KR102404146B1 - Lithium titnate oxide-based anode for lithium-ion batteries doped with iron atoms and preparing method thereof - Google Patents

Lithium titnate oxide-based anode for lithium-ion batteries doped with iron atoms and preparing method thereof Download PDF

Info

Publication number
KR102404146B1
KR102404146B1 KR1020200098009A KR20200098009A KR102404146B1 KR 102404146 B1 KR102404146 B1 KR 102404146B1 KR 1020200098009 A KR1020200098009 A KR 1020200098009A KR 20200098009 A KR20200098009 A KR 20200098009A KR 102404146 B1 KR102404146 B1 KR 102404146B1
Authority
KR
South Korea
Prior art keywords
lithium
iron
titanium oxide
mixture
ion battery
Prior art date
Application number
KR1020200098009A
Other languages
Korean (ko)
Other versions
KR20220017703A (en
Inventor
박수진
양귀균
허영정
이종훈
박지혜
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020200098009A priority Critical patent/KR102404146B1/en
Publication of KR20220017703A publication Critical patent/KR20220017703A/en
Application granted granted Critical
Publication of KR102404146B1 publication Critical patent/KR102404146B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬이온배터리용 음극소재 제조방법에 관한 것으로, 더욱 상세하게는 열화학 환원반응을 이용하여 전기화학적 성능 및 율속특성이 향상된 철 입자가 도입된 리튬-티타늄산화물을 제조하는 방법에 관한 것이다.
본 발명에 따르면, 리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물을 제조하여 질소분위기 하에서 진행되는 열화학환원반응을 통해 종래의 낮은 비충전용량 및 율속특성을 지니고 리튬-티타늄산화물(LTO)에 비하여 우수한 전기화학적 특성을 나타내는 리튬이온배터리용 음극소재를 제공함에 따라, 에너지 문제를 해결을 위한 차세대 전지, 전고체전지와 같은 에너지 저장장치에 폭넓게 응용이 가능한 소재로 이용될 수 있다.
The present invention relates to a method for manufacturing a negative electrode material for a lithium ion battery, and more particularly, to a method for manufacturing lithium-titanium oxide into which iron particles having improved electrochemical performance and rate-rate characteristics are introduced using a thermochemical reduction reaction.
According to the present invention, a mixture of lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ) and iron (Fe) is prepared and the conventional low specific charge capacity and rate-limiting characteristics are achieved through a thermochemical reduction reaction proceeding under a nitrogen atmosphere. A material that can be widely applied to energy storage devices such as next-generation batteries and all-solid-state batteries to solve energy problems by providing an anode material for lithium-ion batteries that has excellent electrochemical properties compared to lithium-titanium oxide (LTO) can be used as

Description

리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재 및 이의 제조방법{LITHIUM TITNATE OXIDE-BASED ANODE FOR LITHIUM-ION BATTERIES DOPED WITH IRON ATOMS AND PREPARING METHOD THEREOF}Anode material for lithium-ion battery doped with iron particles based on lithium-titanium oxide and manufacturing method thereof

본 발명은 에너지 저장장치에 응용할 수 있는 리튬이온배터리용 음극소재 제조법에 관한 것이다. 더욱 상세하게는 리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물의 열화학 환원반응을 이용하여 종래 음극소재에 비하여 우수한 전기화학적 특성 및 율속특성을 나타내는 철 입자가 도입된 리튬-티타늄산화물을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing an anode material for a lithium ion battery that can be applied to an energy storage device. More specifically, by using a thermochemical reduction reaction of a mixture of lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ) and iron (Fe), iron particles exhibiting superior electrochemical properties and rate-rate properties compared to conventional anode materials are produced. It relates to a method for preparing the introduced lithium-titanium oxide.

화석연료의 고갈과 심각한 환경문제에 대한 우려로 현재 에너지 문제에 대한 관심이 급증하고 있다. 이에 따라, 신유형의 녹색전력 및 리튬이온배터리는 높은 에너지밀도, 긴 수명, 비 메모리효과의 장점으로 인해 전기자동차 및 하이브리드 자동차 등에 널리 사용되고 있다. 현재 상용화된 리튬이온배터리용 음극재는 여전히 흑연계 탄소물질이 지배적이나, 그 표면 피막(SEI : Solid electrolyte interface)이 초기 사이클 동안 활성물질 표면에 형성되며, 비가역적인 비충전 용량손실을 초래하게 된다. 또한, 흑연전극 내 리튬이온 삽입에 의한 전위는 금속 리튬전극에서의 것과 가까운 값을 보이며, 성장된 리튬 수지상 결정(dendrite)은 단락을 일으키며 화재를 발생시키는 등의 안전성에 문제를 가져온다. 즉, 효율적이고 안전한 에너지 저장장치의 개발이 시급한 상황이다.Due to the depletion of fossil fuels and concerns about serious environmental problems, interest in energy issues is rapidly increasing. Accordingly, new types of green power and lithium-ion batteries are widely used in electric vehicles and hybrid vehicles due to their advantages of high energy density, long lifespan, and non-memory effect. Graphite-based carbon materials are still dominant in the currently commercialized anode materials for lithium-ion batteries, but a solid electrolyte interface (SEI) is formed on the surface of the active material during the initial cycle, causing irreversible loss of specific charge capacity. In addition, the potential due to insertion of lithium ions in the graphite electrode shows a value close to that in the metallic lithium electrode, and the grown lithium dendrite causes a short circuit and causes safety problems such as fire. That is, there is an urgent need to develop an efficient and safe energy storage device.

스피넬 구조를 지닌 리튬티타늄산화물(LTO)는 리튬이온이 충/방전되는 동안의 부피변화를 무시할 수 있는 ‘zero strain’의 성격을 가져 높은 사이클 안정성을 지니고 있으며, 높은 이론 비충전용량, 저비용 및 친환경적이라는 면에서 음극활물질로서 주목받고 있다. 그러나, LTO는 낮은 비충전용량 및 율속특성의 문제를 갖고 있어, 이러한 문제점을 해결하기 위한 전도성물질의 코팅, 나노크기의 LTO 합성, 격자 내 이온 도핑 등의 여러 가지 방법이 연구되고 있다. 그 중 도핑방법은 도핑된 이온이 전기화학적 성능을 크게 향상시킬 뿐만 아니라, Ti4+는 Ti3+로 환원되어 율속특성과 함께 전기화학적 성능 향상에 큰 기여를 하게 된다.Lithium titanium oxide (LTO) with spinel structure has the characteristics of 'zero strain' that can ignore volume change during charging/discharging of lithium ions and has high cycle stability, high theoretical specific charge capacity, low cost and environment-friendly In this regard, it is attracting attention as an anode active material. However, LTO has problems of low specific charge capacity and rate-rate characteristics, and various methods such as coating of a conductive material, synthesizing nano-sized LTO, and ion doping in the lattice are being studied to solve these problems. Among them, in the doping method, not only do the doped ions greatly improve the electrochemical performance, but also Ti 4+ is reduced to Ti 3+ , which greatly contributes to the improvement of the electrochemical performance as well as the rate-limiting characteristics.

이에 본 발명자는 환원제 및 도펀트로써 원소 Fe를 LTO에 첨가하여, 전기화학적 특성이 향상된 전고체전지에 활용가능한 리튬이온배터리용 음극활물질을 제조하고자 한다.Accordingly, the present inventors intend to prepare an anode active material for a lithium ion battery that can be used in an all-solid-state battery with improved electrochemical properties by adding element Fe to LTO as a reducing agent and a dopant.

본 발명의 목적은, 기존의 낮은 비충전용량 및 율속 특성의 단점을 지니는 리튬티타늄산화물(LTO)의 보완하기 위해 LTO에 철(Fe)을 도핑하여 환원제 및 도펀트로 적용시킴으로써, 리튬이온배터리를 위한 음극활물질을 제조하는 것이다. 위 발명을 통해 비충전용량 및 율속특성을 향상시킴과 동시에 전기화학적 특성을 향상시키고자 한다.An object of the present invention is to apply iron (Fe) to LTO as a reducing agent and a dopant in order to supplement lithium titanium oxide (LTO), which has the disadvantages of the existing low specific charge capacity and rate-rate characteristics, for lithium ion batteries. To prepare an anode active material. Through the above invention, it is intended to improve specific charge capacity and rate-rate characteristics and at the same time improve electrochemical characteristics.

상기 목적을 달성하기 위하여, 본 발명은 열화학환원반응을 이용하여 우수한 전기화학적 특징을 나타내는 리튬이온배터리용 음극소재로서 철 입자가 도핑된 리튬-티타늄산화물을 제조하는 방법으로 1) 리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물을 제조하는 단계; 2) 상기 1)단계에서 제조된 혼합물을 디스크밀을 사용하여 분쇄하는 단계; 3) 상기 2)단계에서 분쇄된 혼합물을 열처리하여 열화학환원하는 단계; 4) 상기 3)단계에서 합성된 물질을 수세 및 건조하는 단계;를 포함한다.In order to achieve the above object, the present invention is a method for producing a lithium-titanium oxide doped with iron particles as a negative electrode material for a lithium ion battery showing excellent electrochemical characteristics using a thermochemical reduction reaction 1) lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ) and iron (Fe) to prepare a mixture; 2) pulverizing the mixture prepared in step 1) using a disk mill; 3) thermochemically reducing the mixture pulverized in step 2) by heat treatment; 4) washing and drying the material synthesized in step 3) with water; includes.

상기 1)단계에서, 상기 철은 상기 리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물 100중량부에 대해 0.01 내지 0.1중량부의 비율로 첨가되는 것일 수 있다.In step 1), the iron may be added in an amount of 0.01 to 0.1 parts by weight based on 100 parts by weight of a mixture of lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ) and iron (Fe).

상기 2)단계에서, 분쇄하는 단계는 디스크밀 혹은 볼밀법을 사용하여 1 내지 60 분 동안 수행하는 것일 수 있다.In step 2), the pulverizing step may be performed for 1 to 60 minutes using a disk mill or a ball mill method.

상기 3)단계에서, 열화학환원하는 단계는 질소, 헬륨 및 아르곤으로 이루어지는 군으로부터 선택된 어느 1종 이상의 불활성 기체를 포함하는 불활성 기체 분위기에서 500 이상 1000℃ 이하의 온도에서 1 내지 24시간 동안 열처리하는 것일 수 있다.In step 3), the thermochemical reduction step is to heat-treat for 1 to 24 hours at a temperature of 500 or more and 1000° C. or less in an inert gas atmosphere containing at least one inert gas selected from the group consisting of nitrogen, helium and argon. can

상기 4)단계에서, 수세하는 단계는 생성물의 수세용액으로서 염산(HCl), 황산(H2SO4) 및 인산(H3PO4)을 포함하는 산성용액으로 이루어지는 군으로부터 선택된 어느 1종 이상의 산성용액을 이용하여 1 내지 10 시간동안 수세하는 것일 수 있다.In step 4), in the step of washing with water, any one or more acids selected from the group consisting of an acidic solution containing hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ) and phosphoric acid (H 3 PO 4 ) as a water washing solution of the product It may be washing with water for 1 to 10 hours using the solution.

상기 4)단계에서, 건조하는 단계는 50 이상 200℃ 이하의 온도에서 1 내지 48 시간 동안 건조하는 것일 수 있다.In step 4), the drying step may be drying at a temperature of 50 or more and 200° C. or less for 1 to 48 hours.

상기와 같은 본 발명에 따르면, 낮은 율속 특성의 한계 지니는 리튬티타늄옥사이드(LTO)의 문제점을 보완하기 위해 철(Fe)과의 열화학환원반응을 이용하여 전기화학적 성능이 크게 향상된 리튬이온배터리용 음극 활물질을 제조할 수 있으며, 나아가 전고체전지용 음극소재로의 활용가능성이 높다. 또한, 우수한 출력밀도와 수명을 통해 에너지저장과 관련한 여러분야에 응용이 가능하며 고부가가치를 창출할 수 있는 효과가 있다. According to the present invention as described above, the anode active material for lithium ion batteries with greatly improved electrochemical performance by using a thermochemical reduction reaction with iron (Fe) to compensate for the problem of lithium titanium oxide (LTO), which has the limitation of low rate characteristics. can be manufactured, and furthermore, it has a high possibility of being used as an anode material for all-solid-state batteries. In addition, it can be applied to various fields related to energy storage through excellent power density and lifespan, and has the effect of creating high added value.

도 1은 본 발명에서 얻어진 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 X선 회절분석 그래프 (X-ray diffraction graph, XRD) 및 주사전자현미경 (scanning electron microscope, SEM) 사진이다.
도 2는 본 발명에서 얻어진 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 X선 광전자 스펙트럼 (X-Ray Photoelectron Spectroscopy, XPS) 그래프이다.
도 3는 본 발명에서 얻어진 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 충방전 성능평가이다.
1 is an X-ray diffraction graph (XRD) and a scanning electron microscope (SEM) of a lithium ion battery anode material doped with lithium-titanium oxide-based iron particles obtained in the present invention; It's a photo.
2 is an X-ray photoelectron spectrum (X-Ray Photoelectron Spectroscopy, XPS) graph of the lithium-titanium oxide-based anode material for a lithium ion battery doped with iron particles obtained in the present invention.
Figure 3 is a lithium-titanium oxide-based iron particles obtained in the present invention doped lithium ion battery anode material for charging and discharging performance evaluation.

이하, 본 발명을 상세히 설명한다. 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재를 제조하는 방법에 있어서, 보다 상세하게는, 1) 리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물을 제조하는 단계; 2) 상기 1)단계에서 제조된 혼합물을 디스크밀을 사용하여 분쇄하는 단계; 3) 상기 2)단계에서 분쇄된 혼합물을 열처리하여 열화학환원하는 단계; 4) 상기 3)단계에서 합성된 물질을 수세 및 건조하는 단계를 제공한다.Hereinafter, the present invention will be described in detail. In the method of manufacturing a lithium-titanium oxide-based anode material for a lithium ion battery doped with iron particles, more specifically, 1) lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ) and iron (Fe) ) to prepare a mixture of; 2) pulverizing the mixture prepared in step 1) using a disk mill; 3) thermochemically reducing the mixture pulverized in step 2) by heat treatment; 4) It provides a step of washing and drying the material synthesized in step 3).

상기 1)단계에서, 상기 철은 상기 리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물 100중량부에 대해 0.01 내지 0.1중량부의 비율로 첨가되는 것일 수 있다.In step 1), the iron may be added in an amount of 0.01 to 0.1 parts by weight based on 100 parts by weight of a mixture of lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ) and iron (Fe).

상기 2)단계에서, 분쇄하는 단계는 디스크밀 혹은 볼밀법을 사용하여 1 내지 60 분 동안 수행하는 것일 수 있다.In step 2), the pulverizing step may be performed for 1 to 60 minutes using a disk mill or a ball mill method.

상기 3)단계에서, 열화학환원하는 단계는 질소, 헬륨 및 아르곤으로 이루어지는 군으로부터 선택된 어느 1종 이상의 불활성 기체를 포함하는 불활성 기체 분위기에서 500 이상 1000℃ 이하의 온도에서 1 내지 24시간 동안 열처리하는 것일 수 있다.In step 3), the thermochemical reduction step is to heat-treat for 1 to 24 hours at a temperature of 500 or more and 1000° C. or less in an inert gas atmosphere containing at least one inert gas selected from the group consisting of nitrogen, helium and argon. can

상기 4)단계에서, 수세하는 단계는 생성물의 수세용액으로서 염산(HCl), 황산(H2SO4) 및 인산(H3PO4)을 포함하는 산성용액으로 이루어지는 군으로부터 선택된 어느 1종 이상의 산성용액을 이용하여 1 내지 10 시간동안 수세하는 것일 수 있다.In step 4), in the step of washing with water, any one or more acids selected from the group consisting of an acidic solution containing hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ) and phosphoric acid (H 3 PO 4 ) as a water washing solution of the product It may be washing with water for 1 to 10 hours using the solution.

상기 4)단계에서, 건조하는 단계는 50 이상 200℃ 이하의 온도에서 1 내지 48 시간 동안 건조하는 것일 수 있다.In step 4), the drying step may be drying at a temperature of 50 or more and 200° C. or less for 1 to 48 hours.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples.

측정예 1. 본 발명에서 제조한 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 형태 및 구조 관찰Measurement Example 1. Observation of shape and structure of anode material for lithium-ion batteries doped with lithium-titanium oxide-based iron particles prepared in the present invention

X-ray diffraction (XRD, Bruker D2 PHASER)와 Scanning Electron Microscopy (SEM, SU8010, Hitach Co., Ltd.)를 통해 본 발명에서 제조한 복합촉매의 형태, 표면구조 및 내부 형상을 관찰하였다.The shape, surface structure and internal shape of the composite catalyst prepared in the present invention were observed through X-ray diffraction (XRD, Bruker D2 PHASER) and Scanning Electron Microscopy (SEM, SU8010, Hitach Co., Ltd.).

측정예 2. 본 발명에서 제조한 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 화학적 분석Measurement Example 2. Chemical analysis of anode material for lithium-ion batteries doped with lithium-titanium oxide-based iron particles prepared in the present invention

X선 광전자 스펙트럼 (X-Ray Photoelectron Spectroscopy, XPS) 그래프를 통해 본 발명에서 제조한 복합촉매의 화학적 구성성분을 분석하였다. The chemical composition of the composite catalyst prepared in the present invention was analyzed through X-Ray Photoelectron Spectroscopy (XPS) graph.

측정예 3. 본 발명에서 제조한 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 충방전성능Measurement Example 3. Lithium-titanium oxide-based iron particles prepared in the present invention doped lithium ion battery charge/discharge performance of anode material

본 발명에 따른 리튬이온배터리용 음속소재의 충방전성능을 평가하기 위하여, 합성된 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재 80 mg을 카본블랙 10 mg, 폴리비닐리덴 플로우라이드(Polyvinylidene fluoride, PVDF)와 혼합한 슬러리를 N-methyl pyrolidone(NMP)에 코팅하여 작업전극을 제조하였다. 제조된 하프셀을 글러브박스에서 조립하였으며, 세퍼레이터 및 카운터 전극으로 각각 Celgard 2400과 리튬을 사용하였다. 전지의 충방전 특성은 LAND CT2001 배터리 측정장치를 사용하여 0에서 3.0 V 전압 범위에서 수행하였다. In order to evaluate the charging and discharging performance of the sonic material for a lithium ion battery according to the present invention, 80 mg of the synthesized lithium-titanium oxide-based anode material for lithium ion batteries doped with iron particles was mixed with 10 mg of carbon black, polyvinylidene flow A working electrode was prepared by coating the slurry mixed with polyvinylidene fluoride (PVDF) on N-methyl pyrolidone (NMP). The prepared half-cell was assembled in a glove box, and Celgard 2400 and lithium were used as separators and counter electrodes, respectively. The charging and discharging characteristics of the battery were performed in a voltage range of 0 to 3.0 V using a LAND CT2001 battery measuring device.

실시예 1. Example 1 .

리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물을 제조하였으며, 이 때 전체 혼합물에 대한 철의 중량비가 0.01이 되도록 혼합하였다. 이후, 디스크밀을 사용하여 5분 동안 전체적으로 분쇄하였다. 그 다음으로 분쇄된 혼합물을 튜브형 퍼니스에 위치시키고, 질소분위기 하에서 800℃에서 10시간동안 열화학환원반응을 진행한 후, 실온까지 냉각시켰다. 상기 열화학환원반응을 통해 제조된 물질을 HCl 수용액을 이용하여 1시간 동안 수세한 뒤, 50℃의 진공오븐에서 24시간 동안 건조시켜 리튬이온배터리 음극소재용 철 입자가 도입된 리튬-티타늄산화물을 제조하였다.A mixture of lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ) and iron (Fe) was prepared, and at this time, the mixture was mixed so that the weight ratio of iron to the entire mixture was 0.01. Then, it was thoroughly pulverized using a disk mill for 5 minutes. Next, the pulverized mixture was placed in a tubular furnace, and after thermochemical reduction reaction was performed at 800° C. for 10 hours under a nitrogen atmosphere, it was cooled to room temperature. The material prepared through the thermochemical reduction reaction was washed with water for 1 hour using an aqueous HCl solution, and then dried in a vacuum oven at 50° C. for 24 hours to prepare lithium-titanium oxide into which iron particles for lithium ion battery negative electrode materials were introduced. did

실시예 2.Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, 전체 혼합물에 대한 철의 중량비가 0.02가 되도록 혼합하여 리튬이온배터리 음극소재용 철 입자가 도입된 리튬-티타늄산화물을 제조하였다.The process was carried out in the same manner as in Example 1, but the mixture was mixed so that the weight ratio of iron to the entire mixture was 0.02 to prepare lithium-titanium oxide into which iron particles for a negative electrode material of a lithium ion battery were introduced.

실시예 3.Example 3.

상기 실시예 1과 동일하게 과정을 실시하되, 전체 혼합물에 대한 철의 중량비가 0.03이 되도록 혼합하여 리튬이온배터리 음극소재용 철 입자가 도입된 리튬-티타늄산화물을 제조하였다.The process was carried out in the same manner as in Example 1, but the mixture was mixed so that the weight ratio of iron to the entire mixture was 0.03 to prepare lithium-titanium oxide into which iron particles for a lithium ion battery negative electrode material were introduced.

실시예 4.Example 4.

상기 실시예 2와 동일하게 과정을 실시하되, 디스크밀을 이용한 분쇄과정을 1분 동안 진행하였고, 열화학환원반응을 500℃에서 24시간 동안 진행하였다. 이후, 12시간의 건조과정이 진행되었다.The same process as in Example 2 was performed, except that the grinding process using a disk mill was carried out for 1 minute, and the thermochemical reduction reaction was carried out at 500° C. for 24 hours. After that, a drying process for 12 hours was performed.

실시예 5.Example 5.

상기 실시예 1과 동일하게 과정을 실시하되, 전체 혼합물에 대한 철의 중량비가 0.05가 되도록 혼합하였고, 디스크밀을 이용한 분쇄과정을 15분 동안 진행하였다. 이후, 열화학환원반응은 700℃의 온도에서 15시간 동안 진행되었다.The process was carried out in the same manner as in Example 1, but the mixture was mixed so that the weight ratio of iron to the total mixture was 0.05, and the grinding process using a disk mill was carried out for 15 minutes. Thereafter, the thermochemical reduction reaction was carried out at a temperature of 700° C. for 15 hours.

실시예 6.Example 6.

상기 실시예 1과 동일하게 과정을 실시하되, 전체 혼합물에 대한 철의 중량비가 0.06이 되도록 혼합하였고, 디스크밀을 이용한 분쇄과정을 30분 동안 진행하였다. 열화학환원반응은 900℃의 온도에서 5시간 동안 진행되었으며, 이후 2시간 동안 수세과정이 진행되었다.The process was carried out in the same manner as in Example 1, but the mixture was mixed so that the weight ratio of iron to the total mixture was 0.06, and the grinding process using a disk mill was carried out for 30 minutes. The thermochemical reduction reaction was carried out at a temperature of 900° C. for 5 hours, followed by washing with water for 2 hours.

실시예 7.Example 7.

상기 실시예 6과 동일하게 과정을 실시하되, 전체 혼합물에 대한 철의 중량비가 0.07이 되도록 혼합하였고, 열화학환원반응 이후 3시간 동안 수세과정이 진행되었다.The process was carried out in the same manner as in Example 6, but the mixture was mixed so that the weight ratio of iron to the entire mixture was 0.07, and the water washing process was performed for 3 hours after the thermochemical reduction reaction.

실시예 8.Example 8.

상기 실시예 7과 동일하게 과정을 실시하되, 열화학환원반응 후, 5시간 동안 수세과정이 진행되었으며, 100℃의 진공오븐에서 36시간 동안 건조과정이 진행되었다.The process was carried out in the same manner as in Example 7, but after the thermochemical reduction reaction, the washing process was carried out for 5 hours, and the drying process was carried out in a vacuum oven at 100° C. for 36 hours.

실시예 9.Example 9.

상기 실시예 1과 동일하게 과정을 실시하되, 전체 혼합물에 대한 철의 중량비가 0.08이 되도록 혼합하였고, 열화학환원반응은 1000℃의 온도에서 진행되었으며, 200℃의 진공오븐에서 48시간 동안 건조과정이 진행되었다.The process was carried out in the same manner as in Example 1, but the mixture was mixed so that the weight ratio of iron to the entire mixture was 0.08, and the thermochemical reduction reaction was carried out at a temperature of 1000 ° C., and the drying process was carried out in a vacuum oven at 200 ° C. for 48 hours. proceeded

실시예 10.Example 10.

상기 실시예 9와 동일하게 과정을 실시하되, 전체 혼합물에 대한 철의 중량비가 0.1이 되도록 혼합하였고, 열화학환원반응은 1000℃의 온도에서 3시간 동안 진행되었으며, 이후 10시간동안의 수세과정이 진행되었다.The process was carried out in the same manner as in Example 9, but the mixture was mixed so that the weight ratio of iron to the whole mixture was 0.1, and the thermochemical reduction reaction was carried out at a temperature of 1000° C. for 3 hours, and then the washing process was performed for 10 hours. became

비교예 1.Comparative Example 1.

리튬카보네이트(Li2CO3) 및 이산화티타늄(TiO2)의 혼합물을 제조하였으며, 이후, 디스크밀을 5분간 사용하여 전체적으로 분쇄한 후, 분쇄된 혼합물을 튜브형 퍼니스에 위치시키고, 질소분위기 하에서 800℃에서 10시간동안 열화학환원반응을 진행한 후, 실온까지 냉각시켰다. 상기 열화학환원반응을 통해 제조된 물질을 HCl 수용액을 이용하여 1시간 동안 수세한 뒤, 50℃의 진공오븐에서 24시간 동안 건조시켜 리튬이온배터리 음극소재용 리튬-티타늄 산화물을 제조하였다.A mixture of lithium carbonate (Li 2 CO 3 ) and titanium dioxide (TiO 2 ) was prepared, and then the whole was pulverized using a disk mill for 5 minutes, and then the pulverized mixture was placed in a tubular furnace, and 800° C. under a nitrogen atmosphere. After the thermochemical reduction reaction was carried out for 10 hours, it was cooled to room temperature. The material prepared through the thermochemical reduction reaction was washed with water for 1 hour using an aqueous HCl solution, and then dried in a vacuum oven at 50° C. for 24 hours to prepare lithium-titanium oxide for a negative electrode material of a lithium ion battery.

이하, 표 1에는 상기 실시예 및 비교예에 따른 열화학환원반응에 의한 철입자가 도핑된 리튬이온배터리용 음극소재 제조조건을 나타낸다.Hereinafter, Table 1 shows the manufacturing conditions of a negative electrode material for a lithium ion battery doped with iron particles by a thermochemical reduction reaction according to the Examples and Comparative Examples.

Figure 112020082307512-pat00001
Figure 112020082307512-pat00001

이하 표 2에서는 상기 실시예 및 비교예에 따른 철입자가 도핑된 리튬이온배터리용 음극소재의 전기화학특성을 나타낸다.Table 2 below shows the electrochemical properties of the negative electrode material for lithium ion batteries doped with iron particles according to the Examples and Comparative Examples.

Figure 112020082307512-pat00002
Figure 112020082307512-pat00002

Claims (6)

1) 리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물을 제조하는 단계;
2) 상기 1)단계에서 제조된 혼합물을 디스크밀을 사용하여 분쇄하는 단계;
3) 상기 2)단계에서 분쇄된 혼합물을 열처리하여 열화학환원하는 단계;
4) 상기 3)단계에서 합성된 물질을 수세 및 건조하는 단계를 포함하는 것을 특징으로 하는 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 제조방법.
1) preparing a mixture of lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ), and iron (Fe);
2) pulverizing the mixture prepared in step 1) using a disk mill;
3) thermochemically reducing the mixture pulverized in step 2) by heat treatment;
4) A method of manufacturing an anode material for a lithium ion battery doped with lithium-titanium oxide-based iron particles, comprising washing and drying the material synthesized in step 3).
제 1 항에 있어서,
상기 1)단계에서 상기 철은 상기 리튬카보네이트(Li2CO3), 이산화티타늄(TiO2) 및 철(Fe)의 혼합물 100중량부에 대해 0.01 내지 0.1중량부의 비율로 첨가되는 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 제조방법.
The method of claim 1,
In step 1), the iron is lithium carbonate (Li 2 CO 3 ), titanium dioxide (TiO 2 ), and lithium added in an amount of 0.01 to 0.1 parts by weight based on 100 parts by weight of a mixture of iron (Fe)-titanium oxide based A method of manufacturing an anode material for a lithium-ion battery doped with iron particles.
제 1 항에 있어서,
상기 2)단계에서 상기 리튬카보네이트, 이산화티타늄 및 철 혼합물을 디스크밀 혹은 볼밀법을 사용하여 1 내지 60 분 동안 분쇄하는 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 제조방법.
The method of claim 1,
In step 2), the lithium carbonate, titanium dioxide and iron mixture is pulverized using a disk mill or a ball mill method for 1 to 60 minutes. Method of manufacturing a lithium-titanium oxide-based anode material doped with iron particles for a lithium ion battery .
제 1 항에 있어서,
상기 3)단계에서 질소, 헬륨 및 아르곤으로 이루어지는 군으로부터 선택된 어느 1종 이상의 불활성 기체를 포함하는 불활성 기체 분위기에서 500 이상 1000℃ 이하의 온도에서 1 내지 24시간 동안 열처리하는 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 제조방법.
The method of claim 1,
In step 3), lithium-titanium oxide-based iron is heat-treated for 1 to 24 hours at a temperature of 500 or more and 1000° C. or less in an inert gas atmosphere containing at least one inert gas selected from the group consisting of nitrogen, helium and argon. A method of manufacturing an anode material for a lithium-ion battery doped with particles.
제 1 항에 있어서,
상기 4)단계에서 생성물의 수세용액으로 염산(HCl), 황산(H2SO4) 및 인산(H3PO4)을 포함하는 산성용액으로 이루어지는 군으로부터 선택된 어느 1종 이상의 산성용액을 이용하여 1 내지 10 시간동안 수세하는 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 제조방법.
The method of claim 1,
Using any one or more acidic solutions selected from the group consisting of an acidic solution containing hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ) and phosphoric acid (H 3 PO 4 ) as a washing solution of the product in step 4) 1 A method of manufacturing an anode material for a lithium ion battery doped with lithium-titanium oxide-based iron particles that is washed with water for 10 hours.
제 1 항에 있어서,
상기 4)단계에서 50 이상 200℃ 이하의 온도에서 1 내지 48 시간 동안 건조하는 리튬-티타늄 산화물 기반의 철입자가 도핑된 리튬이온배터리용 음극소재의 제조방법.
The method of claim 1,
A method of manufacturing a lithium ion battery negative electrode material doped with lithium-titanium oxide-based iron particles, which is dried at a temperature of 50 or more and 200 ° C. or less in step 4) for 1 to 48 hours.
KR1020200098009A 2020-08-05 2020-08-05 Lithium titnate oxide-based anode for lithium-ion batteries doped with iron atoms and preparing method thereof KR102404146B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200098009A KR102404146B1 (en) 2020-08-05 2020-08-05 Lithium titnate oxide-based anode for lithium-ion batteries doped with iron atoms and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200098009A KR102404146B1 (en) 2020-08-05 2020-08-05 Lithium titnate oxide-based anode for lithium-ion batteries doped with iron atoms and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20220017703A KR20220017703A (en) 2022-02-14
KR102404146B1 true KR102404146B1 (en) 2022-06-02

Family

ID=80253910

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200098009A KR102404146B1 (en) 2020-08-05 2020-08-05 Lithium titnate oxide-based anode for lithium-ion batteries doped with iron atoms and preparing method thereof

Country Status (1)

Country Link
KR (1) KR102404146B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140074051A (en) * 2012-12-07 2014-06-17 삼성정밀화학 주식회사 Manufacturing method of lithium titanium spinel Li4Ti5O12 with excellent high-rate performance, lithium titanium spinel Li4Ti5O12 with excellent high-rate performance fabricated thereby, and electrode for lithium secondary battery and lithium secondary battery thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. Mater. Chem. A. 2020. 8. 2627-2636*
Journal of Alloys and Compounds 735 (2018) 1871 - 1877
MATERIALS TECHNOLOGY. 29:2. 124-128

Also Published As

Publication number Publication date
KR20220017703A (en) 2022-02-14

Similar Documents

Publication Publication Date Title
US11289691B2 (en) Spherical or spherical-like cathode material for a lithium battery, a battery and preparation method and application thereof
Bie et al. Li 2 O 2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries
EP2349925B1 (en) HYDROTHERMAL PROCESS FOR THE PRODUCTION OF LiFePO4 POWDER
KR101670664B1 (en) Cathode active material coated with F-dopped lithium metal manganese oxide, lithium-ion secondary battery comprising the same and the prepration method thereof
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
Li et al. Structure and electrochemical properties of Sm-doped Li 4 Ti 5 O 12 as anode material for lithium-ion batteries
Yang et al. Constructing durable carbon layer on LiMn0. 8Fe0. 2PO4 with superior long-term cycling performance for lithium-ion battery
CN113328082A (en) Positive electrode lithium supplement material and lithium ion battery comprising same
KR20220155344A (en) Silicon oxide composite negative electrode material and manufacturing method thereof, lithium ion battery
KR101579251B1 (en) Positive active material of lithium ion battery comprising lithium banadium zirconium phosphate and lithium ion battery comprising the same
WO2023236511A1 (en) Method for preparing lithium manganese iron phosphate positive electrode material from phosphatization residues
Zhang et al. Activated nanolithia as an effective prelithiation additive for lithium-ion batteries
KR20140129807A (en) Method for preparing spinel lithium manganese oxide with fluorine-doped outer layer and the material for rechargeable lithium batteries
CN111453779A (en) Method for reducing residual alkali content on surface of positive electrode material and application thereof
CN114188521B (en) Light coating layer on surface of graphite anode material of double-ion battery and preparation method
Yin et al. Synthesis and electrochemical performance of Li3–2xMgxV2 (PO4) 3/C composite cathode materials for lithium-ion batteries
KR102404146B1 (en) Lithium titnate oxide-based anode for lithium-ion batteries doped with iron atoms and preparing method thereof
Zeng et al. Sn Embedded Li4Ti5O12/C Composite as a High Capacity Anode Material for Li-ion Battery
KR101437886B1 (en) Nanocomposite cathod active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
KR20120096251A (en) Method for preparing cathode active material for lithium ion secondary battery
Kalantarian et al. Electrochemical characterization of low-cost lithium-iron orthosilicate samples as cathode materials of lithium-ion battery
Wang et al. Structural and electrochemical investigation of zinc-doped lithiated MoO3 cathode materials for lithium-ion batteries
KR102558764B1 (en) Method for manufacturing electrode active material, electrode active material, and lithium ion battery comprising the same
KR102537059B1 (en) Anode for lithium secondary batteries and manufacturing method thereof
Karthikeyan et al. Adipic Acid Assisted Sol-Gel Synthesis of Li 1+ x (Mn 0.4 Ni 0.4 Fe 0.2) 1-x O 2 (0< x< 0.3) as Cathode Materials for Lithium Ion Batteries

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right