KR20170036575A - Treatment method of wastewater containing 1,4-dioxane - Google Patents

Treatment method of wastewater containing 1,4-dioxane Download PDF

Info

Publication number
KR20170036575A
KR20170036575A KR1020150135940A KR20150135940A KR20170036575A KR 20170036575 A KR20170036575 A KR 20170036575A KR 1020150135940 A KR1020150135940 A KR 1020150135940A KR 20150135940 A KR20150135940 A KR 20150135940A KR 20170036575 A KR20170036575 A KR 20170036575A
Authority
KR
South Korea
Prior art keywords
dioxane
wastewater
transition metal
reaction tank
treating
Prior art date
Application number
KR1020150135940A
Other languages
Korean (ko)
Inventor
백미화
구영림
김재환
김경희
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020150135940A priority Critical patent/KR20170036575A/en
Publication of KR20170036575A publication Critical patent/KR20170036575A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/366Dioxine; Furan
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

The present invention relates to a treatment method of wastewater containing 1,4-dioxane, which comprises the following steps: firstly treating the wastewater containing 1,4-dioxane and organic materials by using a membrane bioreactor (MBR); and secondly treating by putting the firstly treated petrochemical plant wastewater into a reaction tank which contains a transition metal catalyst and by injecting ozone gas into the reaction tank.

Description

1,4-다이옥산 함유 폐수의 처리 방법{TREATMENT METHOD OF WASTEWATER CONTAINING 1,4-DIOXANE}TECHNICAL FIELD The present invention relates to a method for treating 1,4-dioxane-containing wastewater,

본 발명은 1,4-다이옥산 함유 폐수의 처리 방법에 관한 것이다. 보다 상세하게는, 1,4-다이옥산 및 유기물의 제거효율이 우수한 1,4-다이옥산 함유 폐수의 처리 방법에 관한 것이다.The present invention relates to a method for treating 1,4-dioxane-containing wastewater. More particularly, the present invention relates to a method for treating 1,4-dioxane-containing wastewater which is excellent in the removal efficiency of 1,4-dioxane and organic matter.

1,4-다이옥산은 산업 용매 및 안정제로 광범위하게 사용되고 있으며, 폴리에스테르 제조공정에서 부산물로 발생된다. 미국 환경보호청(US EPA) 및 국제암연구소(IARC)에서는 1,4-다이옥산을 발암성 가능 물질로 분류하고 있다. 환경 및 인체에 미치는 유해성을 고려할 때, 석유화학공장폐수 내에 존재하는 1,4-다이옥산을 제거하는 것이 요구되나, 1,4-다이옥산은 끓는점이 101.1℃로 물과 비슷하고 물에 대한 용해도가 높아 탈기나 활성탄 흡착 같은 일반적인 처리방법으로 잘 제거되지 않기 때문에 1,4-다이옥산을 제거할 수 있는 별도의 처리가 요구된다.1,4-Dioxane is widely used as industrial solvents and stabilizers and is produced as a by-product in the polyester manufacturing process. The US EPA and the International Cancer Institute (IARC) classify 1,4-dioxane as a carcinogenic substance. Considering the environmental and human health hazards, 1,4-dioxane present in petrochemical wastewater is required to be removed, but 1,4-dioxane has a boiling point of 101.1 ° C which is similar to water and has high solubility in water Separate treatment to remove 1,4-dioxane is required because it can not be removed well by general treatment methods such as stripping or activated carbon adsorption.

종래에 알려진 1,4-다이옥산의 처리방법으로는, 광촉매, 오존, 과산화수소, 초음파 등을 이용한 고도산화공정(AOP)과 1,4-다이옥산 분해균을 이용하거나 활성슬러지를 이용한 호기성 생물학적 처리법이 있다. Conventional processes for treating 1,4-dioxane include aerobic biological treatment using an advanced oxidation process (AOP) using a photocatalyst, ozone, hydrogen peroxide, ultrasonic waves, and 1,4-dioxane decomposing bacteria or using activated sludge .

고도산화공정은 오존/광촉매, 광촉매/과산화수소, 오존/과산화수소, 오존/초음파 등의 다양한 조합으로 구성되며, 처리 효율은 높지만 약품비 및 에너지 비용이 과다하게 많이 소요된다. 또한, 광촉매를 이용하는 경우에는, 폐기물이 발생하며 UV관 표면의 오염도 증가로 인한 처리효율 저하를 억제하기 위하여 주기적으로 UV관을 세정해 주어야 하는 문제점이 있다. 또한, 고농도의 1,4-다이옥산을 함유한 폐수의 경우, 고농도의 오존이 필요하기에 전력 소모가 크고, 오존/과산화수소를 이용한 고도산화공정의 경우에는 1,4-다이옥산의 제거에 있어서는 일정 정도의 효과가 있으나, 폐수 처리 후 과산화수소를 분해 또는 제거하기 위한 후속공정이 요구되며, 폐수에 포함된 유기물(COD)제거에 한계가 있다는 문제점이 있다. The advanced oxidation process consists of various combinations of ozone / photocatalyst, photocatalyst / hydrogen peroxide, ozone / hydrogen peroxide, ozone / ultrasonic wave, etc., and the treatment efficiency is high, but the drug cost and energy cost are excessively high. In addition, when a photocatalyst is used, there is a problem that the UV tube must be periodically cleaned in order to suppress the deterioration of the treatment efficiency due to the increase of contamination on the surface of the UV tube due to the generation of waste. In addition, in the case of wastewater containing a high concentration of 1,4-dioxane, power consumption is high because ozone is required at a high concentration, and in the case of an advanced oxidation process using ozone / hydrogen peroxide, However, a subsequent process for decomposing or removing hydrogen peroxide after wastewater treatment is required, and there is a problem in that there is a limit to the removal of organic matter (COD) contained in wastewater.

생물학적 처리법은 1,4-다이옥산 분해균을 이용하는 방법이 있으나, 현장 적용한 사례는 전무하고, 특정 분해균을 발현시켜 우점화하여야 하므로 운영관리가 어려운 문제점이 있다. Although there is a method of using 1,4-dioxane-degrading bacteria as a biological treatment method, there is no case where it is applied on the spot, and since a specific decomposing bacterium is expressed, it is difficult to operate and manage.

관련 배경기술이 한국공개특허 제2010-0096694호에 개시되어 있다. Related Background Art is disclosed in Korean Patent Publication No. 2010-0096694.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 1,4-다이옥산과 유기물의 제거효율이 모두 우수하며, 에너지 사용량 및 유지 관리비가 적고, 폐기물이 발생하지 않으며, 별도의 후속 공정이 요구되지 않는 1,4-다이옥산 함유 폐수의 처리 방법을 제공하고자 한다.DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a process for producing 1,4-dioxane, which is excellent in the removal efficiency of 1,4-dioxane and organic matter, has low energy consumption and maintenance cost, does not generate waste, Dioxane-containing waste water.

일 측면에서, 본 발명은, 1,4-다이옥산 및 유기물이 함유된 폐수를 생물여과반응기(Membrane BioReactor, MBR)를 이용하여 1차 처리하는 단계; 및 상기 1차 처리된 석유화학공장폐수를 전이금속 촉매를 포함하는 반응조에 투입하고, 오존 가스를 주입하여 2차 처리하는 단계를 포함하는 1,4-다이옥산 함유 폐수의 처리방법을 제공한다. In one aspect, the present invention relates to a process for treating wastewater containing 1,4-dioxane and organic matter by a primary treatment using a membrane filtration reactor (Membrane BioReactor, MBR); And a step of injecting the primary treated petrochemical wastewater into a reaction tank containing a transition metal catalyst and injecting ozone gas to perform a secondary treatment, thereby providing a method for treating 1,4-dioxane-containing wastewater.

이때, 상기 전이금속촉매는 황산망간(MnSO4), 황산아연·7수화물(ZnSO4 ·7H2O), 황산니켈·6수화물(NiSO4 ·6H2O) 또는 이들의 조합일 수 있으며, 상기 반응조 내의 전이금속촉매의 농도는 0.5 ~ 2 mg/L 정도인 것이 바람직하다.In this case, the transition metal catalyst may be a manganese sulfate (MnSO 4), zinc sulfate heptahydrate (ZnSO 4 · 7H 2 O) , nickel sulfate, hexahydrate (NiSO 4 · 6H 2 O), or a combination thereof, wherein The concentration of the transition metal catalyst in the reaction tank is preferably about 0.5 to 2 mg / L.

한편, 상기 생물여과반응기는 호기성 미생물이 포함된 생물 반응조 및 여과막 유닛을 포함하는 것일 수 있다. Meanwhile, the biofilm reactor may include a bioreactor including a breathable microorganism and a filtration membrane unit.

상기 생물여과반응기는, 예를 들면, F/M비가 0.01 내지 0.03 kgBOD/kgMLSSday 정도, BOD 용적부하가 0.15 ~ 0.20 kg/m3/day 정도, MLSS(Mixed Liquor Suspended Solids)가 7,500 ~ 10,000 mg/L 정도일 수 있으며, 상기 생물여과반응기의 체류 시간(HRT)은 24 ~ 48시간 정도일 수 있다. For example, the biofiltration reactor has an F / M ratio of about 0.01 to about 0.03 kg BOD / kg MLSSday, a BOD volume load of about 0.15 to about 0.20 kg / m 3 / day, a MLSS (Mixed Liquor Suspended Solids) of about 7,500 to 10,000 mg / L, and the residence time (HRT) of the biofiltration reactor may be about 24 to 48 hours.

한편, 상기 2차 처리 단계에서, 상기 오존 가스는 반응조 내에 용존된 오존 농도가 1 ~ 10 mg/L가 되도록 주입되는 것이 바람직하다. On the other hand, in the secondary treatment step, it is preferable that the ozone gas is injected so that the dissolved ozone concentration in the reaction tank is 1 to 10 mg / L.

상기 본 발명에 따른 폐수처리방법에 따르면, 1,4-다이옥산의 제거율이 90% 이상이고, 유기물의 제거율이 90% 이상일 수 있다. According to the wastewater treatment method of the present invention, the removal rate of 1,4-dioxane can be 90% or more and the removal rate of organic matter can be 90% or more.

본 발명에 따른 1,4-다이옥산 함유 폐수처리방법에 따르면, 폐수에 함유된 1,4-다이옥산 및 유기물을 90% 이상의 높은 제거율로 제거할 수 있다.According to the method for treating wastewater containing 1,4-dioxane according to the present invention, 1,4-dioxane and organic substances contained in wastewater can be removed at a high removal rate of 90% or more.

또한, 본 발명에 따른 1,4-다이옥산 함유 폐수처리방법은 과산화수소나 광촉매 등을 사용하는 종래의 방법에 비해 오존 주입량이 적어 에너지 사용량이 적고, 폐기물이 발생하지 않기 때문에 별도의 후속 공정이 요구되지 않는다는 장점이 있다. In addition, the method for treating 1,4-dioxane-containing wastewater according to the present invention requires less subsequent steps since a smaller amount of ozone is injected and less energy is used and no waste is generated as compared with the conventional method using hydrogen peroxide or a photocatalyst There is an advantage that it does not.

도 1은 본 발명에 따른 1,4-다이옥산 함유 폐수처리방법의 순서도이다.
도 2는 본 발명에 따른 1,4-다이옥산 함유 폐수처리방법을 설명하기 위한 개략도이다.
1 is a flow chart of a method for treating wastewater containing 1,4-dioxane according to the present invention.
2 is a schematic view for explaining a method for treating wastewater containing 1,4-dioxane according to the present invention.

이하, 도면을 참조하여 본 발명에 대해 구체적으로 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.

도 1 에는 본 발명에 따른 1,4-다이옥산 함유 폐수처리방법의 순서도가 개시되어 있다. 도 1에 도시된 바와 같이, 본 발명의 폐수처리 방법은, 생물여과반응기(Membrane BioReactor, MBR)를 이용한 처리 단계와, 전이금속 촉매 및 오존을 이용한 처리 단계로 이루어진 2단계 처리를 수행하는 것을 특징으로 한다. 구체적으로는, 본 발명의 1,4-다이옥산 함유 폐수의 처리방법은, 1,4-다이옥산 및 유기물이 함유된 폐수를 생물여과반응기(Membrane BioReactor, MBR)에 통과시켜 1차 처리하는 단계와, 상기 1차 처리된 석유화학공장폐수를 전이금속 촉매를 포함하는 반응조에 투입하고, 오존 가스를 주입하여 2차 처리하는 단계를 포함한다.Fig. 1 shows a flowchart of a method for treating wastewater containing 1,4-dioxane according to the present invention. As shown in FIG. 1, the wastewater treatment method of the present invention is characterized by carrying out a two-step treatment consisting of a treatment step using a membrane filter (Membrane BioReactor, MBR) and a treatment step using a transition metal catalyst and ozone . Specifically, the method for treating 1,4-dioxane-containing wastewater according to the present invention comprises the steps of passing primary wastewater containing 1,4-dioxane and organic matter through a membrane filtration reactor (Membrane BioReactor, MBR) And a step of injecting the primary treated petrochemical wastewater into a reaction tank containing a transition metal catalyst and injecting ozone gas to secondary treatment.

상기한 바와 같이, 종래의 생물학적 처리나 화학적 처리 중 한 가지만 실시하는 폐수 처리 방법에서는, 폐수 내의 1,4-다이옥산과 유기물 중 하나의 제거 효율이 떨어진다는 문제점이 있었다. 또한, 종래에 1,4-다이옥산 분해를 위해 사용되었던 화학적 처리 방법의 경우, 전력 소모가 많고, 폐기물이 발생하는 등의 문제점이 있었다. As described above, there is a problem in that, in the conventional wastewater treatment method of either biological treatment or chemical treatment, the removal efficiency of one of 1,4-dioxane and organic matter in the wastewater is inferior. In addition, the conventional chemical treatment methods used for 1,4-dioxane decomposition have problems such as high power consumption and waste generation.

본 발명자들은 상기와 같은 문제점을 해결하기 위해, 연구를 거듭한 결과, MBR을 이용한 생물학적 처리 단계(1차 처리)를 수행한 후에, Mn, Zn, Ni 등을 포함하는 전이금속 촉매를 포함하는 반응조에 오존 가스를 주입하여 1,4-다이옥산을 산화시키는 2차 처리를 수행할 경우, 폐기물 발생으로 인한 후처리 없이 유기물과 1,4-다이옥산의 제거율을 90% 이상까지 향상시킬 수 있음을 알아내고, 본 발명을 완성하였다.In order to solve the above problems, the inventors of the present invention have conducted extensive research and have found that, after a biological treatment step (primary treatment) using MBR is carried out, a reaction tank containing a transition metal catalyst including Mn, Zn, Dioxane can be improved by up to 90% or more without post-treatment due to the generation of waste when performing the secondary treatment of oxidizing 1,4-dioxane by injecting ozone gas , Thereby completing the present invention.

도 2에는 본 발명의 1,4-다이옥산 함유 폐수처리방법의 개략도가 도시되어 있다. 이하. 도 2를 참조하여 본 발명의 폐수처리방법의 각 단계를 보다 자세히 설명한다.2 shows a schematic diagram of a method for treating 1,4-dioxane-containing wastewater according to the present invention. Below. Each step of the wastewater treatment method of the present invention will be described in more detail with reference to Fig.

먼저, 1,4-다이옥산 및 유기물이 함유된 폐수를 생물여과반응기(Membrane BioReactor, MBR)(100)에 유입시킨다. First, the wastewater containing 1,4-dioxane and organic matter is introduced into a Membrane BioReactor (MBR) 100.

본 발명에서 사용되는 생물여과반응기(100)로는, 당해 기술분야에서 일반적으로 사용되는 생물여과반응기들이 제한없이 사용될 수 있으며, 특별히 한정되지 않는다.As the biofiltration reactor 100 used in the present invention, biofiltration reactors generally used in the art can be used without limitation, and are not particularly limited.

예를 들면, 상기 생물여과반응기(100)는 생물학적 처리가 이루어지는 생물 반응조(110)와, 여과막 유닛(120)으로 이루어질 수 있으며, 상기 생물 반응조(110)에는 폐수를 폭기시키기 위한 산기관(130)이 포함될 수 있다.For example, the biofiltration reactor 100 may include a bioreactor 110 and a filtration membrane unit 120. The bioreactor 110 may include an aeration unit 130 for aeration of wastewater, May be included.

상기 생물 반응조(110)에는 폐수에 함유된 유기물 및 1,4-다이옥산을 분해시키기 위한 호기성 미생물이 포함된다. 이때, 상기 생물 반응조(110) 내의 호기성 미생물의 농도, MLSS(Mixed Liquor Suspended Solids)는, 7,000 mg/L 이상, 바람직하게는 7,500~10,000 mg/L 정도일 수 있다. 이와 같이 호기성 미생물을 고농도로 함유시킴으로써, 폐수 내에 함유된 유기물 및 1,4-다이옥산의 제거 효율을 보다 향상시킬 수 있다. The bioreactor 110 includes an organic substance contained in wastewater and an aerobic microorganism for decomposing 1,4-dioxane. At this time, the concentration of aerobic microorganisms in the bioreactor 110, MLSS (Mixed Liquor Suspended Solids), may be 7,000 mg / L or more, preferably 7,500 to 10,000 mg / L. By containing the aerobic microorganisms at such a high concentration, the removal efficiency of the organic substances and 1,4-dioxane contained in the wastewater can be further improved.

한편, 상기 생물여과반응기는 F/M비가, 바람직하게는 0.01 내지 0.03 kgBOD/kgMLSSday 정도일 수 있다. 상기 F/M비는 통상적인 활성슬러지법에서의 F/M비에 비해 상대적으로 낮은 수준이다. F/M비가 상기 범위일 경우 생물여과반응기에서 호기성 미생물이 1,4-다이옥산을 먹이로 사용할 수 있는 환경을 만들어 주는 것으로 판단된다.Meanwhile, the biofiltration reactor may have an F / M ratio, preferably about 0.01 to 0.03 kg BOD / kg of MSSday. The F / M ratio is relatively low as compared with the F / M ratio in the conventional activated sludge process. When the F / M ratio is in the above range, it is considered that the aerobic microorganisms in the biofilm reactor can provide an environment in which 1,4-dioxane can be used as food.

또한, 상기 생물여과반응기(100)의 BOD 용적부하는 0.15 ~ 0.20 kg/m3/day 정도일 수 있으나, 이에 한정되는 것은 아니다. In addition, the BOD volume load of the biofiltration reactor 100 may be about 0.15 to 0.20 kg / m 3 / day, but is not limited thereto.

한편, 상기 생물여과반응기(100)에 폐수가 체류하는 시간(HRT)은, 폐수에 포함된 유기물 및 1,4-다이옥산의 농도, 처리량 등에 따라 적절하게 조절될 수 있으며, 특별히 한정되는 것은 아니다. 예를 들면, 상기 체류시간(HRT)은 24 ~ 48시간 정도일 수 있다. Meanwhile, the time (HRT) during which the wastewater stays in the biofiltration reactor 100 can be appropriately adjusted according to the concentration of the organic matter and 1,4-dioxane contained in the wastewater, the throughput, etc., and is not particularly limited. For example, the residence time (HRT) may be about 24 to 48 hours.

생물 반응조의 미생물에 의해 1차 처리된 폐수(1차 처리수)는 여과막 유닛(120)에 의해 여과된 후, 2차 처리를 위한 반응조(200)로 배출된다. 이때, 상기 여과막 유닛(120)로는, 당해 기술 분야에서 생물여과반응기에 적용되는 여러가지 여과막들이 제한없이 사용될 수 있으며, 그 재질이나 종류 등이 특별히 한정되지 않는다. 구체적으로는, 상기 여과막 유닛(120)은 중공사막일 수 있으나, 이에 한정되는 것은 아니다. The wastewater (primary treatment water) subjected to the primary treatment by the microorganisms in the biological reaction tank is filtered by the filtration membrane unit 120, and then discharged to the reaction tank 200 for the secondary treatment. At this time, as the filtration membrane unit 120, various filtration membranes applicable to the biofiltration reactor in the related art can be used without limitation, and the material and kind thereof are not particularly limited. Specifically, the filtration membrane unit 120 may be a hollow fiber membrane, but is not limited thereto.

다음으로, 1차 처리수를 전이금속촉매가 포함된 반응조(200)로 유입시키고, 오존 가스를 주입하여 2차 처리를 수행한다. Next, the primary treatment water is introduced into the reaction tank 200 containing the transition metal catalyst, and the secondary treatment is performed by injecting ozone gas.

이때, 상기 전이금속촉매는, Mn, Zn, Ni 등과 같은 전이금속을 포함하는 촉매이며, 구체적으로는, 황산망간(MnSO4), 황산아연·7수화물(ZnSO4·7H2O), 황산니켈·6수화물(NiSO4·6H2O) 또는 이들의 조합일 수 있다. The transition metal catalyst is a catalyst containing transition metals such as Mn, Zn, Ni and the like. Specifically, manganese sulfate (MnSO 4 ), zinc sulfate heptahydrate (ZnSO 4 .7H 2 O), nickel sulfate · Hexahydrate (NiSO 4 · 6H 2 O) or a combination thereof.

상기와 같은 전이금속촉매가 포함된 반응조에 오존 가스를 주입할 경우, 적은 양의 촉매만으로도 OH 라디칼 생성이 촉진되어 1,4-다이옥산 분해 반응 속도를 가속화시키는 효과를 얻을 수 있다. 이로 인해, 종래 기술에 비해, 1,4-다이옥산의 제거 효율 및 제거 속도가 형상된다.When the ozone gas is injected into the reaction vessel containing the transition metal catalyst as described above, OH radical generation is promoted with only a small amount of catalyst, thereby accelerating the rate of 1,4-dioxane decomposition reaction. As a result, compared to the prior art, the removal efficiency and the removal rate of 1,4-dioxane are formed.

한편, 상기 반응조 내의 전이금속촉매의 농도는, 처리하고자 하는 폐수의 양이나, 폐수 내에 함유된 1,4-다이옥산의 농도에 따라 달라질 수 있으나, 예를 들면, 0.5 ~ 2 mg/L정도일 수 있다. 전이금속촉매 농도가 상기 범위를 만족할 때, 효율 및 경제성이 모두 우수하다. 또한, 상기 2차 처리 단계에서, 상기 오존 가스는 반응조 내에 용존된 오존 농도가 1 ~ 10 mg/L가 되도록 주입되는 것이 바람직하나, 이에 한정되는 것은 아니다.The concentration of the transition metal catalyst in the reaction tank may vary depending on the amount of wastewater to be treated and the concentration of 1,4-dioxane contained in the wastewater, but may be, for example, about 0.5 to 2 mg / L . When the transition metal catalyst concentration satisfies the above range, both efficiency and economy are excellent. In the secondary treatment step, the ozone gas is preferably injected so that the dissolved ozone concentration in the reaction tank is 1 to 10 mg / L, but not limited thereto.

상기와 같은 본 발명의 처리방법에 따르면, 1,4-다이옥산과 유기물(COD)을 높은 효율로 제거할 수 있다. 구체적으로는, 상기 2차 처리를 거친 처리수의 경우, 1,4-다이옥산 제거율 및 유기물 제거율이 모두 90% 이상이다.According to the treatment method of the present invention, 1,4-dioxane and organic matter (COD) can be removed with high efficiency. Specifically, in the case of treated water subjected to the secondary treatment, the 1,4-dioxane removal rate and the organic matter removal rate are both 90% or more.

이하, 구체적인 실시예를 통해 본 발명을 보다 더 자세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to specific examples.

실시예Example 1 One

1,4-다이옥산 함유 폐수(1,4-다이옥산 70 mg/L, CODcr 955 mg/L)를 MBR에 투입하여 1차 처리하였다. 이때, MBR 반응조 용량은 7L이며, 운영조건은 BOD 용적부하 0.164 kg/m3/day, MLSS는 7,500~10,000 mg/L, F/M비는 0.02 kgBOD/kgMLSSday 이었다. 여과막 유닛으로는 중공사 형태의 유기막을 이용하였다. The 1,4-dioxane-containing wastewater (1,4-dioxane 70 mg / L, COD cr 955 mg / L) was added to the MBR for primary treatment. At this time, the MBR reactor capacity was 7L, the operating conditions were BOD volume load of 0.164 kg / m 3 / day, MLSS of 7,500 ~ 10,000 mg / L and F / M ratio of 0.02 kg BOD / kgML SSday. As the filtration membrane unit, a hollow organic membrane was used.

MBR에 의해 1차 처리된 처리수 300 mL와 전이금속촉매인 황산망간(MnSO4) 1 mg/L를 반응조에 넣고 오존 발생기에서 생성한 오존 가스를 주입하여 2차 처리하였다. 반응조에 용존된 오존의 농도는 8 mg/L이었다. 2차 처리수 내의 1,4-다이옥산 함유량 및 COD 함유량을 각각 기체크로마토 질량분석기(GC/MS) 및 화학적산소요구량 분석 키트를 이용하여 측정한 다음, 이를 이용하여 1,4-다이옥산 및 유기물(COD)의 제거율을 측정하였다. 측정 결과는 하기 표 1에 나타내었다.300 mL of the treated water treated first by MBR and 1 mg / L of manganese sulfate (MnSO 4 ) as a transition metal catalyst were added to the reaction tank and the ozone gas generated by the ozonizer was injected into the reaction tank for secondary treatment. The concentration of dissolved ozone in the reaction tank was 8 mg / L. The content of 1,4-dioxane and the content of COD in the secondary treatment water were measured using a gas chromatography mass spectrometer (GC / MS) and a chemical oxygen demand analysis kit, respectively, and 1,4-dioxane and organic matter ) Was measured. The measurement results are shown in Table 1 below.

실시예Example 2 2

전이금속촉매로 황산망간(MnSO4) 대신 황산아연7수화물(ZnSO47H2O)를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 폐수를 처리하고, 1,4-다이옥산 및 유기물(COD)의 제거율을 측정하였다. 측정 결과는 하기 표 1에 나타내었다.Except that zinc sulfate heptahydrate (ZnSO 4 7H 2 O) was used in place of manganese sulfate (MnSO 4 ) as a transition metal catalyst, the same procedure as in Example 1 was conducted to treat wastewater and 1,4-dioxane and organic matter ) Was measured. The measurement results are shown in Table 1 below.

실시예Example 3 3

전이금속촉매로 황산망간(MnSO4) 대신 황산니켈6수화물(NiSO46H2O)를 사용한 것을 제외하고, 상기 실시예 1과 동일하게 폐수를 처리하고, 1,4-다이옥산 및 유기물(COD)의 제거율을 측정하였다. 측정 결과는 하기 표 1에 나타내었다.Dioxane and organic matter (COD) were treated in the same manner as in Example 1 except that nickel sulfate hexahydrate (NiSO 4 6H 2 O) was used instead of manganese sulfate (MnSO 4 ) as a transition metal catalyst. Was measured. The measurement results are shown in Table 1 below.

비교예Comparative Example 1 One

전이금속촉매를 사용하지 않은 점을 제외하고는, 상기 실시예 1과 동일하게 폐수를 처리하고, 1,4-다이옥산 및 유기물(COD)의 제거율을 측정하였다. 측정 결과는 하기 표 1에 나타내었다.The wastewater was treated in the same manner as in Example 1 except that the transition metal catalyst was not used, and the removal rate of 1,4-dioxane and organic matter (COD) was measured. The measurement results are shown in Table 1 below.

비교예Comparative Example 2 2

1,4-다이옥산 함유 폐수(1,4-다이옥산 70 mg/L, CODcr 955 mg/L)를 MBR에 투입하여 처리하였다. 이때, MBR 반응조 용량 및 운영조건은 실시예 1과 동일하다. 그런 다음, 상기 MBR에서 처리된 처리수 내의 1,4-다이옥산 함유량 및 COD 함유량을 각각 기체크로마토 질량분석기 및 화학적산소요구량 분석 키트를 이용하여 측정하고, 이를 이용하여 1,4-다이옥산 및 유기물(COD)의 제거율을 측정하였다. 측정 결과는 하기 표 1에 나타내었다. Dioxane-containing wastewater (1,4-dioxane 70 mg / L, COD cr 955 mg / L) was added to the MBR. At this time, the capacity and operating conditions of the MBR tank are the same as those of the first embodiment. Then, the content of 1,4-dioxane and the content of COD in the treated water in the MBR were measured using a gas chromatograph mass spectrometer and a chemical oxygen demand analysis kit, respectively, and 1,4-dioxane and organic matter (COD ) Was measured. The measurement results are shown in Table 1 below.

비교예Comparative Example 3 3

1,4-다이옥산 함유 폐수(1,4-다이옥산 70 mg/L, CODcr 955 mg/L) 300 mL를 반응조에 넣고 오존 발생기에서 생성한 오존 가스를 주입하여 처리하였다. 반응조에 용존된 오존의 농도는 8 mg/L이었다. 그런 다음, 상기 반응조에서 처리된 처리수 내의 1,4-다이옥산 함유량 및 COD 함유량을 각각 기체크로마토 질량분석기 (GC/MS) 및 화학적산소요구량 분석 키트를 이용하여 측정하고, 이를 이용하여 1,4-다이옥산 및 유기물(COD)의 제거율을 측정하였다. 측정 결과는 하기 표 1에 나타내었다.300 mL of 1,4-dioxane-containing wastewater (1,4-dioxane 70 mg / L, COD cr 955 mg / L) was placed in the reaction tank and treated with ozone gas generated by an ozone generator. The concentration of dissolved ozone in the reaction tank was 8 mg / L. Then, the 1,4-dioxane content and the COD content in the treated water treated in the reaction tank were measured using a GC / MS and a chemical oxygen demand analysis kit, respectively, and 1,4- The removal rates of dioxane and organic matter (COD) were measured. The measurement results are shown in Table 1 below.

구분division 처리방법Processing method 1,4-다이옥산
제거율 (%)
1,4-dioxane
Removal rate (%)
유기물(COD)
제거율 (%)
Organic matter (COD)
Removal rate (%)
실시예 1Example 1 MBR+오존/전이금속(Mn)촉매공정MBR + ozone / transition metal (Mn) catalyst process 9595 9393 실시예 2Example 2 MBR+오존/전이금속(Zn)촉매공정MBR + ozone / transition metal (Zn) catalyst process 9494 9393 실시예 3Example 3 MBR+오존/전이금속(Ni)촉매공정MBR + ozone / transition metal (Ni) catalyst process 9494 9393 비교예 1Comparative Example 1 MBR+오존산화공정MBR + ozone oxidation process 8989 9292 비교예 2Comparative Example 2 MBR 단독 공정MBR single process 7070 9090 비교예 3Comparative Example 3 오존산화 단독 공정Ozone oxidation only process 44 99

상기 [표 1]에 기재된 바와 같이, MBR 공정 및 오존/전이금속 촉매 산화 공정을 수행한 실시예 1 ~ 3의 경우, 1,4-다이옥산 및 유기물의 제거율이 모두 90% 이상으로 높게 나타난데 반해, 비교예 1 ~ 3의 경우, 1,4-다이옥산과 유기물의 제거율이 실시예 1 ~ 3에 비해 저하되었음을 알 수 있다. As shown in Table 1, in Examples 1 to 3 in which the MBR process and the ozone / transition metal catalytic oxidation process were carried out, the removal ratios of 1,4-dioxane and organic matter were all higher than 90% , And in Comparative Examples 1 to 3, the removal rates of 1,4-dioxane and organic substances were lower than those of Examples 1 to 3.

100 : 생물여과반응기
110 : 생물반응조
120 : 여과유닛
200 : 전이금속 촉매/오존 반응조
100: Biofilter Reactor
110: Bioreactor
120: Filtration unit
200: transition metal catalyst / ozone reactor

Claims (10)

1,4-다이옥산 및 유기물이 함유된 폐수를 생물여과반응기(Membrane BioReactor, MBR)를 이용하여 1차 처리하는 단계; 및
상기 1차 처리된 석유화학공장폐수를 전이금속 촉매를 포함하는 반응조에 투입하고, 오존 가스를 주입하여 2차 처리하는 단계를 포함하는 1,4-다이옥산 함유 폐수의 처리방법.
Primary treatment of wastewater containing 1,4-dioxane and organic matter using a membrane filtration reactor (Membrane BioReactor, MBR); And
A method for treating 1,4-dioxane-containing wastewater, comprising the step of introducing the primary treated petrochemical wastewater into a reaction tank containing a transition metal catalyst and injecting ozone gas for secondary treatment.
제1항에 있어서,
상기 전이금속촉매는 황산망간(MnSO4), 황산아연7수화물(ZnSO47H2O), 황산니켈6수화물(NiSO46H2O) 또는 이들의 조합인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
Wherein the transition metal catalyst is selected from the group consisting of manganese sulfate (MnSO 4 ), zinc sulfate heptahydrate (ZnSO 4 7H 2 O), nickel sulfate hexahydrate (NiSO 4 6H 2 O) or a combination thereof .
제1항에 있어서,
상기 생물여과반응기는 호기성 미생물이 포함된 생물 반응조 및 여과막 유닛을 포함하는 것인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
Wherein the biofiltration reactor comprises a bioreactor including a breathable microorganism and a filtration membrane unit.
제1항에 있어서,
상기 생물여과반응기는, F/M비가 0.01 내지 0.03 kgBOD/kgMLSSday인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
Wherein the biofiltration reactor has an F / M ratio of 0.01 to 0.03 kg BOD / kgMLSSday.
제1항에 있어서,
상기 생물여과반응기는, BOD 용적부하가 0.15 ~ 0.20 kg/m3/day인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
Wherein the biofiltration reactor has a BOD volume load of 0.15 to 0.20 kg / m 3 / day.
제1항에 있어서,
상기 생물여과반응기는 MLSS(Mixed Liquor Suspended Solids)가 7,500 ~ 10,000 mg/L인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
Wherein the biofiltration reactor is a method for treating wastewater containing 1,4-dioxane having MLSS (Mixed Liquor Suspended Solids) of 7,500 to 10,000 mg / L.
제1항에 있어서,
상기 생물여과반응기의 체류 시간(HRT)이 24 ~ 48시간인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
Wherein the biofiltration reactor has a retention time (HRT) of 24 to 48 hours.
제1항에 있어서,
상기 반응조 내의 전이금속촉매의 농도가 0.5 ~ 2 mg/L인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
Wherein the concentration of the transition metal catalyst in the reaction tank is 0.5 to 2 mg / L.
제1항에 있어서,
상기 2차 처리 단계에서, 오존 가스는 반응조 내에 용존된 오존 농도가 1 ~ 10 mg/L가 되도록 주입되는 것인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
Wherein in the secondary treatment step, the ozone gas is injected so that the dissolved ozone concentration in the reaction tank is 1 to 10 mg / L.
제1항에 있어서,
1,4-다이옥산 제거율이 90% 이상이고, 유기물 제거율이 90% 이상인 1,4-다이옥산 함유 폐수의 처리 방법.
The method according to claim 1,
A process for treating 1,4-dioxane-containing wastewater having a 1,4-dioxane removal rate of 90% or more and an organic matter removal rate of 90% or more.
KR1020150135940A 2015-09-24 2015-09-24 Treatment method of wastewater containing 1,4-dioxane KR20170036575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150135940A KR20170036575A (en) 2015-09-24 2015-09-24 Treatment method of wastewater containing 1,4-dioxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150135940A KR20170036575A (en) 2015-09-24 2015-09-24 Treatment method of wastewater containing 1,4-dioxane

Publications (1)

Publication Number Publication Date
KR20170036575A true KR20170036575A (en) 2017-04-03

Family

ID=58589170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150135940A KR20170036575A (en) 2015-09-24 2015-09-24 Treatment method of wastewater containing 1,4-dioxane

Country Status (1)

Country Link
KR (1) KR20170036575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659376A (en) * 2020-06-05 2020-09-15 北京化工大学 Preparation method of ozone catalytic oxidation catalyst and ozone catalytic oxidation catalyst prepared by same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659376A (en) * 2020-06-05 2020-09-15 北京化工大学 Preparation method of ozone catalytic oxidation catalyst and ozone catalytic oxidation catalyst prepared by same
CN111659376B (en) * 2020-06-05 2021-05-04 北京化工大学 Preparation method of ozone catalytic oxidation catalyst and ozone catalytic oxidation catalyst prepared by same

Similar Documents

Publication Publication Date Title
Zhang et al. Combination of ozonation and biological aerated filter (BAF) for bio-treated coking wastewater
US10662095B2 (en) Ozone-photocatalysis reactor and water treatment method
Xing et al. Treatment of antibiotic fermentation‐based pharmaceutical wastewater using anaerobic and aerobic moving bed biofilm reactors combined with ozone/hydrogen peroxide process
CN1215997C (en) Water treating technology by reinforced membrane biological reactor
JP5782229B2 (en) Wastewater treatment method
CN107364998B (en) Treatment process of medium-concentration organic industrial wastewater
CN109437474A (en) A kind of combined oxidation-BAC process removing coking reverse osmosis concentrated water organic matter
CN102344225B (en) Processing method of salty wastewater in cellulose ether production
CN107585970A (en) The technique of hardly degraded organic substance advanced treating in a kind of Industrial reverse osmosis concentrated water
CN108358395B (en) Treatment process of pesticide production wastewater
JP5259311B2 (en) Water treatment method and water treatment system used therefor
Xu et al. Fenton-Anoxic–Oxic/MBR process as a promising process for avermectin fermentation wastewater reclamation
Vasanthapalaniappan et al. A study on novel coupled membrane bioreactor with electro oxidation for biofouling reduction
CN101786686A (en) Method for using ozone-immobilized biological activated carbon for realizing deep treatment of industrial wastewater
KR20170036575A (en) Treatment method of wastewater containing 1,4-dioxane
CN109626494B (en) Ultraviolet strong oxygen advanced water treatment method and device
US20230322595A1 (en) Wastewater Ozone Treatment
Simate Water treatment and reuse in breweries
Al-Rashed et al. Nitrate removal from drinking water using different reactor/membrane types: a comprehensive review
Priyadarshini et al. Hybrid Treatment Solutions for Removal of Micropollutant from Wastewaters
Hasanbeiki et al. Feasibility of formaldehyde removal from aqueous solutions by advanced oxidation process (UV/H2O2)
Nagda et al. Current treatment technologies available for different types of wastewater
KR20090119402A (en) Biodegradation method of 1,4-dioxane and biodegradation apparatus thereof
CN110668637A (en) Pit and pond wastewater treatment method and device
Liu et al. Ozonation of oxytetracycline in the presence of activated carbon supported cerium oxide.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment