KR20170088585A - Method for removing titanium oxide in sewage or wastewater - Google Patents
Method for removing titanium oxide in sewage or wastewater Download PDFInfo
- Publication number
- KR20170088585A KR20170088585A KR1020160008645A KR20160008645A KR20170088585A KR 20170088585 A KR20170088585 A KR 20170088585A KR 1020160008645 A KR1020160008645 A KR 1020160008645A KR 20160008645 A KR20160008645 A KR 20160008645A KR 20170088585 A KR20170088585 A KR 20170088585A
- Authority
- KR
- South Korea
- Prior art keywords
- titanium dioxide
- supernatant
- sewage
- wastewater
- water
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- C01B31/08—
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/463—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/20—Activated sludge processes using diffusers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
본 발명은 하수 또는 폐수에 함유된 이산화티탄의 제거 방법에 관한 것으로, 보다 상세하게는 전기응집장치를 최종침전지에 설치하여 상등수에 포함된 이산화티탄을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing titanium dioxide contained in sewage or wastewater, and more particularly, to a method for removing titanium dioxide contained in a supernatant by installing an electrocoagulation apparatus on a final settling basin.
이산화티탄(TiO2)은 열역학적으로 안정하고, 백색도 및 은폐력이 좋아 페인트, 플라스틱, 종이 등의 백색도료의 안료로 대량 이용되고 있다. 또한 자외선 차단능력이 뛰어나 화장품 및 자외선차단용 페인트, 타이어의 충진제, 높은 굴절률을 이용한 광학기기의 도파광(waveguide)과 비반사 코팅막, 렌즈 첨가제 등 생활용품 제조에도 널리 사용되고 있는 물질이다.Titanium dioxide (TiO 2 ) is thermodynamically stable, has good whiteness and hiding power, and is widely used as a pigment for white paint such as paint, plastic, and paper. It is also widely used in the manufacture of household goods such as cosmetics, ultraviolet screening paints, fillers for tires, waveguides and non-reflecting coatings of optical devices using high refractive index, and lens additives.
그러나, 미국 환경보호국(EPA) 산하 국립보건환경영향연구소(NHEERL)에서는 나노입자인 이산화티탄(TiO2)의 위험성을 경고하고 있다. 선크림과 화장품에 널리 이용되는 이산화티탄(TiO2)의 나노입자가 신경세포를 손상시킬 수도 있다는 연구 결과가 환경과학기술지에 발표되었다. However, the National Institute for Environmental Health Research (NHEERL) under the US EPA warns of the risk of nanoparticles of titanium dioxide (TiO 2 ). Nanoparticles of titanium dioxide (TiO 2 ), widely used in sunscreens and cosmetics, can damage nerve cells, according to a paper published in the journal Environmental Science and Technology.
생쥐의 신경세포를 보호하는 면역세포는 외부에서 이물질이 들어오면 활성산소를 분비해 태워버리는데, 이산화티탄(TiO2) 나노입자에 1시간 이상 노출되면 활성산소가 과다 분비되 주변의 신경세포에 손상을 입힌다.Immune cells that protect mouse neurons secrete free radicals when they come in from outside. If they are exposed to titanium dioxide (TiO 2 ) nanoparticles for more than 1 hour, they will over-secrete active oxygen, .
이산화티탄(TiO2) 나노 입자의 독성은 넓은 표면적으로 인하여 반응성이 증대되어 발생되는 것으로 알려져 있다.The toxicity of titanium dioxide (TiO 2 ) nanoparticles is known to occur due to increased reactivity due to its large surface area.
이러한 독성을 포함하는 이산화티탄(TiO2)의 나노입자는 제조 과정에서 작업장에 노출이 되거나 이산화티탄(TiO2)의 나노입자를 포함하는 물품을 사용 및 폐기하는 과정에서 비의도적으로 배출되고 있다. 작업장 노출은 작업장 내 마련된 자체 폐수처리시설이나 외부 폐수처리업체에게 위탁하여 환경 중 노출을 억제하고, 개인 소비자에 의한 노출은 하수처리장으로 유입시켜 비의도적 환경 노출을 억제하고 있으나, 이산화티탄(TiO2)이 함유된 폐수 또는 폐기물이 하·폐수처리장에서 적절하게 처리되더라도 최종 방류수에 미량 함유되어 있다.Titanium dioxide (TiO 2 ) nanoparticles containing this toxicity are unintentionally released during the manufacturing process, either during exposure to the workplace or during use and disposal of articles containing nanoparticles of titanium dioxide (TiO 2 ). Occupational exposure is entrusted to my provided its own waste water treatment plant or to an external wastewater disposal service workshop to suppress the exposure of the environment, exposure by the individual consumer by flowing into the sewage treatment plant. However inhibit unintentional environmental exposure, titanium dioxide (TiO 2 ) Contained in the final effluent is contained in a small amount even if it is properly treated in the wastewater treatment plant.
즉, 통상적인 하·폐수처리공정에서 이산화티탄(TiO2) 나노입자의 제거효율은 90~95%로 예측하고 있으며, 따라서 5~10%의 이산화티탄(TiO2) 나노입자는 방류되어 표층수로 이동하거나 지하수로 침투되거나 침전된다.In other words, the removal efficiency of titanium dioxide (TiO 2 ) nanoparticles is estimated to be 90 to 95% in a conventional wastewater treatment process, so 5 to 10% of the TiO 2 nanoparticles are discharged, Moved or settled into groundwater.
한편, 이산화티탄(TiO2)을 이용한 하·폐수처리 방법에 관해서는 알려져 있으나, 하·폐수에 함유된 미량의 이산화티탄(TiO2) 나노입자를 제거하는 기술은 전무한 상황이다.On the other hand, although a method of treating wastewater using titanium dioxide (TiO 2 ) is known, there is no technique for removing a small amount of titanium dioxide (TiO 2 ) nanoparticles contained in wastewater.
본 발명은 상기 상술한 문제점을 해결하기 위한 것으로서, 하수 또는 폐수에 포함되어 있는 미량의 이산화티탄(TiO2) 나노입자를 효과적으로 제거할 수 있는 이산화티탄의 제거 방법을 제공하는 데 그 목적이 있다.It is an object of the present invention to provide a method for removing titanium dioxide which can effectively remove trace amounts of titanium dioxide (TiO 2 ) nanoparticles contained in sewage or wastewater.
상기 목적을 달성하기 위한 본 발명의 이산화티탄이 함유된 하수 또는 폐수를 처리하는 방법은, 이산화티탄을 포함하는 하수 또는 폐수를 1차 침전지로 유입시켜 흙이나 모래를 침전시키는 1차 침전단계, 상기 1차 침전단계를 거친 하수 또는 폐수를 2차 침전지로 유입 체류시켜, 비중이 물보다 작은 물질은 부유시키고, 비중이 물보다 큰 물질은 침전시키는 2차 침전단계, 상기 2차 침전단계를 거친 하수 또는 폐수를 생물반응조로 유입시켜 폭기시키는 단계, 상기 폭기단계를 거친 생물반응조 유출수를 최종침전지로 유입시켜 슬러지는 침전시키고 상등수는 배출시키는 단계 및 배출된 상등수를 활성탄으로 흡착시키는 단계 및/또는 오존으로 산화시키는 단계를 포함하여 이루어지되, 상기 상등수 배출단계에서 5㎃/㎠ 이상의 전류를 인가하여 이산화티탄 입자끼리 응집시키거나, 상등수에 잔류하는 오염물질과 이산화티탄을 응집시키는 전기응집공정을 실시하는 것을 특징으로 한다.In order to accomplish the above object, the present invention provides a method of treating sewage or wastewater containing titanium dioxide, comprising the steps of: a first precipitation step of introducing soil or wastewater containing titanium dioxide into a first settling tank to deposit soil or sand; A second precipitation step in which sewage or wastewater having undergone the first precipitation step is introduced into a secondary precipitation tank to float the material having a specific gravity smaller than that of water and precipitate the material having a specific gravity larger than that of water, Or wastewater into a bioreactor to aerate the bioreactor effluent; a step of introducing the effluent of the bioreactor that has undergone the aeration step into the final clarifier to settle the sludge and discharge the supernatant; and adsorbing the discharged supernatant with activated carbon and / And a step of oxidizing the titanium dioxide by applying a current of 5 mA / cm < 2 > or more in the supernatant discharging step, To each other or aggregated particles, characterized by carrying out electric coagulation of coagulation of contaminants and titanium dioxide remaining in the supernatant.
또한 본 발명에 따른 이산화티탄이 함유된 하수 또는 폐수를 처리하는 방법은, 상기 전기응집공정에서의 전기응집장치는 상등수의유속이 낮은 최종침전지의 웨어 부근에 설치되는 것을 특징으로 한다.The method for treating titanium dioxide-containing sewage or wastewater according to the present invention is characterized in that the electrocoagulation apparatus in the electrocoagulation step is installed in the vicinity of the weir of the final clarifier having a low flow rate of the supernatant.
본 발명에 따른 하수 또는 폐수를 처리하는 방법에 의하면, 최종침전지의 상등수를 대상으로 전기응집공정을 실시함으로써, 하수 또는 폐수에 포함되어 있는 미량의 이산화티탄 나노입자를 효과적으로 제거할 수 있다는 장점이 있다. According to the method of treating sewage or wastewater according to the present invention, an electrocoagulation process is performed on a supernatant of a final settling basin, thereby effectively removing minute amounts of titanium dioxide nanoparticles contained in sewage or wastewater .
도 1은 본 발명 이산화티탄의 제거방법 흐름도를 나타낸 도면이다.
도 2는 전기응집장치가 설치된 최종침전조의 단면도이다BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing a method for removing titanium dioxide according to the present invention. FIG.
2 is a cross-sectional view of the final settling tank equipped with an electrocoagulation device
이하, 본 발명의 바람직한 실시예를 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명하기로 한다. 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.
이하에서는 첨부된 도 1을 참조하면서, 본 발명의 이산화티탄(TiO2)이 함유된 하수 또는 폐수를 처리하는 방법에 대하여 구체적으로 설명하기로 한다.Hereinafter, a method for treating sewage or wastewater containing titanium dioxide (TiO 2 ) of the present invention will be described in detail with reference to FIG. 1 attached hereto.
본 발명의 이산화티탄(TiO2)이 함유된 하수 또는 폐수를 처리하는 방법은, 이산화티탄(TiO2)을 포함하는 하수 또는 폐수를 1차 침전지로 유입시켜 흙이나 모래를 침전시키는 1차 침전단계, 상기 1차 침전단계를 거친 하수 또는 폐수를 2차 침전지로 유입 체류시켜, 비중이 물보다 작은 물질은 부유시키고, 비중이 물보다 큰 물질은 침전시키는 2차 침전단계, 상기 2차 침전단계를 거친 하수 또는 폐수를 생물반응조로 유입시켜 폭기시키는 단계, 상기 폭기단계를 거친 생물반응조 유출수를 최종침전지로 유입시켜 슬러지는 침전시키고 상등수는 배출시키는 단계 및 배출된 상등수를 활성탄으로 흡착시키는 단계 및/또는 오존으로 산화시키는 단계를 포함하여 이루어지되, 상기 상등수 배출단계에서 5㎃/㎠ 이상의 전류를 인가하여 이산화티탄(TiO2) 입자끼리 응집시키거나, 상등수에 잔류하는 오염물질과 이산화티탄(TiO2)을 응집시키는 전기응집공정을 실시하는 것을 특징으로 한다. The method of treating sewage or wastewater containing titanium dioxide (TiO 2 ) of the present invention is a method of treating sewage or wastewater containing titanium dioxide (TiO 2 ) by introducing sewage or wastewater containing titanium dioxide (TiO 2 ) into a primary settler, A second precipitation step in which sewage or wastewater having undergone the first precipitation step is flowed into a secondary precipitation tank to suspend a material having a specific gravity smaller than that of water and precipitate a material having a specific gravity greater than that of water, A step of introducing the effluent of the bioreactor having passed through the aeration step into the final settling basin to deposit the sludge and discharge the supernatant, and adsorbing the discharged supernatant to the activated carbon and / or jidoe comprises the step of oxidation with ozone, the supernatant was applied over the titanium dioxide 5㎃ / ㎠ current from the output stage (TiO 2) particles caught Increase or aggregation, characterized in that the conducting electric coagulation to flocculate pollutants and titanium dioxide (TiO 2) remaining in the supernatant.
1차 침전단계는 하수관로 등을 통해 들어온 흙이나 모래 등 비교적 비중이 큰 물질을 침전시켜 제거하기 위하여 1차 침전지(침사지)로 유입시키는 단계이다. 즉, 유입되는 하수나 폐수에 포함된 토사류, 협잡물 등을 사전에 제거하여 후속 공정과 슬러지처리 공정에서 야기될 수 있는 침사물의 퇴적에 의한 데드 스페이스(Dead Space)방지, 펌프시설의 마모에 의한 고장 및 배관 폐쇄를 방지하는 것에 그 목적이 있다.The first precipitation step is a step of introducing into the first settling basin (sedimentation bed) in order to precipitate and remove a relatively heavy material such as soil or sand that has entered through a sewage line. That is, it is possible to prevent dead space by depositing sediments which may be caused in the subsequent process and the sludge disposal process by previously removing the sludge and contaminants contained in the inflow sewage or wastewater, Thereby preventing breakdown and piping closure.
이렇게 흙이나 모래가 제거된 하수나 폐수는 2차 침전지로 유입시켜 2차 침전단계를 수행한다. 상기 2차 침전단계에서는 유입된 하수 중의 부유물질(SS; Suspended Solid)을 제거하고, 부유물질(SS)에 의해 유발되는 생물학적 산소요구량(BOD; Biochemical Oxygen Demand)을 함께 제거함으로써, 후처리 공정부하를 줄이고 처리효율을 높이는 게 목적이라 할 수 있다.The sewage or wastewater from which the soil or sand has been removed is introduced into the secondary settling tank to carry out the second settling step. In the secondary precipitation step, SS (Suspended Solid) is removed and the biological oxygen demand (BOD) caused by the suspended solids (SSO) is removed together, And to increase the treatment efficiency.
즉, 상기 2차 침전단계는 2차 침전지 시설을 통해 부유성 고형물을 중력침전으로 제거하는 단계로서, 생물학적 처리공정의 부하감소, 후속처리시설의 시설용량의 감소 및 운전비용의 안정적 절감 등을 목적으로 하고 있는 것이다.That is, the second settling step is a step of removing floating solids by gravitational sedimentation through a secondary settling facility, which is intended to reduce the load of the biological treatment process, reduce the facility capacity of the subsequent treatment facility, and reduce the operating cost stably .
상기 2차 침전단계에서는 하수 또는 폐수를 약 3~4시간 체류시킴으로써 생물학적 산소요구량(BOD; Biochemical Oxygen Demand)의 약 30% 그리고 부유물질(SS; Suspended Solid)을 약 35% 제거할 수 있다.In the second precipitation step, about 30% of the biological oxygen demand (BOD) and about 35% of the suspended solid (SS) can be removed by retaining the sewage or the wastewater for about 3 to 4 hours.
그러나 1차 침전단계와 2차 침전단계를 실시하여도, 유입 하수나 폐수에 포함되어 있는 이산화티탄(TiO2) 나노입자은 상당량이 제거되지 않고 잔류하게 된다.However, even if the first precipitation step and the second precipitation step are carried out, a considerable amount of titanium dioxide (TiO 2 ) nanoparticles contained in the inflow sewage or wastewater remains without being removed.
즉, 이산화티탄(TiO2) 나노입자는 콜로이드 상태이므로 중력에 의해서는 쉽게 침전하지 않고, 또 나노입자의 표면전하가 중성에 가까워 이종 혹은 동종 물질과 결합하지 않기 때문이다. That is, titanium dioxide (TiO 2 ) nanoparticles are in a colloidal state, so they are not easily precipitated by gravity, and the surface charge of the nanoparticles is close to neutrality, so that they do not bond with other species or the like.
이렇게 이산화티탄(TiO2) 나노입자가 함유된 2차 침전유출수는 생물반응조로 유입시켜 폭기시키는 단계가 수행된다.The second settling effluent containing titanium dioxide (TiO 2 ) nanoparticles is then introduced into the bioreactor and aerated.
상기 폭기단계는 호기성 미생물이 유입하수 중에 함유된 유기물, 질소 및 인을 흡착 분해하여 침강성이 좋은 플록(Floc)을 형성하여 최종침전지에서 오니와 처리수로 침강 분리되게 하는 데 그 목적이 있다.In the aeration step, an aerobic microorganism adsorbs and decomposes organic matter, nitrogen, and phosphorus contained in the inflow sewage to form floc having good sedimentation, and is sedimented and separated from sludge and treated water in the final sedimentation basin.
즉, 상기 폭기단계에서는 폭기조를 통해 2차 침전단계를 거친 유출수를 미생물과 함께 폭기(Aeration)시킴으로써, 미생물의 대사작용에 의하여 유기물을 분해, 제거하는 단계인 것이다.That is, in the aeration step, the effluent that has undergone the second precipitation step through the aeration tank is aeration together with the microorganism, thereby decomposing and removing the organic matter by the metabolic action of the microorganism.
다음으로 폭기단계를 거쳐 유기물질이 제거된 생물반응조의 유출수는 최종침전지로 유입시킨다.Next, the effluent of the bioreactor, which has been subjected to the aeration step to remove the organic matter, is introduced into the final settling basin.
상기 최종침전지로 유입되는 하수 또는 폐수는 생물반응조에서의 폭기단계 과정에서 생성된 활성슬러지와 처리수를 고액 분리함으로써, 깨끗한 방류수를 얻는 것에 그 목적이 있다.The purpose of the sewage or wastewater flowing into the final sedimentation basin is to obtain the purified effluent by solid-liquid separation of the activated sludge and treated water produced during the aeration step in the bioreactor.
이처럼 미생물과 하수는 최종침전지를 거치면서 고액 분리되어 상등수는 방류되며, 침전된 슬러지는 일부 폭기조로 반송되어 미생물 농도를 유지하는 데 이용되고, 나머지는 슬러지 처리시설을 거쳐 처리되게 되는 것이다.Thus, the microorganisms and the sewage are separated by solid-liquid separation through the final settling basin, and the supernatant is discharged. The settled sludge is returned to a partial aeration tank to maintain the microorganism concentration, and the remaining sludge is treated through the sludge treatment facility.
여기서, 상기 상등수 배출단계에서는 5㎃/㎠ 이상의 전류를 인가하여 이산화티탄(TiO2) 입자끼리 응집시키거나, 상등수에 잔류하는 오염물질과 이산화티탄을 응집시키는 전기응집공정을 실시한다.Here, in the step of discharging the supernatant, an electric current of 5 mA / cm 2 or more is applied to agglomerate the titanium dioxide (TiO 2 ) particles or an electrocoagulation process in which the contaminants remaining in the supernatant and the titanium dioxide are agglomerated.
상기한 전기응집공정은 본 발명의 주요 특징부에 해당되며, 전기응집을 통하여 상등수에 잔류하는 미량의 이산화티탄(TiO2) 나노입자를 완벽하게 제거할 수 있다. The above-described electrocoagulation process corresponds to a main feature of the present invention, and it is possible to completely remove minute amounts of titanium dioxide (TiO 2 ) nanoparticles remaining in the supernatant through electrocoagulation.
즉, 이산화티탄(TiO2) 나노입자가 포함된 상등수에 전기응집을 실시하게 되면, 이산화티탄(TiO2) 나노입자 표면은 -30mV이상의 전하를 띄게 되고, 이러한 표면 전하로 인해 이산화티탄(TiO2)끼리 서로 응집하거나 상등수 내 오염물질과 결합함으로써 입자가 성장하고, 결과적으로 자중에 의해 침전하게 되는 것이다.In other words, titanium dioxide (TiO 2) When performing electric coagulation to supernatant containing the nanoparticles, titanium dioxide (TiO 2) nanoparticles surface is significantly more than the charge -30mV, due to this surface charge of titanium dioxide (TiO 2 ) Coalesce with each other or bind with pollutants in the supernatant, and as a result, they are precipitated by their own weight.
특히, 전기응집공정에 의한 이산화티탄(TiO2) 나노입자를 더욱 효과적으로 제거하기 위하여, 본 발명에서는 침전조 웨어 부근에 전기응집장치를 설치할 수 있다.Particularly, in order to more effectively remove titanium dioxide (TiO 2 ) nanoparticles by the electrocoagulation process, an electrocoagulation apparatus can be installed in the vicinity of the precipitation tank in the present invention.
일반적으로 침전조의 웨어 부근은 미세 입자가 상등수로 배출되지 않도록 유속이 매우 낮고, 이러한 낮은 유속은 전기응집장치로부터 인가되는 전류가 낮아도 이산화티탄(TiO2) 나노입자의 전하를 용이하게 조절할 수 있기 때문이다.In general, in the vicinity of the settling tank, the flow rate is very low so that the fine particles are not discharged into the supernatant, and this low flow rate can easily control the charge of the TiO 2 nanoparticles even if the current applied from the electrocoagulation device is low to be.
즉, 도 2에 도시된 바와 같이, 침전조의 웨어 내측 또는 외측에 전기응집장치가 구비될 수 있으며, 가급적 유속이 낮은 위치에 설치하는 것이 바람직하다. That is, as shown in FIG. 2, an electrocoagulation device may be provided inside or outside the fabric of the settling tank, and it is preferable to install the device at a position where the flow velocity is as low as possible.
한편, 전기응집공정은 구성이 간단하고 조작이 용이하며, 전기 응집에 의하여 형성된 플록은 화학적 응집에 의하여 형성된 것과 비슷하며 여과에 의해 빠르게 분리될 수 있다. 또한 전기응집에 의한 처리수의 TDS(Total Dissolved Solid)는 화학적 응집에 의한 것과 비교하여 더 낮다는 장점을 갖고 있다.On the other hand, the electrocoagulation process is simple in structure and easy to operate, and flocs formed by electrocoagulation are similar to those formed by chemical agglomeration and can be quickly separated by filtration. Also, TDS (Total Dissolved Solid) of treated water by electrocoagulation has an advantage that it is lower than that by chemical aggregation.
아울러, 이러한 전기응집은 온도에 의한 영향이 적고 단위부지 면적당 처리용량이 크기 때문에 생물학적 공정과 비교하였을 때 더 경제적인 것으로 알려져 있다. 특히, 중금속 이온 및 시안화물 이온 등과 같이 생물학적 처리가 어려운 폐수에도 적용할 수 있으며, 상온 상압 조건하에서 처리가 용이하며 계절적 영향을 받지 않는다.In addition, such electrocoagulation is known to be more economical when compared to biological processes because of less influence by temperature and large processing capacity per unit area. In particular, it can be applied to wastewater which is difficult to be biologically treated, such as heavy metal ions and cyanide ions, and is easily treated under normal temperature and pressure conditions and is not seasonally affected.
이 외에도 전기응집에 의하여 발생한 슬러지는 금속수산화물로 구성되어 있기 때문에 결합수분이 적어 침전성과 탈수성이 양호하여 쉽게 고액 분리되는 특징을 갖고 있고, 화학적 약품처리가 필요치 않기 때문에 화학약품에 의한 2차 오염의 가능성이 없다. In addition, since the sludge generated by the electrocoagulation is composed of metal hydroxides, it has low sedimentation and dewatering ability due to low water content and is easily separated into solid and liquid. Since chemical treatment is not required, secondary pollution There is no possibility of.
상기한 전기응집장치는 공지된 기술에 해당되므로 상세한 설명은 생략하기로 한다.The above-described electrocoagulation apparatus corresponds to a known technique, and a detailed description thereof will be omitted.
한편, 최종침전지의 방류수 내에 함유될 수 있는 미량 유기물 등을 완벽하게 제거하기 위하여 고도처리공정을 더 실시할 수 있다.On the other hand, an advanced treatment process can be further performed to completely remove trace organic substances contained in the discharged water of the final clarifier.
상기한 고도처리공정으로는 대표적으로 오존산화공정, 활성탄흡착공정을 들 수 있다.Typical examples of the above-described advanced treatment processes include an ozone oxidation process and an activated carbon adsorption process.
오존산화공정은 오존이 가진 강한 산화력을 이용하여 유기물을 분해 정화하는 처리방식으로, 오존에 의하여 직접 산화되는 경우와 오존 분해과정에서 생성되는 OH라디칼에 의해 산화되는 두 가지 경로를 이용하여 유기물을 제거하게 되는 것이다. 활성탄을 이용한 흡착공정은 무수한 기공이 형성된 활성탄을 이용하여 유기물을 흡착시키거나 활성탄에 서식하는 미생물로 하여금 유기물을 섭취 제거시키는 공정이다.The ozone oxidation process is a treatment method of decomposing and purifying organics by using the strong oxidizing power of ozone. It removes organic matter by using two pathways that are directly oxidized by ozone and oxidized by OH radical generated in ozone decomposition process It will be done. The adsorption process using activated carbon is a process for adsorbing organic substances by using activated carbon in which numerous pores have been formed, or for taking microorganisms in activated carbon to remove organic substances.
상기한 오존산화공정이나 활성탄흡착공정 외에도, 펜톤산화공정, 광촉매산화공정, 분리막여과공정 등 공지된 다수의 고도처리공정이 적용될 수 있으며, 상기한 고도처리공정은 이 분야에서 공지된 단위공정들에 해당되므로 자세한 설명은 생략하기로 한다. In addition to the above-described ozone oxidation process and activated carbon adsorption process, a number of advanced processes such as a Fenton oxidation process, a photocatalytic oxidation process, a separation membrane filtration process, and the like can be applied. Therefore, detailed description will be omitted.
이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to examples.
<< 실시예Example 1> 1>
1차입자의 크기가 나노미터 수준을 보이는 이산화티탄을 포함하는 원수 내에서 이산화티탄을 제거하기 위한 전기응집 실험을 실시하였다.An electrocoagulation experiment was conducted to remove titanium dioxide in the raw water containing titanium dioxide whose primary particle size is nanometer.
판형 철 전극을 갖는 전기반응장치가 설치된 반응조 내에 10ppm의 농도를 갖는 원수를 채우고, 반응조 내의 원수가 10~100cm/sec의 범위로 이동할 수 있도록 펌프로 원수를 10분간 순환시키면서 10 mA/cm2의 전류밀도로 전기응집 처리 후 이산화티탄(TiO2)의 농도를 측정하였다. 그 결과는 표 1과 같다.Filling the raw water having a concentration of 10ppm in a reaction tank an electrical reactor having a plate-like iron electrode installed, the enemy of 10 ~ 100cm / sec 10 mA / cm 2 while 10 minutes circulating the raw water by a pump so as to be movable in the range of within the reaction tank The concentration of titanium dioxide (TiO 2 ) was measured after electrocoagulation treatment at a current density. The results are shown in Table 1.
상기 <표 1>로부터 알 수 있듯이, 원수의 이동속도가 빠를수록 이산화티탄의 제거율이 급격히 낮아지는 것을 확인하였다. As can be seen from Table 1, it was confirmed that the removal rate of titanium dioxide was drastically lowered as the moving speed of raw water was faster.
<< 실시예Example 2> 2>
1차입자의 크기가 나노미터 수준을 보이는 이산화티탄을 포함하는 원수 내에서 이산화티탄을 제거하기 위한 전기응집 실험을 실시하였다.An electrocoagulation experiment was conducted to remove titanium dioxide in the raw water containing titanium dioxide whose primary particle size is nanometer.
판형 철 전극을 갖는 전기반응장치가 설치된 반응조 내에 10ppm의 농도를 갖는 원수를 채우고, 전극에 인가한 전류를 달리하면서 10분간 반응시킨 후의 이산화티탄(TiO2) 농도를 측정하였다. 그 결과는 표 2와 같다.The raw water having a concentration of 10 ppm was filled in a reaction tank equipped with a plate type iron electrode and the concentration of titanium dioxide (TiO 2 ) was measured after reacting for 10 minutes while varying the current applied to the electrode. The results are shown in Table 2.
상기 <표 2>로부터 알 수 있듯이, 전류밀도가 높아질수록 이산화티탄의 제거율이 향상되는 것을 알 수 있다. As can be seen from Table 2, it can be seen that the higher the current density, the higher the removal rate of titanium dioxide.
Claims (2)
상기 1차 침전단계를 거친 하수 또는 폐수를 2차 침전지로 유입 체류시켜, 비중이 물보다 작은 물질은 부유시키고, 비중이 물보다 큰 물질은 침전시키는 2차 침전단계;
상기 2차 침전단계를 거친 하수 또는 폐수를 생물반응조로 유입시켜 폭기시키는 단계;
상기 폭기단계를 거친 생물반응조 유출수를 최종침전지로 유입시켜 슬러지는 침전시키고 상등수는 배출시키는 단계; 및
배출된 상등수를 활성탄으로 흡착시키는 단계 및/또는 오존으로 산화시키는 단계를 포함하여 이루어지되,
상기 상등수 배출단계에서 5㎃/㎠ 이상의 전류를 인가하여 이산화티탄 입자끼리 응집시키거나, 상등수에 잔류하는 오염물질과 이산화티탄을 응집시키는 전기응집공정을 실시하는 것을 특징으로 하는 이산화티탄이 함유된 하수 또는 폐수를 처리하는 방법.
A primary precipitation step of introducing sewage or wastewater containing titanium dioxide into a primary settling basin to deposit soil or sand;
A second precipitation step in which sewage or wastewater having undergone the primary precipitation step is flowed into a secondary settler so that a material having a specific gravity smaller than water is suspended and a material having a specific gravity larger than that of water is precipitated;
Introducing sewage or wastewater having undergone the second precipitation step into a bioreactor to aerate it;
Introducing the bioreactor effluent having passed through the aeration step into the final settling basin to deposit the sludge and discharge the supernatant; And
Adsorbing the discharged supernatant with activated carbon and / or oxidizing it with ozone,
Wherein an electric current of 5 mA / cm < 2 > or more is applied in the step of discharging the supernatant water to coagulate the titanium dioxide particles, or an electrocoagulation process of coagulating the contaminants remaining in the supernatant and the titanium dioxide is carried out. Or treating wastewater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160008645A KR101768989B1 (en) | 2016-01-25 | 2016-01-25 | Method for removing titanium oxide in sewage or wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160008645A KR101768989B1 (en) | 2016-01-25 | 2016-01-25 | Method for removing titanium oxide in sewage or wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170088585A true KR20170088585A (en) | 2017-08-02 |
KR101768989B1 KR101768989B1 (en) | 2017-08-17 |
Family
ID=59651930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160008645A KR101768989B1 (en) | 2016-01-25 | 2016-01-25 | Method for removing titanium oxide in sewage or wastewater |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101768989B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115321673A (en) * | 2022-10-13 | 2022-11-11 | 青岛万慧源环保科技有限公司 | Sludge-membrane symbiotic sewage treatment process technology |
-
2016
- 2016-01-25 KR KR1020160008645A patent/KR101768989B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115321673A (en) * | 2022-10-13 | 2022-11-11 | 青岛万慧源环保科技有限公司 | Sludge-membrane symbiotic sewage treatment process technology |
Also Published As
Publication number | Publication date |
---|---|
KR101768989B1 (en) | 2017-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8663478B2 (en) | Method for treating water by advanced oxidation and ballasted flocculation, and corresponding treatment plant | |
KR101804555B1 (en) | WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof | |
JPS6230597A (en) | Method of separating clarified liquid from biomass on biological treatment of waste water | |
CN103395943B (en) | Sewage treating method | |
CN107739124B (en) | Zero-discharge treatment method for coking wastewater | |
KR100957851B1 (en) | Method of water treatment | |
CN106746181A (en) | A kind of processing method of automobile factory's waste water and application | |
JP2007029826A (en) | Apparatus for treating waste water and method for treating waste water using the apparatus | |
CN104261633A (en) | High-sludge industrial sewage treatment process | |
JP3653422B2 (en) | Waste water treatment method and waste water treatment equipment | |
KR101751250B1 (en) | Water treatment system using flotation reactor using discharge ozone and ozone reactor | |
KR20160085101A (en) | A comprehensive method and system of treating sewage and rainwater | |
KR20060091084A (en) | Treatment method for livestock waste water including highly concentrated organic materials | |
CN110590082A (en) | Textile sewage treatment method | |
KR100801981B1 (en) | Swirl-type press apparatus for separation of solids and liquid | |
KR100842304B1 (en) | Apparatus for purificating the outflow water ofabandoned mine and method for controlling thereof | |
KR101768989B1 (en) | Method for removing titanium oxide in sewage or wastewater | |
CN104817229A (en) | Bamboo product waste water treatment system | |
CN107840495A (en) | A kind of processing method of crude oil electric desalting waste water | |
KR101646590B1 (en) | Method for treating recycle water of wastewater treatment | |
KR20140099060A (en) | Highrate clarifier filtration and tunnel construction wastewater treatment system using the same | |
JP2005199248A (en) | Raw water treatment process | |
Muhaba et al. | Application of petrochemical wastewater treatment processes | |
JP2016193386A (en) | Method for forming aerobic granule, apparatus for forming aerobic granule, wastewater treatment method, and wastewater treatment apparatus | |
KR101710554B1 (en) | Method and Apparatus for treating Effluent of Sewage Treatment Plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |