KR20170131730A - Noble Compound Exhibiting Thermally Activated Delayed Fluorescence and Organic Light-Emitting device Using the Same - Google Patents

Noble Compound Exhibiting Thermally Activated Delayed Fluorescence and Organic Light-Emitting device Using the Same Download PDF

Info

Publication number
KR20170131730A
KR20170131730A KR1020160061249A KR20160061249A KR20170131730A KR 20170131730 A KR20170131730 A KR 20170131730A KR 1020160061249 A KR1020160061249 A KR 1020160061249A KR 20160061249 A KR20160061249 A KR 20160061249A KR 20170131730 A KR20170131730 A KR 20170131730A
Authority
KR
South Korea
Prior art keywords
thioxanthene
dimethyl
dioxide
organic light
group
Prior art date
Application number
KR1020160061249A
Other languages
Korean (ko)
Inventor
권종호
박영원
전재훈
전병만
Original Assignee
(주)아이티켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아이티켐 filed Critical (주)아이티켐
Priority to KR1020160061249A priority Critical patent/KR20170131730A/en
Publication of KR20170131730A publication Critical patent/KR20170131730A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0072
    • H01L51/0074
    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a novel compound which due to having little difference between a singlet energy state and a triplet energy state, exhibits a thermally activated delayed fluorescence by reverse intersystem crossing when heat is applied, that generates the singlet energy state from the triplet energy state; and to an organic light-emitting device which applies the same to a dopant of an organic light-emitting layer. Specifically, the present invention relates to a compound represented by chemical formula 1; and to an organic light-emitting device which applies the same to a dopant of an organic light-emitting layer, wherein in the chemical formula 1, R_1 and R_2 may be identical or different from each other, and are a pyridoindole group, a phenyl group, a carbazole group, a 9,9-dimethyl-9,10-dihydroacridine group, a 10H-phenothiazine group, or 10H-phenoxazine group, and R_3 is a methyl or phenyl group.

Description

지연형광을 나타내는 새로운 화합물 및 이를 사용한 유기발광소자{Noble Compound Exhibiting Thermally Activated Delayed Fluorescence and Organic Light-Emitting device Using the Same}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a novel compound exhibiting delayed fluorescence and an organic light-

본 발명은 단일항 에너지 준위와 삼중항 에너지 준위 차이가 적어 열 에너지가 가해질 경우 삼중항 에너지 준위로부터 단일항 에너지 준위로 역 계간전이가 발생하는 열 활성화 지연형광을 나타내는 신규한 화합물과, 이를 유기발광층의 도펀트에 적용한 유기발광소자에 관한 것이다.
The present invention relates to a novel compound exhibiting a thermally-activated delayed fluorescence in which a transition from a triplet energy level to a single-energy level takes place when thermal energy is applied due to a difference between a single-term energy level and a triplet energy level, To an organic light emitting diode.

최근 표시장치는 휴대용 전자통신장비의 발전과 대면적화로 인하여 전력효율이 높고 공간점유가 적은 평면표시소자의 비중이 점차 증가하고 있다. LCD(liquid crystal display)는 현재 가장 많이 쓰이고 있는 방식으로, 액정에 전압을 가해 백라이트로부터의 빛을 컬러필터로 통과시켜 삼원색을 얻음으로써 화면을 표시하게 된다. 이에 반해, 유기발광소자(OLED, Organic Light Emitting Diodes)는 자체발광 소자로써 시야각 및 대조비 등이 우수하고, 경량 및 박형이 가능하며 휘는 성질의 기판에도 사용할 수 있어, 투명, 플렉서블 디스플레이를 구현할 수 있어 차세대 표시소자로서 주목받고 있다. 또한 유기발광소자를 이용한 조명기기가 출시되는 등 활용범위가 점차 넓어지면서 많은 연구가 진행되고 있다. Recently, the proportion of flat display devices with high power efficiency and small space occupancy is gradually increasing due to the development and size of portable electronic communication equipment. Liquid crystal displays (LCDs) are the most popular method currently used, in which the liquid crystal is energized to pass the light from the backlight through a color filter to obtain a three-color display. On the other hand, organic light emitting diodes (OLEDs) are self-luminous elements having excellent viewing angles and contrast ratios, are lightweight and thin, can be used for boards having bending properties, and can realize transparent and flexible displays Has attracted attention as a next generation display device. Further, as the application range of organic EL devices has been expanded, many researches have been made.

유기발광소자는 양극과 음극 사이에 유기발광화합물을 함유하는 유기발광층을 적층한 구조를 갖는다. 유기발광소자에 전압을 가하면 양극으로부터는 정공이, 음극으로부터는 전자가 각각 유기발광층에 주입되며, 유기발광층에 도달한 정공과 전자가 재결합되어 유기발광화합물의 여기자를 생성시킨다. 여기자는 기저상태로 되돌아올 때에 발광이 일어나며 유기발광소자는 이때 방사되는 광을 이용하는 소자이다. The organic light emitting device has a structure in which an organic light emitting layer containing an organic light emitting compound is laminated between an anode and a cathode. When a voltage is applied to the organic light emitting device, holes are injected from the anode and electrons from the cathode are injected into the organic light emitting layer, respectively. The holes and electrons reaching the organic light emitting layer recombine to form excitons of the organic light emitting compound. The excitons emit light when returned to the ground state, and the organic light emitting element is an element using light emitted at this time.

유기발광층은 호스트물질과 발광특성을 나타내는 도펀트 물질로 크게 나눌 수 있고, 발광 기작에 따라 형광물질과 인광물질로 구별된다. 화합물 내 전자의 여기 상태는 일중항 대 삼중항의 비율이 1:3으로 삼중항 상태가 3배 정도 더 생성된다. 따라서, 형광물질은 유기발광층에서 형성되는 여기자 중 25%가량의 단일항만이 빛을 만드는 반면 75%가량의 삼중항은 열로 소실되어 형광의 내부양자효율은 25%가 최대 한계치가 된다. 실제 형광형의 유기발광소자는 장기 수명화 기술이 진전되어 휴대전화나 텔레비전 등에 사용되고 있지만 실제 발광효율은 10% 이하에 불과하다. The organic luminescent layer can be roughly classified into a host material and a dopant material exhibiting luminescent characteristics, and is distinguished from a fluorescent material and a phosphorescent material according to a luminescent mechanism. The excited state of the electrons in the compound is 1: 3 ratio of singlet to triplet, and triplet state is generated about 3 times more. Therefore, in a fluorescent material, only about 25% of the excitons formed in the organic light emitting layer emit light, whereas 75% of the triplet is lost to heat, so that the internal quantum efficiency of fluorescence becomes 25% of the maximum limit. Practical fluorescence type organic light emitting devices have been developed for long life, and are used for cellular phones and televisions, but the actual luminous efficiency is only 10% or less.

반면 인광은 삼중항 여기자에 의한 발광을 하기 때문에 인광의 최대 내부양자효율은 75%로 형광에 비해 발광 효율이 높다. 게다가 일중항 상태에서 삼중항 상태로 계간전이가 효율적으로 일어날 경우 내부양자효율의 이론적 한계치는 이론적으로 100%에 달할 수 있다. 그러나 적색 인광물질은 실용화에 도달하고 있지만, 청색 및 녹색 인광물질은 상용화되고 있는 적색 및 녹색 인광물질 및 청색 형광물질에 비해 수명이 짧고 색순도나 발광효율도 충분하지 않아 상용화가 지연되고 있다.On the other hand, since phosphorescence emits light by triplet exciton, the maximum internal quantum efficiency of phosphorescence is 75%, which is higher than that of fluorescence. Moreover, if the inter-phase transition from singlet state to triplet state occurs efficiently, the theoretical limit of internal quantum efficiency can reach theoretically 100%. However, although the red phosphorescent material has been put to practical use, the blue phosphorescent material and the blue phosphorescent material are shorter in life time than the commercially available red and green phosphorescent materials and blue fluorescent material, and their commercialization is delayed due to insufficient color purity and luminous efficiency.

이에 수명이 낮은 청색 인광 물질에 대한 대안으로 열활성화 지연형광(TADF, Thermally Activated Delayed Fluorescence) 발광에 관한 연구가 활발하게 진행되고 있다. 이는 일중항 에너지 준위와 삼중항 에너지 준위간의 차이(ΔST)가 작아 열에너지에 의해 삼중항 상태로부터 일중항 상태로 계간전이가 일어나는 현상을 이용한 것이다. TADF를 나타내는 물질(TADF성 물질)을 이용하면 형광성 발광물질에서도 이론적으로 내부양자효율을 100%까지 올리는 것이 가능하게 된다.As an alternative to blue phosphors with low lifespan, studies on the emission of thermally activated delayed fluorescence (TADF) have been actively conducted. This is due to the fact that the difference between the singlet energy level and the triplet energy level (ΔST) is small and the inter-phase transition from triplet state to singlet state occurs due to thermal energy. The use of a substance showing TADF (TADF substance) makes it possible to raise the internal quantum efficiency to 100% theoretically even in a fluorescent light emitting material.

국제공개공보 제2010-134350호에서는 TADF성 물질로서 플루오란텐 유도체를 도펀트로 한 유기발광소자를 개시하였으나, 상기 소자는 0.01mA/cm2과 같은 저 전류에서 최대발광 효율을 나타내지만, 1~10 mA/cm2정도의 실용적인 고 전류에서는 롤 오프현상이 발생하여 발광효율이 저하되는 문제가 있다. 따라서 TADF성 물질에 의한 지연형광을 이용하기 위해서는 고 전류에서 발광효율을 높일 수 있는 새로운 물질의 개발이 필요하다.International Publication WO-A-2010-134350 discloses an organic light emitting device using a fluoranthene derivative as a dopant as a TADF material. However, the device exhibits a maximum light emitting efficiency at a low current such as 0.01 mA / cm 2 , There is a problem that the roll-off phenomenon occurs at a practical high current of about 10 mA / cm < 2 > to lower the luminous efficiency. Therefore, in order to utilize the delayed fluorescent light by the TADF material, it is necessary to develop a new material capable of increasing the luminous efficiency at a high current.

공개특허 제10-2015-0016242호에서는 고리화되지 않은 벤젠설폰 화합물이 유기발광소자의 발광재료로서 유용함을 발표한 바 있으나, 이들 화합물들은 외부 발광효율이 19.5%로 우수하지만 전류효율이 좋지 않은 단점이 있다. 고리화된 벤젠 설폰 골격을 갖는 화합물의 유기발광소자의 발광재료로서의 용도에 대해서는 아주 일부의 화합물에 유용성이 확인되고 있을 뿐 아직 체계적인 연구가 이루어져 있지 않다.
In Japanese Patent Application Laid-Open No. 10-2015-0016242, it has been reported that non-cyclized benzene sulfone compounds are useful as a light emitting material for organic light emitting devices. However, these compounds have excellent external light emitting efficiency of 19.5% . As to the use of a compound having a cyclized benzenesulfone skeleton as a light emitting material of an organic light emitting device, the utility of a compound having a cyclized benzenesulfone skeleton has been confirmed for a very small number of compounds, and systematic research has not yet been conducted.

국제공개공보 제2010-134350호International Publication No. 2010-134350 공개특허 제10-2015-0016242호Published Japanese Patent Application No. 10-2015-0016242

본 발명은 열안정성이 우수하고, 일중항 에너지 준위와 삼중항 에너지 준위의 차이가 적어 열활성화 지연형광을 나타나는 신규한 유기발광화합물을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a novel organic luminescent compound which is excellent in thermal stability and exhibits thermal activation delay fluorescence due to a small difference between singlet energy level and triplet energy level.

또한 본 발명은 상기 신규 화합물을 이용하여 고 전류에서도 롤 오프현상이 발생하지 않고 발광효율이 우수한 유기발광소자를 제공하는 것을 또 다른 목적으로 한다.
Another object of the present invention is to provide an organic light emitting device having a high luminous efficiency without causing a roll-off phenomenon even at a high current using the novel compound.

전술한 목적을 달성하기 위한 본 발명은 하기 화학식 1로 표시되는 것을 특징으로 하는 화합물에 관한 것이다.In order to accomplish the above object, the present invention relates to a compound represented by the following general formula (1).

Figure pat00001
[화학식 1]
Figure pat00001
[Chemical Formula 1]

여기서, R1과 R2는 서로 동일하거나, 다를 수 있으며 피리도인돌기, 페닐기, 카르바졸기, 9,9-디메틸-9,10-디히드로아크리딘기, 10H-페네티아진기 또는 10H-페녹사진기이고, R3는 메틸 또는 페닐기이다.Here, R 1 and R 2 may be the same or different from each other, and may be a pyridone ring, a phenyl group, a carbazole group, a 9,9-dimethyl-9,10-dihydraacridine group, a 10H- And R < 3 > is methyl or phenyl group.

추가로, 상기 R1과 R2의 피리도인돌기, 페닐기 또는 카르바졸기는 알킬기, 카르바졸기, 페닐기 또는 디페닐아미노기의 전자공여기를 치환기로 가질 수 있다. In addition, the pyridoyl group, the phenyl group, or the carbazole group of R 1 and R 2 may have an electron-exciting group of an alkyl group, a carbazole group, a phenyl group or a diphenyl amino group as a substituent.

종래 여기자 생성효율이 높은 인광재료들은 고가의 이리듐 착화합물을 사용하여야 하므로 화합물들의 생산단가가 높은 것에 반하여, 상기 화합물들은 고가의 촉매를 사용하지 않고 제조가 가능하므로 경제성이 크게 향상되었다. 또한 상기 화합물들은 안정한 환형구조에 의해 열에 대한 안정성을 나타내었으며, 일중항 에너지 준위와 삼중항 에너지 준위의 차이가 적어 역계간 전이에 의한 열활성화 지연형광을 나타내어 발광효율이 우수함을 발견하였다. 이러한 성질은 본 발명의 화합물들이 유기발광소자의 발광재료로 적합한 특성을 갖는 것을 나타낸다.Conventional phosphorescent materials having a high exciton generation efficiency require expensive iridium complex compounds, so that the compounds can be produced without using expensive catalysts, and thus the economical efficiency is greatly improved. Further, the compounds showed stability to heat due to the stable cyclic structure, and they showed that the luminescence efficiency was excellent due to the retardation fluorescence due to thermal activation due to the inverse phase transition due to the small difference between the singlet energy level and the triplet energy level. These properties indicate that the compounds of the present invention have properties suitable as light emitting materials for organic light emitting devices.

이에 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재된 유기발광층을 포함하는 유기발광소자에 있어서, 본 발명의 화합물을 유기발광재료로서 상기 유기발광층에 포함하는 유기발광소자를 제공한다. 특히 상기 유기발광층은 인광물질을 호스트로서 추가로 포함하며, 본 발명의 화합물은 도판트로서 사용하는 것이 바람직하다. 상기 인광발광물질의 여기 일중항 에너지와 여기 삼중항 에너지 중 적어도 하나는 상기 도판트의 여기 일중항 에너지보다 높은 값을 갖는 것이 바람직하다.Accordingly, the present invention provides an organic light emitting device comprising an anode, a cathode, and an organic light emitting layer interposed between the anode and the cathode, wherein the organic light emitting layer contains the compound of the present invention as an organic light emitting material. In particular, the organic light-emitting layer further includes a phosphor as a host, and the compound of the present invention is preferably used as a dopant. It is preferable that at least one of the excited triplet energies and excited triplet energies of the phosphorescent material has a higher value than the excited triplet energies of the dopant.

본 발명의 유기발광소자는 양극/유기발광층/음극의 기본적인 구조로 설명하였으나, 유기발광소자의 효율을 높이기 위하여 정공주입층, 정공수송층, 정공저지층, 전자수송층 및 전자주입층으로부터 선택된 하나 이상의 층이 추가될 수 있음은 당연하다. 상기 각 층을 이루는 재료들은 특정하게 한정되지 않으며, 당업자라면 각 층에 사용되는 화합물을 적절하게 선택하여 구성하는 것은 용이할 것이다.
The organic light emitting device of the present invention has been described as a basic structure of the anode / organic light emitting layer / cathode. However, in order to increase the efficiency of the organic light emitting device, at least one layer selected from a hole injection layer, a hole transport layer, a hole blocking layer, Can be added. The material forming each of the layers is not particularly limited, and a person skilled in the art will be able to easily select a compound to be used for each layer.

이상과 같이 본 발명의 화합물은 값비싼 촉매를 사용하지 않아도 합성이 가능하므로 경제적으로 제조가 가능하며, 열적으로 매우 안정한 구조를 갖기 때문에 1~10 mA/cm2정도의 실용적인 고 전류에서 롤 오프현상을 최소화할 수 있다. The compounds of the present invention as described above has value because it does not require the use of expensive catalyst synthesis is possible can be manufactured economically and thermally very since it has a stable structure and 1 ~ 10 mA / cm 2 degree practical high roll at a current-off phenomenon Can be minimized.

또한 본 발명의 화합물은 일중항 에너지와 삼중항 에너지 준위의 차가 적어 지연 형광을 나타내기 때문에 외부양자 발광효율이 우수한 유기발광소자를 제공할 수 있다.
In addition, since the compound of the present invention exhibits retardation fluorescence with a small difference between singlet energy and triplet energy level, it is possible to provide an organic light emitting device having excellent external quantum efficiency.

도 1은 본 발명의 실시예의 유기발광소자 제조에 사용된 재료의 구조를 보여주는 도면.
도 2는 본 발명의 일실시예에 의한 화합물의 구동전압을 보여주는 그래프.
도 3은 본 발명의 일실시예에 의한 화합물의 파장에 따른 외부양자효율을 보여주는 그래프.
도 4는 본 발명의 일실시예에 의한 화합물의 최대 발광 파장을 보여주는 그래프.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing the structure of a material used in the production of an organic light-emitting device according to an embodiment of the present invention. FIG.
2 is a graph showing the driving voltage of a compound according to an embodiment of the present invention.
3 is a graph showing external quantum efficiency according to wavelength of a compound according to an embodiment of the present invention.
4 is a graph showing the maximum emission wavelength of a compound according to an embodiment of the present invention.

이하 첨부된 실시예를 들어 본 발명을 보다 상세히 설명한다. 그러나 이러한 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these embodiments are merely examples for explaining the content and scope of the technical idea of the present invention, and thus the technical scope of the present invention is not limited or changed. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention based on these examples.

[실시예][Example]

실시예 1 : 합성예Example 1: Synthesis Example

본 발명의 화합물은 하기 일반화된 반응식에 따라 전구체 VII로부터 R1 및 R2의 구조를 갖는 화합물과의 커플링 반응에 의해 제조하였다. 하기에서 반응 시약은 Aldrich-Sigma, TCI, Almadis chemical에서 구입하여 사용하였다. 하기 합성예에서는 대표물질을 예로 들어 합성방법을 상세히 기술하였으나, 화학식 1의 구조를 갖는 다른 유도체에 대해서도 당업자라면 하기 기술되는 방법을 근간으로 각 화합물의 R1 및 R2의 구조에 해당하는 전구체를 사용하여 동일 또는 변형된 방법에 따라 용이하게 합성할 수 있을 것이다. 따라서 본 발명의 화합물이 하기 나열된 구체적인 화합물의 예에 한정되지 않음은 당연하다. The compounds of the present invention were prepared from the precursor VII by a coupling reaction with a compound having a structure of R < 1 > and R < 2 > according to the following generalized scheme. The following reagents were purchased from Aldrich-Sigma, TCI, Almadis chemical. In the following Synthesis Examples, the synthesis method is described in detail by taking the representative materials as an example. However, other derivatives having the structure of Formula (1) can also be produced by reacting a precursor corresponding to the structure of R 1 and R 2 of each compound And can be easily synthesized according to the same or modified method. It is therefore to be understood that the compounds of the present invention are not limited to the specific examples of the compounds listed below.

Figure pat00002

Figure pat00002

사전합성 : 전구체 화합물 VIIa와 VIIb의 제조Pre-synthesis: Preparation of precursor compounds VIIa and VIIb

화학식 1의 화합물을 제조하기 위한 전구체로서, 2,7-디브로모-9,9-디메틸-9H-티오잔텐-10,10-디옥사이드(VII)는 하기 반응식에 의해 제조하였다.2,7-Dibromo-9,9-dimethyl-9H-thioxanthene-10,10-dioxide (VII) as a precursor for preparing the compound of formula (1) was prepared by the following reaction formula.

Figure pat00003

Figure pat00003

1) 메틸 2-(페닐티오)벤조에이트(III)의 합성1) Synthesis of methyl 2- (phenylthio) benzoate (III)

크실렌 400ml에 화합물 I 44g(0.2mol), 화합물 II 28.6g(0.2mol), 탄산칼륨 60g(0.43mol), CuI 2.85g(7.5mol%), 1,2-디아미노시클로헥산 1.7g을 가하고 18시간 환류 교반하였다. 반응액을 실온으로 냉각하고 여과한 후 감압 농축하였다. 농축잔사를 컬럼크로마토그라피로 정제하여 화합물 III 43g을 얻었다(수율: 85.7%).To 400 ml of xylene was added 44 g (0.2 mol) of compound I, 28.6 g (0.2 mol) of compound II, , 2.85 g (7.5 mol%) of CuI and 1.7 g of 1,2-diaminocyclohexane were added, and the mixture was stirred under reflux for 18 hours. The reaction solution was cooled to room temperature, filtered, and then concentrated under reduced pressure. The concentrated residue was purified by column chromatography to obtain 43 g of Compound (III) (yield: 85.7%).

1H NMR(CDCl3, 500Hz): δ 7.95(d, 1H), 7.59(t, 2H), 7.41(d, 3H), 7.22(t, 2H), 7.13(t, 1H), 3.95(s, 3H)
1 H NMR (CDCl 3, 500Hz ): δ 7.95 (d, 1H), 7.59 (t, 2H), 7.41 (d, 3H), 7.22 (t, 2H), 7.13 (t, 1H), 3.95 (s, 3H)

2) 2-(2-(페닐티오)페닐)프로판-2-올(IVa)의 합성2) Synthesis of 2- (2- (phenylthio) phenyl) propan-2-ol (IVa)

테트라히드로푸란 250ml에 화합물 III 24.4g(0.1mol)을 가하여 -15℃로 냉각한 다음 3M 메틸마그네슘클로리드 83.4ml를 서서히 가하고 1시간 후 0℃에서 3시간, 실온에서 3시간 교반하였다. 포화 암모늄클로리드 용액 250ml를 서서히 가한 후 에틸아세테이트 200ml를 가하여 유기층을 분리하였다. 유기층을 감압농축한 후 컬럼크로마토그라피로 정제하여 화합물 IVa 16.5g을 얻었다(수율: 67.6%).24.4 g (0.1 mol) of Compound III was added to 250 ml of tetrahydrofuran, and the mixture was cooled to -15 ° C. Then, 83.4 ml of 3M methylmagnesium chloride was slowly added thereto. After 1 hour, the mixture was stirred at 0 ° C for 3 hours and at room temperature for 3 hours. 250 ml of a saturated ammonium chloride solution was slowly added, and 200 ml of ethyl acetate was added to separate an organic layer. The organic layer was concentrated under reduced pressure and purified by column chromatography to obtain 16.5 g of Compound IVa (Yield: 67.6%).

1H NMR(CDCl3, 500Hz): δ 7.70(d, 1H), 7.45~7.41(t, 2H), 7.25(t, 2H), 7.12~7.19(d, 4H), 1.65(s, 6H)
1 H NMR (CDCl 3, 500Hz ): δ 7.70 (d, 1H), 7.45 ~ 7.41 (t, 2H), 7.25 (t, 2H), 7.12 ~ 7.19 (d, 4H), 1.65 (s, 6H)

3) 디페닐(2-(페닐티오)페닐)메탄올(IVb)의 합성3) Synthesis of diphenyl (2- (phenylthio) phenyl) methanol (IVb)

3M 메틸마그네슘클로리드 대신 2M 페닐마그네슘클로리드 33.5ml를 사용한 것을 제외하고는 2)와 동일한 방법에 의해 화합물(IVb) 23.4g을 얻었다(수율 63.6%).23.4 g of the compound (IVb) (yield: 63.6%) was obtained in the same manner as in 2), except that 33.5 ml of 2M phenylmagnesium chloride in place of 3 M methylmagnesium chloride was used.

Mass: M+1=369
Mass: M + 1 = 369

4) 9,9-디메틸-9H-티오잔텐(Va)의 합성4) Synthesis of 9,9-dimethyl-9H-thioxanthene (Va)

폴리인산 50g에 화합물 IVa 16.5g(67.52mmol)을 가하고 85~90℃에서 2시간 반응하였다. 반응액에 정제수 250ml와 에틸아세테이트 200ml를 가한여 1시간 교반 후 유기층을 분리하였다.16.5 g (67.52 mmol) of the compound IVa was added to 50 g of polyphosphoric acid and reacted at 85 to 90 ° C for 2 hours. 250 ml of purified water and 200 ml of ethyl acetate were added to the reaction mixture, which was stirred for 1 hour, and then the organic layer was separated.

유기층을 포화중조수 250ml, 포화식염수 250ml로 순차적으로 세척한 다음 유기층을 감압 농축하고 농축잔사를 컬럼크로마토그라피로 정제하여 화합물 Va를 13.6g 수득하였다(수율: 89%).The organic layer was successively washed with saturated aqueous sodium chloride (250 ml) and saturated brine (250 ml), and then the organic layer was concentrated under reduced pressure. The concentrated residue was purified by column chromatography to obtain 13.6 g of Compound Va (yield: 89%).

1H NMR(CDCl3, 500Hz): δ 7.51(d, 1H), 7.44(d, 1H), 7.30(t, 4H), 7.15(d,2H), 1.68(s, 6H)
1 H NMR (CDCl 3, 500Hz ): δ 7.51 (d, 1H), 7.44 (d, 1H), 7.30 (t, 4H), 7.15 (d, 2H), 1.68 (s, 6H)

5) 9,9-디페닐-9H-티오잔텐(Vb)의 합성5) Synthesis of 9,9-diphenyl-9H-thioxanthene (Vb)

화합물 IVa 대신 화합물 IVb 24.85g을 사용한 것을 제외하고는 4)와 같은 방법에 의해 화합물(Vb) 19.2g을 얻었다(수율: 81.3%).19.2 g of the compound (Vb) was obtained (yield: 81.3%) by the same method as in 4), except that 24.85 g of the compound IVb was used in place of the compound IVa.

Mass: M+1=351
Mass: M + 1 = 351

6) 2,7-디브로모-9,9-디메틸-9H-티오잔텐(VIa)의 합성6) Synthesis of 2,7-dibromo-9,9-dimethyl-9H-thioxanthene (VIa)

무수초산 250ml에 화합물 Va 22.6g(0.1mol)을 가하여 0℃로 냉각한 후 초산 25ml에 브롬 43.6g을 녹인 용액을 30분에 걸쳐서 적가하였다. 반응액을 0℃에서 3시간 추가로 교반하고 실온에서 일야 교반하였다. 생성된 고체를 여과하여 물로 세척한 다음 냉각된 메탄올로 세척, 건조하여 화합물 VIa 13g을 얻었다(수율: 34%).22.6 g (0.1 mol) of Compound Va was added to 250 ml of acetic anhydride, and the solution was cooled to 0 캜, and 43.6 g of bromine was dissolved in 25 ml of acetic acid. The reaction solution was further stirred at 0 ° C for 3 hours and then stirred at room temperature overnight. The resulting solid was filtered, washed with water, and then washed with cold methanol and dried to obtain 13 g of Compound VIa (yield: 34%).

1H NMR(CDCl3, 500Hz): δ 7.61(s, 2H), 7.3.~7.2(d, 4H), 1.68(s, 6H)
1 H NMR (CDCl 3 , 500 Hz):? 7.61 (s, 2H), 7.3-7.2 (d, 4H)

7) 2,7-디브로모-9,9-디페닐-9H-티오잔텐(VIb)의 합성7) Synthesis of 2,7-dibromo-9,9-diphenyl-9H-thioxanthene (VIb)

화합물 Va 대신에 화합물 Vb 35g(0.1mol)을 사용한 것을 제외하고는 6)과 동일한 방법에 의해 화합물 VIb 21.75g(43%)을 얻었다.21.75 g (43%) of compound VIb was obtained in the same manner as in 6) except that 35 g (0.1 mol) of compound Vb was used instead of compound Va.

Mass: M+1=509
Mass: M + 1 = 509

8) 2,7-디브로모-9,9-디메틸-9H-티오잔텐-10,10-디옥시드(VIIa)의 합성8) Synthesis of 2,7-dibromo-9,9-dimethyl-9H-thioxanthene-10,10-dioxide (VIIa)

디클로로메탄 50ml에 화합물VIa 6.16g(16mmol)을 용해하고 메타클로로퍼벤조산 9.86g을 0℃에서 가한 후 일야 교반하였다. 반응액을 여과하고 여액을 감압 농축하여 용매를 제거하였다. 농축잔사에 메탄올 60ml를 가하여 1시간 환류 교반한 다음 0℃로 냉각하여 2시간 교반 후 여과하고 건조하여 화합물 VIIa 6.5g을 얻었다(수율: 83.8%).6.16 g (16 mmol) of compound VIa was dissolved in 50 ml of dichloromethane, and 9.86 g of metachloroperbenzoic acid was added at 0 占 폚 and stirred overnight. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to remove the solvent. 60 ml of methanol was added to the concentrated residue, and the mixture was refluxed for 1 hour. The mixture was cooled to 0 deg. C, stirred for 2 hours, filtered and dried to obtain 6.5 g of Compound VIIa (yield: 83.8%).

1H NMR(CDCl3, 500Hz): δ 8.04(d, 2H), 7.88(s, 2H), 7.65(d, 2H), 1.87(s, 6H)
1 H NMR (CDCl 3, 500Hz ): δ 8.04 (d, 2H), 7.88 (s, 2H), 7.65 (d, 2H), 1.87 (s, 6H)

9) 2,7-디브로모-9,9-디페닐-9H-티오잔텐-10,10-디옥시드(VIIb)의 합성9) Synthesis of 2,7-dibromo-9,9-diphenyl-9H-thioxanthene-10,10-dioxide (VIIb)

화합물 VIa대신에 화합물 VIb 8.13g을 사용한 것을 제외하고는 8)과 동일한 방법에 의해 화합물(VIIb) 6.82g(수율: 79%)을 얻었다.6.82 g (Yield: 79%) of compound (VIIb) was obtained in the same manner as in 8), except that 8.13 g of compound VIb was used instead of compound VIa.

Mass: M+1=542
Mass: M + 1 = 542

합성예 1 : 9,9-디메틸-2,7-비스(5H-피리도[3,2-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 1 Synthesis of 9,9-dimethyl-2,7-bis (5H-pyrido [3,2- b] indol-5-yl) -9H-thioxanthene-10,10-

Figure pat00004
Figure pat00004

크실렌 100ml에 화합물 VIIa 4.13g(10mmol), δ-카르볼린 5.2g(25mmol), 탄산칼륨 8g(60mmol), 1,2-디아미노시클로헥산 70mg, CuI 50mg을 차례로 가하고 6시간 환류 교반하였다. 반응액을 냉각하여 여과하고 감압농축 한 후 컬럼크로마토그라피로 정제하여 목적화합물 3.8g(수율: 45.5%)을 얻었다.(10 mmol) of compound VIIa, 5.2 g (25 mmol) of 隆 -carboline, 8 g (60 mmol) of potassium carbonate, 70 mg of 1,2-diaminocyclohexane and 50 mg of CuI were successively added to 100 ml of xylene and the mixture was refluxed with stirring for 6 hours. The reaction solution was cooled, filtered, concentrated under reduced pressure, and then purified by column chromatography to obtain 3.8 g of the desired compound (yield: 45.5%).

1H NMR(DMSO-d6, 500Hz): δ 8.68(d, 2H), 8.55(d, 4H), 8.05(s, 2H), 7.80~7.84(t, 4H), 7.59~7.63(t, 2H), 7.53~7.57(d, 2H), 7.43~7.48(d, 4H), 2.05(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.68 (d, 2H), 8.55 (d, 4H), 8.05 (s, 2H), 7.80 ~ 7.84 (t, 4H), 7.59 ~ 7.63 (t, 2H ), 7.53-7.57 (d, 2H), 7.43-7.48 (d, 4H), 2.05 (s, 6H)

Mass: M+1=591
Mass: M + 1 = 591

합성예 2 : 2,7-비스(8-(9H-카르바졸-9-일)-5H-피리도[3,2-b]인돌-5-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 2 Synthesis of 2,7-bis (8- (9H-carbazol-9-yl) -5H-pyrido [3,2- b] indol-5-yl) -9,9- Xanthene-10,10-dioxide

1) 8-브로모-5H-피리도[3,2-b]인돌의 합성1) Synthesis of 8-bromo-5H-pyrido [3,2-b] indole

Figure pat00005
Figure pat00005

디클로로메탄 150ml에 5H-피리도[3,2-b]인돌 16.8g, N-브로모석신이미드 20.28g을 가하고 12시간 실온에서 교반하였다. 테트라히드로푸란 170ml에 반응액을 여과하여 얻은 케이크를 넣고 2시간 환류 교반하고 실온에서 2시간 교반한 후 여과, 세척 및 건조하여 8-브로모-5H-피리도[3,2-b]인돌 21.1g(수율: 85.7%)을 얻었다.16.8 g of 5H-pyrido [3,2-b] indole and 20.28 g of N-bromosuccinimide were added to 150 ml of dichloromethane, followed by stirring at room temperature for 12 hours. The resulting mixture was stirred at room temperature for 2 hours, filtered, washed and dried to obtain 8-bromo-5H-pyrido [3,2-b] indole 21.1 g (yield: 85.7%).

1H NMR(CDCl3, 500Hz): δ 9.92(s, 1H), 8.53(d, 1H), 8.25(s, 1H), 7.97(d, 1H), 7.52(d, 1H), 7.42(d, 1H), 7.25(t, 1H)
1 H NMR (CDCl 3, 500Hz ): δ 9.92 (s, 1H), 8.53 (d, 1H), 8.25 (s, 1H), 7.97 (d, 1H), 7.52 (d, 1H), 7.42 (d, 1H), 7.25 (t, 1 H)

2) tert-부틸 8-브로모-5H-피리도[3,2-b]인돌-5-카르복실레이트의 합성2) Synthesis of tert-butyl 8-bromo-5H-pyrido [3,2-b] indole-5-carboxylate

Figure pat00006
Figure pat00006

테트라히드로푸란 150ml에 8-브로모-5H-피리도[3,2-b]인돌 5.3g, 4-디메틸아미노피리딘 3.15g, 디-t-부틸 디카보네이트 5.61g을 가하고 실온에서 일야 교반하였다. 반응액을 여과, 세척 및 건조하여 5.6g의 tert-부틸 8-브로모-5H-피리도[3,2-b]인돌-5-카르복실레이트를 얻었다(수율: 75.5%).5.3 g of 8-bromo-5H-pyrido [3,2-b] indole, 3.15 g of 4-dimethylaminopyridine and 5.61 g of di-t-butyl dicarbonate were added to 150 ml of tetrahydrofuran and stirred overnight at room temperature. The reaction solution was filtered, washed and dried to obtain 5.6 g of tert-butyl 8-bromo-5H-pyrido [3,2-b] indole-5-carboxylate (yield: 75.5%).

1H NMR(CDCl3, 500Hz): δ 8.63(d, 1H), 8.35(s, 1H), 8.07(d, 1H), 7.62(d, 1H), 7.63(d, 1H), 7.35(t, 1H), 1.25(s, 9H)
1 H NMR (CDCl 3, 500Hz ): δ 8.63 (d, 1H), 8.35 (s, 1H), 8.07 (d, 1H), 7.62 (d, 1H), 7.63 (d, 1H), 7.35 (t, 1H), 1.25 (s, 9H)

3) 8-(9H-카르바졸-9-일)-5H-피리도[3,2-b]인돌의 합성3) Synthesis of 8- (9H-carbazol-9-yl) -5H-pyrido [3,2-b]

Figure pat00007
Figure pat00007

크실렌 100ml에 tert-부틸 8-브로모-5H-피리도[3,2-b]인돌-5-카르복실레이트 3.5g, 카르바졸 3.3g, 탄산칼륨2.8g, 1,2-디아미노시클로헥산 0.47g, CuI 0.34g을 차례로 가하고 6시간 환류 교반하였다. 반응액을 여과하여 감압농축 한 후 농축잔사에 테트라히드로푸란 100ml, 트리플루오로아세트산 20ml를 가하고 실온에서 일야 교반한 다음 여과하였다. 케이크를 증류수 200ml에 가하고 pH를 7.5로 조절한 후 여과하고 건조하여 8-(9H-카르바졸-9-일)-5H-피리도[3,2-b]인돌 1.2g을 얻었다(수율: 36.1%).To 100 ml of xylene were added 3.5 g of tert-butyl 8-bromo-5H-pyrido [3,2-b] indole-5-carboxylate, 3.3 g of carbazole, 2.8 g of potassium carbonate, And 0.34 g of CuI were added in this order, and the mixture was refluxed and stirred for 6 hours. The reaction solution was filtered and concentrated under reduced pressure. Then, 100 ml of tetrahydrofuran and 20 ml of trifluoroacetic acid were added to the concentrated residue, stirred overnight at room temperature, and then filtered. The cake was added to 200 ml of distilled water and the pH was adjusted to 7.5, followed by filtration and drying to obtain 1.2 g of 8- (9H-carbazol-9-yl) -5H-pyrido [3,2- %).

1H NMR(DMSO-d6, 500Hz): δ 9.81(s, 1H), 8.55(d, 1H), 8.45(d, 1H), 8.15(d, 1H), 7.97(d, 1H), 7.94(s, 1H), 7.91(d, 2H), 7.61~7.65(d, 2H), 7.5(d, 1H), 7.23~7.29(t, 4H)
1 H NMR (DMSO-d 6 , 500 Hz):? 9.81 (s, IH), 8.55 (d, IH), 8.45 (d, 2H), 7.91 (d, 2H), 7.61-7.65 (d,

4) 2,7-비스(8-(9H-카르바졸-9-일)-5H-피리도[3,2-b]인돌-5-일)-9,9-디메틸-9H-티오잔텐 10,10-디옥시드의 합성4) Synthesis of 2,7-bis (8- (9H-carbazol-9-yl) -5H-pyrido [3,2- b] indol-5-yl) -9,9- , 10-dioxide

Figure pat00008
Figure pat00008

δ-카르볼린 대신 8-(9H-카르바졸-9-일)-5H-피리도[3,2-b]인돌 8.32g(25mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 4.5g을 얻었다(수율: 48.9%).except that 8.32 g (25 mmol) of 8- (9H-carbazol-9-yl) -5H-pyrido [3,2- b] indole was used in place of 8- 4.5 g (yield: 48.9%) of the compound was obtained.

1H NMR(DMSO-d6, 500Hz): δ 8.61(d, 2H), 8.54(d, 4H), 8.20(d, 4H), 8.10(d, 2H), 7.80~7.84(t, 4H), 7.63(t, 4H), 7.61(s, 2H), 7.52(t, 2H), 7.50(d, 4H), 7.46(d, 2H), 7.30(d, 4H), 2.07(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.61 (d, 2H), 8.54 (d, 4H), 8.20 (d, 4H), 8.10 (d, 2H), 7.80 ~ 7.84 (t, 4H), 2H), 7.50 (d, 2H), 7.50 (d, 2H), 7.63 (d, 2H)

Mass: M+1=921
Mass: M + 1 = 921

합성예 3 : 2,7-비스(8-(디페닐아미노)-5H-피리도[3,2-b]인돌-5-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 3: Synthesis of 2,7-bis (8- (diphenylamino) -5H-pyrido [3,2- b] indol-5-yl) -9,9-dimethyl-9H-thioxanthene- - < / RTI >

1) N,N-디페닐-5H-피리도[3,2-b]인돌-8-아민의 합성1) Synthesis of N, N-diphenyl-5H-pyrido [3,2-b] indol-

Figure pat00009
Figure pat00009

카르바졸 대신 디페닐아민을 3.1g을 사용한 것을 제외하고는 합성예 2의 3과 동일한 방법에 의해 N,N-디페닐-5H-피리도[3,2-b]인돌-8-아민 1.5g(수율: 44.7%)을 얻었다.5-pyrido [3,2-b] indol-8-amine was obtained in the same manner as in Synthesis Example 3, except that 3.1 g of diphenylamine was used in place of carbazole. (Yield: 44.7%).

1H NMR(CDCl3, 500Hz): δ 9.95(s, 1H), 8.51(d, 1H), 7.48(d, 1H), 7.21~7.32(d, 5H), 6.91~6.89(t, 2H), 6.75~6,82(d, 3H), 6.65~6.63(t, 4H)
1 H NMR (CDCl 3, 500Hz ): δ 9.95 (s, 1H), 8.51 (d, 1H), 7.48 (d, 1H), 7.21 ~ 7.32 (d, 5H), 6.91 ~ 6.89 (t, 2H), 6.75 ~ 6.82 (d, 3H), 6.65 ~ 6.63 (t, 4H)

2) 2,7-비스(8-(디페닐아미노)-5H-피리도[3,2-b]인돌-5-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성2) Synthesis of 2,7-bis (8- (diphenylamino) -5H-pyrido [3,2- b] indol-5-yl) -9,9-dimethyl-9H-thioxanthene- Synthesis of seed

Figure pat00010
Figure pat00010

δ-카르볼린 대신 N,N-디페닐l-5H-피리도[3,2-b]인돌-8-아민8.32g(25mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 5.6g을 얻었다(수율: 59.8%).(25 mmol) of N, N-diphenyll-5H-pyrido [3,2-b] indol-8-amine instead of 8-carboline (Yield: 59.8%).

1H NMR(DMSO-d6, 500Hz): 1H NMR(CDCl3, 500Hz): δ 8.65(d, 2H), 8.60(d, 4H), 8.30(d, 4H), 8.20(d, 2H), 7.91(t, 4H), 7.74(t, 4H), 7.61(s, 4H), 7.52(t, 4H), 7.50(dm, 4H), 7.46(d, 2H), 7.30(d, 4H), 2.08(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): 1 H NMR (CDCl 3, 500Hz): δ 8.65 (d, 2H), 8.60 (d, 4H), 8.30 (d, 4H), 8.20 (d, 2H) 2H), 7.30 (d, 4H), 7.91 (d, 2H), 7.91 (d, 2.08 (s, 6 H)

Mass: M+1=925
Mass: M + 1 = 925

합성예 4 : 9,9-디메틸-2,7-비스(8-페닐-5H-피리도[3,2-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 4: Synthesis of 9,9-dimethyl-2,7-bis (8-phenyl-5H-pyrido [3,2- b] indol-5-yl) -9H-thioxanthene-10,10- synthesis

1) 8-페닐-5H-피리도[3,2-b]인돌의 합성1) Synthesis of 8-phenyl-5H-pyrido [3,2-b] indole

Figure pat00011
Figure pat00011

톨루엔 42ml에 tert-부틸 8-브로모-5H-피리도[3,2-b]인돌-5-카르복실레이트 3.5g, 페닐보론산 1.32g, 탄산칼륨 3.4g, 테트라키스(트리페닐포스핀)팔라듐 0.23g, 증류수 8ml를 가하고 6시간 환류 교반하였다.3.5 g of tert-butyl 8-bromo-5H-pyrido [3,2-b] indole-5-carboxylate, 1.32 g of phenylboronic acid, 3.4 g of potassium carbonate, ) Palladium (0.23 g) and distilled water (8 ml) were added, and the mixture was refluxed and stirred for 6 hours.

반응액을 냉각한 후 디클로로메탄 200ml, 물 100ml를 가하여 층 분리하고 유기층을 감압 농축하였다. 농축잔사에 테트라히드로푸란 100ml, 트리플루오로아세트산 10ml를 가하고 실온에서 6시간 교반한 후 여과하였다. 케이크를 증류수 200ml에 가하고 pH를 7.5로 조절한 후 여과하고 건조하여 8-페닐-5H-피리도[3,2-b]인돌 1.3g(수율: 53.27%)을 얻었다.After the reaction solution was cooled, dichloromethane (200 ml) and water (100 ml) were added to separate layers, and the organic layer was concentrated under reduced pressure. To the concentrated residue, 100 ml of tetrahydrofuran and 10 ml of trifluoroacetic acid were added, and the mixture was stirred at room temperature for 6 hours and filtered. The cake was added to 200 ml of distilled water and the pH was adjusted to 7.5, followed by filtration and drying to obtain 1.3 g of 8-phenyl-5H-pyrido [3,2-b] indole (yield: 53.27%).

1H NMR(CDCl3, 500Hz):δ 9.95(s, 1H), 8.63(d, 1H), 8.35(d, 1H), 8.07(d, 1H), 7.68(s, 1H), 7.63(d, 4H), 7.35(t, 3H)
1 H NMR (CDCl 3, 500Hz ): δ 9.95 (s, 1H), 8.63 (d, 1H), 8.35 (d, 1H), 8.07 (d, 1H), 7.68 (s, 1H), 7.63 (d, 4H), 7.35 (t, 3H)

2) 9,9-디메틸-2,7-비스(8-페닐-5H-피리도[3,2-b]인돌-5-일)-9H-티오잔텐 10,10-디옥시드의 합성Synthesis of 9,9-dimethyl-2,7-bis (8-phenyl-5H-pyrido [3,2- b] indol-5-yl) -9H-thioxanthene 10,10-

Figure pat00012
Figure pat00012

δ-카르볼린 대신 8-페닐-5H-피리도[3,2-b]인돌 25mmol을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 5.23g을 얻었다(수율: 70.4%).5.23 g of the title compound (yield: 70.4%) was obtained in the same manner as in Synthesis Example 1, except that 25 mmol of 8-phenyl-5H-pyrido [3,2-b] indole was used in place of 8-carboline.

1H NMR(CDCl3, 500Hz): δ 8.71(d, 2H), 8.53(d, 4H), 8.02(s, 2H), 7.70~7.82(t, 4H), 7.54~7.59(t, 4H), 7.49~7.50(d, 4H), 7.45~7.43(s, 2H), 7.41~7.38(d, 6H), 2.08(s, 6H) 1 H NMR (CDCl 3, 500Hz ): δ 8.71 (d, 2H), 8.53 (d, 4H), 8.02 (s, 2H), 7.70 ~ 7.82 (t, 4H), 7.54 ~ 7.59 (t, 4H), (S, 2H), 7.41-7.38 (d, 6H), 2.08 (s, 6H)

Mass: M+1=743
Mass: M + 1 = 743

합성예 5 : 2,7-비스(4-(5H-피리도[3,2-b]인돌-5-일)페닐)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 5: Synthesis of 2,7-bis (4- (5H-pyrido [3,2- b] indol-5-yl) phenyl) -9,9-dimethyl-9H-thioxanthene-10,10- Synthesis of

1) 5-(4-브로모)-5H-피리도[3,2-b]인돌의 합성1) Synthesis of 5- (4-bromo) -5H-pyrido [3,2-b] indole

Figure pat00013
Figure pat00013

N,N-디메틸포름아미드 190ml에 5H-피리도[3,2-b]인돌 15g, 1-브로모-4-아이오도벤젠 38g, 탄산칼륨 50g, 구리 11.5g을 가하고 120℃에서 10시간 교반하였다.15 g of 5H-pyrido [3,2-b] indole, 38 g of 1-bromo-4-iodobenzene, 50 g of potassium carbonate and 11.5 g of copper were added to 190 ml of N, N-dimethylformamide and stirred at 120 ° C for 10 hours Respectively.

반응액을 냉각한 후 여과하고 정제수 6L에 여과액을 서서히 가한 후 실온에서 2시간 교반하여 여과하였다. 케이크를 메탄올 200ml에 넣고 2시간 환류 교반 한 다음 여과하여 5-(4-브로모)-5H-피리도[3,2-b]인돌 27.9g(수율: 97%)을 얻었다.The reaction solution was cooled, filtered, and 6 L of purified water was slowly added to the filtrate, followed by stirring at room temperature for 2 hours and filtering. The cake was placed in 200 ml of methanol, refluxed and stirred for 2 hours, and then filtered to obtain 27.9 g (yield: 97%) of 5- (4-bromo) -5H-pyrido [3,2- b] indole.

1H NMR(CDCl3, 500Hz):δ 8.74(d, 1H), 8.63(d, 1H), 7.97~7.94(d, 2H), 7.63(d, 4H), 7.35(t, 3H)
1 H NMR (CDCl 3, 500Hz ): δ 8.74 (d, 1H), 8.63 (d, 1H), 7.97 ~ 7.94 (d, 2H), 7.63 (d, 4H), 7.35 (t, 3H)

2) (4-(5H-피리도[3,2-b]인돌-5-일)페닐)보론산의 합성2) Synthesis of (4- (5H-pyrido [3,2-b] indol-5-yl) phenyl)

Figure pat00014
Figure pat00014

테트라히드로푸란 150ml에 5-(4-브로모페닐)-5H-피리도[3,2-b]인돌 9.66g을 가한 다음 -78℃로 냉각한 후 n-부틸리튬 18.37ml를 서서히 가하였다. 동 온도에서 1시간 교반한 다음 30% 트리메틸보레이트 4g을 서서히 가하고 동 온도에서 2시간, 실온에서 1시간 반응하였다.To a solution of 9.66 g of 5- (4-bromophenyl) -5H-pyrido [3,2-b] indole in 150 ml of tetrahydrofuran, the mixture was cooled to -78 ° C and 18.37 ml of n-butyllithium was slowly added thereto. After stirring at the same temperature for 1 hour, 4 g of 30% trimethylborate was slowly added, and the mixture was reacted at the same temperature for 2 hours and at room temperature for 1 hour.

포화 암모늄클로리드 수용액으로 반응액의 pH를 7로 조절한 다음 여과하고 건조하여 목적화합물 6.4g(수율: 83.7%)을 얻었다.The pH of the reaction solution was adjusted to 7 with a saturated aqueous ammonium chloride solution, followed by filtration and drying to obtain 6.4 g (yield: 83.7%) of the desired compound.

1H NMR(DMSO-d6, 500Hz): δ 8.74(d, 1H), 8.63(d, 1H), 8.10~8.17(d, 2H), 8.10~8.17(d, 4H), 7.35(t, 3H)
1 H NMR (DMSO-d 6 , 500Hz): δ 8.74 (d, 1H), 8.63 (d, 1H), 8.10 ~ 8.17 (d, 2H), 8.10 ~ 8.17 (d, 4H), 7.35 (t, 3H )

3) 2,7-비스(4-(5H-피리도[3,2-b]인돌-5-일)페닐)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성3) Synthesis of 2,7-bis (4- (5H-pyrido [3,2-b] indol-5-yl) phenyl) -9,9-dimethyl-9H-thioxanthene-10,10-

Figure pat00015
Figure pat00015

톨루엔 42ml에 화합물 VII 4.13g, 화합물c 7.2g, 탄산칼륨 3.4g, 테트라키스(트리페닐포스핀)팔라듐 0.23g, 증류수 8ml를 가하고 6시간 환류 교반하였다. 반응액을 냉각한 후 디클로로메탄 200ml, 물 100ml를 가하여 층분리하였다. 유기층을 감압 농축 한 후 컬럼크로마토그라피로 정제하여 목적물 2.67g(수율: 36%)을 얻었다.4.13 g of Compound VII, 7.2 g of Compound c, 3.4 g of potassium carbonate, 0.23 g of tetrakis (triphenylphosphine) palladium and 8 ml of distilled water were added to 42 ml of toluene, and the mixture was stirred under reflux for 6 hours. After the reaction solution was cooled, dichloromethane (200 ml) and water (100 ml) were added to separate layers. The organic layer was concentrated under reduced pressure and then purified by column chromatography to obtain 2.67 g (yield: 36%) of the target compound.

1H NMR(DMSO-d6, 500Hz): δ 8.35(d, 2H), 8.28(d, 2H), 8.02(s, 2H), 7.70~7.82(t, 4H), 7.58~7.68(t, 4H), 7.54~7.59(d, 4H), 7.49~7.50(d, 4H), 7.45~7.43(d, 4H), 1.99(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.35 (d, 2H), 8.28 (d, 2H), 8.02 (s, 2H), 7.70 ~ 7.82 (t, 4H), 7.58 ~ 7.68 (t, 4H ), 7.54-7.59 (d, 4H), 7.49-7.50 (d, 4H), 7.45-7.43 (d,

Mass: M+1=743
Mass: M + 1 = 743

합성예 6 : 9,9-디메틸-2,7-비스(5H-피리도[2,3-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 6 Synthesis of 9,9-dimethyl-2,7-bis (5H-pyrido [2,3-b] indol-5-yl) -9H-thioxanthene-10,10-

Figure pat00016
Figure pat00016

δ-카르볼린 대신 α-카르볼린(알드리치) 5.2g(25mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 5.24g을 얻었다(수율: 56.7%).(yield: 56.7%) was obtained in the same manner as in Synthesis Example 1, except that 5.2 g (25 mmol) of? -carboline (Aldrich) was used instead of? -carboline.

1H NMR(CDCl3, 500Hz): δ 8.66(d, 2H), 8.53(d, 2H), 8.43(d, 2H), 8.05(s, 2H), 7.79~7.85(t, 4H), 7.54~7.61(t, 2H), 7.51~7.58(d, 2H), 7.41~7.45(d, 4H), 2.05(s, 6H) 1 H NMR (CDCl 3, 500Hz ): δ 8.66 (d, 2H), 8.53 (d, 2H), 8.43 (d, 2H), 8.05 (s, 2H), 7.79 ~ 7.85 (t, 4H), 7.54 ~ 2H), 7.51-7.58 (d, 2H), 7.41-7.45 (d, 4H), 2.05 (s, 6H)

Mass: M+1=591
Mass: M + 1 = 591

합성예 7 : 9,9-디메틸-2,7-비스(5H-피리도[3,4-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 7 Synthesis of 9,9-dimethyl-2,7-bis (5H-pyrido [3,4-b] indol-5-yl) -9H-thioxanthene-10,10-

Figure pat00017
Figure pat00017

δ-카르볼린 대신 β-카르볼린(알드리치) 5.2g(25mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 6.04g을 얻었다(수율: 65.4%).6.04 g of the objective compound (yield: 65.4%) was obtained in the same manner as in Synthesis Example 1, except that 5.2 g (25 mmol) of β-carboline (Aldrich) was used instead of δ-carbolyne.

1H NMR(CDCl3, 500Hz): δ 8.68(d, 2H), 8.55(d, 2H), 8.45(d, 2H), 8.05(s, 2H), 7.80~7.84(t, 4H), 7.54~7.65(d, 2H), 7.51~7.54(s, 2H), 7.45~7.48(d, 4H), 2.05(s, 6H) 1 H NMR (CDCl 3, 500Hz ): δ 8.68 (d, 2H), 8.55 (d, 2H), 8.45 (d, 2H), 8.05 (s, 2H), 7.80 ~ 7.84 (t, 4H), 7.54 ~ 2H), 7.55-7.54 (s, 2H), 7.45-7.48 (d, 4H), 2.05 (s, 6H)

Mass: M+1=591
Mass: M + 1 = 591

합성예 8 : 9,9-디메틸-2,7-비스(5H-피리도[4,3-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 8 Synthesis of 9,9-dimethyl-2,7-bis (5H-pyrido [4,3-b] indol-5-yl) -9H-thioxanthene-10,10-

Figure pat00018
Figure pat00018

δ-카르볼린 대신 γ-카르볼린(알드리치) 5.2g(25mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 4.45g을 얻었다(수율: 48.2%).(yield: 48.2%) was obtained in the same manner as in Synthesis Example 1, except that 5.2 g (25 mmol) of? -carboline (Aldrich) was used instead of? -carboline.

1H NMR(CDCl3, 500Hz): δ 8.66(d, 2H), 8.58(s, 2H), 8.53(d, 2H), 8.03(s, 2H), 7.83~7.89(t, 4H), 7.52~7.61(s, 2H), 7.54~7.58(d, 2H), 7.47~7.49(d, 4H), 2.05(s, 6H) 1 H NMR (CDCl 3, 500Hz ): δ 8.66 (d, 2H), 8.58 (s, 2H), 8.53 (d, 2H), 8.03 (s, 2H), 7.83 ~ 7.89 (t, 4H), 7.52 ~ 2H), 7.54-7.58 (d, 2H), 7.47-7.49 (d, 4H), 2.05 (s, 6H)

Mass: M+1=591
Mass: M + 1 = 591

합성예 9 : 2-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-7-(5H-피리도[3,2-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 9: Synthesis of 2- (9,9-dimethylacridine-10 (9H) -yl) -9,9-dimethyl- 7- (5H- pyrido [3,2- b] indol- -9H-thioxanthene-10,10-dioxide < / RTI >

1) 2-브로모-7-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성1) Synthesis of 2-bromo-7- (9,9-dimethylacridine-10 (9H) -yl) -9,9-dimethyl-9H-thioxanthene-10,10-dioxide

Figure pat00019
Figure pat00019

톨루엔 90ml에 화합물 VII 3.65g, 9,9-디메틸-9,10-디히도로아크리딘 2g, 소듐t-부톡시드 2.60g, 팔라듐 아세테이트 8mg, t-트리부틸포스핀 0.1mg을 차례로 가하고 6시간동안 환류교반하였다. 반응액을 냉각하여 여과하고, 여액을 감압농축한 후 컬럼크로마토그라피로 정제하여 목적물 3.59g(수율:75%)을 얻었다.To 90 ml of toluene were added 3.65 g of Compound VII, 2 g of 9,9-dimethyl-9,10-dihydroquercidine, 2.60 g of sodium t-butoxide, 8 mg of palladium acetate and 0.1 mg of t- Lt; / RTI > The reaction solution was cooled and filtered, and the filtrate was concentrated under reduced pressure and then purified by column chromatography to obtain 3.59 g (yield: 75%) of the target compound.

1H NMR(CDCl3, 500Hz): δ 8.35(d, 2H), 7.95(s, 1H), 7.86(s, 1H), 7.56(d, 2H), 7.44(d, 4H), 7.12(t, 4H), 1.86(s, 6H), 1.62(s ,6H)
1 H NMR (CDCl 3, 500Hz ): δ 8.35 (d, 2H), 7.95 (s, 1H), 7.86 (s, 1H), 7.56 (d, 2H), 7.44 (d, 4H), 7.12 (t, 4H), 1.86 (s, 6H), 1.62 (s, 6H)

2) 2-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-7-(5H-피리도[3,2-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드의 합성2) Synthesis of 2- (9,9-dimethylacridine-10 (9H) -yl) -9,9-dimethyl- 7- (5H- pyrido [3,2- b] indol- Synthesis of thioxanthene-10,10-dioxide

Figure pat00020
Figure pat00020

화합물 VIIa 대신 2-브로모-7-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-9H-티오잔텐 10,10-디옥시드 5.4g을, δ-카르볼린은 2.1g을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 2.70g(수율: 43%)을 얻었다. 5.9 g of 2-bromo-7- (9,9-dimethylacridine-10 (9H) -yl) -9,9-dimethyl-9H- thioxanthene 10,10- (Yield: 43%) of the objective compound was obtained by the same method as in Synthesis Example 1, except that 2.1 g of carboline was used.

1H NMR(DMSO-d6, 500Hz): δ 8.65(d, 2H), 8.05(s, 2H), 7.66(d, 2H), 7.54(d, 4H), 7.03(t, 4H), 6.92(t, 3H), 6.22(d, 4H), 1.86(s, 6H), 1.62(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.65 (d, 2H), 8.05 (s, 2H), 7.66 (d, 2H), 7.54 (d, 4H), 7.03 (t, 4H), 6.92 ( t, 3H), 6.22 (d, 4H), 1.86 (s, 6H), 1.62

Mass: M+1=632
Mass: M + 1 = 632

합성예 10 : 2-(9H-카르바졸-9-일)-7-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 10: Synthesis of 2- (9H-carbazol-9-yl) -7- (9,9-dimethylacridine-10 (9H) -yl) -9,9- Synthesis of 10-dioxide

Figure pat00021
Figure pat00021

δ-카르볼린 대신 카르바졸 2.5g을 사용한 것을 제외하고는 합성예 9와 동일한 방법에 의해 목적화합물 3.46g을 얻었다(수율: 55%).(yield: 55%) was obtained in the same manner as in Synthesis Example 9, except that 2.5 g of carbazole was used instead of 隆 -carboline.

1H NMR(DMSO-d6, 500Hz): δ 8.43(d, 2H), 8.15(s, 2H), 7.56(d, 2H), 7.44(d, 4H), 7.01(t, 4H), 6.83(t, 4H), 6.12(d, 4H), 1.84(s, 6H), 1.65(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.43 (d, 2H), 8.15 (s, 2H), 7.56 (d, 2H), 7.44 (d, 4H), 7.01 (t, 4H), 6.83 ( t, 4H), 6.12 (d, 4H), 1.84 (s, 6H), 1.65

Mass: M+1=631
Mass: M + 1 = 631

합성예 11 : 2,7-디(9H-카르바졸-9-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 11 Synthesis of 2,7-di (9H-carbazol-9-yl) -9,9-dimethyl-9H-thioxanthene-10,10-

Figure pat00022
Figure pat00022

δ-카르볼린 대신 카르바졸 4.17g(25mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 3.58g을 얻었다(수율: 60.9%).(yield: 60.9%) was obtained in the same manner as in Synthesis Example 1, except that 4.17 g (25 mmol) of carbazole was used instead of 隆 -carboline.

1H NMR(CDCl3, 500Hz): δ 8.52(d, 2H), 8.18(d, 4H), 8.09(s, 2H), 7.83(d, 2H), 7.535(t, 8H), 7.45~7.41(d, 4H), 2.07(s, 6H) 1 H NMR (CDCl 3, 500Hz ): δ 8.52 (d, 2H), 8.18 (d, 4H), 8.09 (s, 2H), 7.83 (d, 2H), 7.535 (t, 8H), 7.45 ~ 7.41 ( d, 4H), 2.07 (s, 6H)

Mass: M+1=589
Mass: M + 1 = 589

합성예 12 : 2,7-비스(3,6-디-tert-부틸-9H-카르바졸-9-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 12 Synthesis of 2,7-bis (3,6-di-tert-butyl-9H-carbazol-9-yl) -9,9-dimethyl-9H-thioxanthene-10,10-

Figure pat00023
Figure pat00023

δ-카르볼린 대신 3,6-디-t-부틸-9H-카르바졸 15.5g(25mmol)(Aldrich)을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 3.34g을 얻었다(수율: 41.1%).The procedure of Synthesis Example 1 was repeated except for using 15.5 g (25 mmol) of 3,6-di-t-butyl-9H-carbazole instead of 8-carboline (yield: 41.1%).

1H NMR(CDCl3, 500Hz): δ 8.68(d, 2H), 8.55(d, 4H), 8.05(s, 2H), 7.80~7.84(t, 4H), 7.59~7.63(d, 2H), 7.43~7.48(d, 4H), 2.05(s, 6H), 1.45(s, 36H) 1 H NMR (CDCl 3, 500Hz ): δ 8.68 (d, 2H), 8.55 (d, 4H), 8.05 (s, 2H), 7.80 ~ 7.84 (t, 4H), 7.59 ~ 7.63 (d, 2H), 7.43-7.48 (d, 4H), 2.05 (s, 6H), 1.45 (s, 36H)

Mass: M+1=813
Mass: M + 1 = 813

합성예 13 : 2,7-비스(4-(9H-카르바졸-9-일)페닐)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 13 Synthesis of 2,7-bis (4- (9H-carbazol-9-yl) phenyl) -9,9-dimethyl-9H-thioxanthene-10,10-

Figure pat00024
Figure pat00024

화합물c 대신 화합물d 7.2g을 사용한 것을 제외하고는 합성예 5와 동일한 방법에 의해 목적화합물 1.85g을 얻었다(수율: 25%).1.85 g of the title compound (yield: 25%) was obtained in the same manner as in Synthesis Example 5, except that 7.2 g of Compound d was used instead of Compound c.

1H NMR(DMSO-d6, 500Hz): δ 8.30(d, 2H), 8.18(d, 2H), 8.12(d, 2H), 8.02(s, 2H), 7.70~7.82(d, 4H), 7.58~7.68(t, 4H), 7.54~7.59(t, 4H), 7.49~7.50(d, 6H), 7.45~7.43(d, 4H), 1.99(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.30 (d, 2H), 8.18 (d, 2H), 8.12 (d, 2H), 8.02 (s, 2H), 7.70 ~ 7.82 (d, 4H), (D, 4H), 7.54-7.58 (t, 4H), 7.54-7.68 (t, 4H)

Mass: M+1=741
Mass: M + 1 = 741

합성예 14 : 2,7-디(9H-[3,9'-비카르바졸]-9-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 14: Synthesis of 2,7-di (9H- [3,9'-bicarbazol] -9-yl) -9,9-dimethyl-9H-thioxanthene-10,10-

Figure pat00025
Figure pat00025

δ-카르볼린 대신 9H-3,9'-비카르바졸 8.3g(25mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법에 의해 목적화합물 3.45g을 얻었다(수율: 37.5%).(yield: 37.5%) was obtained in the same manner as in Synthesis Example 1, except that 8.3 g (25 mmol) of 9H-3,9'-bicarbazole was used instead of 8-carboline.

1H NMR(DMSO-d6, 500Hz)): δ 8.61(d, 4H), 8.44(d, 4H), 8.15(d, 4H), 8.08(s, 2H), 7.70(t, 4H), 7.62(t, 4H), 7.59(s, 2H), 7.52(d, 2H), 7.50(t, 4H), 7.43(d, 4H), 7.25(d, 4H), 2.05(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz)): δ 8.61 (d, 4H), 8.44 (d, 4H), 8.15 (d, 4H), 8.08 (s, 2H), 7.70 (t, 4H), 7.62 2H), 7.52 (d, 2H), 7.50 (t, 4H), 7.43 (d, 4H), 7.25

Mass: M+1=919
Mass: M + 1 = 919

합성예 15 : 2,7-비스(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 15 Synthesis of 2,7-bis (9,9-dimethylacridine-10 (9H) -yl) -9,9-dimethyl-9H-thioxanthene-10,10-

Figure pat00026
Figure pat00026

톨루엔 90ml에 화합물 VII 3.65g, 9,9-디메틸-9,10-디히도로아크리딘 4g, 소듐t-부톡시드 5.22g, 팔라듐 아세테이트 17mg, t-트리부틸포스핀 0.2mg을 차례로 가하고 일야 환류교반하였다. 반응액을 냉각하여 여과하고, 여액을 감압농축한 후 컬럼크로마토그라피로 정제하여 목적물 4.2g(수율: 71%)을 얻었다.To 90 ml of toluene was added 3.65 g of compound VII, 4 g of 9,9-dimethyl-9,10-dihydrolaccridine, 5.22 g of sodium t-butoxide, 17 mg of palladium acetate and 0.2 mg of t- Lt; / RTI > The reaction solution was cooled and filtered, and the filtrate was concentrated under reduced pressure and then purified by column chromatography to obtain 4.2 g (yield: 71%) of the target compound.

1H NMR(CDCl3, 500Hz): δ 8.5(d, 2H), 8.00(s, 2H), 7.66(d, 2H), 7.54(d, 4H), 7.02(t, 4H), 6.96(t, 4H), 6.24(d, 4H), 1.88(s, 6H), 1.65(s, 12H) 1 H NMR (CDCl 3, 500Hz ): δ 8.5 (d, 2H), 8.00 (s, 2H), 7.66 (d, 2H), 7.54 (d, 4H), 7.02 (t, 4H), 6.96 (t, 4H), 6.24 (d, 4H), 1.88 (s, 6H), 1.65 (s, 12H)

Mass: M+1=673
Mass: M + 1 = 673

합성예 16 : 9,9-디메틸-2,7-디(10H-페노티아진-10-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 16 Synthesis of 9,9-dimethyl-2,7-di (10H-phenothiazin-10-yl) -9H-thioxanthene-10,10-

Figure pat00027
Figure pat00027

톨루엔 90ml에 화합물 VII 3.65g(8.8mmol), 10H-페노티아진 3.8g(19.13mmol)을 사용한 것을 제외하고는 합성예 15와 동일한 방법에 의해 목적화합물 3.1g을 얻었다(수율: 53.9%). (Yield: 53.9%) was obtained in the same manner as in Synthesis Example 15, except that 3.65 g (8.8 mmol) of Compound VII and 3.8 g (19.13 mmol) of 10H-phenothiazine were used in 90 ml of toluene.

1H NMR(DMSO-d6, 500Hz): δ 8.41(d, 2H), 7.96(s, 2H), 7.62(d, 2H), 7.50(d, 4H), 6.95(t, 4H), 6.92(t, 4H), 6.20(d, 4H), 1.81(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.41 (d, 2H), 7.96 (s, 2H), 7.62 (d, 2H), 7.50 (d, 4H), 6.95 (t, 4H), 6.92 ( t, 4H), 6.20 (d, 4H), 1.81 (s, 6H)

Mass: M+1=653
Mass: M + 1 = 653

합성예 17 : 9,9-디메틸-2,7-디(10H-페녹사진-10-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 17: Synthesis of 9,9-dimethyl-2,7-di (10H-phenoxazin-10-yl) -9H-thioxanthene-10,10-

Figure pat00028
Figure pat00028

톨루엔 90ml에 화합물 VII 3.65g(8.8mmol), 10H-페녹사진 3.25g(19.13mmol)을 사용한 것을 제외하고는 합성예 15와 동일한 방법에 의해 목적화합물 2.9g을 얻었다(수율: 53%). (Yield: 53%) was obtained in the same manner as in Synthesis Example 15, except for using 3.65 g (8.8 mmol) of Compound VII and 3.25 g (19.13 mmol) of 10H-phenoxane in 90 ml of toluene.

1H NMR(DMSO-d6, 500Hz): δ 8.43(d, 2H), 7.98(s, 2H), 7.64(d, 2H), 7.53(d, 4H), 6.98(t, 4H), 6.95(t, 4H), 6.25(d, 4H), 1.87(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.43 (d, 2H), 7.98 (s, 2H), 7.64 (d, 2H), 7.53 (d, 4H), 6.98 (t, 4H), 6.95 ( t, 4H), 6.25 (d, 4H), 1.87 (s, 6H)

Mass: M+1=621
Mass: M + 1 = 621

합성예 18 : 2-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-7-(10H-페노티아진-10-일)-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 18: Synthesis of 2- (9,9-dimethylacridine-10 (9H) -yl) -9,9-dimethyl- 7- (10H-phenothiazin-10-yl) -9H-thioxanthene-10 , 10-dioxide

Figure pat00029
Figure pat00029

δ-카르볼린 대신 10H-페노티아진 2.6g을 사용한 것을 제외하고는 합성예 9와 동일한 방법에 의해 목적화합물 2.38g을 얻었다(수율: 35.9%).2.38 g of the objective compound (yield: 35.9%) was obtained in the same manner as in Synthesis Example 9, except that 2.6 g of 10H-phenothiazine was used in place of 8-carboline.

1H NMR(DMSO-d6, 500Hz): δ 8.47(d, 2H), 8.02(s, 2H), 7.68(d, 2H), 7.56(d, 4H), 7.05(t, 4H), 6.98(t, 4H), 6.24(d, 4H), 1.88(s, 6H), 1.62(s, 6H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.47 (d, 2H), 8.02 (s, 2H), 7.68 (d, 2H), 7.56 (d, 4H), 7.05 (t, 4H), 6.98 ( t, 4H), 6.24 (d, 4H), 1.88 (s, 6H), 1.62

Mass: M+1=663
Mass: M + 1 = 663

합성예 19 : 2,7-비스(9,9-디페닐아크리딘-10(9H)-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 19 Synthesis of 2,7-bis (9,9-diphenylacridine-10 (9H) -yl) -9,9-dimethyl-9H-thioxanthene-10,10-

Figure pat00030
Figure pat00030

9,9-디메틸-9,10-디히도로아크리딘 대신 9,9-디페닐-9,10-디히드로아크리딘6.4g(Almadis chemical, 19.13mmol)을 사용한 것을 제외하고는 합성예 15와 동일한 방법에 의해 목적화합물 3.6g을 얻었다(수율: 45%). Synthesis Example 15 was repeated except that 6.9 g (Almadis chemical, 19.13 mmol) of 9,9-diphenyl-9,10-dihydroacridine was used instead of 9,9-dimethyl-9,10- 3.6 g of the aimed compound was obtained by the same method (yield: 45%).

1H NMR(CDCl3, 500Hz): δ 8.29(d, 2H), 7.44(s, 2H), 7.37~7.26(m, 14H), 7.19~7.03(t, 4H), 6.98~6.94(t, 8H), 6.83(d, 8H), 6.4(d, 4H), 1.67(s, 6H) 1 H NMR (CDCl 3, 500Hz ): δ 8.29 (d, 2H), 7.44 (s, 2H), 7.37 ~ 7.26 (m, 14H), 7.19 ~ 7.03 (t, 4H), 6.98 ~ 6.94 (t, 8H ), 6.83 (d, 8H), 6.4 (d, 4H), 1.67 (s, 6H)

Mass: M+1=921
Mass: M + 1 = 921

합성예 20 : 2,7-비스(9,9-디페닐아크리딘-10(9H)-일)-9,9-디페닐-9H-티오잔텐-10,10-디옥시드의 합성Synthesis Example 20 Synthesis of 2,7-bis (9,9-diphenylacridine-10 (9H) -yl) -9,9-diphenyl-9H-thioxanthene-10,10-

Figure pat00031
Figure pat00031

화합물 VIIa 대신 화합물 VIIb 4.75g(8.8mmol)을 사용한 것을 제외하고는 합성예 19와 동일한 방법에 의해 목적화합물 5.97g을 얻었다(수율: 65%). (Yield: 65%) was obtained in the same manner as in Synthesis Example 19, except that 4.75 g (8.8 mmol) of Compound VIIb was used in place of Compound VIIa.

1H NMR(DMSO-d6, 500Hz): δ 8.34(d, 2H), 7.41(s, 2H), 7.33~7.27(m, 18H), 7.25~7.07(t, 8H), 6.85~6.79(t, 10H), 6.67(d, 8H), 6.52(d, 4H) 1 H NMR (DMSO-d 6 , 500Hz): δ 8.34 (d, 2H), 7.41 (s, 2H), 7.33 ~ 7.27 (m, 18H), 7.25 ~ 7.07 (t, 8H), 6.85 ~ 6.79 (t , 10 H), 6.67 (d, 8 H), 6.52 (d, 4 H)

Mass: M+1=1045
Mass: M + 1 = 1045

실시예 2 : 유기발광소자의 특성 평가Example 2: Evaluation of characteristics of organic light emitting device

ITO 박막이 50nm의 두께로 형성된 유리기판을 세척한 후 건조하고 진공증착장비의 기판 홀더에 장착하였다. ITO 박막(Anode) 상에 정공주입층(HIL)/정공수송층(HTL)/여기자차단층(EBL)/유기발광층(EML)/정공저지층(HBL)/전자수송층(ETL)/전자주입층(EIL)/Cathode를 순차적으로 열 증발에 의하여 증착하였다. 유기발광층에는 본 발명의 화합물이 40w% 도핑되도록 조절하였다. 각 층의 두께와 각 층을 이루는 재료는 하기 표 1과 같다. 각 층을 이루는 구성 재료의 구조는 도 1에 도시하였다. 모든 층의 증착이 완료되면 질소 글로브박스(<1ppm의 H2O 및 O2) 내에서 에폭시 수지로 밀봉된 유리 뚜껑으로 캡슐화하고, 수분 게터를 패키지의 내부에 투입하여 소자를 완성하였다. The glass substrate on which the ITO thin film was formed to a thickness of 50 nm was washed, dried and mounted on the substrate holder of the vacuum deposition equipment. (HIL) / hole transport layer (HTL) / exciton blocking layer (EBL) / organic light emitting layer (EML) / hole blocking layer (HBL) / electron transport layer (ETL) / electron injection layer (EIL) on the ITO thin film EIL) / Cathode were sequentially deposited by thermal evaporation. In the organic luminescent layer, the compound of the present invention is contained in an amount of 40% Lt; / RTI &gt; The thickness of each layer and the material constituting each layer are shown in Table 1 below. The structure of the constituent material constituting each layer is shown in Fig. Once the deposition of all layers was completed, encapsulation was carried out with a glass lid sealed with epoxy resin in a nitrogen glove box (<1 ppm H 2 O and O 2 ), and the moisture getter was introduced into the package to complete the device.

Figure pat00032
Figure pat00032

상기 방법에 의해 제작된 유기발광소자에 대하여 도판트에 따른 특성을 평가하여 그 결과를 표 2에 나타내었다. The characteristics of the organic light emitting device fabricated by the above method according to the dopant were evaluated, and the results are shown in Table 2.

Figure pat00033
Figure pat00033

발광효율이 우수한 합성예 19의 화합물이 도핑된 소자에 대하여 도 2 내지 도 4에 각각 구동전압과, 외부양자효율, 최대 발광 파장을 보여주는 그래프를 도시하였다. 비교를 위하여, 고리화되지 않은 설폰화합물인 DMAC-DPS로 동일한 소자를 제조하여 구동전압과 발광효율, 최대 발광 파장을 측정하고 그 결과를 함께 도시하였다. DMAC-DPS의 구조는 도 2의 그래프 내에 기재하였다. 또한 하기 표 3에 합성예 19의 화합물이 도핑된 소자의 특성을 기재하였다. 상기 도면들은 본 발명의 화합물이 구동전압은 고리화되지 않은 설폰화합물과 유사하지만, 외부발광효율이 크게 증가한 것을 보여준다. 또한 최대 발광 파장이 청색 전이에 의해 더 짧은 파장의 빛을 발하는 것을 알 수 있다. FIGS. 2 to 4 show graphs showing driving voltage, external quantum efficiency, and maximum emission wavelength, respectively, for a device doped with the compound of Synthesis Example 19, which has excellent luminous efficiency. For comparison, the same device was fabricated by DMAC-DPS, which is a non-cyclic sulfone compound, and the driving voltage, luminous efficiency and maximum emission wavelength were measured and the results are also shown. The structure of DMAC-DPS is described in the graph of FIG. Table 3 also shows the characteristics of the device doped with the compound of Synthesis Example 19. The figures show that the compounds of the present invention are similar to the non-cyclized sulfonic compounds in the driving voltage, but show a significant increase in the external luminous efficiency. It can also be seen that the maximum emission wavelength emits light of a shorter wavelength due to the blue transition.

Figure pat00034
Figure pat00034

Claims (7)

하기 화학식 1로 표시되는 것을 특징으로 하는 화합물.
Figure pat00035
[화학식 1]
여기서, R1과 R2는 서로 동일하거나, 다를 수 있으며 피리도인돌기, 페닐기, 카르바졸기, 9,9-디메틸-9,10-디히드로아크리딘기, 10H-페네티아진기 또는 10H-페녹사진기이고, R3는 메틸기 또는 페닐기이다.
Lt; RTI ID = 0.0 &gt; (1) &lt; / RTI &gt;
Figure pat00035
[Chemical Formula 1]
Here, R 1 and R 2 may be the same or different from each other, and may be a pyridone ring, a phenyl group, a carbazole group, a 9,9-dimethyl-9,10-dihydraacridine group, a 10H- And R 3 is a methyl group or a phenyl group.
제 1 항에 있어서,
상기 피리도인돌기, 페닐기 또는 카르바졸기는 알킬기, 카르바졸기, 페닐기 또는 디페닐아미노기의 치환기를 갖는 것을 특징으로 하는 화합물.
The method according to claim 1,
Wherein the pyridoyl group, the phenyl group or the carbazole group has a substituent of an alkyl group, a carbazole group, a phenyl group or a diphenylamino group.
제 1 항 또는 제 2 항에 있어서,
상기 화합물은 9,9-디메틸-2,7-비스(5H-피리도[3,2-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드, 2,7-비스(8-(9H-카르바졸-9-일)-5H-피리도[3,2-b]인돌-5-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 2,7-비스(8-(디페닐아미노)-5H-피리도[3,2-b]인돌-5-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 9,9-디메틸-2,7-비스(8-페닐-5H-피리도[3,2-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드, 2,7-비스(4-(5H-피리도[3,2-b]인돌-5-일)페닐)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 9,9-디메틸-2,7-비스(5H-피리도[2,3-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드, 9,9-디메틸-2,7-비스(5H-피리도[3,4-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드, 9,9-디메틸-2,7-비스(5H-피리도[4,3-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드, 2-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-7-(5H-피리도[3,2-b]인돌-5-일)-9H-티오잔텐-10,10-디옥시드, 2-(9H-카르바졸-9-일)-7-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 2,7-디(9H-카르바졸-9-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 2,7-비스(3,6-디-tert-부틸-9H-카르바졸-9-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 2,7-비스(4-(9H-카르바졸-9-일)페닐)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 2,7-디(9H-[3,9'-비카르바졸]-9-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 2,7-비스(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 9,9-디메틸-2,7-디(10H-페노티아진-10-yl)-9H-티오잔텐-10,10-디옥시드, 9,9-디메틸-2,7-디(10H-페녹사진-10-일)-9H-티오잔텐 10,10-디옥시드 및 2-(9,9-디메틸아크리딘-10(9H)-일)-9,9-디메틸-7-(10H-페노티아진-10-일)-9H-티오잔텐 10,10-디옥시드, 2,7-비스(9,9-디페닐아크리딘-10(9H))-9,9-디메틸-9H-티오잔텐-10,10-디옥시드, 2,7-비스(9,9-디페닐아크리딘-10(9H)-일)-9,9-디페닐-9H-티오잔텐-10,10-디옥시드로 이루어진 군으로부터 선택되는 것을 특징으로 하는 화합물.
3. The method according to claim 1 or 2,
The compound is preferably selected from the group consisting of 9,9-dimethyl-2,7-bis (5H-pyrido [3,2- b] indol-5-yl) -9H-thioxanthene-10,10- (9- (9H-carbazol-9-yl) -5H-pyrido [3,2- b] indol-5-yl) -9,9-dimethyl- 9H-thioxanthene-10,10- Pyridyl [3,2-b] indol-5-yl) -9,9-dimethyl-9H-thioxanthene-10,10-dioxide, (8-phenyl-5H-pyrido [3,2-b] indol-5-yl) -9H-thioxanthene-10,10-dioxide, 2,7- Yl) phenyl) -9,9-dimethyl-9H-thioxanthene-10,10-dioxide, 9,9-dimethyl-2 , 7-bis (5H-pyrido [2,3-b] indol-5-yl) -9H-thioxanthene-10,10-dioxide, 9,9- Pyrido [4,3-b] indol-5-yl) -9H-thioxanthene-10,10-dioxide, 9,9- (9H-indol-5-yl) -9H-thioxanthene-10,10-dioxide and 2- (9,9-dimethylacridine- -9H-thioxanthene-10,10-dioxide, 2- (9H-carbazol-9-yl) -7- (9,9- (9H-carbazol-9-yl) -9,9-dimethyl-9H-thioxanthene-10,10- -Dimethyl-9H-thioxanthene-10,10-dioxide, 2,7-bis (3,6-di-tert- butyl-9H-carbazol- (9H-carbazol-9-yl) phenyl) -9,9-dimethyl-9H-thioxanthene-10,10-dioxide, 2, (9H- [3,9'-bicarbazol] -9-yl) -9,9-dimethyl-9H-thioxanthene-10,10-dioxide, 2,7- Dimethylacridine-10 (9H) -yl) -9,9-dimethyl-9H-thioxanthene-10,10-dioxide, 9,9- -yl) -9H-thioxanthene-10,10-dioxide, 9,9-dimethyl-2,7-di (10H- - (9,9-dimethylacridine-10 (9H) -yl) -9,9-dimethyl- 7- (10H-phenothiazin-10-yl) -9H- thioxanthene 10,10- (9,9-diphenylacridine-10 (9H)) - 9,9-dimethyl-9H-thioxanthene-10,10-dioxide, 2,7- 10 (9H) -yl) -9,9-diep &lt; / RTI &gt; -9H-thioxanthene-10,10-dioxide. &Lt; / RTI &gt;
제 1 항 또는 제 2 항에 있어서,
상기 화합물은 역 계간 전이에 의한 열 활성화 지연형광을 나타내는 것을 특징으로 하는 화합물.
3. The method according to claim 1 or 2,
Wherein said compound exhibits thermal activation delayed fluorescence by inverse intercalation.
양극, 음극 및 상기 양극과 음극 사이에 개재된 유기발광층을 포함하는 유기발광소자에 있어서,
제 1 항 또는 제 2 항의 화합물을 상기 유기발광층에 포함하는 것을 특징으로 하는 유기발광소자.
An organic light emitting device comprising an anode, a cathode, and an organic light emitting layer interposed between the anode and the cathode,
The organic light emitting device according to claim 1 or 2, wherein the compound is included in the organic light emitting layer.
제 5 항에 있어서,
제 1 항 또는 제 2 항의 화합물이 도판트로서 포함되며,
인광발광물질을 호스트로서 더 포함하는 것을 특징으로 하는 유기발광소자.
6. The method of claim 5,
A compound of claim 1 or 2 is included as a dopant,
Wherein the organic light emitting device further comprises a phosphorescent material as a host.
제 6 항에 있어서,
상기 인광발광물질의 여기 일중항 에너지와 여기 삼중항 에너지 중 적어도 하나는 상기 도판트의 여기 일중항 에너지보다 높은 값을 갖는 것을 특징으로 하는 유기발광소자.
The method according to claim 6,
Wherein at least one of the excited triplet energies and excited triplet energies of the phosphorescent material has a higher value than the excited triplet energy of the dopant.
KR1020160061249A 2016-05-19 2016-05-19 Noble Compound Exhibiting Thermally Activated Delayed Fluorescence and Organic Light-Emitting device Using the Same KR20170131730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160061249A KR20170131730A (en) 2016-05-19 2016-05-19 Noble Compound Exhibiting Thermally Activated Delayed Fluorescence and Organic Light-Emitting device Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160061249A KR20170131730A (en) 2016-05-19 2016-05-19 Noble Compound Exhibiting Thermally Activated Delayed Fluorescence and Organic Light-Emitting device Using the Same

Publications (1)

Publication Number Publication Date
KR20170131730A true KR20170131730A (en) 2017-11-30

Family

ID=60812597

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160061249A KR20170131730A (en) 2016-05-19 2016-05-19 Noble Compound Exhibiting Thermally Activated Delayed Fluorescence and Organic Light-Emitting device Using the Same

Country Status (1)

Country Link
KR (1) KR20170131730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577513A (en) * 2019-08-28 2019-12-17 武汉华星光电半导体显示技术有限公司 Electroluminescent material, preparation method of electroluminescent material and luminescent device
CN111171012A (en) * 2019-03-21 2020-05-19 广东聚华印刷显示技术有限公司 Thermal activation delayed fluorescent material, preparation method thereof and organic electroluminescent device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171012A (en) * 2019-03-21 2020-05-19 广东聚华印刷显示技术有限公司 Thermal activation delayed fluorescent material, preparation method thereof and organic electroluminescent device
CN110577513A (en) * 2019-08-28 2019-12-17 武汉华星光电半导体显示技术有限公司 Electroluminescent material, preparation method of electroluminescent material and luminescent device
WO2021036140A1 (en) * 2019-08-28 2021-03-04 武汉华星光电半导体显示技术有限公司 Electroluminescent material, preparation method of electroluminescent material and light-emitting device
US11535605B2 (en) 2019-08-28 2022-12-27 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Electroluminesecent material, method for manufacturing the same and a luminesecent device with the electroluminesecent material

Similar Documents

Publication Publication Date Title
JP4773346B2 (en) Mixtures of organic light emitting semiconductors and matrix materials, their use and electronic components comprising said materials.
KR101427605B1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
TWI594984B (en) New compounds and organic light emitting device using the same
JP6097338B2 (en) Phosphorescent host compound and organic light-emitting device containing the same
KR101706659B1 (en) Noble Organic Light-Emitting Compound and Organic Light-Emitting Device Using the Same
KR20120117675A (en) Pyrene derivative compounds and organic light-emitting diode including the same
TW201309675A (en) Compound for organic electroluminescent device and organic electroluminescent devices using the same
CN107556319B (en) Organic electroluminescent compound material and organic electroluminescent device using the same
KR101666826B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
TW201625508A (en) Compounds for organic electroluminescent device and devices using the same
KR101793428B1 (en) Condensed aryl compounds and organic light-diode including the same
KR20150124637A (en) An electroluminescent compound and an electroluminescent device comprising the same
JP2004217557A (en) Carbazole-based compound, charge transport material, and organic electroluminescent device
CN109776334B (en) Organic electroluminescent compounds, method of manufacturing the same and devices using the same
US10224489B2 (en) Compound and organic electronic device using the same
KR20150137266A (en) An electroluminescent compound and an electroluminescent device comprising the same
JP2022551361A (en) Organic light-emitting device, method for producing the same, and composition for organic layer of organic light-emitting device
KR20130121516A (en) Using new alylamine as hole transporting mateial and organic electroluminescent device using the same
KR101311840B1 (en) Novel tetiary aryl amine and organic electroluminescent device using the same
KR20180042944A (en) An electroluminescent compound and an electroluminescent device comprising the same
CN107344923B (en) Organic compound for electric field light-emitting device
KR20130120855A (en) Using thiophen derivative as hole transporting mateial and organic electroluminescent device using the same
KR20120112257A (en) New compounds and organic light-emitting diode including the same
KR101327301B1 (en) Amine derivative as hole transporting material and organic electroluminescent device using the same
KR20170131730A (en) Noble Compound Exhibiting Thermally Activated Delayed Fluorescence and Organic Light-Emitting device Using the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application