KR20170061183A - Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same - Google Patents
Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same Download PDFInfo
- Publication number
- KR20170061183A KR20170061183A KR1020177013823A KR20177013823A KR20170061183A KR 20170061183 A KR20170061183 A KR 20170061183A KR 1020177013823 A KR1020177013823 A KR 1020177013823A KR 20177013823 A KR20177013823 A KR 20177013823A KR 20170061183 A KR20170061183 A KR 20170061183A
- Authority
- KR
- South Korea
- Prior art keywords
- mass
- less
- hour
- aluminum alloy
- corrosion resistance
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/002—Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/01—Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
- B21C23/085—Making tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C29/00—Cooling or heating work or parts of the extrusion press; Gas treatment of work
- B21C29/003—Cooling or heating of work
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/16—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geometry (AREA)
- Extrusion Of Metal (AREA)
Abstract
본 발명은 미세 구멍 중공형재용 알루미늄 합금으로서, 내입계 부식성에 문제가 있는 Cu의 함유량을 억제하고, 또한 자연 전위를 불활성으로 유지하는 것이 가능하고, 압출성이 우수한 알루미늄 합금을 제공하는 것이다. Fe:0.05 내지 0.15질량%, Si:0.10질량% 이하, Cu:0.03 내지 0.07질량%, Mn:0.30 내지 0.55질량%, Cr:0.03 내지 0.06질량%, Ti:0.08 내지 0.12질량%를, 또한 필요에 따라서 V:0.08질량% 이하를, Ti+V:0.08 내지 0.2질량%로 이루어지는 관계로 함유하는 화학 조성을 갖는 합금이다. 이 화학 조성을 갖는 DC 주조 빌렛을 80℃/시간 이하의 속도로 550 내지 590℃로 가열하여 0.5 내지 6시간 유지한 후, 450 내지 350℃의 범위에서 0.5 내지 1시간 유지하거나, 혹은 50℃/시간의 냉각 속도로 200℃ 이하까지 냉각하는 균열화 처리를 실시하고, 그 후 450 내지 550℃로 재가열 후, 압출비 30 이상 1000 이하의 가공도로 원하는 형상으로 압출하는 것을 특징으로 하는 알루미늄 합금제 미세 구멍 중공형재의 제조 방법이다.The present invention provides an aluminum alloy for a fine hole hollow member, which is capable of suppressing the content of Cu, which is problematic in the intergranular corrosion resistance, and which can keep the natural potential inactive, and is excellent in extrudability. 0.05 to 0.15 mass% of Fe, 0.10 mass% or less of Si, 0.03 to 0.07 mass% of Cu, 0.30 to 0.55 mass% of Mn, 0.03 to 0.06 mass% of Cr and 0.08 to 0.12 mass% of Ti, 0.08% by mass or less of V and 0.08% to 0.2% by mass of Ti + V in accordance with the following formula (1). The DC cast billet having the chemical composition is heated to 550 to 590 캜 at a rate of 80 캜 / hour or less, held for 0.5 to 6 hours, maintained at 450 to 350 캜 for 0.5 to 1 hour, or 50 캜 / And then extruded into a desired shape at a processing ratio of 30 or more and 1000 or less after reheating at 450 to 550 캜. Thereby producing a hollow shape member.
Description
본 발명은 알루미늄제 열교환기, 예를 들어 콘덴서, 증발기, 인터쿨러 등을 구성하는 압출제 미세 구멍 중공 편평관에 사용하는, 압출성과 내입계 부식성이 우수한 알루미늄 합금과 그 합금 성분의 효과를 내기 위한 제조 방법에 관한 것이다.The present invention relates to an aluminum alloy excellent in extrudability and intergranular corrosion resistance, which is used for an extruded fine hole hollow flat pipe constituting an aluminum heat exchanger, for example, a condenser, an evaporator, an intercooler, etc., ≪ / RTI >
일반적으로 알루미늄제 열교환기는, 예를 들어 도 1에 도시한 바와 같은 카 에어콘용 콘덴서에서는, 냉매가 흐르는 관로(편평관)[도 2의 (a) 참조], 공기와 열교환하는 콜게이트 핀, 탱크부인 헤더 파이프 및 출입구 부재로 구성되어, 서로 접하는 어떤 부재에 브레이징 접합되는 수단을 갖고, 비부식성 플럭스를 사용하여 브레이징되어 있다[도 2의 (b) 참조].In general, an aluminum-made heat exchanger is a condenser for a car air conditioner as shown in FIG. 1, for example, a pipe (flat pipe) (see FIG. 2 (a)) through which refrigerant flows, (See Fig. 2 (b)), which is made of a non-corrosive flux, and has a means for brazing to a member in contact with each other.
알루미늄제 열교환기에는 높은 내구성이 요구되고 있고, 구성하는 부재인 압출 편평관에는, 당연히 내식성, 강도, 브레이징성, 압출성 등이 요구되고 있다.Aluminum-made heat exchangers are required to have high durability, and an extruded flat pipe as a constituent member is naturally required to have corrosion resistance, strength, brazing property, extrudability and the like.
한편, 열교환기의 경량화 요구나 경제성의 점으로부터, 복잡한 미세 구멍 중공 구조이고, 또한 박육, 경량화를 가능하게 하는 압출성이 우수한 알루미늄 합금이 요구되고 있다.On the other hand, from the viewpoint of the demand for lightening of the heat exchanger and economical efficiency, there is a demand for an aluminum alloy having a complicated fine hole hollow structure and excellent extrudability which enables thinning and weight reduction.
특히 내식성에 관해서는, 편평관 내부에 봉입되어 있는 냉매가 유출되는 입계 부식에 의한 조기의 관통 결함의 발생 방지가 과제이다.Particularly, with regard to corrosion resistance, it is a problem to prevent occurrence of early penetration defects due to intergranular corrosion in which refrigerant sealed in a flat pipe flows out.
널리 사용되고 있는 희생 방식 방법으로서, Zn 금속을 편평관 표면에 도포, 가열 후에 표층부에 Zn 확산층을 형성하는 방법이 있다. 형성된 Zn 확산층을 희생 방식으로서 이용하는 것이다(도 3 참조).As a widely used sacrificial method, there is a method in which a Zn metal is applied to the flattened tube surface and a Zn diffusion layer is formed in the surface layer after heating. And the formed Zn diffusion layer is used as a sacrificial method (see FIG. 3).
그러나, Zn 금속을 조합한 희생 방식의 효과에서는, 반대로 핀과의 접합부를 포함하는 Zn 확산층부가 조기에 소모되어 열교환기 성능을 저하시키는 과제도 발생한다.However, in the effect of the sacrificial system in which Zn metal is combined, the Zn diffusion layer including the bonding portion with the pin is consumed prematurely, and the performance of the heat exchanger deteriorates.
이와 같은 기능이 요구되는 압출 편평관용 알루미늄 합금은 많이 제안되어 있지만, 어떤 요구라도 만족시키는 해결에는 이르고 있지 않다.Aluminum alloys for extruded flattening pipes, which require such functions, have been proposed many times, but they have not reached a solution satisfying any requirement.
예를 들어, 특허문헌 1, 2에 압출성과 내식성을 개량한 알루미늄 합금이 제안되어 있다. 순알루미늄을 베이스로 하고, Cu 원소 및 Fe 원소를 적극적으로 추가하여 압출성을 개량한 것이다.For example, in Patent Documents 1 and 2, an aluminum alloy improved in extrusion resistance and corrosion resistance has been proposed. And the extrudability is improved by positively adding Cu element and Fe element based on pure aluminum as a base.
특허문헌 1, 2에서 제안된 합금은 확실히 압출성은 개량되어 있지만, 내식성의 관점으로부터는 불충분하다.The alloys proposed in Patent Documents 1 and 2 are certainly improved in extrudability, but are insufficient from the viewpoint of corrosion resistance.
상기한 바와 같이, 일반적으로는, 열교환기의 편평관의 부식을 방어하는 수단으로서 희생 방식 방법이 채용되어 있다. 상기 특허문헌 1, 2에서 제안된 알루미늄 합금은 전위적으로 자연 전위가 약 -0.7VvsSCE 정도로 꽤 불활성인 합금이라고 할 수 있으므로, 희생 방식 방법이 채용되는 부위에서의 사용에는 문제가 없다.As described above, generally, a sacrificial method is employed as a means for preventing corrosion of a flat tube of a heat exchanger. The aluminum alloys proposed in the above Patent Documents 1 and 2 are alloys which are potentially inactive and have a natural potential of about -0.7 VvsSCE or so, so there is no problem in the use of the aluminum alloy in the region where the sacrificial method is employed.
그러나, 상기 합금은 순Al에 Cu 원소가 첨가되어 있고, Al-Cu의 금속간 화합물이 결정립계에 따라서 형성되므로, 결정립계의 부식이 촉진될 우려가 있다. 즉, Zn 확산층의 경감 대책이나 희생 방식법이 형성되지 않은 열교환기의 부위에서는, 편평관 자신의 부식이 진행될 우려가 있다.However, since Cu is added to pure Al and an intermetallic compound of Al-Cu is formed in accordance with the grain boundaries, the corrosion of the grain boundaries may be promoted. That is, there is a risk that corrosion of the flat tube itself may proceed at a portion of the heat exchanger where the measures for reducing the Zn diffusion layer and the sacrificial method are not formed.
본 발명은, 이와 같은 과제를 해결하기 위해 안출된 것으로, 미세 구멍 중공형재용 알루미늄 합금으로 하여, 내입계 부식성에 문제가 있는 Cu의 함유량을 억제하고, 또한 자연 전위를 불활성으로 유지하는 것이 가능하고, 압출성이 우수한 알루미늄 합금을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been conceived in order to solve such a problem, and it is an object of the present invention to provide an aluminum alloy for microhole hollow members capable of suppressing the content of Cu, which is problematic in intercalation corrosion resistance, And an object of the present invention is to provide an aluminum alloy excellent in extrudability.
본 발명의 압출성과 내입계 부식성이 우수한 미세 구멍 중공형재용 알루미늄 합금은, 그 목적을 달성하기 위해, Fe:0.05 내지 0.15질량%, Si:0.10질량% 이하, Cu:0.03 내지 0.07질량%, Mn:0.30 내지 0.55질량%, Cr:0.03 내지 0.06질량%, Ti:0.08 내지 0.12질량%를 함유하고, 잔량부가 Al 및 불가피 불순물로 이루어지는 화학 조성을 갖고 있는 것을 특징으로 한다.In order to attain the object, the aluminum alloy for fine hole hollow members having excellent extrudability and intergranular corrosion resistance according to the present invention comprises 0.05 to 0.15% by mass of Fe, 0.10% by mass or less of Si, 0.03 to 0.07% by mass of Cu, : 0.30 to 0.55 mass%, Cr: 0.03 to 0.06 mass%, and Ti: 0.08 to 0.12 mass%, with the balance being Al and inevitable impurities.
또한, V:0.08질량% 이하를, Ti+V:0.08 내지 0.2질량%인 관계로 함유하고 있어도 된다.In addition, V may be contained in an amount of 0.08 mass% or less in relation to Ti + V in an amount of 0.08 to 0.2 mass%.
또한, 미세 구멍 중공형재용 알루미늄 합금은 상기와 같은 화학 조성을 갖는 알루미늄 합금의 DC 주조 빌렛을, 80℃/시간 이하의 속도로 550 내지 590℃로 가열하여 0.5 내지 6시간 유지한 후, 450 내지 350℃의 범위에서 0.5 내지 1시간 유지하거나, 혹은 50℃/시간의 냉각 속도로 200℃ 이하까지 냉각하는 균질화 처리를 실시함으로써 얻어진다.The aluminum alloy for the fine hole hollow member is heated at 550 to 590 캜 for 0.5 to 6 hours at a rate of 80 캜 / hour or less, and then heated at 450 to 350 Deg.] C for 0.5 to 1 hour or a cooling process at a cooling rate of 50 [deg.] C / hour to 200 [deg.] C or lower.
그리고, 상기 균질화 처리가 실시된 빌렛을 450 내지 550℃로 재가열 후, 압출비 30 이상 1000 이하의 가공도로 원하는 형상으로 압출함으로써, 내입계 부식성이 우수한 알루미늄 합금제 미세 구멍 중공형재가 얻어진다.Then, the homogenized billet is reheated at 450 to 550 占 폚 and extruded into a desired shape at an extrusion ratio of 30 or more and 1000 or less to obtain an aluminum alloy microporous hollow member having excellent intercalation corrosion resistance.
본 발명의 압출성과 내입계 부식성이 우수한 미세 구멍 중공형재용 알루미늄 합금은, 기본적으로는 순알루미늄을 베이스로 하고, Fe, Cu, Mn, Cr의 함유량은 낮게 억제되어 있으므로 압출성은 양호하다. 낮게 억제되어 있다고는 해도, 소요량의 Fe, Cu, Mn 및 Cr 등이 포함되어 있으므로, 열교환기를 구성하는 미세 구멍 중공형재용으로서의 강도, 내식성은 갖고 있다.The aluminum alloy for fine hole hollow members having excellent extrudability and intergranular corrosion resistance according to the present invention is basically made of pure aluminum and has a low content of Fe, Cu, Mn and Cr so that the extrudability is good. Although it is suppressed to a low level, it contains the required amount of Fe, Cu, Mn, Cr, and the like. Therefore, it has strength and corrosion resistance as a hollow hole material constituting the heat exchanger.
특히, 본 발명 합금에서는 Cu 함유량이 0.07질량% 이하로 억제되어 있으므로, Al-Cu계 금속간 화합물의 형성이 억제되어, 입계 부식의 우려는 극히 적어지고 있다. 또한, Ti을 적당량 함유시킴으로써, Ti 원소의 입계 혹은 모지(母地)(매트릭스)에 있어서의 분산은, 입계 부식의 진행을 억지하여, 내식성을 향상시킨다.Particularly, in the alloy of the present invention, since the Cu content is suppressed to 0.07 mass% or less, the formation of the Al-Cu intermetallic compound is suppressed, and the possibility of grain boundary corrosion is extremely reduced. Further, by containing an appropriate amount of Ti, dispersion of the Ti element in the grain boundary or in the matrix (matrix) inhibits the progress of intergranular corrosion and improves the corrosion resistance.
도 1은 일반적인 카 에어콘용 콘덴서의 개략 구조를 설명한다.
도 2는 편평관 및 그것을 내장한 열교환기의 개략 구조를 설명하는 도면이다.
도 3은 Zn 확산층의 희생 방식 작용을 설명하는 도면이다.
도 4는 실시예에서 제작한 열교환기용 중공 편평관의 단면 형상을 도시하는 도면이다.
도 5는 실시예에 있어서의 균질화 처리 빌렛의 압출 시의 압력-시간 곡선을 비교하는 도면이다.1 schematically illustrates a general structure of a capacitor for a car air conditioner.
2 is a view for explaining a schematic structure of a flat pipe and a heat exchanger incorporating it.
3 is a view for explaining a sacrificial mode action of the Zn diffusion layer.
4 is a view showing a cross-sectional shape of a hollow flat pipe for a heat exchanger manufactured in the embodiment.
Fig. 5 is a diagram comparing the pressure-time curves at the time of extrusion of the homogenized billets in the examples. Fig.
상기한 바와 같이, 특허문헌 2에 제안되어 있는 압출 성형용 알루미늄 합금은 압출 성형성이 우수한 반면, 함유하고 있는 Cu가 Al-Cu계의 금속간 화합물을 결정립계에 형성하여 입계 부식을 발생하기 쉬운 합금이다.As described above, the aluminum alloy for extrusion molding, which is proposed in Patent Document 2, is excellent in extrusion moldability, while the alloy containing Cu forms an Al-Cu-based intermetallic compound in grain boundaries to cause intergranular corrosion to be.
따라서, Cu의 함유량을 저감시켜, 특허문헌 2 등에서 제안되어 있는 압출 성형용 알루미늄 합금과 동등한 압출 성형성과 기계적 특성을 갖고, 또한 입계 부식을 일으킬 우려가 없는 알루미늄 합금을 발견하기 위해, 예의 검토를 거듭해 왔다.Therefore, in order to find an aluminum alloy having a reduced Cu content and having extrusion moldability and mechanical properties equivalent to those of the aluminum alloy for extrusion molding proposed in Patent Document 2 and the like, and there is no possibility of causing grain boundary corrosion, come.
그 결과, Cu 함유량을 0.07질량% 이하로 억제하고, 또한 다른 Fe, Si, Mn, Cr 등의 함유량을 적절하게 조정하여, Ti을 적당량 첨가하면, 상기 과제를 해결할 수 있는 것을 발견하였다.As a result, it has been found that the above problems can be solved by suppressing the Cu content to 0.07 mass% or less and appropriately adjusting the content of other Fe, Si, Mn, Cr and the like and adding an appropriate amount of Ti.
이하에 그 상세를 설명한다.The details will be described below.
본 발명의 압출성과 내입계 부식성이 우수한 미세 구멍 중공형재용 알루미늄 합금은 Fe:0.05 내지 0.15질량%, Si:0.10질량% 이하, Cu:0.03 내지 0.07질량%, Mn:0.30 내지 0.55질량%, Cr:0.03 내지 0.06질량%, Ti:0.08 내지 0.12질량%를, 필요에 따라서, V:0.08질량% 이하를, Ti+V:0.08 내지 0.2질량%인 관계로 더 함유하고, 잔량부가 Al 및 불가피 불순물로 이루어지는 화학 조성을 갖고 있다.The aluminum alloy for microporous hollow members having excellent extrudability and intergranular corrosion resistance according to the present invention comprises 0.05 to 0.15% by mass of Fe, 0.10% by mass or less of Si, 0.03 to 0.07% by mass of Cu, 0.30 to 0.55% by mass of Mn, : 0.03 to 0.06 mass%, Ti: 0.08 to 0.12 mass%, and if necessary, 0.08 mass% or less of V and 0.08 to 0.2 mass% of Ti + V, and the balance of Al and inevitable impurities Chemical composition.
우선, 각 성분의 작용 및 한정 이유에 대해 설명한다. 이하의 「%」 표시는 모두 질량%이다.First, the action of each component and the reason for limitation will be described. The following "%" marks are all% by mass.
Fe:0.05 내지 0.15%Fe: 0.05 to 0.15%
Fe은 알루미늄 합금의 강도를 향상시키는 작용을 갖고 있다. 이 작용은 0.05% 이상의 함유에 의해 발휘되지만, 0.15%를 초과할 정도로 많이 함유시키면 Al-Fe 화합물을 형성하여 내입계 부식에 악영향을 미칠 우려가 있는 동시에 압출성을 나쁘게 할 우려가 있으므로, Fe의 상한값은 0.15%로 하였다.Fe has an effect of improving the strength of the aluminum alloy. This action is exhibited by the content of not less than 0.05%, but if it is contained in an amount exceeding 0.15%, an Al-Fe compound may be formed to adversely affect the intercalation corrosion, and at the same time, the extrudability may be deteriorated. The upper limit value was 0.15%.
Si:0.10% 이하Si: not more than 0.10%
Si는 Al 모재로부터 혼입되는 불가피적 불순물이지만, 가공성에 악영향을 미치는 Al-Fe-Si 화합물의 생성을 억제하기 위해서도, 그 상한값은 0.10%로 하였다.Si is inevitable impurities incorporated from the Al base material, but the upper limit value is also set to 0.10% in order to suppress the generation of Al-Fe-Si compounds adversely affecting the workability.
Cu:0.03 내지 0.07%Cu: 0.03 to 0.07%
Cu는 Al지의 깊은 피팅을 억제하기 위해 유효한 원소이다. 0.03% 이상의 함유에 의해 효과가 인정된다. 그러나, 그 함유량이 많아지면 입계에 Al-Cu 화합물을 형성하여 입계로부터의 부식이 촉진된다. 이로 인해, Cu 함유량은 0.03 내지 0.07%로 하였다.Cu is an effective element for suppressing deep fitting of Al paper. The effect is recognized by the content of 0.03% or more. However, when the content is increased, an Al-Cu compound is formed in the grain boundary, and corrosion from the grain boundary is promoted. For this reason, the Cu content was 0.03 to 0.07%.
Mn:0.30 내지 0.55%Mn: 0.30 to 0.55%
Mn은 내식성 및 강도, 특히 고온 강도를 향상시키는 작용을 갖고 있다. 이들의 작용은 0.30% 이상의 함유에 의해 효과적으로 발현한다. Mn은 고온에서의 강도를 높이기 위해, 브레이징 시에서의 대폭적인 연화는 발생하지 않아 구조체의 강성을 유지할 수 있는 큰 역할이 있다. 한편, 고온 강도가 높기 때문에, 압출 시의 가공 압력이 커져 압출성을 저하시킨다. 또한, 결정립계에 따라서 Al-Mn계의 금속간 화합물이 형성되어, 내입계 부식에 악영향을 미칠 우려가 있다. 따라서, Mn 함유량은 0.55%를 상한으로 하였다.Mn has an action of improving corrosion resistance and strength, particularly high temperature strength. Their action is effectively expressed by the content of 0.30% or more. In order to increase the strength at high temperature, Mn does not cause significant softening at the time of brazing, and thus has a great role in maintaining the rigidity of the structure. On the other hand, since the high-temperature strength is high, the processing pressure at the time of extrusion is increased and the extrudability is lowered. Further, Al-Mn-based intermetallic compounds are formed depending on the grain boundaries, which may adversely affect intercalation corrosion. Therefore, the upper limit of the Mn content was 0.55%.
Cr:0.03 내지 0.06%Cr: 0.03 to 0.06%
Cr은 압출 조직의 조대화를 억제하는 작용을 갖고 있다. 이 작용은 0.03% 이상의 함유에 의해 효과적으로 발현한다. 그러나, 다량으로 함유하면 압출성을 악화시키므로, 그 상한은 0.06%로 하였다.Cr has an action of suppressing coarsening of the extruded structure. This action is effectively expressed by the content of 0.03% or more. However, if it is contained in a large amount, the extrudability is deteriorated, so the upper limit is set to 0.06%.
Ti:0.08 내지 0.12%Ti: 0.08 to 0.12%
Ti은 주조 조직을 미세화하고, 그 Ti 원소의 분포 상태는 압출재의 입계 부식을 억제하는 작용을 갖고 있다. 이 작용은 0.08% 이상의 함유에 의해 효과적으로 발현한다. 그러나, 그 함유량이 많아지면 조대한 금속간 화합물을 생성하여 압출성을 악화시키므로, 그 상한은 0.12%로 하였다.Ti has a function of refining the casting structure, and the distribution of the Ti element has an action to suppress intergranular corrosion of the extruded material. This action is effectively expressed by the content of 0.08% or more. However, when the content is large, a coarse intermetallic compound is produced to deteriorate the extrudability, so that the upper limit is set to 0.12%.
V:0.08% 이하V: 0.08% or less
주조 시에 정출한 V 및 V 화합물이 압출에 의해 층 형상으로 분산되어 입계 부식의 진전을 방지하는 작용을 갖고 있으므로, 필요에 따라서 함유시킨다. 그러나, 그 함유량이 많아지면 압출성을 악화시키므로, 그 상한은 0.08%로 하였다.Since the V and V compounds formed at the time of casting are dispersed in a layer form by extrusion to prevent the progress of intergranular corrosion, they are contained if necessary. However, when the content thereof is increased, the extrudability is deteriorated. Therefore, the upper limit is set to 0.08%.
Ti+V:0.08 내지 0.2%Ti + V: 0.08 to 0.2%
Ti과 V의 복합 첨가에 의해 입계 부식을 억제하는 효과가 커지지만, 그들의 함유량이 지나치게 많아지면 압출성을 악화시키므로, 그들의 합계량의 상한은 0.2%로 하였다.The combined addition of Ti and V enhances the effect of suppressing intergranular corrosion, but if the content thereof is excessively large, the extrudability is deteriorated. Therefore, the upper limit of the total amount thereof is set to 0.2%.
그 외에는 불가피적 불순물이다.Others are inevitable impurities.
본 발명에 의한 압출성과 내입계 부식성이 우수한 미세 구멍 중공형재용 알루미늄 합금은 통상의 수단에 의해 용제되어, 일반적인 주조법인 반연속 주조법에 의해 원하는 형상의 빌렛으로서 제공된다.The aluminum alloy for fine hole hollow members having excellent extrudability and intergranular corrosion resistance according to the present invention is dissolved by a conventional means and is provided as a billet having a desired shape by a semi-continuous casting method which is a general casting method.
얻어진 알루미늄 합금 빌렛에 있어서, 합금의 함유 성분을 유효하게 이용하기 위해서는, 주조 후의 빌렛을 고온에서 가열하여 주조 시에 정출한 금속간 화합물을 구성하는 원소 등을 매트릭스에 재고용시키는 등, 첨가 원소의 농도 분포를 없애는 균질화 처리를 실시할 필요가 있다. 이 균일화 처리로서는 550 내지 590℃에서 0.5시간 내지 6시간의 가열 처리를 행하는 것이 바람직하다.In order to effectively utilize the contained components of the alloy in the obtained aluminum alloy billet, it is necessary to heat the billet after casting at a high temperature to reuse the matrix constituting the intermetallic compound crystallized at the time of casting, It is necessary to perform a homogenization treatment to remove the distribution. As the homogenization treatment, it is preferable to carry out the heat treatment at 550 to 590 DEG C for 0.5 to 6 hours.
본 발명의 알루미늄 합금은 순Al을 기초로 Fe, Si를 규제하고, Cu, Mn, Cr 그리고 Ti을 첨가하는 합금이다.The aluminum alloy of the present invention is an alloy containing Fe, Si, and Cu, Mn, Cr, and Ti based on pure Al.
주조에 의해 얻어진 빌렛을 550℃ 이상에서 0.5시간 이상 유지하지 않으면, Al-Fe-Si계 화합물을 미세하게 분산시킬 수 없어, 높은 가공도로 압출할 때에 결함이 생긴다. 또한, 다른 원소인 Cu, Cr, Mn 등의 화합물을 Al지에 용입시키거나, 미세한 화합물로서 존재시키기 위해서도, 550℃ 이상, 0.5시간 이상의 유지를 필요로 한다.If the billet obtained by casting is not maintained at 550 DEG C or higher for 0.5 hours or more, the Al-Fe-Si compound can not be finely dispersed and defects are produced when the billet is extruded at a high processing rate. In order to allow compounds such as Cu, Cr and Mn, which are other elements, to penetrate into Al paper or to exist as a fine compound, it is necessary to maintain the temperature at 550 DEG C or more for 0.5 hours or more.
한편, 590℃를 초과하는 온도에서 0.5시간 이상 가열하면, Fe, Si, Cu에 대해서는 용입이 진행되어 바람직하지만, Mn, Cr의 용입량이 많아지고, 이후의 압출 시의 가공 압력을 크게 해 버리고, 또한 압출 재료의 조직을 거친 재결정 조직으로 하는 경향이 커진다.On the other hand, if heating is carried out at a temperature exceeding 590 占 폚 for 0.5 hour or more, penetration of Fe, Si and Cu is favorable, but the amount of penetration of Mn and Cr increases and the processing pressure at the subsequent extrusion is increased, Further, there is a tendency to make the structure of the extruded material into a recrystallized structure.
또한, 경제적으로는, 6시간 이하가 바람직하고, 장시간의 균질화 처리는 빌렛 비용이 높아지는 동시에, 빌렛 표면의 산화가 진행되어 바람직한 품질로는 되지 않는다. 균질화 처리의 적정한 온도는 570℃±10℃이고, 경제적으로는, 빠르게 승온시켜, 빠르게 냉각하는 것이 좋지만, Mn, Cr을 함유하는 합금은 균질화 처리 온도로의 승온이 80℃/h를 초과하는 속도에서는 Mn, Cr이 많이 용입된 상태이고, 적정한 승온 속도로 주조된 상태(조대 화합물의 존재, 용입량 많음)를 균질화 처리 온도까지의 확산 시간을 충분히 취하여 조대 화합물의 Al-Fe, Al-Fe-Si 등을 고용시킨다. 한편, 고용되어 있던 Cr, Mn을 Al-(Fe, Mn, Cr)-Si 화합물, Al-Mn 화합물로서 석출시켜 빌렛의 조직을 개량한다.In addition, economically, it is preferably 6 hours or less, and the homogenization treatment for a long time increases the billet cost, and the oxidation of the billet surface proceeds, so that the desired quality is not obtained. The suitable temperature for the homogenization treatment is 570 ° C ± 10 ° C. Economically, it is preferable to rapidly increase the temperature and rapidly cool the alloy. However, when the temperature of the alloy containing Mn and Cr increases to 80 ° C / h (Al-Fe, Al-Fe-Al, Fe-Al, Fe-Co, and Fe-Co) Si or the like. On the other hand, Cr and Mn, which have been employed, are precipitated as Al- (Fe, Mn, Cr) -Si compound and Al-Mn compound to improve the texture of the billet.
한편, 고온에서의 유지에 의해 Mn, Cr 화합물의 용입이 발생하고 있고, 이것을 확실하게 적정한 화합물로서 석출시키는 것이 필요해, 그것을 위해서는 450 내지 350℃의 범위에서 0.5 내지 1시간 유지하거나, 혹은 완만한 50℃/시간인 냉각 속도로 200℃ 이하까지 냉각할 필요가 있다. 이 조건을 벗어나면, Mn, Cr이 모지(매트릭스) 중에 고용된 상태로 남고, 후공정의 압출 가공 전의 가열 시에는 소량밖에 석출되지 않으므로 압출 압력이 높아 가공성을 저하시키게 된다.On the other hand, penetration of Mn and Cr compounds occurs due to the maintenance at a high temperature, and it is necessary to precipitate the Mn and Cr compounds reliably as an appropriate compound. For this, it is necessary to maintain the temperature at 450 to 350 ° C for 0.5 to 1 hour, Lt; RTI ID = 0.0 > C / hr. ≪ / RTI > When this condition is exceeded, Mn and Cr remain in a solid state in the matrix (matrix), and only a small amount of the Mn and Cr are precipitated at the time of heating before the extrusion processing, so that the extrusion pressure is high and the workability is lowered.
이와 같은 균질화 처리에서 얻은 빌렛을 압출한 재료는 압출재의 표면과 내부의 조직이 균일해져, 열간 가공에 의한 결정립의 조대화를 억제할 수 있다.The material obtained by extruding the billet obtained by such a homogenization treatment can uniformize the surface and the internal structure of the extruded material and suppress coarsening of crystal grains by hot working.
또한, 본 발명의 합금 조성을 주조하여 얻은 빌렛에 소정의 균질화 처리를 실시하고, 목적으로 하는 미세 중공 압출형재를 얻기 위해, 당해 빌렛을 450℃ 이상, 550℃ 이하에서 가열하여 압출비 30 이상 1000 이하의 가공도로 압출 가공할 필요가 있다.The billet obtained by casting the alloy composition of the present invention is subjected to a predetermined homogenization treatment and heated at 450 캜 or higher and 550 캜 or lower so as to obtain an ultrafine extruded shape member having an extrusion ratio of 30 to 1000 It is necessary to perform extrusion processing.
450℃로 만족되지 않으면, 미세 중공형재의 압출비가 높기 때문에, 압출기의 압출 압력의 한계 능력(통상은 210㎏/㎠)을 초과해 버려 압출 불가로 된다. 가령, 압출할 수 있어도, 미세한 중공재의 내면에 찢김 등의 결함이 생기고, 또한 형상ㆍ치수가 공차 외로 된다. 또한, 550℃를 초과할 정도로 높은 온도의 가열에서는, 압출은 용이하게 할 수 있지만 압출비 및 압출 속도가 높기 때문에 압출 중의 형재 온도가 높아져, 미세 중공재의 표면 및 내부에서 찢김이 다발 혹은 국부 용융을 발생하여, 요구된 형상을 유지할 수 없다. 그리고, 압출비가 30에 만족되지 않을 정도로 작은 경우에는 본 발명의 특징인 Ti 효과(Ti이 형재 내부에 압출 방향을 따라서 층 형상으로 존재하기 위한 상태)가 얻어지기 어려워진다. 반대로 압출비를 1000을 초과할 정도로 하려고 하면, 금형 설계 그리고 압출 조건 선정이 곤란해져 압출 가공 자체가 불가능해진다.If it is not satisfied at 450 캜, the extrusion ratio of the fine hollow shape member is high, so that the extrusion pressure exceeds the limit capability of the extrusion pressure of the extruder (normally, 210 kg / cm 2). Even if it can be extruded, defects such as tearing are formed on the inner surface of the fine hollow material, and the shape and size become out of tolerance. Further, in heating at a temperature as high as 550 占 폚, extrusion can be easily performed, but since the extrusion rate and the extrusion speed are high, the temperature of the mold during extrusion becomes high and tearing or local melting occurs on the surface and inside of the micro- And the desired shape can not be maintained. When the extrusion ratio is small enough not to satisfy the requirement of 30, it becomes difficult to obtain a Ti effect (a state in which Ti exists in the form of a layer along the extrusion direction inside the shape member), which is a feature of the present invention. On the contrary, if the extrusion ratio is set to exceed 1000, it becomes difficult to design the mold and select the extrusion condition, and the extrusion process itself becomes impossible.
(실시예)(Example)
열교환용 유체로서는 플론계 냉매를 사용하고 있다. 이로 인해, 열교환기에 사용하는 소재로서는, 내식성, 강도, 브레이징성이 우수하고, 또한 열교환기 조립품의 주요 부재인 0.5 내지 2㎜ 정도의 미세 구멍 중공형재(편평관)로의 압출 가공이 가능한 합금이 요구된다.Flon-based refrigerant is used as a fluid for heat exchange. Therefore, as a material to be used in the heat exchanger, an alloy which is excellent in corrosion resistance, strength and brazing property and which can be extruded into a fine hole hollow shape member (flat pipe) of about 0.5 to 2 mm which is a main member of a heat exchanger assembly is required do.
따라서, 표 1에 나타내는 화학 조성을 갖는 각종 알루미늄 합금에 대해, 압출 성형성, 내식성, 강도, 브레이징성을 검증하였다.Therefore, extrusion moldability, corrosion resistance, strength, and brazing property were verified for various aluminum alloys having the chemical compositions shown in Table 1.
우선, 표 1에 나타내는 화학 조성을 갖는 각종 알루미늄 합금을 용제하여, 6 내지 10인치의 직경이고 길이 2 내지 6m인 주조체를 제작하였다.First, various aluminum alloys having the chemical compositions shown in Table 1 were dissolved to prepare castings having a diameter of 6 to 10 inches and a length of 2 to 6 m.
이 주물을 550 내지 590℃에서 0.5 내지 6시간 유지하는 조건으로 균일화 처리를 실시한 후, 460 내지 550℃로 가열하고, 압출비 30 내지 1000의 박육형재용 다이스에 의해, 도 4에 도시하는 단면 형상이고, 폭 16.2㎜, 두께 1.93㎜, 두께 0.35㎜의 12 구멍을 갖는 열교환기용 중공 편평관을 압출하였다.The castings were subjected to a homogenization treatment at a temperature of 550 to 590 占 폚 for 0.5 to 6 hours and then heated to 460 to 550 占 폚 and molded into a thin die having an extrusion ratio of 30 to 1000 so as to have a sectional shape shown in Fig. , A width of 16.2 mm, a thickness of 1.93 mm, and a thickness of 0.35 mm was extruded from a hollow flat tube for a heat exchanger.
그리고, 압출한 각 샘플에 대해, 내식성, 강도, 브레이징성을 조사하였다.Then, the extruded samples were examined for corrosion resistance, strength, and brazing property.
그 결과를 표 2에 나타낸다.The results are shown in Table 2.
또한, 강도는 어닐링재의 실온 강도로부터 판정하여, 순Al의 65㎫를 기준으로 하고, 90㎫를 초과하는 것을 ◎, 60 내지 90㎫ 정도의 것을 ○, 60㎫에 만족되지 않는 것을 ×로 하였다.The strength was determined from the room temperature strength of the annealing material, and the results were as follows: ⊚: exceeding 90 MPa on the basis of 65 MPa of pure Al; ◯: 60 to 90 MPa;
내식성은 부식 시험 후의 마이크로 조직 관찰로부터 입계 부식의 유무와 진행 정도를 평가하여, 입계 부식이 거의 인정되지 않는 것을 ◎, 층 형상 부식이 100㎛ 이하인 것을 ○, 층 형상 부식이 500㎛ 이상인 것을 ×로 하였다.Corrosion resistance was evaluated by observing presence or absence of intergranular corrosion from the observation of microstructures after the corrosion test and observing progress of the intergranular corrosion. The results indicated that the intergranular corrosion was scarcely observed. The results were rated as?, Those having a layered corrosion of 100 占 퐉 or less, Respectively.
압출성은 편평관의 표면 결함(찢김, 표면 거칠기, 도면의 내면의 요철의 찢김)으로 판단하여, 표면 결함이 전혀 없었던 것을 ◎, 조금 있었지만 사용에 문제가 없는 것을 ○, 표면 결함이 많아 사용할 수 없는 것을 ×로 평가하였다.The extrudability was determined by the surface defects (tearing, surface roughness, tearing of the unevenness of the inner surface of the drawing) of the flattened pipe, no surface defects were found at all, Was evaluated as x.
브레이징성에 관해서는, 본 발명예, 비교예 모두 거의 동등하고 차이를 알 수 없었다.Regarding the brazing property, both the present invention and the comparative example were almost equal and the difference was unknown.
그리고, 종합 평가로서, 열교환기용 중공 편평관으로서 사용할 수 있는 합격품을 ○, 사용할 수 없는 불합격품을 ×로 하였다.As a comprehensive evaluation, acceptable products that can be used as hollow flat pipes for heat exchangers are indicated by o, and rejected products that can not be used are indicated by x.
다음에, 균질화 처리 조건에 대해 검증하였다.Next, the homogenization treatment conditions were verified.
표 1 중에서 No.2에 나타내는 화학 조성을 갖는 알루미늄 합금을 용제하여, 탈가스, 미세화, 여과 등의 소정의 용탕 처리를 행한 후, DC 주조법에 의해, 680℃ 이상의 온도에서 직경 210㎜의 빌렛을 주조하였다.An aluminum alloy having the chemical composition shown in Table 1 was sprayed and subjected to a predetermined molten treatment such as degassing, refining, filtration, and then a billet having a diameter of 210 mm at a temperature of 680 캜 or higher was cast Respectively.
그 후, 590℃의 온도에서 4시간 유지한 후, 냉각하는 균질화 처리를 행하여, 4000㎜ 길이의 빌렛을 얻었다. 이 빌렛을 현행 처리 빌렛이라고 칭하는 것으로 한다.Thereafter, the resultant was held at a temperature of 590 캜 for 4 hours, and then subjected to cooling homogenization treatment to obtain a billet having a length of 4000 mm. This billet is referred to as the current treatment billet.
본 발명예로서, 상기 주조 빌렛을, 균질화 온도 590℃로 하는 과정(승온 과정)의 승온 속도를 80℃/시간 이하로 하고, 또한 균질화 온도로 4시간 유지 후에 냉각할 때에, 450 내지 350℃ 범위를 50℃/시간의 냉각 속도로 냉각하고, 그 후에는 노 외 냉각하였다. 이 빌렛을 본 발명법 빌렛이라고 칭하는 것으로 한다.In the present invention, when the cast billet is cooled at a homogenization temperature of 590 占 폚 and maintained at a homogenization temperature of 80 占 폚 / hour or less for 4 hours at a homogenization temperature (450 占 폚 to 350 占 폚 Was cooled at a cooling rate of 50 DEG C / hour, and then cooled outside the furnace. This billet will be referred to as the inventive billet.
현행 처리 빌렛과 본 발명법 빌렛의 마이크로 조직을 관찰해 보면, 현행 처리 빌렛은 처리 전의 빌렛의 정출물 이외는 현저한 화합물은 인정되지 않지만, 한편, 본 발명법 빌렛의 조직은 정출물 이외에, 석출물(Al-Mn계)이 미세하게 분산되어 있는 것이 인정되었다.Observation of the microstructure of the present treated billet and the inventive method billet revealed that the present treated billet had no remarkable compound other than the diluted product of the billet before treatment. On the other hand, the structure of the billet of the present invention is not limited to the precipitate Al-Mn system) was finely dispersed.
다음에, 이들 2종의 빌렛을 500㎜ 길이로 하여, 압출비 150이고 도 4와 같은 형상의 편평관을 500℃에서 15m/분의 압출 속도로 제조하였다. 이때, 압출 시의 압출 압력을 측정하였다.Next, these two kinds of billets were made to have a length of 500 mm, and a flat pipe having an extrusion ratio of 150 and a shape as shown in Fig. 4 was produced at an extrusion rate of 500 rpm at a rate of 15 m / min. At this time, the extrusion pressure at the time of extrusion was measured.
그 결과를 표 3에 나타낸다.The results are shown in Table 3.
또한, 도 5에 압출 시의 압력-시간 곡선의 비교를 나타낸다.5 shows a comparison of the pressure-time curve at the time of extrusion.
본 발명법은 현행법에 비교하여, 최고 압력이 작고, 압력 저하가 빠르다. 그리고, 곡선 내의 면적이 작아, 압출 시에 필요로 하는 에너지가 작은 것을 알 수 있다.Compared with the existing method, the present invention method has a small maximum pressure and a high pressure drop. It can be seen that the area in the curve is small and the energy required for extrusion is small.
또한, 압출 가공 시의 압출비에 대해 검증하였다.Further, the extrusion ratio at the time of extrusion processing was verified.
상기 균질화 처리 조건의 검증에 사용한 본 발명법 빌렛을, 480℃로 가열 후, 압출비 150의 편평관과 압출비 20의 플랫바재를 20m/분의 속도로 압출하였다.The billet of the present invention used for the verification of the homogenization treatment conditions was heated to 480 DEG C and then a flat pipe having an extrusion ratio of 150 and a flat bar material having an extrusion ratio of 20 were extruded at a speed of 20 m / min.
이 2종류의 압출재의 마이크로 조직 관찰을 행하여, Ti 화합물의 분산 상태를 비교하였다. 그 결과를 표 4에 나타낸다.The microstructure of these two kinds of extruded materials was observed, and the dispersion state of the Ti compound was compared. The results are shown in Table 4.
본 발명에 따르면, 미세 구멍 중공형재용 알루미늄 합금으로서, 내입계 부식성에 문제가 있는 Cu의 함유량을 억제하고, 또한 자연 전위를 불활성으로 유지하는 것이 가능해, 압출성이 우수한 알루미늄 합금이 제공된다.According to the present invention, as an aluminum alloy for a fine hole hollow member, it is possible to suppress the content of Cu, which is problematic in the intergranular corrosion resistance, and to keep the natural potential inactive, thereby providing an aluminum alloy excellent in extrudability.
Claims (3)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2011-009706 | 2011-01-20 | ||
JP2011009706A JP5653233B2 (en) | 2011-01-20 | 2011-01-20 | Aluminum alloy for microporous hollow material with excellent extrudability and intergranular corrosion resistance and method for producing the same |
PCT/JP2012/050504 WO2012098991A1 (en) | 2011-01-20 | 2012-01-12 | Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020157025606A Division KR20150119400A (en) | 2011-01-20 | 2012-01-12 | Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170061183A true KR20170061183A (en) | 2017-06-02 |
KR101850665B1 KR101850665B1 (en) | 2018-04-19 |
Family
ID=46515620
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177013823A KR101850665B1 (en) | 2011-01-20 | 2012-01-12 | Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same |
KR1020157025606A KR20150119400A (en) | 2011-01-20 | 2012-01-12 | Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same |
KR1020137018055A KR20130109198A (en) | 2011-01-20 | 2012-01-12 | Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020157025606A KR20150119400A (en) | 2011-01-20 | 2012-01-12 | Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same |
KR1020137018055A KR20130109198A (en) | 2011-01-20 | 2012-01-12 | Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130292012A1 (en) |
JP (1) | JP5653233B2 (en) |
KR (3) | KR101850665B1 (en) |
WO (1) | WO2012098991A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5906113B2 (en) * | 2012-03-27 | 2016-04-20 | 三菱アルミニウム株式会社 | Extruded heat transfer tube for heat exchanger, heat exchanger, and method for producing extruded heat transfer tube for heat exchanger |
WO2013150957A1 (en) * | 2012-04-05 | 2013-10-10 | 日本軽金属株式会社 | Aluminum alloy for microporous hollow material which has excellent extrudability and grain boundary corrosion resistance, and method for producing same |
US10557188B2 (en) | 2014-03-19 | 2020-02-11 | Rio Tinto Alcan International Limited | Aluminum alloy composition and method |
ES2870139T3 (en) * | 2016-04-29 | 2021-10-26 | Rio Tinto Alcan Int Ltd | Corrosion resistant alloy for extruded and brazed products |
CN114182120A (en) * | 2021-12-13 | 2022-03-15 | 桂林理工大学 | Wrought aluminum-iron alloy and preparation method thereof |
KR20240044900A (en) * | 2022-09-29 | 2024-04-05 | 엘지전자 주식회사 | Heat exchanger |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6023A (en) * | 1849-01-09 | Body-brace | ||
EP1158063A1 (en) * | 2000-05-22 | 2001-11-28 | Norsk Hydro A/S | Corrosion resistant aluminium alloy |
JP4837188B2 (en) * | 2000-10-02 | 2011-12-14 | 株式会社デンソー | Aluminum alloy material for piping with excellent corrosion resistance and workability |
JP4634854B2 (en) * | 2005-05-10 | 2011-02-16 | 古河スカイ株式会社 | Aluminum alloy extruded tube material for natural refrigerant heat exchangers |
JP5049536B2 (en) * | 2006-08-24 | 2012-10-17 | 古河スカイ株式会社 | Aluminum piping material for automotive heat exchangers |
JP4955418B2 (en) * | 2007-02-26 | 2012-06-20 | 古河スカイ株式会社 | Aluminum alloy extrusions used in natural refrigerant heat exchangers |
JP5030276B2 (en) * | 2007-04-09 | 2012-09-19 | 古河スカイ株式会社 | Aluminum alloy piping material for heat exchanger and manufacturing method thereof |
-
2011
- 2011-01-20 JP JP2011009706A patent/JP5653233B2/en not_active Expired - Fee Related
-
2012
- 2012-01-12 US US13/980,078 patent/US20130292012A1/en not_active Abandoned
- 2012-01-12 KR KR1020177013823A patent/KR101850665B1/en active IP Right Grant
- 2012-01-12 KR KR1020157025606A patent/KR20150119400A/en active Application Filing
- 2012-01-12 KR KR1020137018055A patent/KR20130109198A/en active Application Filing
- 2012-01-12 WO PCT/JP2012/050504 patent/WO2012098991A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2012098991A1 (en) | 2012-07-26 |
KR101850665B1 (en) | 2018-04-19 |
US20130292012A1 (en) | 2013-11-07 |
KR20130109198A (en) | 2013-10-07 |
JP2012149313A (en) | 2012-08-09 |
KR20150119400A (en) | 2015-10-23 |
JP5653233B2 (en) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5055881B2 (en) | Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material | |
KR101850665B1 (en) | Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same | |
JP5530133B2 (en) | Age-hardening aluminum alloy brazing sheet, method for producing the same, and heat exchanger using the same | |
JP2008308761A (en) | Method for producing high strength aluminum alloy material for automobile heat exchanger having excellent erosion resistance and used for high strength automobile heat exchanger member produced by brazing | |
JP2008308760A (en) | High-strength aluminum alloy material for automobile heat-exchanger excellent in formability and erosion resistance used for member for high-strength automobile heat exchanger produced by brazing, and method for production thereof | |
CA2856488C (en) | Aluminium fin alloy and method of making the same | |
TWI490349B (en) | Copper alloy seamless pipe | |
JP5878235B2 (en) | Aluminum alloy for microporous hollow material having excellent extrudability and intergranular corrosion resistance and method for producing the same | |
JP4996909B2 (en) | Aluminum alloy brazing sheet and method for producing the same | |
WO2019181768A1 (en) | Aluminum alloy fin material for heat exchanger, production method therefor, and heat exchanger | |
JP2009024219A (en) | High strength and formable aluminum alloy cold-rolled sheet | |
JP2008062255A (en) | SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET | |
JP2009293059A (en) | High strength aluminum alloy fin material having excellent erosion resistance, method for producing the same, and automobile heat exchanger | |
KR20010090530A (en) | Method for manufacturing a fin material for brazing | |
JP5431046B2 (en) | Manufacturing method of brazing structure made of aluminum alloy for heat exchanger excellent in high temperature durability | |
WO2015002313A1 (en) | Aluminum alloy fin material for heat exchanger and method for producing same | |
JP4326907B2 (en) | Manufacturing method of brazing sheet | |
KR20150073555A (en) | High corrosion-resistant aluminum alloy for heat exchanger tube and heat exchanger tube prepared from the same | |
KR102261090B1 (en) | High corrosion-resistant heat exchanger tube and method for preparing the same | |
JP4326906B2 (en) | Manufacturing method of brazing sheet | |
WO2012132785A1 (en) | Combination press aluminium alloy fin material for heat exchanger, and manufacturing method for same | |
JP2024081351A (en) | Aluminum alloy material and method for producing aluminum alloy material | |
JP2005125364A (en) | Brazing sheet manufacturing method | |
WO2016117846A1 (en) | High-strength and high-corrosion-resistant aluminum alloy for heat exchanger pipe, and heat exchanger pipe manufactured therefrom | |
WO2016024696A1 (en) | Aluminum alloy having high strength and high resistance to corrosion for heat exchanger piping, heat exchanger piping manufactured from same, and method for manufacturing heat exchanger piping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) |