KR20170089930A - 필름-냉각식 가스 터빈 구성요소 - Google Patents

필름-냉각식 가스 터빈 구성요소 Download PDF

Info

Publication number
KR20170089930A
KR20170089930A KR1020177019432A KR20177019432A KR20170089930A KR 20170089930 A KR20170089930 A KR 20170089930A KR 1020177019432 A KR1020177019432 A KR 1020177019432A KR 20177019432 A KR20177019432 A KR 20177019432A KR 20170089930 A KR20170089930 A KR 20170089930A
Authority
KR
South Korea
Prior art keywords
diffuser
film
cooling
edge
gas turbine
Prior art date
Application number
KR1020177019432A
Other languages
English (en)
Other versions
KR101834714B1 (ko
Inventor
안드레아스 헤젤하우스
Original Assignee
지멘스 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지멘스 악티엔게젤샤프트 filed Critical 지멘스 악티엔게젤샤프트
Publication of KR20170089930A publication Critical patent/KR20170089930A/ko
Application granted granted Critical
Publication of KR101834714B1 publication Critical patent/KR101834714B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/305Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the pressure side of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/13Two-dimensional trapezoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/21Three-dimensional pyramidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/38Arrangement of components angled, e.g. sweep angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/673
    • Y02T50/676

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

본 발명은 가스 터빈용 필름-냉각식 가스 터빈 구성요소(8)에 관한 것으로, 해당 구성요소는 고온 가스(39)에 노출될 수 있고 다수의 필름-냉각 개구(36)가 외부로 개방되는, 표면(38)을 포함하고, 해당 필름-냉각 개구(36)의 각각은 그것의 유동-관통 방향을 따라, 채널 세그먼트(48) 그리고 채널 세그먼트에 바로 인접한 확산기 세그먼트(46)를 포함하고, 확산기 세그먼트는 상류에 배열되는 확산기 모서리(44), 2개의 길이방향 모서리(42), 및 하류에 배열되는 확산기 모서리(40)를 포함하고, 각각의 길이방향 모서리(42)는 코너 영역(54)에서 하류에 배열되는 확산기 모서리(44)와 교차된다. 효과적인 배열의 필름-냉각 개구(36)를 제공하기 위해, 배열의 냉각 필름은 본 발명에 따르면, 하류에 배열되는 확산기 모서리 뒤에 이전보다 더 근접하게 폐쇄되도록 배열되고, 열(30, 34)의 적어도 2개의 바로 인접한, 바람직하게는 모든 필름-냉각 개구(36)는, 필름-냉각 개구의 각각의 채널 세그먼트(48)의 채널 축(50)이 고온 가스(39)의 국부적인 유동 방향(52)으로부터 경사지는 방식으로 설계되고, 해당 필름-냉각 개구(36)의 바로 인접한 코너 영역들(54)이 고온 가스(39)의 유동 방향(52)으로 관찰될 때에 정렬되는 방식으로 필름-냉각 개구의 확산기 세그먼트(46)가 각각 비대칭이다.

Description

필름-냉각식 가스 터빈 구성요소{FILM-COOLED GAS TURBINE COMPONENT}
본 발명은 가스 터빈용 냉각식 가스 터빈 구성요소에 관한 것으로, 냉각식 가스 터빈 구성요소는 고온 가스에 노출될 수 있고, 다수의 필름-냉각 개구가 외부로 개방되는, 표면을 갖고, 필름-냉각 개구는 고온 가스의 유동 방향에 횡단하는 방향으로 적어도 하나의 열(row)을 형성하도록 조합될 수 있고, 각각의 필름-냉각 개구의 각각은 그것의 관통유동 방향을 따라, 덕트 섹션 그리고 덕트 섹션에 바로 인접한 확산기 섹션을 갖고, 확산기 섹션은 상류 확산기 모서리, 2개의 확산기 길이방향 모서리 및 하류 확산기 모서리를 포함하고, 각각의 길이방향 모서리는 코너 영역에서 하류 확산기 모서리와 교차한다.
종래 기술에서, 상기 도입부에 기술된 필름-냉각 개구를 갖는 다수의 상이한 가스 터빈 구성요소가 공지되어 있다. 예를 들어, 제WO 2013/188645호는 확산기형 영역이 리브(rib)에 의해 분리되는 2개의 베인(vane) 영역으로 전이되는, 필름-냉각 개구를 갖는 터빈 블레이드를 개시한다. 필름-냉각 개구는 재료에 대한 또는 가스 터빈 구성요소에 대한 조기 손상을 방지하여, 미리 결정된 사용 수명이 달성되는 것을 목표로 하여 공지된 방식으로 사용된다. 상세하게는, 가스 터빈 구성요소의 표면 위에 영역 냉각 필름(areal cooling film)을 제공하여, 동작 중에, 이를 따라 유동하는 고온 가스의 손상유발 영향에 대해 표면을 보호하는 것이 필름-냉각 개구에 의해 시도된다. 그러나, 냉각 필름을 형성하는 데 요구되는 냉각 공기가 제공되어야만 한다. 상기 냉각 공기는 종종 가스 터빈의 사이클로부터 추출되고, 그에 의해 추출된 부분은 에너지의 발생에 참여할 수 없다. 이것은 가스 터빈의 효율을 감소시키고, 그에 의해 냉각-공기량을 최대한 낮게 유지하여야 하는 요구가 마찬가지로 존재한다. 나아가, 필름-냉각 구멍의 개수를 적게 유지하여야 하고, 이것은 냉각 공기의 절감 그리고 또한 제조하기 더 용이하고 덜 비싼 가스 터빈 구성요소로 이어진다.
이것에 대한 대안적인 배열이 공개공보 제US 2013/0205803 A1호로부터 공지되어 있다. 상기 문헌에서, 하나의 열의 넓혀진 필름-냉각 구멍은 서로 접촉할 것이 제안된다. 여기에서, 확산기 영역은 모서리를 따라 접촉하고, 확산기 영역은 결국 인접한 확산기의 하류 횡단방향 모서리에서 종료된다. 이것은 개재된 직선형 확산기 출구 모서리를 갖는 근접하게 연속적인 코너의 간극 없는 열을 생성하고, 이는 블레이드 재료를 약화시킬 수 있다.
그러한 필름-냉각 구멍이 가스 터빈 구성요소의 영역 냉각에 그리고 또한 터빈 회전자 블레이드의 자유 단부에 배열되고 가스 터빈의 유동 경로의 고정 하우징 벽에 대해 이동되는 소위 러빙 모서리(rubbing edge)의 냉각에 사용되는 것이 또한 공지되어 있다. 그러한 러빙 모서리는 마찬가지로 고온 가스 영향에 노출되지만, 여기에서, 러빙 모서리의 노출된 위치로 인해 - 러빙 모서리는 대체로 가스 터빈의 유동-경로 경계부에 대략 평행하게 배향되는 터빈 블레이드 벽 표면으로부터 자립형 방식으로 수직으로 돌출함 -, 상기 러빙 모서리는 냉각시키기 비교적 어렵다.
특히, 종래 기술에서, 단지 필름-냉각 개구로부터의 거리 증가에 의해, 그 지점까지 형성된 개별 냉각-공기 필라멘트가 합병되어 영역 냉각 필름을 형성하는 효과가 현저하다. 그러나, 터빈 블레이드의 내부 냉각-덕트 구조 그리고 러빙 모서리의 냉각을 위해 제공되는 필름-냉각 구멍의 이처럼 미리 결정된 위치로 인해, 상기 필름-냉각 구멍은 지금까지는 러빙 모서리에 너무 근접하게 배열되어 간극 없는 냉각 필름을 형성할 수 없었다. 결국, 국부적으로 관찰될 때, 고온-가스 필라멘트가 개별의 냉각-공기 필라멘트들 사이에서 그것들의 합병 전에 발생하였고, 고온-가스 필라멘트는 러빙 모서리에 국부적인 손상을 유발할 수 있었다.
이러한 이유로, 특히 러빙 모서리의 냉각에 사용되는 필름-냉각 개구의 열들에 대해, 필름-냉각 열을 따른 영역적으로 연속적인 냉각이 필름-냉각 개구의 하류에 최대한 근접하게 성취되는 것이 바람직하다.
따라서, 본 발명의 목적은 중단되지 않는 냉각 필름의 형성이 2개의 바로 인접한 필름-냉각 개구들 사이의 영역에 대해서도, 필름-냉각 개구의 하류 모서리에 최대한 근접하게 시작되는, 필름-냉각 배열을 갖는 가스 터빈 구성요소를 제공하는 것이다.
상기 목적을 성취하기 위해, 본 발명은, 고온 가스에 노출될 수 있고 다수의 필름-냉각 개구가 외부로 개방되는, 표면을 갖는 냉각식 가스 터빈 구성요소의 경우에, 필름-냉각 개구는 표면에 근접한 고온 가스의 국부적인 유동 방향에 횡단하는 방향으로 열을 형성하도록 조합될 수 있고, 각각의 필름-냉각 개구의 각각은 그것의 관통유동 방향을 따라, 덕트 섹션 그리고 덕트 섹션에 바로 인접한 확산기 섹션을 갖고, 확산기 섹션은 상류 확산기 모서리, 2개의 확산기 길이방향 모서리 및 하류 확산기 모서리를 포함하고, 각각의 확산기 길이방향 모서리는 코너 영역에서 하류 확산기 모서리와 교차하고, 열의, 적어도 2개의 바로 인접한 필름-냉각 개구, 바람직하게는 모든 필름-냉각 개구는, 각각의 확산기 섹션이 서로에 대해 접촉하지 않는 상태로 바로 인접한 필름-냉각 개구의 바로 인접한 코너 영역이 고온 가스의 국지적 유동 방향으로 관찰될 때 정렬 또는 중첩되는 방식으로, 그것들의 각각의 덕트 섹션의 덕트 축이 표면에 근접한 고온 가스의 국부적인 유동 방향에 대해 측방향으로 경사지도록, 즉 기울어지도록 그리고 그것들의 확산기 섹션이 덕트 축의 연장부(projection)에 대해 각각의 경우에 비대칭으로 형성되도록, 설계되는 점을 제안한다. 여기에서, "측방향으로"는 덕트 축의 배향이 표면에 근접한 고온 가스의 유동 방향에 횡단하는 성분을 갖는다는 것을 의미한다.
여기에서, 확산기 섹션의 비대칭성은 확산기 섹션의 단부까지 연장하는, 덕트 축의 직선형 연장부와 관련된다.
본 발명은 고온 가스의 국부적인 유동 방향에 대한 덕트 축의 경사로 인해, 예상대로, 사실상, 냉각 공기가 고온 가스의 유동 방향에 경사지게 유출된다는 인식을 기초로 하지만, 이것은 보호 냉각 필름의 형성과 관련하여 전혀 중요하지 않다. 이것은 고온-가스 유동의 모멘텀이, 확산기 섹션으로부터 배출된 직후의 그것에 대해 경사지게 나오는 냉각 공기가 고온 가스의 유동 방향을 즉시 취할 정도로 지배적이라는 사실에 기인한다. 동시에, 본 발명은 덕트 축의 측방향으로 경사진 배향에 추가하여, 확산기 섹션이 마찬가지로 비대칭으로 형성될 수 있다는 인식을 기초로 한다. 하류 확산기 모서리는 바로 인접한 필름-냉각 개구의 2개의 바로 인접한 코너 영역의 - 고온 가스의 국부적인 유동 방향에 수직으로 관찰될 때의 - 간격이 실질적으로 감소되거나, 최상의 경우에 심지어 제거될 수 있도록, 확산기의 적합한 개방 각도를 유지하면서, 이전보다 길 수 있고, 그에 의해 인접한 필름-냉각 개구로부터 나오는 냉각 공기의 더 양호한 상호작용이 성취될 수 있다. 특히, 각각의 필름-냉각 개구의 바로 인접한 코너 영역이 고온 가스의 유동 방향으로 관찰될 때에 정렬 또는 중첩되면, 2개의 개별의 냉각-공기 유동이 합병되어 하류 확산기 모서리의 바로 근방에서 폐쇄형 냉각 필름을 형성하고 그것이 유리하다는 것을 입증하였다. 바꿔 말하면, 하류 확산기 모서리와, 각각의 필름-냉각 개구의 개별의 냉각-공기 유동이 실질적으로 간극 없는 그에 따라 영역 냉각 필름을 형성하는, 그것의 하류의, 위치 사이의 간격은 본 발명에 의해 상당히 감소된다.
추가적으로, 개별의 필라멘트들 사이의 고온-가스 영역의 부존재로 인한 고온 가스의 유입(drawing-in)의 감소로 인해, 제안된 발명은 실험에 의해 검증된 방식으로, 필름-냉각 열의 필름 냉각의 측방향으로 평균된 효율을 또한 개선하고, 그에 의해 가스 터빈 구성요소의 재료는 고온-가스 영향에 대해 추가로 보호된다.
유리한 개선예가 임의의 요구된 방식으로 서로 조합될 수 있는, 종속항에 특정된다.
가스 터빈 구성요소의 제1의 유리한 개선예에서, 확산기 섹션은 이등분된 절두형 피라미드의 형상을 갖는 확산기 체적부의 압흔에 해당하고, 체적부는 덕트 축에 대해 회전 각도를 통해 회전되어 확산기 섹션의 비대칭성을 형성한다. 이러한 방식으로, 확산기는 다른 길이방향 모서리에서보다 유입-유동-측 길이방향 모서리에서 블레이드의 표면 내로 더 깊게 오목하고, 그에 의해 확산기 내의 측방향으로 전파되는 냉각-공기 유동은 그것 위로 횡단방향으로 유동하는 고온 가스의 동반 효과에 대해 이전보다 효과적으로 보호된다. 상세하게 말하면, 상기 회전은 공기 유동이 덕트 섹션으로부터 더욱 멀리 떨어진 고려 중인 필름-냉각 개구의 그 코너 영역으로 또한 안내되는 방식으로, 필름-냉각 개구의 외부로 유동하는 냉각 공기의 재분배를 유발한다. 2개의 인접한 확산기의 코너 영역의 정렬된 그리고 아마도 중첩된 배열로 인해, 열은 전체적으로 관찰될 때, 종래 기술의 냉각-공기 필라멘트들 사이에서 초기에 발생하는 고온-가스 필라멘트가 형성될 수 없는 상태로, 하류 확산기 모서리의 실질적으로 바로 하류에서 냉각 공기의 적어도 실질적으로 간극 없는 그리고 균질화된 냉각 필름을 형성할 수 있다.
실험에서, 특히, 15˚의 회전 각도가 특히 유리하다는 것이 밝혀졌다. 그럼에도 불구하고, 단일의 필름-냉각 개구로부터의 냉각 공기의 재분배의 유사 또는 동등한 효과가 15˚ 이외의 수치에 의해 또한 성취된다.
둘 모두의 또는 모든 필름-냉각 개구의 각각의 확산기 섹션의, 상류 확산기 모서리, 1개 또는 2개의 확산기 길이방향 모서리, 및/또는 하류 확산기 모서리가 실질적으로 직선형 형태를 가지면 더욱 바람직하다. 여기에서, "실질적으로"는 경우에 따라 약간 둥근 코너 영역 또는 비-평면형 표면으로 인한 약간의 팽창부(bulge)가 중요하지 않다는 것을 의미한다. 확산기의 측방향 표면 각도, 회전 각도 및 개방 각도에 따라, 하류 확산기 모서리는 국부적인 유동 방향에 대해 약간 횡단방향으로 배열된다.
특히 양호한 실시예에서, 각각의 확산기 섹션의 하류 확산기 모서리는 국부적인 고온-가스 유동 방향과, 90˚와 상이한, 각도를 형성한다. 상기 각도는 바람직하게는 75˚이다. 이것의 결과에 따르면, 그러한 필름-냉각 개구의 열의 경우에, 각각의 확산기 섹션의 하류 코너 영역이 단일의 공통 가상 직선 상에 더 이상 놓이지 않는다. 오히려, 그러면, 사실상, 각각의 확산기 섹션의 좌측 코너 영역 또는 우측 코너 영역 중 어느 하나가 배열되는, 2개의 평행한 가상 직선이 존재한다.
이러한 배열은 종래 기술에서, 단일의 공통 가상 직선 상에 놓인 코너 영역이 비교적 작은 코너 간격을 갖는 일종의 직선형 천공 라인을 형성하고, 그것을 따라 결함 그리고 특히 균열이 비교적 쉽게 일어날 수 있다는 인식을 기초로 한다. 여기에서의 이제 양호한 개선예에서, 열을 따라 관찰될 때에 반복되는 코너 영역은 이제 서로에 대해 오프셋 상태로 배열된다. 결과적으로, 동일한 직선 상에 위치되는 2개의 코너 영역들 사이의 2개의 가상 직선을 따른 간격이 이제 증가되었고, 이것은 이른 단계에 형성되는 간극 없는 냉각 필름을 없애지 않아도, 블레이드 재료의 전술된 약화를 감소시킨다.
각각의 덕트 축이 벽에 근접한 고온 가스의 국부적인 유동 방향에 대해 대략 50˚의 경사 각도만큼 측방향으로 경사지는 것이 더욱 바람직하다. 상기 각도 수치는 경사 각도의 증가에 따라, 첫째로 여전히 효율적인 냉각 필름을 유지하고, 둘째로 하류로 충분한 거리만큼 여전히 연장하는 필름 냉각을 성취하면서, 2개의 바로 인접한 필름-냉각 개구들 사이의 간격이 또한 증가될 수 있기 때문에, 실험에서 특히 유리하다는 것을 입증하였다.
가스 터빈 구성요소는 특히 바람직하게는 블레이드 루트(root), 플랫폼 및 공기역학적인 프로파일을 갖는 블레이드 에어포일(airfoil)을 - 반경 방향을 따라 연속적으로 배열되는 상태로 - 갖는 내부 냉각식 및 필름-냉각식 터빈 회전자 블레이드로서 설계되고, 블레이드 에어포일은 흡입-측 벽 및 압력-측 벽을 포함하고, 벽들 모두는 - 블레이드 에어포일의 프로파일 시위(profile chord)와 관련하여 - 블레이드 에어포일의 선행 모서리로부터 블레이드 에어포일의 후행 모서리까지 연장하고, - 반경 방향과 관련하여 - 허브-측 단부로부터 자유 단부를 갖는 블레이드 에어포일 팁까지 연장하고, 블레이드 에어포일 팁 상에, 적어도 압력측 상에, 러빙 모서리가 제공되고, 필름-냉각 개구의 열들 중 적어도 하나가 러빙 모서리로부터 그것의 냉각을 위해 대략 일정한 거리에서, 프로파일 시위를 따라 압력측에, 있다.
여기에서, 후행 모서리로부터의 거리의 감소에 따라, 2개의 바로 인접한 필름-냉각 개구들 사이의 간격이 증가하고, 및/또는 후행 모서리로부터의 거리의 감소에 따라, 덕트 축이 후행 모서리에 대해 증가하는 각도로 경사지는 것이 특히 유리하다. 특히, 이러한 개선예는 저온 및 고온 필라멘트의 초기의 존재 없이, 비교적 작은 개수의 필름-냉각 개구로의, 러빙 모서리의 완전한 보호를 위한, 프로파일 시위를 따른 냉각 필름의 실질적으로 간극 없는 형성을 가능하게 한다. 이러한 간극 없는 필름 냉각으로 인해, 러빙 모서리의 매우 큰 영역이 영역적인 그리고 간극 없는 방식으로 프로파일 시위를 따라 냉각되는 것이 가능하고, 그에 의해 종래 기술에서 발생하는 마모 현상이 피해질 수 있다. 프로파일 시위를 따른 개별의 필름-냉각 개구의 위치설정 및 배향이 최초로, 벽에 근접한 국부적인 고온-가스 유동 방향을 고려하여 수행되고, 2개의 바로 인접한 필름-냉각 개구들 사이의 간격이 그에 따라 후행 모서리로부터의 거리의 감소에 따라 증가할 수 있으므로, 이전보다 적은 개수의 필름-냉각 개구를 사용하고, 그럼에도 불구하고 종래 기술에서보다 효과적인 냉각 필름을 제공할 수 있는, 필름-냉각 열이 여기에서 제안된다. 이것은 러빙 모서리를 더 효과적으로 보호하고, 냉각-공기 소모를 감소시키고, 터빈 블레이드가 그에 따라 더 비용-효과적으로 제조되게 하는데, 일부의 필름-냉각 구멍의 생성을 위한 지출이 절감될 수 있기 때문이다.
대체로, 본 발명은 그에 따라 고온 가스에 노출될 수 있고, 다수의 필름-냉각 개구가 외부로 개방되는, 표면을 갖고, 각각의 필름-냉각 개구의 각각은 그것의 관통유동 방향을 따라, 덕트 섹션 그리고 덕트 섹션에 바로 인접한 확산기 섹션을 갖고, 확산기 섹션은 상류 확산기 모서리, 2개의 길이방향 모서리 및 하류 확산기 모서리를 포함하고, 각각의 길이방향 모서리는 코너 영역에서 하류 확산기 모서리와 교차하는, 가스 터빈을 위한 냉각식 가스 터빈 구성요소에 관한 것이다. 실질적으로 폐쇄된 냉각-공기 필름을 형성하기 위한 개별의 필름-냉각 개구의 개별의 냉각-공기 필라멘트의 혼합 위치가 이전보다 하류 확산기 모서리에 근접하게 배열되는, 특히 효과적인 배열의 필름-냉각 개구를 제공하기 위해, 열의, 적어도 2개의 바로 인접한 필름-냉각 개구, 바람직하게는 모든 필름-냉각 개구는 그것들의 각각의 덕트 섹션의 덕트 축이 벽에 근접한 고온 가스의 국부적인 유동 방향에 대해 측방향으로 경사지도록 그리고 각각의 확산기 섹션이 서로 접촉하지 않는 상태로, 고온 가스의 유동 방향으로 관찰될 때, 각각의 필름-냉각 개구의 바로 인접한 코너 영역이 정렬, 또는 중첩되는 방식으로, 그것들의 확산기 섹션이 각각의 경우에 비대칭으로 형성되도록 설계될 것이 제안된다.
본 발명의 추가적인 이점 및 특징이 도면의 하기 설명에서, 몇몇의 예시적인 실시예를 기초로 하여, 더 상세하게 논의될 것이다. 도면들은 각각의 경우에 개략적으로 도시된다.
도 1은 사시도로 터빈 회전자 블레이드를 도시한다.
도 2는 본 발명에 따른 필름-냉각 개구의 열의 평면도를 도시한다.
도 3은 종래의 필름-냉각 개구 및 본 발명에 따른 필름-냉각 개구의 국부적인 필름-냉각 효과의 비교를 도시한다.
도 4는 터빈 회전자 블레이드 팁의 영역 내의 벽에 근접한 상이하게 배향된 고온-가스 유동을 도시한다.
도 5는 본 발명에 따라 설계 및 배열되는 필름-냉각 개구를 갖는 터빈 회전자 블레이드의 블레이드 팁의 사시도를 도시한다.
모든 도면에서, 동일한 특징부는 동일한 도면 부호에 의해 지시된다.
가스 터빈의 냉각식 가스 터빈 구성요소(8)의 비-제한적인 예로서, 도 1은 터빈 회전자 블레이드(10)의 사시도를 도시한다. 터빈 회전자 블레이드(10)는 전나무 형상의 단면을 갖는, 블레이드 루트(12), 및 상기 블레이드 루트 상에 배열되는 플랫폼(14)을 포함한다. 플랫폼(14)은 선행 모서리(18) 및 후행 모서리(20)를 갖는, 공기역학적인 프로파일을 갖는 블레이드 에어포일(16)에 의해 인접된다. 가스 터빈 내로의 터빈 회전자 블레이드(10)의 설치된 상황과 관련하여, 블레이드 에어포일(16)은 허브-측 단부(17)로부터 블레이드 팁(32)까지 반경 방향으로 연장한다. 선행 모서리(18)에서, 소위 "샤워 헤드"로서 배열되는 냉각 개구가 제공되고, 냉각 개구로부터 내부에서 유동하는 냉매, 바람직하게는 냉각 공기가 나올 수 있다. 블레이드 에어포일(16)은 흡입-측 벽(22) 및 압력-측 벽(24)을 포함한다. 후행 모서리(20)를 따라, "컷-백(cut-back)으로서 지칭되는, 다수의 후행-모서리 개구(28)가 제공된다. 압력-측 벽(24)의 영역 냉각을 위한 제1 열(30)의 필름-냉각 개구(36)가 선행 모서리(18)와 후행 모서리(20) 사이의 대략 중심에 배열된다. 마찬가지로, 추가적인 필름-냉각 열(34)이 블레이드 팁(32)에 근접한 압력측에 배열된다. 상기 추가적인 필름-냉각 열은 터빈 회전자 블레이드(10)의 (도 1에 더 이상 상세하게 도시되지 않은) 러빙 모서리를 선행 모서리(18)와 후행 모서리(20) 사이의 그것의 길이방향 크기의 주요 부분에 걸쳐 냉각시키는 역할을 한다. 열(30, 34)의 본 발명에 따른 필름-냉각 개구의 기하형상이 아래에 상세하게 더 구체적으로 논의될 것이다.
도 2는 터빈 회전자 블레이드(10)의, 고온 가스(39)에 노출될 수 있는, 표면(38) 내에서 외부로 개방되는, 본 발명에 따른 제1 열(30)의 필름-냉각 개구(36)의 상세 평면도를 도시한다. 도시된 예시적인 실시예에서, 열(30)은 단지 4개의 필름-냉각 개구(36)를 갖는다. 그러나, 열 내의 필름-냉각 개구(36)의 개수는 변할 수 있고, 적어도 2개의 필름-냉각 개구(36)가 제공되기만 하면, 본 발명의 효과를 위해 원칙적으로 중요하지 않다. 여기에서, 필름-냉각 개구들(36) 사이의 간격은 각각의 경우에 동일하다.
고온 가스(39)는 압력-측 벽(24)의 표면(38)을 따라 도시된 방향으로 유동하게 될 수 있다. 벽에 근접한 국부적인 유동 방향(52)은 그에 따라 축(53)에 평행하다.
각각의 필름-냉각 개구(36)는 상류 확산기 모서리(40)에 의해, 2개의 확산기 길이방향 모서리(42)에 의해 그리고 하류 확산기 모서리(44)에 의해 경계가 형성되는, 확산기 섹션(46)을 포함한다. 확산기 섹션(46)의 상류에서, 각각의 필름-냉각 개구(36)는 덕트 섹션(48)을 포함하지만, 여기에서 그것은 4개로 도시된 필름-냉각 개구(36) 중 최상부에만 도시된다. 확산기 섹션과 관련하여, 개념 "상류" 및 "하류"는 고온 가스의 유동 방향과 관련된다.
여기에서, 각각의 확산기 길이방향 모서리(42)는 코너 영역(54)에서 하류 확산기 모서리(44)와 교차하고, 그에 의해, 도 2에 따르면, 각각의 확산기 섹션(46)은 상부 코너 영역 및 하부 코너 영역(54)을 갖는다. 상대적인 표현 "상부" 및 "저부" 그리고 아래에 추가로 언급되는 표현 "좌측" 및 "우측"은 여기에 제공된 도면과만 관련되고, 완전히 제조된 가스 터빈 구성요소 내의 코너 영역의 위치와 관련되지 않는다. 나아가, 표현 "반경방향" 및 "축방향"은 더 이상 상세하게 도시되지 않는 가스 터빈의 기계 축과 관련된다. 이러한 관점에서, 상기 표현은 제한적인 것으로서 이해되지 않아야 하고, 오히려 단지 본 발명의 설명을 위한 역할을 한다.
상류에 배열되는 확산기 모서리(40)는 하류에 배열되는 확산기 모서리(44)보다 짧고, 그에 의해 확산기 모서리(40, 42, 44)에 의해 포위되는 영역은 덕트 섹션(48)의 외부로 유동하고 확산기 섹션(46) 내로 유동하는 냉각 공기를 위한 확산기를 형성하고, 그에 의해, 확산기 내에서, 약간 점 모양의 방식(punctiform fashion)으로 급송되는, 냉각 공기는 2개의 코너 영역들(54) 사이의 영역에 걸쳐 분배된다. 확산기의 개방 각도(δ)는 2개의 확산기 길이방향 모서리들(42) 사이에 포위되고, 이러한 예시적인 실시예에서는 대략 20˚에 이른다.
도시된 예시적인 실시예에서, 확산기의 체적부는 각각의 경우에 10˚의 개방 각도를 갖는 이등분된 절두형 피라미드의 형상을 갖는다. 이것은 3개의 경사형 확산기 표면이 그에 따라 덕트 축(50) 그리고 0˚를 갖는 이등분된 피라미드의 대칭 표면에 대해 10˚의 각도로 개방되는 것을 의미한다.
도시된 예시적인 실시예에서, 사실상, 각각의 필름-냉각 개구(36)에서, 상부 길이방향 모서리(42b) 및 하류 확산기 모서리(44)는 둔각으로 서로 교차하고, 반면에 하부 길이방향 모서리(42a) 및 하류 확산기 모서리(44)는 예각으로 교차하고, 즉 상부 코너 영역(54)은 결국 둔각을 갖고, 하부 코너 영역(54)은 예각을 갖는다. 여기에서, 코너 영역(54)이 반드시 코너로서 형성되지 않아도 된다는 것은 자명하다. 결국, 약간 둥근 코너 영역이 또한 가능하다. 확산기 섹션(46)은 그에 따라 덕트 축(50) 또는 그것의 연장부에 대해 비대칭이다.
도 2의 최상부에 도시된 필름-냉각 개구(36)와 같이, 각각의 다른 필름-냉각 개구(36)가 또한 상부 코너 영역(54a) 및 하부 코너 영역(54b)을 갖는다.
여기에서, 하부 길이방향 모서리(42a)는 측방향 경사로 인해 고온 가스(39)에 의해 또한 충돌되는 2개의 길이방향 모서리 중 그 하나이다. 상기 길이방향 모서리는 결국 유입-유동-측 길이방향 모서리로서 또한 지칭될 수 있고, 여기에서 확산기는 상부 길이방향 모서리(42b) 및 상류 확산기 모서리(40)의 코너 영역(55)에서보다 하부 길이방향 모서리(42a) 및 상류 확산기 모서리(40)의 코너 영역(57)에서 표면(38) 내로 더 깊게 오목하다.
동작 중, 냉매, 바람직하게는 냉각 공기는 냉각될 가스 터빈 구성요소(8)의 저온-가스-측 표면(도시되지 않음)으로부터, 덕트 섹션(48) 및 확산기 섹션(46)을 통해, 냉각될 구성요소 벽의 표면(38)으로 안내된다. 본 발명에 따르면, 이제, 사실상, 2개의 바로 인접한 필름-냉각 개구(36)에서, 그것의 바로 인접한 코너 영역(54)은 제1 필름-냉각 개구(36)(도 2의 최상부에 도시된 필름-냉각 개구)의 하나의 코너 영역(54b)(이러한 경우에 예각을 가짐)이 고온 가스의 유동 방향(52)에 대해 관찰될 때, 상기의 필름-냉각 개구 아래에 배열되는 필름-냉각 개구(36)의 다른 코너 영역(54a)(이러한 경우에 예각을 가짐)의 하류에 배열되도록 설계된다. 이것은 바람직하게는 전체 열의 필름-냉각 개구(36)에 적용된다. 2개 이상의 열이 본 발명에 따른 가스 터빈 구성요소 내에 나란히 배열되는 것이 자명하게 또한 가능하다.
도 3은 첫째로 (도 3의 상부에 도시된) 대칭적인 확산기를 갖는 종래 기술로부터 공지된 필름-냉각 개구에 대한, 그리고 둘째로 (도 3의 저부에 도시된) 본 발명에 따른 필름-냉각 개구(36)에 대한, 필름-냉각 개구의 하류에서의 필름-냉각 효과의 분포를 도시한다. 종래 기술에서 초기에 존재하는 것과 같은, 각각의 개별의 필름-냉각 개구의 냉각-공기 필라멘트(58)는 본 발명에 따른 배열에 의해 회피될 수 있다. 고온 가스(39)의 유동 방향(52)에 수직으로 관찰될 때, 본 발명에 따른 필름-냉각 개구(36)의 하류의 온도 프로파일은 종래 기술에서보다 훨씬 균일하다. 이것은 그에 따라 고온-가스 필라멘트(60)를 실질적으로 갖지 않는, 영역 필름-냉각 유동이 종래 기술에서보다 하류 확산기 모서리(44)에 훨씬 근접하게 형성될 수 있는 효과를 갖는다.
필름-냉각 개구(36) 그리고 그에 따라 특히 그것의 덕트 섹션(48)은 칩-제거 드릴링 공정, 레이저 드릴링, 그렇지 않으면 침식에 의해, 또는 그렇지 않으면 어떤 다른 방식으로 생성될 수 있다. 덕트 섹션(48)의 단면 형상은 통상적으로 원형이다. 다른 형상의 관통유동 단면이 마찬가지로 상정가능하다. 일반적으로, 덕트 섹션(48)은 그것의 덕트 축(50)을 따라 직선형으로 형성되고, 여기에서 덕트 축(50)은 확산기 섹션(46)의 하류 단부까지 그리고 그것을 넘어, 가상 변수로서, 직선형으로 연장한다.
도 2를 재차 참조하면, 본 발명에 따른 필름-냉각 개구(36)는 덕트 축(50)이 고온 가스(39)의 국부적인 유동 방향(52)에 대해 경사 각도(β)만큼 측방향으로 경사지고, 상호 인접한 필름-냉각 개구(36)가 서로 접촉하지 않는 것을 특징으로 한다. 실험에서, 경사 각도(β)=50˚가 특히 유리하다는 것이 밝혀졌다. 그러나, 상기 수치는 제한적이지 않고, 그에 의해 상기 수치도 상이하게 선택된 경계 조건으로 인해 그것으로부터 벗어날 수 있다.
대칭적인 확산기 섹션을 갖는, 종래 기술로부터 공지된 필름-냉각 개구(도 3 참조, 상부에 도시됨)와 관련하여, 본 발명에 따른 확산기 섹션은 비대칭이다. 비대칭성은 덕트 축(50)에 대한 확산기의 회전에 의해 실현된다. 실험에서, 15˚의 크기를 갖는 회전 각도(γ)를 통한 회전이 특히 유리하다는 것이 또한 밝혀졌다. 확산기의 회전은 확산기 섹션(46)이 이등분된 절두형 피라미드의 형상을 갖는 확산기 체적부의 압흔에 해당하고, 그것의 회전이 회전 각도(γ)를 통해 덕트 축(50)에 대해 수행된다는 설명에 의해 또한 기술될 수 있다.
확산기 섹션(46)의 비대칭적인 구성, 경사 각도(β), 선택된 회전 각도(γ) 그리고 표면(38)에 대한 확산기 기부 표면(37)의 둔각 표면 각도(더 이상 상세하게 지시되지 않음)로 인해, 하류에 배치된 직선형 확산기 모서리(44)는 고온 가스(39)의 유동 방향(52)에 수직이 아닌 각도로, 본 예시적인 실시예에서, 대략 75˚의 각도(α)로 배향된다. 이것의 결과에 따르면, - 고온 가스(39)의 유동 방향(52)과 관련하여 - 둔각의 코너 영역(54)은 예각의 코너 영역(54)의 상류에 배열될 수 있다. 이러한 방식으로, 2개의 바로 인접한 필름-냉각 개구들 사이의 간격은 상기 필름-냉각 개구의 확산기 섹션이 서로 접촉하지 않는 상태로, 고온 가스의 유동 방향(52)으로 관찰될 때에, 상기 필름-냉각 개구(36)의 상기 2개의 코너 영역(54)이 정렬될 수 있도록 선택될 수 있다. 이것의 결과에 따르면, 각각의 개별의 필름-냉각 개구의 하류 확산기 모서리(44)의, 고온-가스 유동 방향(52)에 수직으로 측정가능한, 폭(B)(도 3), 그리고 그에 따라 그에 의해 발생될 수 있는 냉각-공기 필라멘트(56)는 상기 냉각-공기 필라멘트가 확산기 유출 모서리(44)의 바로 하류에서 서로 접하고, 경우에 따라 심지어 약간 중첩될 정도로 충분히 클 수 있고, 이러한 목적을 위한 더 큰 밀도의 필름-냉각 개구는 없어도 된다. 더 큰 밀도는 간격(A)(도 3 참조)을 감소시킴으로써 성취될 것이다.
도 4는 블레이드 팁에서의 벽에 근접한 고온 가스의 국부적으로 상이한 유동 방향이 화살표 64에 의해 지시되는, 터빈 회전자 블레이드(10)의 블레이드 에어포일(16)의 사시도를 도시한다. 블레이드 에어포일(16)의 후행 모서리(20)에 점진적으로 더 근접함에 따라, 블레이드 팁(32)에서 발생하는 벽에 근접한 국부적인 고온-가스 유동(64)은 선행 모서리(18)의 근방에서보다 큰 축방향 유동 성분을 갖는다. 결국, 선행 모서리(18)에 더 근접하게 배열되는 고온-가스 유동(64)은 축 방향으로보다 반경 방향으로 많이 배향된다.
블레이드 에어포일 팁에서의 국부적인 고온-가스 유동 방향을 고려하면 그리고 본 발명에 따른 필름-냉각 개구(36)의 도움으로, 영역적으로 간극 없는 필름 냉각이 종래 기술에서보다 확산기 섹션(46)의 하류 모서리(44)에 훨씬 근접하게 제공될 수 있다는 지식을 고려하면, 이러한 배열은 블레이드 에어포일(16)의 러빙 모서리(62)(도 5)의 냉각에 특히 적합하다.
러빙 모서리(62)에 대략 일정한 간격으로 반경방향으로 배열되는, 본 발명에 따른 필름-냉각 열(34)의 경우에, 필름-냉각 개구(36)가 후행 모서리(20)로의 필름-냉각 개구(36)의 위치의 근접에 따라 증가하는 간격(A)으로 프로파일 시위를 따라 분포되는 것이 그에 따라 가능하다. 이러한 경우에 더 좌측에 대해 위치되는, 제1 필름-냉각 개구(36)의 둔각의 코너 영역(54) 그리고 우측으로 그것에 바로 인접하게 배열되는 (제2) 필름-냉각 개구의 예각의 코너 영역(54)은 제1 필름-냉각 개구(36)로부터 나오는 냉각-공기 유동이 제2 필름-냉각 개구(36)의 냉각-공기 유동에 적어도 접하도록 서로에 대해 배열된다는 것을 도 5로부터 알 수 있다. 열(34)의 필름-냉각 개구(36)의 경우에, 또한, 필름-냉각 개구(36)의 덕트 축(50)은 벽에 근접한 고온-가스 유동의 국부적인 변화 방향에 대해 대략 50˚만큼 경사지고, 그에 의해, 후행 모서리(20)에 근접함에 따라, 각각의 덕트 축(50)의 배향도 변화한다. 도 5의 도면의 선택된 관점 그리고 압력측의 아치형 표면으로 인해, 관찰자는 모든 지점에서 수직이 아닌 각도로 오히려, 부분적으로, 접선방향으로 표면을 관찰한다. 결과적으로, 지시된 경사 각도는 상이하게 지각될 수 있다. 그럼에도 불구하고, 이러한 방식으로, 필름-냉각 열의 방향으로 관찰될 때에 실질적으로 간극 없는 냉각 필름이 제공될 수 있다. 기술적으로 정확한 의미로 표현되면, 이것은 하류 확산기 모서리(44)의 하류의 위치에서, 그리고 그것들 사이에서, 국부적인 온도들 사이의 차이가 상당히 감소될 수 있다는 것을 의미한다.
특히, 전술된 개선예에 의해, 터빈 회전자 블레이드(10)의 러빙 모서리(62)가 고온 가스의 손상유발 영향에 대해 보호되는 것이 가능하고, 그에 따라 그것들의 사용 수명이 종래 기술에서 언급된 마모 현상의 발생 없이, 상당히 연장될 수 있다.
본 발명이 양호한 예시적인 실시예를 기초로 하여 더 구체적으로 예시되고 상세하게 기술되었지만, 본 발명은 개시된 예로 제한되지 않고, 다른 변형이 본 발명의 보호 범주로부터 벗어나지 않으면서 본 기술분야의 통상의 기술자에 의해 여기로부터 파생될 수 있다. 예를 들어, 가스 터빈 구성요소는 고온-가스 덕트 벽의 링형 세그먼트로서, 또는 그렇지 않으면 가스 터빈의 연소 챔버 벽으로서 구성될 수 있다.

Claims (9)

  1. 가스 터빈용 필름-냉각식 가스 터빈 구성요소(8)로서, 필름-냉각식 가스 터빈 구성요소는, 고온 가스(39)에 노출될 수 있고 다수의 필름-냉각 개구(36)가 외부로 개방되는, 표면(38)을 갖고, 필름-냉각 개구는 고온 가스(39)의 유동 방향(52)에 횡단하는 방향으로 적어도 하나의 열(30, 34)을 형성하도록 조합될 수 있고, 각각의 필름-냉각 개구(36)의 각각은 그것의 관통유동 방향을 따라, 덕트 섹션(48) 그리고 덕트 섹션(48)에 바로 인접한 확산기 섹션(46)을 갖고, 확산기 섹션은 상류 확산기 모서리(40), 2개의 확산기 길이방향 모서리(42) 및 상류 확산기 모서리(44)를 포함하고, 각각의 확산기 길이방향 모서리(42)는 코너 영역(54)에서 하류 확산기 모서리(44)와 교차하는, 가스 터빈용 필름-냉각식 가스 터빈 구성요소(8)에 있어서,
    각각의 열(30, 34)의 적어도 2개의 바로 인접한 필름-냉각 개구(36), 바람직하게는 모든 필름-냉각 개구(36)는, 각각의 확산기 섹션(46)이 서로 접촉하지 않는 상태로, 고온 가스(39)의 유동 방향(52)으로 관찰될 때, 각각의 필름-냉각 개구(36)의 바로 인접한 코너 영역(54)이 정렬, 또는 중첩되는 방식으로, 그것들의 각각의 덕트 섹션(48)의 덕트 축(50)이 고온 가스(39)의 국부적인 유동 방향(52)에 대해 측방향으로 경사지도록 그리고 그것들의 확산기 섹션(46)이 덕트 축(50)의 연장부에 대해 각각의 경우에 비대칭으로 형성되도록 설계되는 것
    을 특징으로 하는, 가스 터빈 구성요소(8).
  2. 제1항에 있어서, 각각의 확산기 섹션(46)은 이등분된 절두형 피라미드의 형상을 갖는 확산기 체적부의 압흔에 해당하고, 체적부는 덕트 축(50)에 대해 회전 각도(γ)를 통해 회전되어 비대칭성을 형성하는, 가스 터빈 구성요소(8).
  3. 제2항에 있어서, 회전 각도(γ)는 대략 15˚에 이르는, 가스 터빈 구성요소.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 각각의 확산기 섹션(46)의, 상류 확산기 모서리(40), 1개 또는 2개의 길이방향 모서리(42), 및/또는 하류 확산기 모서리(44)는 실질적으로 직선형인, 가스 터빈 구성요소(8).
  5. 제3항에 있어서, 각각의 확산기 섹션(46)의 하류 확산기 모서리(44)는 국부적인 고온-가스 유동 방향과, 90˚와 상이한 각도(α)를 형성하는, 가스 터빈 구성요소(8).
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 각각의 덕트 축(50)은 고온 가스(39)의 전체적인 유동 방향(52)과 대략 50˚의 경사 각도(β)만큼 경사지는, 가스 터빈 구성요소(8).
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 가스 터빈 구성요소가 공기역학적인 프로파일을 갖는 블레이드 에어포일(16)을 갖는 냉각식 터빈 회전자 블레이드(10)로서 설계되고, 블레이드 에어포일(16)은 흡입-측 벽(22) 및 압력-측 벽(24)을 포함하고, 상기 벽들 모두는 - 블레이드 에어포일(16)의 프로파일 시위와 관련하여 - 블레이드 에어포일(16)의 선행 모서리(18)로부터 블레이드 에어포일(16)의 후행 모서리(20)까지 연장하고, - 반경 방향과 관련하여 - 허브-측 단부(17)로부터 자유 단부를 갖는 블레이드 에어포일 팁(32)까지 연장하고, 블레이드 에어포일 팁(32) 상에, 적어도 압력측 상에, 러빙 모서리(62)가 제공되고, 필름-냉각 개구(36)의 열들 중 적어도 하나가 러빙 모서리(62)로부터 그것의 냉각을 위해 대략 일정한 거리에서 프로파일 시위를 따라 압력측에 분포되는, 가스 터빈 구성요소(8).
  8. 제7항에 있어서, 후행 모서리(20)로부터의 거리의 감소에 따라, 2개의 인접한 필름-냉각 개구들(36) 사이의 간격(A)이 증가하는, 터빈 회전자 블레이드(10).
  9. 제7항 또는 제8항에 있어서, 후행 모서리(20)로부터의 거리의 감소에 따라, 덕트 축(50)은 후행 모서리(20)에 대해 증가하는 각도로 경사지는, 터빈 블레이드(10).
KR1020177019432A 2015-01-09 2015-12-16 필름-냉각식 가스 터빈 구성요소 KR101834714B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15150577.3A EP3043025A1 (de) 2015-01-09 2015-01-09 Filmgekühltes Gasturbinenbauteil
EP15150577.3 2015-01-09
PCT/EP2015/079998 WO2016110387A1 (de) 2015-01-09 2015-12-16 Filmgekühltes gasturbinenbauteil

Publications (2)

Publication Number Publication Date
KR20170089930A true KR20170089930A (ko) 2017-08-04
KR101834714B1 KR101834714B1 (ko) 2018-04-13

Family

ID=52349987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177019432A KR101834714B1 (ko) 2015-01-09 2015-12-16 필름-냉각식 가스 터빈 구성요소

Country Status (8)

Country Link
US (1) US10352174B2 (ko)
EP (2) EP3043025A1 (ko)
JP (1) JP6437659B2 (ko)
KR (1) KR101834714B1 (ko)
CN (1) CN107109950B (ko)
MX (1) MX2017008921A (ko)
RU (1) RU2666385C1 (ko)
WO (1) WO2016110387A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170234142A1 (en) * 2016-02-17 2017-08-17 General Electric Company Rotor Blade Trailing Edge Cooling
US10968752B2 (en) * 2018-06-19 2021-04-06 Raytheon Technologies Corporation Turbine airfoil with minicore passage having sloped diffuser orifice
DE102020207646A1 (de) * 2020-06-22 2021-12-23 Siemens Aktiengesellschaft Turbinenschaufel und Verfahren zum Bearbeiten einer solchen
EP4234885A3 (en) * 2021-02-04 2023-09-06 Doosan Enerbility Co., Ltd. Airfoil with a squealer tip cooling system for a turbine blade, corresponding turbine blade, turbine blade assembly, gas turbine and manufacturing method of an airfoil
CN114278388A (zh) * 2021-12-24 2022-04-05 上海电气燃气轮机有限公司 一种透平叶片的气膜冷却结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653983A (en) * 1985-12-23 1987-03-31 United Technologies Corporation Cross-flow film cooling passages
US5382133A (en) 1993-10-15 1995-01-17 United Technologies Corporation High coverage shaped diffuser film hole for thin walls
US5403158A (en) * 1993-12-23 1995-04-04 United Technologies Corporation Aerodynamic tip sealing for rotor blades
JPH1054203A (ja) 1996-05-28 1998-02-24 Toshiba Corp 構造要素
RU2418174C2 (ru) * 2006-11-16 2011-05-10 Снекма Канал охлаждения, выполненный в стенке
JP2011163123A (ja) * 2010-02-04 2011-08-25 Ihi Corp タービン動翼
US8870535B2 (en) * 2012-01-13 2014-10-28 General Electric Company Airfoil
US8522558B1 (en) * 2012-02-15 2013-09-03 United Technologies Corporation Multi-lobed cooling hole array
US10386069B2 (en) 2012-06-13 2019-08-20 General Electric Company Gas turbine engine wall
RU131416U1 (ru) * 2013-01-21 2013-08-20 Юрий Юрьевич Рыкачев Охлаждаемая лопатка газовой турбины
JP6134193B2 (ja) 2013-04-23 2017-05-24 三菱日立パワーシステムズ株式会社 フィルム冷却構造

Also Published As

Publication number Publication date
EP3043025A1 (de) 2016-07-13
EP3207217A1 (de) 2017-08-23
MX2017008921A (es) 2017-10-11
JP2018505339A (ja) 2018-02-22
KR101834714B1 (ko) 2018-04-13
WO2016110387A1 (de) 2016-07-14
CN107109950B (zh) 2020-01-24
US10352174B2 (en) 2019-07-16
RU2666385C1 (ru) 2018-09-07
CN107109950A (zh) 2017-08-29
JP6437659B2 (ja) 2018-12-12
EP3207217B1 (de) 2018-10-10
US20170350257A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
KR101834714B1 (ko) 필름-냉각식 가스 터빈 구성요소
US8297926B2 (en) Turbine blade
US8128366B2 (en) Counter-vortex film cooling hole design
US7887294B1 (en) Turbine airfoil with continuous curved diffusion film holes
CN106795771B (zh) 带有在燃气涡轮翼型的翼弦中部冷却腔中形成近壁冷却通道的插入件的内部冷却系统
US8858175B2 (en) Film hole trench
US6607355B2 (en) Turbine airfoil with enhanced heat transfer
US7311498B2 (en) Microcircuit cooling for blades
EP3124745B1 (en) Turbo-engine component with film cooled wall
EP3205832B1 (en) Blade outer air seal with chevron trip strip
US7607890B2 (en) Robust microcircuits for turbine airfoils
US8851848B1 (en) Turbine blade with showerhead film cooling slots
US10082031B2 (en) Rotor of a turbine of a gas turbine with improved cooling air routing
KR20070006875A (ko) 가스 터빈용 블레이드
EP2792851B1 (en) Turbine blade
US10018053B2 (en) Turbine blade cooling structure
US8961136B1 (en) Turbine airfoil with film cooling hole
US20200190989A1 (en) Turbine blade and gas turbine
KR20160089874A (ko) 가스 터빈에서 고온 가스 채널을 위한 벽
US20160273364A1 (en) Turbine engine component with diffuser holes
CN114450466A (zh) 涡轮叶片
US20160102562A1 (en) Cooling arrangement for gas turbine blade platform
JP6843253B2 (ja) ガスタービンのための高温ガス部及び対応する高温ガス部の壁
US10041352B2 (en) Stator of a turbine of a gas turbine with improved cooling air routing
US8602735B1 (en) Turbine blade with diffuser cooling channel

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant