KR20170037613A - 유도성 전력 전송 장치 - Google Patents

유도성 전력 전송 장치 Download PDF

Info

Publication number
KR20170037613A
KR20170037613A KR1020177003041A KR20177003041A KR20170037613A KR 20170037613 A KR20170037613 A KR 20170037613A KR 1020177003041 A KR1020177003041 A KR 1020177003041A KR 20177003041 A KR20177003041 A KR 20177003041A KR 20170037613 A KR20170037613 A KR 20170037613A
Authority
KR
South Korea
Prior art keywords
coil
flux
coils
axis
inductive power
Prior art date
Application number
KR1020177003041A
Other languages
English (en)
Other versions
KR102368002B1 (ko
Inventor
존 탈봇 보이즈
그랜트 안소니 코빅
Original Assignee
오클랜드 유니서비시즈 리미티드
그랜트 안소니 코빅
존 탈봇 보이즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오클랜드 유니서비시즈 리미티드, 그랜트 안소니 코빅, 존 탈봇 보이즈 filed Critical 오클랜드 유니서비시즈 리미티드
Publication of KR20170037613A publication Critical patent/KR20170037613A/ko
Application granted granted Critical
Publication of KR102368002B1 publication Critical patent/KR102368002B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

유도성 전력 전송 장치(1)가 유도성 전력 전송을 위해 자계를 생성 및 수신하기 위해 사용될 수 있다. 장치는 중심 코일(5)과 2개의 단부 코일(3, 4)을 가지며, 단부 코일 중 하나는 중심 코일(5)의 각 단부에 제공된다. 각 단부 코일(3, 4)의 일부 턴은 중심 코일(5)의 일 측 상에 있고, 나머지 턴은 다른 측 상에 있다. 단부 코일은 중심 코일(5)의 일 측 상의 플럭스를 약화시키거나 소거시키고, 중심 코일의 다른 측 상의 장치 너머로 아치형 플럭스 패턴을 제공하기 위해 중심 코일을 통해 자속을 가이드하도록 작용한다.

Description

유도성 전력 전송 장치{INDUCTIVE POWER TRANSFER APPARATUS}
본 발명은 전기 에너지의 소스로부터 자속을 생성하고 전기 에너지의 소스를 제공하기 위해 자속을 수신하기 위한 장치에 관한 것이다. 일 적용예에서, 본 발명은 유도성 전력 전송(IPT: inductive power transfer), 즉 무선 전력 전송 적용예에서의 사용을 위해 자속 생성기 또는 수신기로서 또한 사용될 수 있는 유도성 전력 전송 디바이스 또는 구조체를 제공하기 위해 자속을 커플링한다.
무선 전력 전송 시스템은 전력 "전송(transmission)" 구조체로부터 전력 "수신(receiving)" 구조체까지의 요구되는 거리에서 제공되는 적절한 필드의 강도를 필요로 하는 느슨하게 커플링된 자기 시스템이다. 하나의 예는 전기차를 충전하는 것이다. 전력은 그라운드면 내 또는 그 상에 제공되는 자속 커플링 디바이스로부터 디바이스 부근의 차량으로 전송될 수 있다. 그라운드 디바이스는, 그 플럭스의 많은 부분이 차량 상의 다른 (아마도 유사한) 플럭스 커플링 디바이스에 의해 수집될 수 있도록 높은 아치형 패턴으로 자속을 '던지는(throw)' 능력과 커플링된 기계적인 강인성을 가져야 한다. 이것은 전기차에 속하는 가혹한 조건에 의해 더욱 어렵게 된 사소한 작업이 아니다. 장치는 또한 예를 들어 양방향 시스템으로 역방향으로 전력 전송을 허용할 수 있게 될 필요가 있다.
플럭스 커플링 디바이스는, 다른 형태를 취할 수 있더라도, 본 문헌에서 편의를 위해 "패드(pad)"로 칭해진다.
전기차(EV) 충전 적용예를 위한 하나의 알려진 패드의 형태는 일반적으로 원형의 형태이고, 국제 특허 공보 WO2008/140333호에 설명된다. 이러한 패드의 매력적인 특징은 낮은 방출을 갖는다는 것이다. 하지만, 제공할 수 있는 유용한 플럭스는 상대적으로 작고, 패드를 넘어 플럭스를 제공할 수 있는 높이, 즉 거리는 마찬가지로 작다. 직경 D를 갖는 상술한 공보에서 설명된 일반적으로 원형의 패드는 아마도 D/4의 유용한 플럭스 높이를 달성할 수 있다. 따라서, 200mm 에어-갭(air-gap)을 갖는 EV에 있어서 800mm 직경의 패드가 필요하다.
대안적으로, 2개의 코일 또는 권선을 갖는 자기적으로 분극된 패드 구조가 사용될 수 있다. 이러한 일반적인 구조가 국제 특허 공보 WO2010/090539호 및 WO2011/016737호에 설명된다. 이러한 구조를 통합하는 패드는 여기에서 편의를 위해 (변형 "DDQ" 및 "양극성(bipolar)"과 함께) "DD" 패드로 칭해진다. DD 타입 패드는 훨씬 더 멀리 - 이상적으로는 원형 패드의 2배로 자속을 방출할 수 있다. 이동 방향에 따른 종방향으로(XX) 또는 이동 방향에 따른 횡방향으로(YY) 패드를 놓는 것 사이에서 선택이 이루어져야 하는 것이 분극된 패드이다. 그라운드의 패드는 EV 아래의 패드와 동일 방향을 가져야만 하며, 그렇지 않으면 전력 전송이 불가능하다. DD 패드는 패드의 중심에서 서로 접촉(또는 거의 접촉)하는 2개의 동일한 권선을 갖는다. 이러한 권선은 평평한 아르키메데스 나선일 수 있고, 페라이트 또는 줄무늬 페라이트 스트립의 베드(bed) 상에 놓일 수 있다. 특징적으로, 페라이트가 극 영역들 사이의 영역에서 권선 뒤에서 플럭스를 집중하도록 작용하므로 필드는 패드의 일측으로만 나온다. 차량이 놓여진 패드에 대해 운전석에 플럭스가 없다는 것을 의미하므로, 이는 차량이 놓여진 패드에 대해 특히 바람직한 특징이다.
DD 패드의 플럭스 패턴은 2개의 플럭스 영역으로 특징화된다. 패드의 중심에서 플럭스 경로가 높고 상방으로 볼록하며 다른 DD 패드에 대한 링크를 위해 이상적이다. 패드의 각 단부에서, 플럭스는 임의의 적절한 패드로부터 떠나가므로 플럭스는 다른 패드에 링크할 수 없다. 따라서 이러한 단부 플럭스는 유용한 출력을 생성하지 않는다. 이렇게 낭비된 플럭스는 패드의 인덕턴스에 추가되고, 그 커플링 팩터를 감소시키고, 차량 아래에서 접촉하게 될 때 임의의 금속 단편에서 손실을 야기한다. 생성된 전체 플럭스의 많은 부분이 이러한 카테고리에 있어서, 이것이 감소될 수 있다면 패드는 향상될 것이다.
다른 패드 구조는 페라이트의 막대에 권취되는 단순한 솔레노이드 코일을 포함할 수 있다. 패드는 양측의 외부로 플럭스를 생성하고, 통상적으로 이들 중 하나는 알루미늄 스크린을 사용하여 제거된다. 이러한 제거는 매우 만족스럽지는 못하며, 패드는 제거하기 매우 어려운 잔류 단부 플럭스를 갖는다. 이러한 이유로, 이러한 패드는 이동 방향으로(XX) 변함없이 사용되어, 차량의 에지까지의 거리가 더 크고, 차량은 통상적으로 넓기보다는 더 길기 때문에 원하지 않는 플럭스를 제거할 더 긴 섹션이 존재한다. 솔레노이드 패드는 높은 유용한 플럭스 패턴을 생성할 수 있지만, 알루미늄 스크린에서 상당한 손실이 있으므로 덜 효율적이다. 하지만, 많은 누설을 가지지 않고, 이는 유리한 특징이다.
상술한 설명과 본 문헌에서의 종래 기술에 대한 임의의 참조는, 참조되는 종래 기술이 임의의 국가에서 공용이거나, 참조되는 종래 기술이 통상의 일반적인 지식이라는 것을 인정하는 것으로 이해되어서는 안된다.
본 발명의 목적은 상술한 문제를 극복할 수 있거나 이를 적어도 개선할 수 있거나 적어도 대중에게 유용한 선택을 제공하는 유도성 전력 전송 장치를 제공하는 것이다.
본 발명의 대안적인 목적은 높은 플럭스 사용을 허용하고 낮은 플럭스 경로 길이를 제공하는 유도성 전력 전송 장치를 제공하는 것이다.
본 발명의 추가적인 목적은 후술하는 설명으로부터 명백해질 것이다.
따라서, 일 양태에서 유도성 전력 전송을 위해 자계를 생성 또는 수신하기에 적절한 유도성 전력 전송 장치가 제공되며, 장치는
중심 코일; 및
하나의 단부 코일이 중심 코일의 각 단부에 또는 이에 인접하게 제공되는 2개의 단부 코일들을 포함하고,
코일들은 실질적으로 동일한 MMF를 제공하도록 구성된다.
본 발명의 다른 양태에서 유도성 전력 전송을 위해 자계를 생성 또는 수신하기에 적절한 유도성 전력 전송 장치가 제공되며, 장치는
제1 및 제2 단부를 갖는 중심 코일; 및
2개의 단부 코일을 갖고,
하나의 단부 코일은 중심 코일의 각 단부에 또는 이에 인접하게 제공되고,
코일은 실질적으로 동일한 MMF를 제공하도록 동작 가능하고, 여자되었을 때(energised), 단부 코일은 유도성 전력 전송을 위해 장치 너머로 아치형 플럭스 패턴을 제공하기 위해 중심 코일을 통해 자속을 가이드한다.
바람직하게는, 코일은, 전원으로 여자되었을 때, 각 코일에 의해 생성된 자계가 장치의 제1 측 상에서 서로 실질적으로 증대되고 장치의 제2(대향) 측 상에서 서로 실질적으로 약화되도록 배치된다.
일 실시예에서, 각 단부 코일은 분할되거나 태핑(tapping)되거나 아니면 제1 권선 및 제2 권선을 제공하도록 배치된다.
바람직하게는, 제1 권선은 중심 코일의 축의 일 측 상에 제공되고, 제2 권선은 중심 코일의 축의 다른 측 상에 제공된다.
일 실시예에서, 장치는 자기 투과성(magnetically permeable) 부재 또는 구조체를 포함할 수 있다.
일 실시예에서, 중심 코일은 축의 방향으로 자속 또는 그 컴포넌트를 생성 또는 수신하고, 추가 코일이 축에 수직인 방향으로 플럭스를 생성 또는 수신하도록 제공된다.
다른 양태에서, 유도성 전력 전송을 위해 자계를 생성 또는 수신하는 데 적절한 유도성 전력 전송 장치가 제공되고, 장치는,
제1 단부와 제2 단부와 그 사이의 축을 갖는 중심 코일; 및
2개의 단부 코일들을 포함하고,
하나의 단부 코일은 중심 코일의 각 단부에 또는 이에 인접하게 제공되고, 각 단부 코일들의 하나 이상의 턴(turn)은 중심 코일의 축의 일 측 상에 있고, 나머지 턴은 축의 다른 측 상에 있고,
단부 코일들은 여자되었을 때 축의 일 측 상의 플럭스를 약화시키기나 소거하고, 유도성 전력 전송을 위해 축의 다른 측 상의 장치 너머로 아치형 플럭스 패턴을 제공하기 위해 중심 코일을 통해 자속을 가이드하도록 동작 가능하다.
일 실시예에서, 중심 코일은 축의 방향으로 자속을 생성 또는 수신하고, 추가 코일이 축에 수직인 방향으로 플럭스를 생성 또는 수신하기 위해 제공된다.
일 실시예에서, 자기 투과성 부재가 제공된다. 부재는 장치 내에 투과성 재료를 포함할 수 있거나 장치에 분산될 수 있다.
일 실시예에서, 자기 투과성 부재는 제1, 제2 및 제3 부분을 포함하고, 제2 및 제3 부분은 제1 부분에 수직이다.
일 실시예에서, 3개 이상의 코일 중 적어도 하나는 자기 투과성 부재의 3개의 부분의 각각과 연관된다.
일 실시예에서, 자기 투과성 부재는 페라이트 부재이다.
일 실시예에서, 중심 코일은 축을 갖고 축의 방향으로 자속을 생성 또는 수신하고, 추가 코일이 축에 수직인 방향으로 플럭스를 생성 또는 수신하도록 제공된다.
다른 양태에서, 유도성 전력 전송을 위해 자계를 생성 또는 수신하는 데 적절한 유도성 전력 전송 장치가 제공되고, 장치는,
자기 투과성 부재;
제1 단부와 제2 단부를 갖는 중심 코일; 및
2개의 단부 코일을 포함하고,
하나의 단부 코일은 중심 코일의 각 단부에 또는 이에 인접하게 제공되고,
각 코일은 투과성 부재와 자기적으로 연관되고, 각 단부 코일의 하나 이상의 턴은 자기 투과성 부재의 일 측 상에 제공되고, 단부 코일의 나머지 턴은 자기 투과성 부재의 다른 측 상에 제공된다.
바람직하게는, 단부 코일은 자기 투과성 부재의 일 측 상에서 유도성 전력 전송을 위해 장치 너머로 아치형 플럭스 패턴을 제공하기 위해 중심 코일을 통해 자속을 가이드하도록 동작 가능하다.
일 실시예에서, 중심 코일은 축을 갖고 축의 방향으로 자속을 생성 또는 수신하고, 추가 코일이 축에 수직인 방향으로 플럭스를 생성 또는 수신하도록 제공된다.
다른 양태에서, 유도성 전력 전송을 위해 자계를 생성 또는 수신하는 데 적절한 유도성 전력 전송 장치가 제공되고, 장치는,
제1 및 제2 단부와 그 사이의 축을 갖는 중심 코일; 및
2개의 단부 코일을 포함하고,
양쪽 단부 코일은 중심 코일의 일 단부에 또는 이에 인접하게 제공되고, 단부 코일 중 하나는 중심 코일의 축의 일 측 상에 있고, 다른 단부 코일은 축의 다른 측 상에 있고,
단부 코일은 여자되었을 때, 유도성 전력 전송을 위해 장치 너머에 필요한 플럭스 패턴을 제공하기 위해 중심 코일을 통해 자속을 가이드하도록 동작 가능하다.
일 실시예에서, 중심 코일은 축의 방향으로 자속을 생성 또는 수신하고, 추가 코일이 축에 수직인 방향으로 플럭스를 생성 또는 수신하도록 제공된다.
다른 양태에서, 유도성 전력 전송을 위해 자계를 생성 또는 수신하기에 적절한 유도성 전력 전송 장치가 제공되며, 장치는
제1 및 제2 단부와 그 사이에 축을 갖는 중심 코일; 및
4개의 단부 코일을 갖고,
2개의 단부 코일은 중심 코일의 각 단부에 또는 이에 인접하게 제공되고, 중심 코일의 각 단부에 있는 각 코일 중 하나는 중심 코일의 축의 일 측에 있고, 다른 코일은 축의 다른 측 상에 있고,
단부 코일은, 여자되었을 때, 축의 일 측 상에서 플럭스를 약화 또는 소거하고, 유도성 전력 전송을 위해 축의 다른 측 상에서 장치 너머로 아치형 플럭스 패턴을 제공하도록 중심 코일을 통해 자속을 가이드하도록 동작 가능하다.
일 실시예에서, 중심 코일은 축의 방향으로 자속을 생성 또는 수신하고, 추가 코일이 축에 수직인 방향으로 플럭스를 생성 또는 수신하도록 제공된다.
다른 양태에서, 유도성 전력 전송을 위해 자계를 생성 또는 수신하기에 적절한 유도성 전력 전송 장치가 제공되며, 장치는
제1 및 제2 단부와 그 사이에 축을 갖는 중심 코일; 및
2개의 단부 코일을 포함하고,
하나의 단부 코일은 중심 코일의 각 단부에 또는 이에 인접하게 제공되고,
축의 제1 측 상에서 플럭스를 약화 또는 소거시키고 유도성 전력 전송을 위해 축의 제2 대향 측 상에서 장치 너머로 플럭스를 제공하는 제1 구성으로 코일을 동작시키고, 제2 측 상에서 플럭스를 약화 또는 소거시키고 제1 측 상에서 유도성 전력 전송을 위해 플럭스를 제공하는 제2 구성으로 코일을 동작시키는 수단이 제공된다.
바람직하게는, 장치는 중간 커플러를 포함한다.
일 실시예에서, 장치는 장치의 일 측 상에서 필드로부터 수신된 에너지를 저장하는 에너지 저장 수단, 및 장치의 일 측에서 필드로부터 수신된 에너지를 저장하고 장치의 다른 측 상에 필드를 제공하기 위해 저장 수단으로부터 에너지를 전송하는 제1 및 제2 구성으로 코일을 동작시키도록 구성된 스위치 수단을 포함한다.
일 실시예에서, 중심 코일은 축의 방향으로 자속을 생성 또는 수신하고, 추가 코일이 축에 수직인 방향으로 플럭스를 생성 또는 수신하도록 제공된다.
다른 양태에서, 본 발명은 유도성 전력 전송을 위한 방법을 제공하며, 방법은,
장치의 제1 측 상에 존재하는 자계로부터 유도적으로 전력을 수신하는 제1 구성에서 자속 커플링 장치의 하나 이상의 코일을 동작 가능하게 접속하는 단계; 및
제1 측에 대향하는 장치의 제2 측 상의 자계를 생성하는 제2 구성에서 장치의 하나 이상의 코일을 동작 가능하게 접속하는 단계를 포함한다.
또 다른 양태에서, 본 발명은 유도성 전력 전송을 위해 자계를 생성 또는 수신하기에 적절한 유도성 전력 전송 장치를 폭넓게 제공하고, 장치는,
제1 및 제2 단부와 함께 축을 갖는 중심 코일; 및
2개의 단부 코일을 포함하고,
하나의 단부 코일은 축의 각 단부에 또는 이에 인접하게 제공되고,
중심 코일 및 단부 코일은, 전원으로 여자되었을 때, 자속이 축을 따라 중심 코일에 존재하고 단부 코일에 의해 장치의 제1 측으로 가이드되도록 배치되고,
추가 코일이 축에 수직인 방향으로 자속을 생성 또는 수신하도록 동작 가능하다.
추가적인 양태에 따르면, 본 발명은 첨부 도면을 참조하여 여기에 실질적으로 설명된 플럭스 커플링 장치를 폭넓게 제공한다.
모두 그 새로운 양태에서 고려되어야 하는 본 발명의 추가적인 양태는 그 가능한 실시예의 예시의 방식으로 제공되는 이하의 설명으로부터 명백해질 것이다.
명세서 전체에서 종래 기술의 임의의 설명은, 이러한 종래 기술이 광범위하게 알려졌거나 기술 분야에서 통상적이고 일반적인 지식의 일부를 형성하는 것을 인정하는 것으로 고려되어서는 안된다.
도 1a는 3개의 코일을 갖는 'H'형 페라이트의 개략 측면도를 나타낸다.
도 1b는 화살표로 표기되는 예시적인 기자력(MMF: magnetomotive force)을 갖는 도 1a의 페라이트의 개략도를 나타낸다.
도 1c는 권선, 자기 포텐셜 및 MMF 방향으로 구분하여 도 1a의 페라이트의 부분의 개략도를 나타낸다.
도 1d는 도 1c의 자기 포텐셜 및 MMF 방향에 기초하여 예시적인 자기 포텐셜을 갖는 도 1a의 페라이트의 개략도를 나타낸다.
도 2는 본 발명의 실시예를 위한 플럭스 패턴 및 자기장 강도의 2D 시뮬레이션이다.
도 3은 본 발명의 실시예를 위한 자기장 강도의 2D 시뮬레이션이다.
도 4는 패드 위의 플럭스 수집기를 포함하는 본 발명의 실시예를 위한 자기장 강도의 2D 시뮬레이션이다.
도 5는 고투과성 서브-구조가 없는 본 발명의 실시예의 개략 측면도이다.
도 6은 평평한 단부 코일을 갖는 본 발명의 실시예의 개략 측면도이다.
도 7은 중심 코일의 단지 하나의 단부에 단부 코일을 갖는 본 발명의 실시예의 개략 측면도이다.
도 8은 중심 코일에 대해 수직인 방향으로 플럭스를 캡쳐하거나 생성하도록 구성된 추가 코일(여기에서 "Q" 코일로 칭함)을 포함하는 본 발명의 실시예의 평면도이다.
도 9는 도 8에 나타낸 장치의 측면도이다.
도 10은 Q 코일을 포함하는 본 발명의 다른 실시예의 평면도이다.
도 11은 도 10에 나타낸 장치의 측면도이다.
도 12는 Q 코일이 2개의 별개 부분-코일로서 권취되는 Q 코일을 포함하는 본 발명의 다른 실시예의 평면도이다.
도 13은 도 12에 나타낸 장치의 측면도이다.
도 14는 여기에 설명되는 플럭스 커플링 장치의 다양한 실시예와 함께 사용될 수 있는 유사한 고 자기 투과성 재료의 2개의 상이한 구성의 페라이트를 나타내는 평면도이다.
도 15는 도 8 내지 11을 참조하여 설명되는 코일 구성으로부터 전력을 수신하기 위한 하나의 가능한 구성의 회로 개략도이다.
도 16은 도 12 및 13을 참조하여 설명되는 코일 구성으로부터 전력을 수신하기 위한 하나의 가능한 구성의 회로 개략도이다.
도 17은 도 18에 나타낸 것과 일반적으로 유사한 본 발명의 실시예를 위한 자계 강도의 2D 시뮬레이션이다.
도 18은 플럭스 커플링 구조의 추가적인 실시예의 등축도이다.
우선 도 1a를 참조하면, 여기에서 패드(1)로 칭해지는 자속 커플링 디바이스가 측면도로 나타내어진다. 더욱 상세하게 후술하는 바와 같이, 자속을 가이드 또는 채널링하도록 구성되어, 패드는 필요한 자계 또는 플럭스 패턴을 제공한다. 설명되는 장치의 일 적용예는 유도성 전력 전송 시스템에서의 사용을 위한 것이다.
많은 IPT 적용예에서 3차원에서보다는(높이 또는 깊이) 2차원으로(예를 들어 수평으로) 더욱 확장적인 패드를 사용하는 것이 바람직하다. 하지만, 본 문헌에서 "패드"라는 용어는 임의의 자속 커플링(즉, 플럭스 생성 또는 수신) 구조를 칭하는 데 사용되며, 순수하게 패드형 구조로 제한하는 것은 아니다.
도 1a를 참조하면, 페라이트와 같은 자기 투과성 재료로 이루어진 H형 부재(2)는 부재(2)와 자기적으로 연관되어 있는 3개의 코일(3, 4, 5)을 갖는다. 부재(2)는 단일 구조일 수 있거나 별개의 단편 또는 섹션으로 이루어질 수도 있다. 추가로 후술하는 바와 같이, 구조는 예를 들어 실질적으로 평평한 다른 형태를 취할 수도 있으며, 일부 실시예에서서는 구조가 존재하지 않을 수 있다.
코일(3, 4, 5)은 (예를 들어, 자속의 향상된 제어를 제공하거나 접속점 주위의 권선을 회피하기 위해) 추가적인 부분 코일로 분리될 수 있고/있거나 전기적으로 함께 링크될 수 있다.
도 1a에 나타낸 예에서, 코일은 자기 투과성 부재(2) 주위에서 나선형으로 권취되거나 코일링된다. 하지만, 코일(3, 4, 5)은 다른 형태를 취할 수도 있다. 일 실시예에서, 코일(3, 4, 5)의 전부 또는 일부는 평평한 코일일 수 있다. 또한, 코일(3, 4, 5)의 일부 또는 전부는 부재(2)의 표면 상에 또는 그 부근에 제공될 수 있거나, 부재(2)에 오목하게 들어가거나 매립될 수 있다.
도 1a는 중심 섹션(7)의 각각의 측에 단부 섹션(6, 8)을 포함하는 3개의 부분 또는 섹션을 갖는 부재(2)를 나타낸다. 섹션(6, 7, 8)은 부재(2)의 별개의 섹션을 포함할 수 있거나 단일 구조의 부분을 포함할 수 있다. 도 1a는 연관된 권선(5)을 갖는 중심 섹션(7)을 나타낸다. 중심 섹션(7)의 제1 단부에서, 연관된 권선(3)을 갖는 제1 단부 섹션(6)이 제공된다. 중심 섹션(7)의 제2 단부에서 연관된 코일(4)을 갖는 제2 단부 섹션(8)이 제공된다. 변형이 가능하지만, 단부 섹션(6, 8)은 수평 섹션(7)에 대해 실질적으로 수직이거나 서로 실질적으로 평행한 것이 바람직하다. 일부 실시예에서, a)부재(2)의 구조와 하나 이상의 코일(3, 4, 5)의 형태, 위치 또는 권회수 중 하나 또는 양쪽의 변형이 필요한 자속 패턴을 생성하기 위해 바람직할 수 있다.
도 1a 및 1b에 나타낸 실시예에서, 단부 섹션(6, 8)은 중심 섹션(7) 위 및 아래로 연장하는 것으로 나타내어진다. 이상적으로 (추가로 후술하는 바와 같이) 완전하게 밸런싱된 자기 구성을 생성하기 위해, 중심 섹션(7)은 실질적으로 그 중간점에서 단부 섹션(6, 8)에 교차한다. 단부 섹션의 형태의 변형은 중간점으로부터 멀어지는 수평 섹션(7)의 이동을 필요로 할 수 있다. 하지만, 상술한 바와 같이, 변형은 사용 중인 필요한 자속 패턴을 제공하기 위해 사용될 수 있다.
후술하는 설명에서, 기준 자기 포텐셜(9)을 참조하는 것이 유용할 수 있다. 설명의 편의를 위해, 이는 H 부재(2)의 중심에서 임의로 규정되었다.
이하 도 1b를 참조하면, 코일(3, 4, 5)이 없는 자기 투과성 부재(2)가 나타내어진다. 대신, 각각 코일(3, 4, 5)의 여자에 의한 사용에서 생성되는 기자력(MMF)을 나타내는 화살표(10, 11, 12)가 나타내어진다. MMF(10, 11, 12)는 도 1a의 코일에 대한 전기적 전력원의 인가를 통해 도입된다. MMF는 전력의 위상 또는 크기 또는 각 코일 또는 권선에서의 도전성 재료의 권회수를 조정함으로써 변할 수 있다.
도 1b에 나타낸 실시예에서, 단부 섹션(6, 8)에 도입되는 MMF(10, 12)는 반대 방향이다. 중심 섹션의 MMF(11)는 2개의 MMF(10, 12)를 링크하기 위해 배향되므로, 패드(1) 또는 부재(2)의 원하는 측(13, 14)에서 증가된다. 제1 섹션의 MMF(11)가 역전되면, 반대의 필드(반대 또는 그렇지 않으면 실질적으로 대향) 측(15, 16)이 증가될 것이다. 패드의 측들은 하나, 또는 도 1b에 나타낸 바와 같이, 복수의 면들을 포함할 수 있다. 도 1b는 면(13, 14)이 자계의 전송에 적절한 제1 측(22)과 면(15, 16)이 적절한 제2 측(23)을 나타낸다.
이하, 도 1c를 참조하면, 부재(2)의 섹션(6, 7, 8)은 연관 코일(3, 4, 5)과 생성된 MMF(10, 11, 12)와 별개로 나타내어진다. 양 및 음의 숫자는 각 섹션에서의 자기 포텐셜의 임의의 크기를 나타낸다. 예를 들어, 코일(5)은 자기 투과성 재료 섹션(7)의 단부를 분할하여, 도 1c에 나타낸 바와 같이 제1 단부는 +1의 포텐셜을 갖고 제2 단부는 -1의 포텐셜을 갖는다. 섹션(7)이 존재하지 않는 경우에도, 코일(5)이 여자될 때 소정의 자기 포텐셜의 결과는 여전히 달성될 것이라는 것이 이해될 것이다. 이러한 프로세스는 각각의 다른 섹션에 대해 유사하다. 일부 실시예에서, 복수의 코일이 하나 이상의 단일 코일(3, 4, 5)을 대신하여 사용될 수 있어 원하는 MMF를 생성한다. 각 코일이 밸런싱된 전체 포텐셜을 가지므로(예를 들어, (+1)+(-1)=0), 순수한 포텐셜 시프트는 없다. 이러한 밸런스는 밸런싱된 MMF를 갖는 코일(3, 4, 5)에 의해 달성될 수 있다. 각각의 코일은 동일한 인가 전류와 동일한 권회수를 가질 수 있다(F=NI). 일부 실시예에서, 예를 들어 권선을 더욱 용이하게 제조하고 여자에 대한 더 큰 제어를 허용하기 위해서, 단부 코일(3, 4)은 2개의 코일로 분할될 수 있다. 이는 증가된 개수의 단자, 예를 들어 완전히 별개의 코일 또는 코일 상의 위치에서의 탭에 대한 단자를 필요로 한다. 이 경우에, 전체 MMF는 별개의 코일 MMF를 합산함으로써 밸런싱될 수 있다.
이제, 도 1d를 참조하면, 부재(2)는 이상적인 환경에서 나타나는 자기 포텐셜을 갖는 것으로 나타내어진다. 간섭 필드의 중첩은 실질적으로 최대 및 최소 자기 포텐셜을 갖는 제1 측(22)과 실질적으로 제로 자기 포텐셜을 갖는 제2 측(23)을 생성하였다. 비이상적인 환경에서, 중첩은 면(13, 14)을 포함하는 제1 측(22)에서 실질적으로 증가된 필드와 면(15, 16)을 포함하는 제2 측(23)에서 실질적으로 약화된 필드로 귀결될 수 있다. 이러한 자기 포텐셜의 결과는, 자속이 면(13, 14) 사이에 흐를 것이라는 것과 제한되거나 실질적으로 제로인 플럭스가 면(15, 16)으로부터 또는 이로 흐를 것이라는 것이다. 따라서, 패드(1)에 의해 생성된 자속은 실질적으로 패드의 일측 상에 있을 것이며, 패드로부터 멀어지는 방향으로 배향될 것이다. 이러한 플럭스는 패드 구조체로부터 연장될 것이며, 이러한 종류의 추가적인 패드 또는 다른 패드 유형을 포함하는 자속 수신 디바이스와 커플링될 수 있을 것이다. 약화된 필드는 종래 기술의 패드에서 사용되는 차폐 요소에 대한 필요성을 감소 또는 제거할 수 있다.
H형 부재는 수평 코일의 단부들에서 2개의 수직 코일을 갖는 것으로 보일 수 있다. 이러한 수직 코일은 양 단부를 가져서 더욱 효과적으로 기능하게 한다. 도 1d에 나타낸 바와 같이, 예를 들어, 이러한 방향에서의 패드는 도로에서 사용되어 도로 위로 연장하는 필드를 제공하여 정지 또는 이동하는 전기차를 충전한다.
도 2a를 참조하면, 본 발명의 실시예의 2-D 시뮬레이션은 패드(1)의 제1 측(22)의 증가된 필드 및 제2 측(23)의 약화된 필드를 예시한다. 비이상적인 시뮬레이션은, 제로 필드가 제2 측의 면(15, 16)에서 달성되지 않고, 널(null)이 도 2의 이러한 면 약간 아래 및 그 내측에 나타내어진다는 것을 의미한다. 중요한 것은, 이러한 널 주위의 영역 또한 필드 강도가 감소했다. 패드 위의 자속은, 제2의 수신 패드가 위치될 수 있는 패드(2) 위의 공간으로 연장하는 높은 플럭스 영역을 생성하는 아치(arch)를 형성한다. 패드는 제1 측(22)으로부터 연장하는 높은 아치형 플럭스와 제2 측(23) 상의 실질적으로 감소하거나 약화된 플럭스를 생성했다. 이는, 권선 또는 코일이 투사성 부재(2)의 양측에 존재하는 경우에도 발생한다.
이하 도 3을 참조하면, 대안적인 부재(2) 형태를 갖는 2-D 시뮬레이션이 나타내어진다. 이 경우에, 부재(2)는 일 측 상에 확대된 부분을 갖는다. 바람직하게는, 이는 사용되고 있는 부재(2)의 증대된 필드 측 상에 위치된다. 확대된 면(13, 14)은 플럭스 경로가 부재로부터 떨어진 면으로부터 아치형으로 되게 한다. 이는 또한 부재에 매우 근접한 임의의 플럭스 경로(즉, 수평 부재 부근을 통과함)의 자기 저항을 감소시킨다. 도 2와 유사하게, 널이 패드(1)의 측들 중 부근의 한 측에 존재하고, 연장된 필드가 패드의 대향측에서 보인다. 일부 경우에, 패드의 측들은 직접 대향하지 않을 수 있거나 기하적인 변형이 존재할 수 있다. 상술한 바와 같이, 제2 및 제3 부재(6, 8) 상의 코일(3, 4)은 2개의 부분 또는 파트에서 나타내어진다. 분리가 제1 부재(7) 주위에서 발생한다.
도 4를 참조하면, 제1 및 제2 측 상의 확대된 면을 갖는 추가적이고 대안적인 부재가 나타내어진다. 부재(2)의 형태는 부재 형태를 조정함으로써 추가적으로 최적화될 수 있다. 페라이트와 같은 사용되는 재료의 취성(brittleness)은 이용 가능한 형태 옵션을 제한할 수 있다. 또한 도 4에 자기 투과성 컬렉터(21)가 나타내어진다. 컬렉터는 예를 들어 이전의 도면을 참조하여 설명한 것 또는 본 문헌에서 참조되는 이전의 공보에 설명된 것과 같은 제2 패드를 나타낼 수 있다.
도 4에 나타낸 시뮬레이션에서, 컬렉터(21)는 단순한 페라이트 막대로서 나타내어진다. 페라이트 막대 또는 컬렉터(21)의 존재는 향상된 필드 구조를 생성한다. 이제 필드는 제1 측 상에서 더욱 강하게 증폭 또는 증대되고, 제2 측 상의 널이 깊게 나타난다. 이는, 바람직한 경로가 컬렉터(2)의 경로와 같이 제공될 때, 여기에 설명되는 새로운 패드가 다른, 덜 바람직한 경로에 감소된 플럭스를 제공하면서 그 경로에서 강화되는 자속을 제공하는 것을 제시한다. 결과는, 패드가 특별히 효율적이고 사용 중 또는 패드로 전력을 전송할 때 낮은 누설을 갖는다는 것이다. 누설 플럭스를 제한하는 가장 중요한 시간이 패드가 사용 중일 때이므로 이는 유리하다. 사용 중이 아닐 때 누설 플럭스를 제한하기 위해 패드는 오프될 수 있다.
단부 코일은 각도(본 예에서는 90도)를 통해 자속을 채널링 또는 가이드하도록 작용하여, 코일로부터의 플럭스가 장치의 단지 일측으로부터 실질적으로 루핑하여 유도성 전력 전송을 위해 사용될 수 있는 측으로부터 연장하는 바람직한 아치형 플럭스 패턴을 형성하는 것을 알 수 있다.
도 5를 참조하면, 투과성 부재(2)를 포함하지 않는 실시예가 나타내어진다. 본 실시예에서, 중심 코일(5)을 통하는 축(25)이 나타내어지고, 상술한 다른 실시예에서와 같이, 단부 코일(3, 4)이 축의 어느 한 측에 하나 이상의 턴을 갖는다는 것을 알 것이다. 다른 실시예는 필요한 자기적 성능을 제공하기 위해 예를 들어, 코일의 부근에 분산될 수 있는 가변량의 투과성 재료를 포함할 수 있다는 것을 알 것이다.
도 6을 참조하면, 평평한 코일로서 코일(3, 4)이 제공되는 실시예가 나타내어진다. 이러한 구성은 낮은 프로파일의 이점을 갖는다.
도 7에서, 축(25)의 어느 하나의 측 상에 하나 이상의 턴을 갖는 하나의 단부 코일이 제공되는 다른 실시예가 나타내어진다. 다시, 단부 코일은 2개의 개별로 제어 가능한 코일로 분할될 수 있다. 도면에 나타낸 구성은 원하는 플럭스 패턴을 제고하기 위해 사용될 수 있다.
본 기술 분야의 통상의 기술자는, 여기에 설명되는 장치가 코일이 여자되는 방식에 의존하여 일 측 또는 다른 측 상에서 자계를 생성 또는 수신할 수 있다는 것을 이해할 것이다. 실제로, 스위치 수단이 장치의 일 측 상의 자계로부터 에너지를 수신 또는 생성하기 위해 동작 가능하도록 하는 제1 구성 및 다른 측 상의 자계로부터 에너지를 수신 또는 생성하기 위한 제2 구성에서 코일을 접속하는 데 사용될 수 있다. 따라서, 본 장치는 중간 자기 커플러로서 사용될 수 있다. 코일은 제1 측 상의 자계로부터 에너지를 수신하도록 동작 가능할 수 있고, 그 후 제2 측 상에 필드를 제공하기 위해 스위칭 수단을 이용하여 동작 가능하게 재구성될 수 있다. 제2 측 상의 필드는 제1 측 상에 존재하는 필드로부터 수신된 에너지로부터 제공된다.
일 실시예에서, 커패시터와 같은 에너지 저장 요소가 장치의 제1 측 상의 시변 필드 자계로부터 수신된 에너지를 저장하는 데 사용된다. 에너지 저장 요소에 저장된 에너지는 시변 필드의 하나 이상의 사이클을 통해 수신될 수 있다. 적절한 시간에 저장 요소는 코일에 접속될 수 있어, 필드가 장치의 다른 측 상에 제공되고 다른 플럭스 커플러에 의해 수신되어 전력이 전송된다.
상술한 것과 같은 중간 커플링 구성은, 전력 전송이 발생하는 거리가 연장될 수 있고, 전송되는 전력의 흐름 또는 양이 제어될 수 있다는 이점을 갖는다.
이하 도 8 및 9를 참조하면, 다른 실시예가 도식적으로 예시되며, 여기에서 동일한 참조 부호는 상술한 다른 실시예의 동일 특징부를 나타낸다. 부재(2)는 예시의 용이성을 위해 실선 블록의 재료로서 나타내어지고, 코일 또는 권선에 대비되게 보일 수 있도록 도 8의 평면도에서 음영 처리된다. 단일 단편의 재료가 나타내어졌지만, 다른 형태 및 구성이 가능하다. 일부 실시예에서, 부재(2)는 구조적 지지를 제공하는 주요 목적을 가질 수 있다. 다른 실시예에서, 부재(2)는 자속을 집중시키기 위한 자기 부재로서 주로 작용할 수 있다. 또한, 단일 단편의 재료로 제공되든지 또는 별개의 단편의 재료로 제공되는지 부재(2)의 형태는 필요한 플럭스 밀도; 자기 포화; 생성 또는 수신되는 필드의 형태; 물리적 공간 제한과 같은 요인에 의존하여 변할 수 있다. 부재(2)에 대해 2개의 별개의 가능한 구조가 나타내어지는 하나의 예가 도 14에 도식적으로 예시되며, 좌측 상에는 덩어리 단편의 재료로 있고 우측 상에는 다수의 예를 들어 페라이트인 적절한 재료의 막대(30)로 있다. 막대를 사용하는 구조는 예를 들어 특허 공보 WO2010/090539호 및 WO2011/016737호에 설명된다.
다시 도 8 및 9를 참조하면, 단부 코일(3, 4) 및 중심 코일(5)은 도시의 명료성을 위해 도전성 재료의 개별 턴으로 나타내기보다는 외곽선으로 나타내어진다. 구조는 도 6을 참조하여 설명한 것과 유사하지만, 주요 차이점은 추가적인 코일(32)의 존재라는 것을 알 것이다. 편의를 위해 코일(32)은 본 문헌에서 "Q" 코일로 칭해진다. 상술한 바와 같이, 사용되고 있는 중심 코일(5)의 플럭스는 축(25)(도 5 참조)을 따라 존재하고 단부 코일(3, 4)에 의해 장치의 일측 내/외로 가이드된다. 따라서, 구성은 구조의 중간, 즉 코일(5)의 중간에서 축(25)에 수직인 방향으로 플럭스(또는 플럭스 컴포넌트)를 수신 또는 생성하도록 구성되지 않는다. 사용에서, 코일(32)은 이러한 수직 플럭스 컴포넌트가 생성 또는 수신될 수 있게 한다. Q 코일(32)의 동작은 이전 문단에서 참조된 특허 공보에서 설명된다. Q 코일(32)은 사용에서 플럭스가 수신 또는 생성되는 장치의 측 상에 제공된다.
Q 코일(32)이 코일(3, 4, 5) 외부에(즉, 주변에) 제공되는 다른 실시예가 도 10 및 11에 나타내어진다. 다시, Q 코일(32)은 사용에서 플럭스가 수신 또는 생성되는 장치의 측 상에 제공된다.
도 15는 시변 자계로부터 유도적으로 전력을 수신하기 위해 도 8 내지 11을 참조하여 설명한 Q 코일 실시예의 사용의 일례를 나타내는 회로 개략도를 나타낸다. 코일(3, 4, 5)은 단일 권선으로서 권취되는 것으로 나타내어진다. 코일(3, 4, 5)은 공진 회로를 제공하기 위해 튜닝 커패시터(36)에 의해 튜닝되고, 출력은 DC 인덕터(40)와 스위치 S를 포함하는 제어 회로에 공급되기 전에 다이오드 브릿지(38)에 의해 정류된다. 다이오드(42)를 통한 DC 필터 커패시터(44)(그리고 부하 R)로의 전력의 흐름은 동작 스위치 S에 의해 제어된다. 스위치 S를 개방 상태로 두는 것은 부하 R로 전류가 흐르게 하고, 스위치를 폐쇄하는 것은 전력 흐름을 방지한다. 스위치 S의 동작은 튜닝된 회로에서의 전류의 주파수에 비해 빠르거나 느릴 수 있다. 상술한 것과 같은 제어 회로의 동작의 추가적인 개시는 US 특허 5293308호에서 찾을 수 있다.
Q 코일(32)은 튜닝 커패시터(37)에 의해 공진으로 튜닝되고, 출력은 상술한 제어 회로로의 제공을 위해 다이오드 브릿지(39)에 의해 정류된다.
도 12 및 13에서, 2개의 파트-코일(32A, 32B)을 포함하는 Q 코일에서의 추가 실시예가 나타내어진다. 이러한 권선은 추가로 후술하는 바와 같이 위상이 다르게 접속된다. 예를 들어, 장치가 수신기로서 사용될 때, 코일(5)의 중심으로 (도 13에 나타낸 바와 같이) 수직 방향을 갖는 플럭스 컴포넌트는 분리될 수 있으며, 즉 부재(2)를 통해 반대 방향으로 분기 및 이동할 수 있다. 별개의 플럭스는 각 파트-코일(32A, 32B)에서 전압을 생성한다. 도 12 및 13의 장치를 사용하여 전력을 수신 및 제어하기 위한 회로의 일례가 도 16에 나타내어진다.
도 16은 시변 자계로부터 유도적으로 전력을 수신하기 위해 도 12 및 13을 참조하여 설명한 Q 코일 실시예의 사용의 일례를 개략적으로 나타내는 회로를 나타낸다. 회로는 도 15를 참조하여 설명한 것과 유사하며, 동일한 특징부는 동일한 참조 부호를 갖는다. 다시, 코일(3, 4, 5)은 단일 권선으로서 권취되는 것으로 나타내어진다. 2개의 파트-코일(32A, 32B)은 위상이 다르게 접속되어, 그 출력이 합산된다. 파트-코일은 튜닝 커패시터(45)로 튜닝되고, 공진 회로의 출력은 다이오드 브릿지(46)를 사용하여 정류된다. 회로 동작의 나머지는 도 15를 참조하여 설명한 것이다.
이하 도 18을 참조하면, 도 6에서 나타낸 실시예와 유사한 일부 특징을 갖고 도 14에 나타낸 것과 유사한 자기 투과성 베이스 구조를 사용하는 패드 구조의 실용적인 실시예가 나타내어진다. 도 18의 실시예에서, 구조로 또는 그 구조로부터 플럭스를 가이드하는 단부 코일(3, 4)은 페라이트 막대(30)에 의해 분리되는 "솔레노이드"형 권선을 형성하기 위해 함께 권취되는 2개의 별개의 평평한 코일로부터 형성된다. 단부 코일(3, 4)은 막대 구조체(30)를 효과적으로 링크할 수 있는 솔레노이드 코일(5)에 의해 분리된다. 페라이트가 바람직한 형태의 재료이지만, 다른 고투과성 재료가 사용될 수도 있고, 재료는 분리된 개별 막대의 형태보다는 단일 항목으로서 형성될 수도 있다. 실제로, 막대는 상용가능한 페라이트 구조체로부터 용이하게 형성되므로 막대(30)는 매우 실용적이고, 공간적으로 이격되어 있어도, 여전히 패드 구조체를 통해 플럭스를 가이드하기 위해 충분한 투과 영역을 제공한다는 것을 알게 되었다. 또한, 플럭스가 패드 구조체를 통해 전파되려고 하는 길이 방향으로의 막대의 정렬은 요구되는 방향으로 낮은 자기 저항 경로를 제공한다.
도 17을 참조하면, 패드 구조체의 중간이 도 18에 나타내어지는 수직 평면에서 플럭스 패턴이 단면으로 나타내어진다. 코일(3, 4, 5)의 구조는 막대(30)와 함께 단면에서 볼 수 있으며, 패드 구조체의 후방에서(즉, 페라이트 막대(30) 아래의 도 17의 하위 부분) 높게 제어되는 필드를 나타낸다.
본 발명은 본질적으로 단일측을 갖는 자속을 제공할 수 있지만 또한 다양한 다른 필드 형태를 제공하는 데 사용될 수도 있는 매우 효율적인 플럭스 커플러를 제공한다는 것을 알 것이다.

Claims (15)

  1. 유도성 전력 전송을 위해 자계를 생성 또는 수신하기에 적절한 유도성 전력 전송 장치로서,
    중심 코일; 및
    하나의 단부 코일이 상기 중심 코일의 각 단부에 또는 이에 인접하게 제공되는 2개의 단부 코일(end coil)들을 포함하고,
    상기 코일들은 실질적으로 동일한 MMF를 제공하도록 구성되는, 장치.
  2. 청구항 1에 있어서,
    여자될 때(energised), 상기 단부 코일들은 유도성 전력 전송을 위해 상기 장치 너머로 아치형(arch shaped) 플럭스 패턴을 제공하기 위해 상기 중심 코일을 통해 자속(magnetic flux)을 가이드하는, 장치.
  3. 청구항 1 또는 2에 있어서,
    전력원에 의해 여자될 때, 각각의 코일에 의해 생성된 자계는 상기 장치의 제1 측 상에서 실질적으로 서로 증대되고, 상기 제1 측에 대향하는 상기 장치의 제2 측 상에서 서로 실질적으로 약화되도록 상기 코일들이 배치되는, 장치.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서,
    각각의 상기 단부 코일들은 제1 권선(winding) 및 제2 권선을 제공하도록 배치되는, 장치.
  5. 청구항 4에 있어서,
    상기 제1 권선은 상기 중심 코일의 축의 일 측 상에 제공되고, 상기 제2 권선은 상기 중심 코일의 상기 축의 다른 측 상에 제공되는, 장치.
  6. 청구항 1 내지 5 중 어느 한 항에 있어서,
    상기 장치는 자기 투과성(magnetically permeable) 재료를 포함하는, 장치.
  7. 청구항 5에 있어서,
    상기 장치는 상기 축을 따라 위치되는 자기 투과성 구조체(structure)를 포함하는, 장치.
  8. 청구항 7에 있어서,
    상기 제1 권선은 상기 투과성 구조체의 일 측 상에 제공되고, 상기 제2 권선은 상기 투과성 구조체의 다른 측 상에 제공되는, 장치.
  9. 청구항 1 내지 8 중 어느 한 항에 있어서,
    상기 중심 코일에 의해 생성 또는 수신되는 자속의 방향에 실질적으로 수직인 방향으로 자속 컴포넌트를 생성 또는 수신하도록 구성된 추가 코일을 더 포함하는, 장치.
  10. 청구항 1 내지 9 중 어느 한 항에 있어서,
    상기 제1 권선 및 상기 제2 권선은 평평한 권선(flat winding)들을 포함하는, 장치.
  11. 유도성 전력 전송을 위해 자계를 생성 또는 수신하는 데 적절한 유도성 전력 전송 장치로서, 상기 장치는
    제1 단부와 제2 단부 및 그 사이에 축을 갖는 중심 코일; 및
    2개의 단부 코일들을 포함하고,
    하나의 단부 코일은 상기 중심 코일의 각 단부에 또는 이에 인접하게 제공되고, 상기 각 단부 코일들의 하나 이상의 턴(turn)은 상기 중심 코일의 상기 축의 일 측 상에 있고, 나머지 턴은 상기 축의 다른 측 상에 있고,
    상기 단부 코일들은 여자되었을 때(energised) 상기 축의 일 측 상의 플럭스를 약화시키기나 소거하고, 유도성 전력 전송을 위해 상기 축의 다른 측 상의 상기 장치 너머로 아치형 플럭스 패턴을 제공하기 위해 상기 중심 코일을 통해 자속을 가이드하도록 동작 가능한, 장치.
  12. 청구항 10에 있어서,
    상기 중심 코일은 상기 축의 방향으로 자속을 생성 또는 수신하고, 추가 코일이 상기 축에 수직인 방향으로 플럭스를 생성 또는 수신하도록 제공되는, 장치.
  13. 청구항 10 또는 11에 있어서,
    상기 장치는 자기 투과성 재료를 포함하는, 장치.
  14. 청구항 10 내지 12 중 어느 한 항에 있어서,
    상기 장치는 상기 축을 따라 위치되는 자기 투과성 구조체를 포함하는, 장치.
  15. 청구항 13에 있어서,
    상기 각 단부 코일들의 하나 이상의 턴은 상기 투과성 구조체의 일 측 상에 제공되고, 나머지 턴은 상기 투과성 구조체의 다른 측 상에 제공되는, 장치.
KR1020177003041A 2014-07-08 2015-07-08 유도성 전력 전송 장치 KR102368002B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
NZ627210 2014-07-08
NZ62721014 2014-07-08
NZ70602415 2015-03-17
NZ706024 2015-03-17
NZ706620 2015-04-01
NZ70662015 2015-04-01
PCT/NZ2015/050087 WO2016007023A1 (en) 2014-07-08 2015-07-08 Inductive power transfer apparatus

Publications (2)

Publication Number Publication Date
KR20170037613A true KR20170037613A (ko) 2017-04-04
KR102368002B1 KR102368002B1 (ko) 2022-02-25

Family

ID=55064547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177003041A KR102368002B1 (ko) 2014-07-08 2015-07-08 유도성 전력 전송 장치

Country Status (6)

Country Link
US (1) US10673279B2 (ko)
EP (1) EP3167465B1 (ko)
JP (1) JP6630716B2 (ko)
KR (1) KR102368002B1 (ko)
CN (1) CN106716570B (ko)
WO (1) WO2016007023A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3167465B1 (en) 2014-07-08 2022-06-01 Auckland UniServices Limited Inductive power transfer apparatus
JP7275648B2 (ja) * 2018-06-26 2023-05-18 株式会社デンソー 走行中非接触給電システム
CN109501608A (zh) * 2019-01-10 2019-03-22 张雁 一种电动汽车无线充电装置
JP7259467B2 (ja) 2019-03-25 2023-04-18 オムロン株式会社 電力伝送装置
US20220224160A1 (en) * 2019-05-30 2022-07-14 University Of Florida Research Foundation, Inc. Wireless rechargeable battery systems and methods
EP4216240A1 (en) * 2022-01-20 2023-07-26 Delta Electronics (Thailand) Public Co., Ltd. Magnetic component and transformer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231603A (ja) * 2011-04-26 2012-11-22 Denso Corp 非接触給電装置
JP2013055229A (ja) * 2011-09-05 2013-03-21 Technova:Kk 非接触給電トランス
WO2013062427A1 (en) * 2011-10-28 2013-05-02 Auckland Uniservices Limited Non-ferrite structures for inductive power transfer
CN103474213A (zh) * 2013-09-13 2013-12-25 南京航空航天大学 绕组混合绕制的非接触变压器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836344A (en) * 1987-05-08 1989-06-06 Inductran Corporation Roadway power and control system for inductively coupled transportation system
US5293308A (en) 1991-03-26 1994-03-08 Auckland Uniservices Limited Inductive power distribution system
US5606237A (en) * 1994-04-29 1997-02-25 Delco Electronics Corp. Inductive coupler characteristic shape
WO2008026080A2 (en) 2006-09-01 2008-03-06 Bio Aim Technologies Holding Ltd. Systems and methods for wireless power transfer
EP2156532A4 (en) 2007-05-10 2014-04-30 Auckland Uniservices Ltd ELECTRIC VEHICLE WITH MULTIPLE ENERGY SOURCES
GB0716679D0 (en) * 2007-08-28 2007-10-03 Fells J Inductive power supply
KR101794901B1 (ko) 2009-02-05 2017-11-07 오클랜드 유니서비시즈 리미티드 유도 전력 전송 장치
IN2012DN01935A (ko) 2009-08-07 2015-08-21 Auckland Uniservices Ltd
JP5240786B2 (ja) * 2009-08-25 2013-07-17 国立大学法人埼玉大学 非接触給電装置
CA2715706C (en) * 2009-09-24 2017-07-11 Byrne Electrical Specialists, Inc. Worksurface power transfer
JP2013243431A (ja) * 2012-05-17 2013-12-05 Equos Research Co Ltd アンテナコイル
JP5776638B2 (ja) * 2012-06-29 2015-09-09 トヨタ自動車株式会社 非接触電力伝送用コイルユニット、受電装置、車両、および送電装置
WO2014119294A1 (ja) * 2013-01-30 2014-08-07 パナソニック株式会社 非接触電力伝送装置用コイル及び非接触電力伝送装置
EP2953147A4 (en) * 2013-01-30 2016-04-06 Panasonic Ip Man Co Ltd CONTACTLESS POWER TRANSMISSION DEVICE
JP6140005B2 (ja) * 2013-06-27 2017-05-31 株式会社東芝 送電装置、受電装置および無線電力伝送システム
JP5839020B2 (ja) 2013-11-28 2016-01-06 Tdk株式会社 送電コイルユニット及びワイヤレス電力伝送装置
JP6107715B2 (ja) * 2014-03-19 2017-04-05 株式会社ダイフク 給電パッドとその給電パッドを用いたフォークリフトの非接触充電システム、および、受電パッドとその受電パッドを用いた非接触給電設備の2次側受電回路
EP3167465B1 (en) 2014-07-08 2022-06-01 Auckland UniServices Limited Inductive power transfer apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231603A (ja) * 2011-04-26 2012-11-22 Denso Corp 非接触給電装置
JP2013055229A (ja) * 2011-09-05 2013-03-21 Technova:Kk 非接触給電トランス
WO2013062427A1 (en) * 2011-10-28 2013-05-02 Auckland Uniservices Limited Non-ferrite structures for inductive power transfer
CN103474213A (zh) * 2013-09-13 2013-12-25 南京航空航天大学 绕组混合绕制的非接触变压器

Also Published As

Publication number Publication date
US20170214276A1 (en) 2017-07-27
CN106716570B (zh) 2020-05-15
EP3167465A4 (en) 2018-04-11
JP2017526170A (ja) 2017-09-07
US10673279B2 (en) 2020-06-02
EP3167465B1 (en) 2022-06-01
WO2016007023A1 (en) 2016-01-14
CN106716570A (zh) 2017-05-24
JP6630716B2 (ja) 2020-01-15
EP3167465A1 (en) 2017-05-17
KR102368002B1 (ko) 2022-02-25

Similar Documents

Publication Publication Date Title
KR102368002B1 (ko) 유도성 전력 전송 장치
JP6841760B2 (ja) 制御された磁束キャンセルを伴う磁束結合構造
JP2020004990A (ja) 誘導電力伝達装置
KR102196896B1 (ko) 유도성 전력 전달 시스템들을 위한 전송기
CN105720695B (zh) 感应式无线电力传输系统
US9413196B2 (en) Wireless power transfer
US10194246B2 (en) Magnet and coil assembly
JP2013534041A (ja) 電力を受信するためのワイヤレス電力受信ユニット、電力を伝達するためのワイヤレス電力伝達ユニット、ワイヤレス電力送信デバイス、およびワイヤレス電力送信デバイスの使用
CN103155720A (zh) 改进的多极磁铁
WO2015173923A1 (ja) 非接触給電装置
CN106165271B (zh) 包括两个独立移动构件的线性电磁致动器
JP2013258897A (ja) 誘導式エネルギー無線伝送装置
US20120139676A1 (en) Magnetic field generator and magnetocaloric device comprising said magnetic field generator
US8810348B2 (en) System and method for tailoring polarity transitions of magnetic structures
KR101428408B1 (ko) 자기장 분포 제어 장치 및 이를 이용한 송신기
CN112041949B (zh) 感应器装配件
CN105720699B (zh) 感应式无线电力传输系统
Turki et al. Performance of wireless charging system based on quadrupole coil geometry with different resonance topology approaches
JP2019030155A (ja) コイルユニット
KR102475461B1 (ko) 영구자석을 이용한 전기 에너지 변환 장치 및 시스템
CN213660119U (zh) 一种三角形电磁铁单元
CN103943342A (zh) 永磁增流变压器
KR101961108B1 (ko) 발전장치 및 그 제어 방법
US1863948A (en) Means of converting electrical energy into rotary oscillation of a mass
CN115812047A (zh) 螺线管线圈单元及非接触供电装置

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant