KR20170063312A - Manufacturing method of lithium-titanium composite reduced in impurities and residual lithium, and lithium-titanium composite using this method - Google Patents

Manufacturing method of lithium-titanium composite reduced in impurities and residual lithium, and lithium-titanium composite using this method Download PDF

Info

Publication number
KR20170063312A
KR20170063312A KR1020150171984A KR20150171984A KR20170063312A KR 20170063312 A KR20170063312 A KR 20170063312A KR 1020150171984 A KR1020150171984 A KR 1020150171984A KR 20150171984 A KR20150171984 A KR 20150171984A KR 20170063312 A KR20170063312 A KR 20170063312A
Authority
KR
South Korea
Prior art keywords
lithium
titanium compound
residual
impurities
titanium composite
Prior art date
Application number
KR1020150171984A
Other languages
Korean (ko)
Inventor
최수봉
강춘구
최정은
이재안
김정한
Original Assignee
주식회사 포스코이에스엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코이에스엠 filed Critical 주식회사 포스코이에스엠
Publication of KR20170063312A publication Critical patent/KR20170063312A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 리튬티탄 화합물의 제조 방법 및 이에 의하여 제조된 리튬티탄 화합물에 관한 것으로서, 더욱 상세하게는 표면 처리에 의해 불순물 및 잔류 리튬이 감소된 리튬티탄 화합물의 제조 방법 및 이에 의하여 제조된 리튬티탄 화합물에 관한 것이다. The present invention relates to a process for producing a lithium titanium compound and a lithium titanium compound produced thereby, and more particularly to a process for producing a lithium titanium compound in which impurities and residual lithium are reduced by surface treatment, and a process for producing a lithium titanium compound .

Description

불순물 및 잔류 리튬이 감소된 리튬 티탄 화합물의 제조 방법 및 이에 의하여 제조된 리튬 티탄 화합물{MANUFACTURING METHOD OF LITHIUM-TITANIUM COMPOSITE REDUCED IN IMPURITIES AND RESIDUAL LITHIUM, AND LITHIUM-TITANIUM COMPOSITE USING THIS METHOD}TECHNICAL FIELD [0001] The present invention relates to a method for producing a lithium titanium compound having reduced impurities and residual lithium, and a method for producing the lithium titanium compound,

본 발명은 리튬티탄 화합물의 제조 방법 및 이에 의하여 제조된 리튬티탄 화합물에 관한 것으로서, 더욱 상세하게는 표면 처리에 의해 불순물 및 잔류 리튬이 감소된 리튬티탄 화합물의 제조 방법 및 이에 의하여 제조된 리튬티탄 화합물에 관한 것이다. The present invention relates to a process for producing a lithium titanium compound and a lithium titanium compound produced thereby, and more particularly to a process for producing a lithium titanium compound in which impurities and residual lithium are reduced by surface treatment, and a process for producing a lithium titanium compound .

전지의 용도에 따라 비수성 전해질 전지에 다양한 성질들이 요구된다. 예를 들어, 비수성 전해질 전지가 디지탈 카메라에 사용될 때 약 3C의 전류 하에서 방전이 예상되고, 하이브리드 전기 자동차와 같은 차량에 사용될 때 적어도 약 10C의 전류 하에서의 방전이 예상된다. 이러한 상황을 감안하면, 상기 예시한 기술 분야에서 사용되는 비수성 전해질 전지에 고전류 성질이 특히 요구된다. Various properties are required for the non-aqueous electrolyte cell depending on the use of the battery. For example, when a non-aqueous electrolyte cell is used in a digital camera, a discharge is expected at a current of about 3 C, and a discharge at a current of at least about 10 C is expected when used in a vehicle such as a hybrid electric vehicle. Given this situation, high current properties are particularly required for the non-aqueous electrolyte cell used in the above-described technical fields.

현재 상용화된 리튬 이차전지의 대부분은 음극물질로 탄소 재료를 사용하고 있는데 탄소는 전자전도도가 우수하고, 용량이 높은 장점이 있지만, 열에 불안정하고, 전해질과 호환성이 낮으며, 전극표면에 수지상을 쉽게 형성하는 등 안전을 최우선으로 고려해야 하는 자동차에 사용하기에는 어려운 문제점을 가지고 있다. 이로 인해 리튬티탄산화물(LTO)이 탄소를 대체할 음극 물질로 많이 연구되고 있는데, 리튬티탄산화물는 충방전시에 체적변화가 거의 없어 구조적 안정성이 우수하고, 1.5 V (vs Li+/Li)의 비교적 높은 전위로 인해 과충전시에도 수지상을 형성하지 않고, 전해질을 분해시키는 등의 안전문제가 없어, 고속 저온작동조건에 유리한 성질을 가지고 있다. 리튬티탄산화물(Li4Ti5O12, LTO) 물질은 작동 전압이 1.3 ~ 1.6 V로 기존의 탄소계 음극재에 비해 높고 가역 용량은 170 mAh/g정도로 작다는 단점이 있으나, 고속 충방전이 가능하고 비가역 반응이 거의 존재하지 않으며 (초기 효율 95%이상), 반응열이 매우 낮아 안전성이 우수하다는 장점이 있다. 또한 탄소 재료의 경우 이론 밀도가 약 2 g/cm3 정도로 낮으나 Li4Ti5O12 는 이론 밀도가 3.5 g/cm3정도로 높아 부피당 용량은 탄소 물질과 유사한 수준이다Most of commercialized lithium secondary batteries use carbon material as cathode material. Carbon has advantages of high electron conductivity and high capacity, but it is unstable in heat, has low compatibility with electrolyte, It is difficult to use it in automobiles where safety is a top priority. Lithium titanium oxide (LTO) has been studied extensively as a cathode material to replace carbon. Lithium titanium oxide has excellent structural stability due to little change in volume during charging and discharging, and is relatively high in 1.5 V (vs. Li + / Li) There is no safety problem such as decomposition of the electrolyte without forming a resin phase even when the battery is overcharged due to dislocation, which is advantageous for high-speed and low-temperature operating conditions. Lithium titanium oxide (Li 4 Ti 5 O 12 , LTO) material has a disadvantage in that its operating voltage is 1.3 to 1.6 V, which is higher than conventional carbon-based anode materials and has a reversible capacity of about 170 mAh / g. However, (Initial efficiency: 95% or more), and the heat of reaction is very low, which is advantageous in safety. The theoretical density of carbon materials is as low as about 2 g / cm 3 , but the theoretical density of Li 4 Ti 5 O 12 is as high as 3.5 g / cm 3, so the capacity per volume is similar to that of carbon materials

리튬-티탄 복합 산화물들 중, 스피넬형 리튬-티탄 복합 산화물이 특히 유용한 것으로 예상된다. 일본 특허 공개 2001-240498호에서 주성분으로서 스피넬형 리튬-티타늄 복합 산화물을 포함하고, 소량의 불순물 상태로서 앞서 지적한 것들을 포함하고 결정자 직경이 700 내지 800Å인 리튬-티타늄 복합 산화물을 큰 용량(capacity)를 갖는 음극 활성 물질로서 사용할 수 있다고 개시하고 있다.Of the lithium-titanium composite oxides, spinel-type lithium-titanium composite oxides are expected to be particularly useful. Japanese Patent Application Laid-Open No. 2001-240498 discloses a lithium-titanium composite oxide containing a spinel-type lithium-titanium composite oxide as a main component and containing the above-mentioned points as a small amount of impurity state and having a crystallite diameter of 700 to 800 ANGSTROM to have a large capacity As a negative electrode active material.

이러한 LTO의 제조방법으로는, 예를 들어, 고상법, 준고상법 및 졸겔법이 있으며, 이중 준고상법은 고상의 반응원료들을 혼합한 후 슬러리화하여 LTO를 제조하는 방법으로서, 건조, 제1 분쇄, 열처리 및 제2 분쇄 등의 많은 공정을 포함하여 제조공정이 복잡하고 각 공정 단계를 적절하게 제어하지 못할 경우에는 원하는 물성을 갖는 LTO를 제조하기가 어려우며 LTO로부터 불순물을 제거하기가 쉽지 않은 단점이 있다. Examples of the method for producing such LTO include a solid phase method, a quasi-solid phase method and a sol-gel method, and a dual phase superconducting method is a method for preparing LTO by mixing solid phase reaction materials and slurry, It is difficult to produce LTO having desired physical properties and it is not easy to remove impurities from LTO if the manufacturing process is complicated and the respective process steps can not be controlled appropriately, including many processes such as heat treatment and second pulverization have.

이때 상기 리튬 화합물로는 LiOH 및/또는 Li2CO3가 사용되나, 이와 같은 리튬 화합물을 사용할 경우 양극활물질 표면에 LiOH, Li2CO3 형태로 존재하는 잔류 리튬량이 높다는 문제점이 있다LiOH and / or Li 2 CO 3 are used as the lithium compound, but when such a lithium compound is used, there is a problem that the amount of lithium remaining in the form of LiOH and Li 2 CO 3 on the surface of the cathode active material is high

이러한 잔류 리튬 즉, 미반응 LiOH 및 Li2CO3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 고온 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 미반응 LiOH는 극판 제조 전 슬러리 믹싱시 점도가 높아 겔화를 야기시키기도 한다.Such residual lithium, that is, unreacted LiOH and Li 2 CO 3 react with an electrolyte or the like in the battery to cause gas generation and swelling phenomenon, thereby causing a problem that the high-temperature safety is seriously deteriorated. In addition, the unreacted LiOH may cause gelation due to high viscosity in slurry mixing before preparation of the electrode plate.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 불순물 및 잔류 리튬이 감소될 수 있는 새로운 불순물 및 잔류 리튬이 감소된 리튬티탄 화합물의 제조 방법을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a lithium-titanium compound having reduced impurities and residual lithium, which can reduce impurities and residual lithium.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 불순물 및 잔류 리튬이 감소된 리튬티탄 화합물을 제공하는 것을 목적으로 한다. The present invention also aims at providing impurities and residual lithium-reduced lithium titanium compounds produced by the production method of the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

Ti 공급원을 제 1 용매에 분산시키고 분쇄시켜서 슬러리를 제조하는 단계; Dispersing and pulverizing a Ti source in a first solvent to produce a slurry;

상기 슬러리를 분무 건조시켜서 입자를 형성하는 단계; Spray drying the slurry to form particles;

상기 입자에 Li 공급원을 혼합하고 교반하는 단계; Mixing and stirring the Li source with the particles;

상기 입자를 열처리하는 단계; Heat treating the particles;

불순물 및 잔류 리튬 감소를 위하여 표면 처리하는 단계; 및 A surface treatment for reducing impurities and residual lithium; And

300 내지 500℃ 에서 건조 및 열처리 하는 단계; 를 포함하는 Drying and heat-treating at 300 to 500 ° C; Containing

불순물 및 잔류 리튬이 감소된 리튬티탄 화합물의 제조 방법을 제공한다. And a method for producing a lithium titanium compound in which impurities and residual lithium are reduced.

본 발명에 의한 리튬티탄 화합물의 제조 방법에 있어서, 상기 불순물 및 잔류 리튬 감소를 위하여 표면 처리하는 단계에서는 상기 활물질 100 중량부당 제 2 용매 300 중량부를 혼합하고 이산화탄소 기체를 버블링하면서 교반하는 것을 특징으로 한다. In the method for producing a lithium titanium compound according to the present invention, 300 parts by weight of a second solvent is mixed with 100 parts by weight of the active material in the step of surface treatment for reducing impurities and residual lithium, and the carbon dioxide gas is stirred while being bubbled do.

본 발명에 의한 리튬티탄 화합물의 제조 방법에 있어서, 상기 Ti 공급원은 TiO2, TiCl4, TiOCl2, TiOSO4, 및 TiO(OH)2로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 한다. In the method for producing a lithium titanium compound according to the present invention, the Ti source is at least one selected from the group consisting of TiO 2 , TiCl 4 , TiOCl 2 , TiOSO 4 , and TiO (OH) 2 .

본 발명에 의한 리튬티탄 화합물의 제조 방법에 있어서, 상기 Li 공급원은 Li2CO3, LiOH, LiF, Li2SO4, LiNO3, LiCl로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 한다. In the method for producing a lithium titanium compound according to the present invention, the Li source is at least one selected from the group consisting of Li 2 CO 3 , LiOH, LiF, Li 2 SO 4 , LiNO 3 and LiCl.

본 발명에 의한 리튬티탄 화합물의 제조 방법에 있어서, 상기 제 1 용매는 물, 알코올 및 글리세린으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. In the method for producing a lithium titanium compound according to the present invention, the first solvent is selected from the group consisting of water, an alcohol and glycerin.

본 발명에 의한 리튬티탄 화합물의 제조 방법에 있어서, 상기 제 2 용매는 물, 알코올 및 글리세린으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. In the method for producing a lithium titanium compound according to the present invention, the second solvent is selected from the group consisting of water, an alcohol and glycerin.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬티탄 화합물을 제공한다. The present invention also provides a lithium titanium compound produced by the production method of the present invention.

본 발명에 의한 리튬티탄 화합물은 잔류 리튬의 양이 1000 ppm 이하인 것을 특징으로 한다. The lithium titanium compound according to the present invention is characterized in that the amount of residual lithium is 1000 ppm or less.

본 발명의 리튬티탄 화합물의 제조 방법은 이산화탄소를 버블링 하면서 용매에서 교반하는 표면 처리에 의하여 불순물 및 잔류 리튬이 감소된 리튬티탄 화합물을 제조할 수 있다. The method for producing a lithium titanium compound of the present invention can produce a lithium titanium compound in which impurities and residual lithium are reduced by surface treatment with stirring in a solvent while bubbling carbon dioxide.

도 1은 본 발명의 일 실시예 및 비교예에 의하여 제조된 양극활물질의 SEM 사진을 측정한 결과를 나타낸다.
도 2 및 도 3은 본 발명의 일 실시예 및 비교예에 의하여 제조된 양극활물질을 포함하는 전지의 충방전 특성을 측정한 결과를 나타낸다.
1 shows SEM photographs of a cathode active material prepared according to one embodiment of the present invention and a comparative example.
FIG. 2 and FIG. 3 show the results of measurement of charge / discharge characteristics of a battery including a cathode active material prepared according to one embodiment of the present invention and a comparative example.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 더욱 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<실시예 1> &Lt; Example 1 >

출발물질로서 아나타제형 산화티탄 4.9몰을 물에 교반하며 용해하였다. 지르코니아 비드를 사용하여 800 rpm 으로 습식 분쇄한 후, 열풍온도를 250℃, 배기 열풍 온도를 110 ℃로 분무 건조함으로써 입자를 형성하였다. 제조된 입자에 Li 공급원으로서 수산화리튬 4.1 몰을 첨가하고 혼합한 후 800℃ 에서 열처리 하였다.4.9 mol of anatase-type titanium oxide as a starting material was dissolved in water with stirring. The mixture was wet pulverized at 800 rpm using zirconia beads, and then the particles were formed by spray drying the hot air temperature to 250 ° C and the hot air temperature to 110 ° C. 4.1 mol of lithium hydroxide was added as a source of Li to the prepared particles, mixed and then heat-treated at 800 ° C.

열처리된 입자 100 중량부당 300 중량부의 증류수와 혼합하고, 이산화탄소 기체를 5L/min 투입하여 버블링하면서 20분 동안 교반하여 표면처리하고, Filter Press 진행 후 130 ℃에서 24시간 건조 후에 350 ℃로 열처리하였다. The mixture was mixed with 300 parts by weight of distilled water per 100 parts by weight of the heat-treated particles, and subjected to surface treatment by stirring for 20 minutes while bubbling with carbon dioxide gas at a rate of 5 L / min. After the filter press process, the mixture was heated at 130 캜 for 24 hours, .

<비교예> <Comparative Example>

표면 처리 과정을 실시하지 않은 것을 제외하고는 상기 실시예와 동일하게 하여 비교예 입자를 제조하였다. The comparative particles were prepared in the same manner as in the above example, except that the surface treatment was not carried out.

<실험예> <Experimental Example>

상기 실시예 및 비교예에서 제조된 입자에 대해 SEM 사진을 측정하고 그 결과를 도 1 에 나타내었다. SEM photographs of the particles prepared in the above Examples and Comparative Examples were measured and the results are shown in Fig.

<실험예> 잔류 리튬 측정<Experimental Example> Residual lithium measurement

상기 실시예 및 비교예에서 제조된 리튬티탄화합물의 잔류 리튬을 측정하고 아래 표 1 에 나타내었다. The residual lithium of the lithium titanium compound prepared in the above Examples and Comparative Examples was measured and shown in Table 1 below.

Figure pat00001
Figure pat00001

상기 표 1에서 본 발명의 실시예에 의한 경우 LiOH, Li2CO3 에 의한 잔류 리튬의 양이 비교예의 리튬티탄화합물에 비하여 크게 감소하는 것을 알 수 있다. In Table 1, it can be seen that the amount of residual lithium due to LiOH and Li 2 CO 3 in the embodiment of the present invention is greatly reduced as compared with the lithium titanium compound of the comparative example.

<제조예> 코인 전지의 제조&Lt; Preparation Example > Preparation of coin battery

상기 실시예에서 제조된, 표면 처리된 리튬 티탄 복합 산화물과 비교예에서 제조된 표면 처리되지 않은 리튬 티탄 복합 산화물을 각각 양극활물질로 하고, 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막(셀가르드 엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 디메틸 카보네이트가 부피비로 1:2로 혼합된 용매에 LiPF6 1몰 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다. 비교예의 경우도 동일하게 코인 전지를 제조하였다. The surface-treated lithium-titanium composite oxide prepared in the above example and the non-surface-treated lithium-titanium composite oxide prepared in the comparative example were used as the cathode active material, the lithium foil as the counter electrode, and the porous polyethylene film Using a liquid electrolyte prepared by dissolving 1 mole of LiPF6 in a solvent mixture of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2 by volume, using a separator as a separator (manufactured by Nippon Kayaku Co., Ltd., Celgard 2300, thickness: To prepare a coin battery. In the case of the comparative example, a coin battery was similarly manufactured.

<실험예> 초기 충방전 특성 평가&Lt; Experimental Example > Evaluation of initial charge / discharge characteristics

상기 실시예 및 비교예의 리튬 티탄 복합 산화물을 포함하는 테스트셀의 전기화학적 특성을 평가하기 위하여 전기화학 분석장치(TOSCAT 3100, Toyo 사 제품)을 이용하였으며 0.1C 에서 초기 충방전 특성을 측정하였으며 그 결과를 아래 표 2 및 도 2, 도 3에 나타내었다. An electrochemical analyzer (TOSCAT 3100, manufactured by Toyo Co., Ltd.) was used to evaluate the electrochemical characteristics of the test cell including the lithium-titanium composite oxide of Examples and Comparative Examples, and the initial charge-discharge characteristics were measured at 0.1 C, Are shown in Table 2 below, and Figs. 2 and 3.

도 2 및 도 3에서 보는 바와 같이 실시예 1 및 2의 리튬 티탄 복합 산화물을 포함하는 테스트셀의 경우 비교예보다 초기 용량이 4 내지 5 mAh/g 증가함을 알 수 있다. As shown in FIGS. 2 and 3, it can be seen that the initial capacity of the test cell including the lithium-titanium composite oxide of Examples 1 and 2 is increased by 4 to 5 mAh / g compared to the comparative example.

Figure pat00002
Figure pat00002

Claims (8)

Ti 공급원을 제 1 용매에 분산시키고 분쇄시켜서 슬러리를 제조하는 단계;
상기 슬러리를 분무 건조시켜서 입자를 형성하는 단계;
상기 입자에 Li 공급원을 혼합하고 교반하는 단계;
상기 입자를 열처리하는 단계;
불순물 및 잔류 리튬 감소를 위하여 표면 처리하는 단계; 및
300 내지 500℃ 에서 건조 및 열처리 하는 단계; 를 포함하는
불순물 및 잔류 리튬이 감소된 리튬티탄 화합물의 제조 방법
Dispersing and pulverizing a Ti source in a first solvent to produce a slurry;
Spray drying the slurry to form particles;
Mixing and stirring the Li source with the particles;
Heat treating the particles;
A surface treatment for reducing impurities and residual lithium; And
Drying and heat-treating at 300 to 500 ° C; Containing
Method for producing lithium titanium compound with reduced impurities and residual lithium
제 1 항에 있어서,
상기 불순물 및 잔류 리튬 감소를 위하여 표면 처리하는 단계에서는 상기 활물질 100 중량부당 제 2 용매 300 중량부를 혼합하고 이산화탄소 기체를 버블링하면서 교반하는 것인 리튬티탄 화합물의 제조 방법
The method according to claim 1,
In the step of surface treatment for reducing impurities and residual lithium, 300 parts by weight of a second solvent is mixed per 100 parts by weight of the active material, and the carbon dioxide gas is stirred while being bubbled.
제 1 항에 있어서,
상기 Ti 공급원은 TiO2, TiCl4, TiOCl2, TiOSO4, 및 TiO(OH)2로 이루어진 군으로부터 선택된 1종 이상인 것인 리튬티탄 화합물의 제조 방법
The method according to claim 1,
Wherein the Ti source is at least one selected from the group consisting of TiO 2 , TiCl 4 , TiOCl 2 , TiOSO 4 , and TiO (OH) 2
제 1 항에 있어서,
상기 Li 공급원은 Li2CO3, LiOH, LiF, Li2SO4, LiNO3, LiCl로 이루어진 군으로부터 선택된 1종 이상인 것인 리튬티탄 화합물의 제조 방법
The method according to claim 1,
Wherein the Li source is at least one selected from the group consisting of Li 2 CO 3 , LiOH, LiF, Li 2 SO 4 , LiNO 3 , and LiCl
제 1 항에 있어서,
상기 제 1 용매는 물, 알코올 및 글리세린으로 이루어진 그룹에서 선택되는 것인 리튬티탄 화합물의 제조 방법
The method according to claim 1,
Wherein the first solvent is selected from the group consisting of water, alcohol, and glycerin
제 2 항에 있어서,
상기 제 2 용매는 물, 알코올 및 글리세린으로 이루어진 그룹에서 선택되는 것인 리튬티탄 화합물의 제조 방법
3. The method of claim 2,
Wherein the second solvent is selected from the group consisting of water, alcohol and glycerin
제 1 항 내지 제 6 항 중 어느 한 항의 제조 방법에 의하여 제조된 리튬티탄 화합물
A lithium titanium compound produced by the method of any one of claims 1 to 6
제 7 항에 있어서,
상기 리튬티탄 화합물은 잔류 리튬이 1000 ppm 이하인 것인 리튬티탄 화합물

8. The method of claim 7,
The lithium titanium compound is a lithium titanium compound in which residual lithium is 1000 ppm or less

KR1020150171984A 2015-11-27 2015-12-04 Manufacturing method of lithium-titanium composite reduced in impurities and residual lithium, and lithium-titanium composite using this method KR20170063312A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150167900 2015-11-27
KR1020150167900 2015-11-27

Publications (1)

Publication Number Publication Date
KR20170063312A true KR20170063312A (en) 2017-06-08

Family

ID=59221586

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150171984A KR20170063312A (en) 2015-11-27 2015-12-04 Manufacturing method of lithium-titanium composite reduced in impurities and residual lithium, and lithium-titanium composite using this method

Country Status (1)

Country Link
KR (1) KR20170063312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124943A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Positive pole active material for lithium secondary battery and manufacturing method thereof, lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124943A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Positive pole active material for lithium secondary battery and manufacturing method thereof, lithium secondary battery
KR20190077160A (en) * 2017-12-22 2019-07-03 주식회사 포스코 Positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
CN111771302A (en) * 2017-12-22 2020-10-13 株式会社Posco Positive electrode active material for lithium secondary battery, preparation method thereof and lithium secondary battery
EP3731313A4 (en) * 2017-12-22 2021-03-10 Posco Positive pole active material for lithium secondary battery and manufacturing method thereof, lithium secondary battery
CN111771302B (en) * 2017-12-22 2023-08-25 浦项控股股份有限公司 Positive electrode active material of lithium secondary battery, preparation method of positive electrode active material and lithium secondary battery

Similar Documents

Publication Publication Date Title
CN102593456B (en) Cathode active material and preparation method thereof and negative electrode and lithium battery
KR102168980B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
TWI633699B (en) Precursors for lithium transition metal oxide cathode materials for rechargeable batteries
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
KR102136682B1 (en) Layered and spinel lithium titanates and processes for preparing the same
US20120021292A1 (en) Anode active material for lithium secondary battery and method for preparing the same
JP2009206100A (en) Cathode active material and cathode and lithium battery using this
KR102201326B1 (en) Method of manufacturing cathode active material coated titanium dioxide
CN103247795B (en) Li-Ti oxide, its preparation method, the negative pole containing it and the lithium battery including the negative pole
WO2014098937A1 (en) Lmfp cathode materials with improved electrochemical performance
CN112292350B (en) Fluorinated oxides based on Li and Mn
JP2022189427A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR20180111552A (en) Manufacturing method of metal coated cathode active material And cathode active material made by the same
KR102090572B1 (en) Lithium-titanium composite oxide comprising primary particle doped by aluminum
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
KR101883630B1 (en) Titanium oxide composite doped with carbon, and method for preparing the same
KR20170063312A (en) Manufacturing method of lithium-titanium composite reduced in impurities and residual lithium, and lithium-titanium composite using this method
KR101588358B1 (en) Manufacturing method of lithium titanium composite oxide and lithium titanium composite oxide made by same
JP5894337B2 (en) Titanium oxide compound, electrode using the same, and lithium ion secondary battery
KR101632887B1 (en) Cathode active material precursor for lithium rechargeable battery and preparation method thereof, cathode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR101642812B1 (en) Method for manufacturing negative electrode activematerial for rechargable lithium battery
KR102404146B1 (en) Lithium titnate oxide-based anode for lithium-ion batteries doped with iron atoms and preparing method thereof
JP7284244B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
KR101432628B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery comprising same
CN117038995B (en) Positive electrode active material, preparation method thereof, positive electrode plate, battery and electricity utilization device

Legal Events

Date Code Title Description
N231 Notification of change of applicant