ 이하로 되었다. 또한, α선량도 0.0010cph/㎠ 미만으로 되어, 이것은 <0.0200cph/㎠를 만족시키고, 더욱이 <0.0010cph/㎠를 만족시키는 결과인 것이 확인되었다.Even in the case of covering the Fe plating layer and the Co plating layer in place of the Ni plating layer, the arithmetic mean roughness became 0.3 탆 or less similarly to the Cu nuclear column covered with the Ni plating layer. Also, the alpha dose was less than 0.0010 cph / cm < 2 &gt;, which confirmed that this satisfied the <0.0200 cph / cm &lt; 2 &gt;

다음으로, 상술한 실시예 1의 어닐링 처리 후의 Cu 칼럼의 표면에 플럭스를 피복하여 플럭스 코트 Cu 칼럼을 제작하고, 제작한 플럭스 코트 Cu 칼럼의 산술 평균 조도 및 α선량을 각각 측정하였다. 실시예 1∼3과 마찬가지로, 플럭스 코트 Cu 칼럼에서는, 산술 평균 조도가 0.3㎛ 이하로 되었다. 또한, 플럭스 코트 Cu 칼럼에 있어서도, α선량이 0.0010cph/㎠ 미만으로 되어, 이것은 <0.0200cph/㎠를 만족시키고, 더욱이 <0.0010cph/㎠를 만족시키는 결과인 것이 확인되었다.Next, the surface of the Cu column after the annealing treatment in Example 1 described above was coated with a flux to prepare a flux-coated Cu column, and the arithmetic average roughness and the? Dose of the flux-coated Cu column were measured. Similarly to Examples 1 to 3, in the flux-coated Cu column, the arithmetic average roughness was 0.3 탆 or less. Also, in the flux-coated Cu column, the? Dose was less than 0.0010 cph / cm 2, which was found to satisfy <0.0200 cph / cm 2, and further satisfied <0.0010 cph / cm 2.

또한, 상술한 Cu 핵 칼럼의 표면에 플럭스를 피복한 플럭스 코트 Cu 핵 칼럼에 대해서도, 플럭스 코트 Cu 칼럼과 마찬가지로, 산술 평균 조도가 0.3㎛ 이하로 되었다. 또한, 플럭스 코트 Cu 핵 칼럼에 있어서도, α선량이 0.0010cph/㎠ 미만으로 되어, 이것은 <0.0200cph/㎠를 만족시키고, 더욱이 <0.0010cph/㎠를 만족시키는 결과인 것이 확인되었다.The arithmetic mean roughness of the flux-coated Cu nuclear column in which the flux was coated on the surface of the Cu nuclear column described above was 0.3 탆 or less similarly to the flux-coated Cu column. Also in the flux-coated Cu nuclear column, the? Dose was less than 0.0010 cph / cm 2, which was found to satisfy <0.0200 cph / cm 2 and further satisfied <0.0010 cph / cm 2.

별도로, 실시예 1의 어닐링 처리 후의 Cu 칼럼의 표면에 이미다졸 화합물을 함유하는 유기 피막을 피복하여 OSP 처리 Cu 칼럼을 제작하고, 제작한 OSP 처리 Cu 칼럼의 산술 평균 조도 및 α선량을 각각 측정하였다. 실시예 1∼3과 마찬가지로, OSP 처리 Cu 칼럼에서는, 산술 평균 조도가 0.3㎛ 이하로 되고, α선량이 0.0010cph/㎠ 이하로 되는 것이 확인되었다.Separately, an OSP-treated Cu column was prepared by coating an organic film containing an imidazole compound on the surface of the Cu column after the annealing treatment in Example 1, and the arithmetic average roughness and? Dose of the OSP-treated Cu column were measured respectively . In the same manner as in Examples 1 to 3, it was confirmed that in the OSP-treated Cu column, the arithmetic mean roughness was 0.3 탆 or less, and the? Dose was 0.0010 cph / cm 2 or less.

또한, 본 발명의 칼럼은 실시예와 비교예에 있어서, 원기둥상인 것을 언급하였지만, 형상이 원기둥에 한정되는 것은 아니며, 삼각기둥이나 사각기둥 등, 기판에 직접 접하는 상하면이 3변 이상으로 구성되어 있는 기둥체이면 본 발명의 효과를 얻을 수 있다.In addition, the column of the present invention is not limited to a cylindrical shape but may be a triangular column or a quadrangular column, and the upper and lower surfaces directly contacting the substrate may have three or more sides The effect of the present invention can be obtained.

Claims (16)

순도가 99.9% 이상 99.995% 이하이고,
산술 평균 조도가 0.3㎛ 이하이고,
비커스 경도가 20HV 이상 60HV 이하인, Cu 칼럼.
The purity is not less than 99.9% and not more than 99.995%
The arithmetic average roughness is 0.3 mu m or less,
A Cu column having a Vickers hardness of 20 HV or more and 60 HV or less.
제1항에 있어서,
α선량이 0.0200cph/㎠ 이하인, Cu 칼럼.
The method according to claim 1,
and a dose of 0.0200 cph / cm &lt; 2 &gt; or less.
제1항 또는 제2항에 있어서,
상면 및 저면의 직경이 1∼1000㎛이고, 높이가 1∼3000㎛인 기둥체로 이루어지는, Cu 칼럼.
3. The method according to claim 1 or 2,
Wherein the upper and lower surfaces have a diameter of 1 to 1000 占 퐉 and a height of 1 to 3000 占 퐉.
제1항 또는 제2항에 있어서,
플럭스층이 피복되어 있는, Cu 칼럼.
3. The method according to claim 1 or 2,
A Cu column in which a flux layer is coated.
제1항 또는 제2항에 있어서,
이미다졸 화합물을 함유하는 유기 피막이 피복되어 있는, Cu 칼럼.
3. The method according to claim 1 or 2,
A Cu column coated with an organic coating containing an imidazole compound.
제1항 또는 제2항에 기재된 Cu 칼럼과,
상기 Cu 칼럼을 피복하는 땜납층을 구비하는, Cu 핵 칼럼.
A Cu column according to any one of claims 1 to 3,
And a solder layer covering the Cu column.
제1항 또는 제2항에 기재된 Cu 칼럼과,
상기 Cu 칼럼을 피복하는 Ni, Fe 및 Co로부터 선택되는 1원소 이상으로 이루어지는 도금층을 구비하는, Cu 핵 칼럼.
A Cu column according to any one of claims 1 to 3,
And a plating layer composed of one or more elements selected from Ni, Fe and Co covering the Cu column.
제7항에 있어서,
상기 도금층을 피복하는 땜납층을 더 구비하는, Cu 핵 칼럼.
8. The method of claim 7,
And a solder layer covering the plating layer.
제6항에 있어서,
α선량이 0.0200cph/㎠ 이하인, Cu 핵 칼럼.
The method according to claim 6,
and a dose of 0.0200 cph / cm &lt; 2 &gt; or less.
제7항에 있어서,
α선량이 0.0200cph/㎠ 이하인, Cu 핵 칼럼.
8. The method of claim 7,
and a dose of 0.0200 cph / cm &lt; 2 &gt; or less.
제8항에 있어서,
α선량이 0.0200cph/㎠ 이하인, Cu 핵 칼럼.
9. The method of claim 8,
and a dose of 0.0200 cph / cm &lt; 2 &gt; or less.
제6항에 있어서,
플럭스층이 피복되어 있는, Cu 핵 칼럼.
The method according to claim 6,
A Cu nuclear column in which a flux layer is coated.
제1항 또는 제2항에 기재된 Cu 칼럼을 사용한, 납땜 조인트.A soldering joint using the Cu column according to any one of claims 1 to 3. 제1항 또는 제2항에 기재된 Cu 칼럼을 사용한, 실리콘 관통 전극.A silicon penetrating electrode using the Cu column according to any one of claims 1 to 3. 제6항에 기재된 Cu 핵 칼럼을 사용한, 납땜 조인트.A solder joint using the Cu nuclear column according to claim 6. 제6항에 기재된 Cu 핵 칼럼을 사용한, 실리콘 관통 전극.A silicon penetrating electrode using the Cu nuclear column according to claim 6.
KR1020187004667A 2014-09-09 2014-09-09 Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA KR102315758B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/073808 WO2016038686A1 (en) 2014-09-09 2014-09-09 Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA
KR1020177009272A KR20170042372A (en) 2014-09-09 2014-09-09 Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020177009272A Division KR20170042372A (en) 2014-09-09 2014-09-09 Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA

Publications (2)

Publication Number Publication Date
KR20180021222A true KR20180021222A (en) 2018-02-28
KR102315758B1 KR102315758B1 (en) 2021-10-20

Family

ID=53486901

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187004667A KR102315758B1 (en) 2014-09-09 2014-09-09 Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA
KR1020177009272A KR20170042372A (en) 2014-09-09 2014-09-09 Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020177009272A KR20170042372A (en) 2014-09-09 2014-09-09 Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA

Country Status (8)

Country Link
US (1) US10811376B2 (en)
EP (1) EP3193360B1 (en)
JP (1) JP5733486B1 (en)
KR (2) KR102315758B1 (en)
CN (1) CN106688085B (en)
PT (1) PT3193360T (en)
TW (1) TWI566650B (en)
WO (1) WO2016038686A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579478B1 (en) * 2022-09-06 2023-09-21 덕산하이메탈(주) Metal pin for conductive connection
KR102579479B1 (en) * 2022-09-06 2023-09-21 덕산하이메탈(주) Connecting Pin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350720B2 (en) * 2017-05-25 2018-07-04 千住金属工業株式会社 Mounting method of metal nucleus column
CN110600461B (en) * 2019-08-30 2022-04-22 荣耀终端有限公司 Packaging structure and electronic equipment
KR102485393B1 (en) * 2022-09-30 2023-01-09 씨피에스 주식회사 Apparatus for manufacturing pillar using alloy wire and pillar made by the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS444063B1 (en) 1965-06-28 1966-02-19
JPH0766209A (en) 1993-08-23 1995-03-10 Furukawa Electric Co Ltd:The Bump, manufacture thereof, and method of mounting optical device
JP2000232119A (en) 1999-02-10 2000-08-22 Shinko Electric Ind Co Ltd Connecting member for semiconductor chip, its manufacture and connecting method for semiconductor chip using the same
JP2000260933A (en) * 1999-03-05 2000-09-22 Seiko Epson Corp Manufacture for semiconductor device
JP3344295B2 (en) 1997-09-25 2002-11-11 イビデン株式会社 Solder members and printed wiring boards
JP2003249598A (en) * 2002-02-26 2003-09-05 Kyocera Corp Package for storing semiconductor element, and semiconductor device
JP2009001474A (en) 2007-06-25 2009-01-08 Dowa Holdings Co Ltd Copper oxide powder
JP2011176124A (en) 2010-02-24 2011-09-08 Senju Metal Ind Co Ltd Copper column and method of manufacturing the same
JP5585751B1 (en) * 2014-02-04 2014-09-10 千住金属工業株式会社 Cu ball, Cu core ball, solder joint, solder paste, and foam solder
JP5590259B1 (en) * 2014-01-28 2014-09-17 千住金属工業株式会社 Cu core ball, solder paste and solder joint

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705205A (en) * 1983-06-30 1987-11-10 Raychem Corporation Chip carrier mounting device
US5591941A (en) * 1993-10-28 1997-01-07 International Business Machines Corporation Solder ball interconnected assembly
DE602004029915D1 (en) * 2003-08-26 2010-12-16 Tokuyama Corp SUBSTRATE FOR COMPONENT BONDING, COMPONENT BONDED SUBSTRATE AND MANUFACTURING METHOD THEREFOR
US7036710B1 (en) * 2004-12-28 2006-05-02 International Business Machines Corporation Method and structures for implementing impedance-controlled coupled noise suppressor for differential interface solder column array
JP2007115857A (en) * 2005-10-20 2007-05-10 Nippon Steel Chem Co Ltd Micro ball
JP4404063B2 (en) 2006-03-24 2010-01-27 株式会社村田製作所 Connection structure, formation method thereof, circuit board, and electronic component surface-mounted on mounting board
US20080164300A1 (en) * 2007-01-08 2008-07-10 Endicott Interconnect Technologies, Inc. Method of making circuitized substrate with solder balls having roughened surfaces, method of making electrical assembly including said circuitized substrate, and method of making multiple circuitized substrate assembly
JP5633776B2 (en) * 2010-03-30 2014-12-03 日立金属株式会社 Manufacturing method of composite ball for electronic parts
CN102148215B (en) * 2011-01-21 2012-06-06 哈尔滨理工大学 Interconnection structure for improving reliability of soldering spot of soft soldering of CCGA (Ceramic Column Grid Array) device and implementation method
CN103415633B (en) * 2011-03-07 2015-09-09 吉坤日矿日石金属株式会社 The manufacture method of copper or copper alloy, bonding wire, the manufacture method of copper, the manufacture method of copper alloy and bonding wire
JP6076020B2 (en) * 2012-02-29 2017-02-08 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2014024082A (en) * 2012-07-26 2014-02-06 Sumitomo Metal Mining Co Ltd Solder alloy
KR20150090254A (en) * 2012-12-06 2015-08-05 센주긴조쿠고교 가부시키가이샤 Cu BALL
WO2015114770A1 (en) * 2014-01-30 2015-08-06 千住金属工業株式会社 OSP TREATED Cu BALL, SOLDER JOINT, FOAM SOLDER, AND SOLDER PASTE
JP5534122B1 (en) 2014-02-04 2014-06-25 千住金属工業株式会社 Core ball, solder paste, foam solder, flux coated core ball and solder joint
JP6761690B2 (en) 2016-07-28 2020-09-30 アスリートFa株式会社 Column member mounting device, column member mounting method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS444063B1 (en) 1965-06-28 1966-02-19
JPH0766209A (en) 1993-08-23 1995-03-10 Furukawa Electric Co Ltd:The Bump, manufacture thereof, and method of mounting optical device
JP3344295B2 (en) 1997-09-25 2002-11-11 イビデン株式会社 Solder members and printed wiring boards
JP2000232119A (en) 1999-02-10 2000-08-22 Shinko Electric Ind Co Ltd Connecting member for semiconductor chip, its manufacture and connecting method for semiconductor chip using the same
JP2000260933A (en) * 1999-03-05 2000-09-22 Seiko Epson Corp Manufacture for semiconductor device
JP2003249598A (en) * 2002-02-26 2003-09-05 Kyocera Corp Package for storing semiconductor element, and semiconductor device
JP2009001474A (en) 2007-06-25 2009-01-08 Dowa Holdings Co Ltd Copper oxide powder
JP2011176124A (en) 2010-02-24 2011-09-08 Senju Metal Ind Co Ltd Copper column and method of manufacturing the same
JP5590259B1 (en) * 2014-01-28 2014-09-17 千住金属工業株式会社 Cu core ball, solder paste and solder joint
JP5585751B1 (en) * 2014-02-04 2014-09-10 千住金属工業株式会社 Cu ball, Cu core ball, solder joint, solder paste, and foam solder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579478B1 (en) * 2022-09-06 2023-09-21 덕산하이메탈(주) Metal pin for conductive connection
KR102579479B1 (en) * 2022-09-06 2023-09-21 덕산하이메탈(주) Connecting Pin

Also Published As

Publication number Publication date
PT3193360T (en) 2020-08-25
TWI566650B (en) 2017-01-11
CN106688085A (en) 2017-05-17
JPWO2016038686A1 (en) 2017-04-27
CN106688085B (en) 2019-06-18
WO2016038686A1 (en) 2016-03-17
US20170287862A1 (en) 2017-10-05
KR20170042372A (en) 2017-04-18
EP3193360B1 (en) 2020-07-01
JP5733486B1 (en) 2015-06-10
EP3193360A4 (en) 2018-04-04
TW201630485A (en) 2016-08-16
KR102315758B1 (en) 2021-10-20
US10811376B2 (en) 2020-10-20
EP3193360A1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
KR20180021222A (en) Cu COLUMN, Cu NUCLEAR COLUMN, SOLDER JOINT, AND THROUGH-SILICON VIA
US20090232696A1 (en) Lead-free solder alloy
JP2009054790A (en) Semiconductor device
US8642461B2 (en) Side wettable plating for semiconductor chip package
JP5422826B2 (en) Lead-free solder connection structure and solder ball
KR20170077287A (en) Cu BALL, Cu CORE BALL, SOLDER JOINT, SOLDER PASTE, SOLDER FOAM AND METHOD FOR PRODUCING Cu BALL AND Cu CORE BALL
JPH11274380A (en) Module assembly and interconnecting structure and process for reworking
KR20150081223A (en) Stud bump and package structure thereof and method of manufacturing the same
US20060043603A1 (en) Low temperature PB-free processing for semiconductor devices
JP2002124533A (en) Electrode material, semiconductor device and mounting device
CA2644460A1 (en) Method and process of manufacturing robust high temperature solder joints
US7029542B2 (en) Lead-free solder alloy
JP5202233B2 (en) Mounting structure
JP2003290974A (en) Joining structure of electronic circuit device and electronic parts used for the same
TWI540015B (en) Lead free solder ball
US20170162555A1 (en) Solder composition and semiconductor package including the same
JP6455091B2 (en) Electronic device and method of manufacturing electronic device
JP2002076605A (en) Semiconductor module and circuit board for connecting semiconductor device
US20230114872A1 (en) Electronic device with wettable flank lead
JP6408282B2 (en) Solder balls and electronic components
JP3852377B2 (en) Lead-free solder alloy
Liu et al. Thermo-mechanical reliability analysis of package-on-package assembly
JP2003060336A (en) Method for mounting semiconductor device and semiconductor package

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant