KR20170035949A - 전환에 대한 다양한 사용자 상호작용의 공헌의 결정 - Google Patents

전환에 대한 다양한 사용자 상호작용의 공헌의 결정 Download PDF

Info

Publication number
KR20170035949A
KR20170035949A KR1020177004082A KR20177004082A KR20170035949A KR 20170035949 A KR20170035949 A KR 20170035949A KR 1020177004082 A KR1020177004082 A KR 1020177004082A KR 20177004082 A KR20177004082 A KR 20177004082A KR 20170035949 A KR20170035949 A KR 20170035949A
Authority
KR
South Korea
Prior art keywords
user
information
interactions
identifying
online system
Prior art date
Application number
KR1020177004082A
Other languages
English (en)
Other versions
KR102447691B1 (ko
Inventor
세르지오 실베리아 클레멘테 필류
제이슨 조지 맥휴
Original Assignee
페이스북, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 페이스북, 인크. filed Critical 페이스북, 인크.
Publication of KR20170035949A publication Critical patent/KR20170035949A/ko
Application granted granted Critical
Publication of KR102447691B1 publication Critical patent/KR102447691B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0242Determining effectiveness of advertisements
    • G06Q30/0244Optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0242Determining effectiveness of advertisements
    • G06Q30/0246Traffic
    • G06N7/005
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Transfer Between Computers (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Endoscopes (AREA)

Abstract

온라인 시스템은 광고와의 사용자 상호작용을 설명하는 정보 및 다른 컨텐츠를 관리한다. 추가로, 온라인 시스템은 사용자를 식별하는 다양한 정보 타입 및 특정 사용자를 식별하는 정보 타입의 가능성의 척도를 제공하는 사용자를 식별하는 정보 타입과 각각 관련된 신뢰도 값을 관리한다. 사용자를 식별하는 예시적인 정보 타입은 온라인 시스템 식별자, 클라이언트 장치 식별자 및 애플리케이션 식별자를 포함한다. 온라인 시스템이 사용자가 전환을 수행했다고 표시하는 정보를 수신하는 경우, 온라인 시스템은 사용자를 식별하는 적어도 하나의 정보 타입과 관련된 상호작용을 검색한다. 기여 모델은 전환으로의 다양한 상호작용의 공헌을 결정하도록 검색된 상호작용에 적용되며, 다양한 상호작용과 관련된 사용자를 식별하는 정보 타입과 관련된 신뢰도 값을 참작한다.

Description

전환에 대한 다양한 사용자 상호작용의 공헌의 결정{Determining Contributions of Various User Interactions to a Conversion}
본 발명은 일반적으로 전환의 모니터링에 관한 것이며, 특히 수행된 전환에 대한 상호작용의 공헌을 결정하는 것에 관한 것이다.
컨텐츠 제공자는 온라인 시스템으로 제시하기 위해 컨텐츠 제공자에 의해 제공되는 컨텐츠와 전환(conversion)을 연관시킬 수 있다. 전환은 온라인 시스템의 사용자들이 컨텐츠를 제시받을 때 수행하기를 컨텐츠 제공자가 원하는 상호작용 또는 상호작용의 타입을 식별한다. 예를 들어, 컨텐츠 제공자는 사용자가 온라인 시스템에 의해 제시된 컨텐츠와 관련된 웹사이트에 액세스하거나 온라인 시스템에 의해 제시된 컨텐츠에 의해 식별되는 애플리케이션을 설치하도록 컨텐츠와 전환을 연관시킨다.
그러나, 사용자들은 흔히 온라인 시스템에 의해 제시된 컨텐츠와 관련된 전환을 수행하기 전에 온라인 시스템에 의해 캡처된 다수의 상호작용을 수행한다. 사용자에 의해 수행되는 다양한 상호작용은 사용자가 전환을 수행할 가능성을 증가시키거나 감소시킬 수 있다. 그러나, 온라인 시스템으로 전달되는 사용자가 수행한 서로 다른 상호작용들을 설명하는 정보는 사용자를 식별하는 서로 다른 정보 타입들을 포함할 수 있다. 이런 서로 다른 타입의 사용자 식별 정보를 사용함으로 인하여 종래의 온라인 시스템은 사용자에 의해 수행된 전환에 공헌했을 수 있는 사용자에 의한 이전의 상호작용들을 정확히 식별하지 못한다.
전환으로 이어지는 사용자에 의한 다양한 상호작용의 공헌에 대한 더 정확한 정보를 광고자에게 제공하기 위해, 온라인 시스템은 전환 이전에 사용자에 의한 상호작용을 식별하고 전환으로의 서로 다른 상호작용들의 공헌을 결정한다. 전환에 대한 상호작용의 공헌은 전환을 수행하는 사용자에 대한 상호작용의 영향력의 척도를 제공한다. 온라인 시스템은 사용자가 수행한 다양한 상호작용을 설명하는 정보뿐 아니라 온라인 시스템으로 식별된 전환과 관련된 정보를 저장한다. 온라인 시스템에 의한 상호작용과 관련된 정보의 예들은: 상호 작용의 타입의 설명(예를 들어, 광고의 노출, 광고 또는 링크와의 상호작용, 온라인에서 수행된 검색, 온라인 구매 등), 상호작용을 수행한 사용자를 식별하는 정보(예를 들어, 온라인 시스템 사용자 식별자, 장치 식별자 등), 및 상호작용과 관련된 시간(예를 들어, 타임스탬프)을 포함한다. 또한, 온라인 시스템은 정확하게 사용자를 식별하는 정보 타입의 능력의 척도를 나타내는 다양한 사용자 식별 정보 타입과 신뢰도 값을 연관시킨다. 예를 들어, 온라인 시스템은 다수의 사용자가 장치를 공유할 때 장치 식별자와 관련된 신뢰도 값보다 더 높은 신뢰도 값을 온라인 시스템 사용자 식별자와 연관시킨다. 일부 실시예에서, 온라인 시스템은 해당 신뢰도 값에 기반하여 사용자를 식별하는 정보 타입을 순위화하는데, 순위에서 더 높은 위치에 있다면 사용자를 정확히 식별하는 정보 타입의 능력이 더 높음을 나타낸다. 온라인 시스템이 전환을 설명하는 정보를 수신하면, 온라인 시스템은 수신된 정보로부터 사용자를 식별하는 정보를 식별한다. 이후, 온라인 시스템은 사용자를 식별하는 정보와 관련된 상호작용뿐 아니라 사용자를 식별하는 다른 정보 타입과 관련된 상호작용을 식별한다.
기여 모델(attribution model)은 전환에 대한 소스들(sources)의 공헌을 평가하도록 검색된 상호작용에 적용된다. 일부 실시예에서, 기여 모델은 서로 다른 상호작용들에 가중치를 적용하여 전환에 대한 다양한 상호작용의 공헌을 식별한다. 다양한 실시예에서, 상기 가중치는 사용자를 식별하는 정보 타입과 관련된 신뢰도 값에 적어도 부분적으로 기반한다. 또한, 기여 모델은 가령 적어도 하나의 임계 신뢰도 값을 가지는 사용자를 식별하는 정보 타입과 관련하여 검색된 상호작용과 같이 검색된 상호작용들의 서브세트에 적용될 수 있다.
본 발명의 내용 중에 포함되어 있다.
도 1은 일실시예에 따라 온라인 시스템이 구동되는 시스템 환경의 블록도이다.
도 2는 일실시예에 따른 온라인 시스템의 블록도이다.
도 3은 일실시예에 따라 하나 이상의 상호작용 중에서 전환에 기여하는 방법의 흐름도이다.
도 4는 일실시예에 따라 행위중인 사용자를 식별하는 정보 타입과 상호작용 및 전환을 연관시키는 정보의 예이다.
도면들은 오로지 예시적인 목적으로 다양한 실시예들을 도시한다. 통상의 기술자는 하기의 설명으로부터 본 명세서에 도시된 구조 및 방법의 대안적 실시예들이 본 명세서에 개시된 원칙으로부터 벗어남이 없이 이용될 수 있음을 용이하게 인식할 것이다.
시스템 구조
도 1은 온라인 시스템(140)에 대한 시스템 환경(100)의 블록도이다. 도 1에 도시된 시스템 환경(100)은 하나 이상의 클라이언트 장치(110), 네트워크(120), 하나 이상의 제3자 시스템(130) 및 온라인 시스템(140)을 포함한다. 대안적 구성으로, 상이한 컴포넌트 및/또는 추가 컴포넌트가 시스템 환경(100)에 포함될 수 있다.
클라이언트 장치(110)는 사용자 입력을 수신할 수 있고 네트워크(120)를 통해 데이터를 전송 및/또는 수신할 수 있는 하나 이상의 컴퓨팅 장치이다. 일실시예로, 클라이언트 장치(110)는 가령 데스크톱이나 랩톱 컴퓨터와 같은 종래의 컴퓨터 시스템이다. 대안적으로, 클라이언트 장치(110)는 가령 개인용 정보단말기(PDA), 모바일 전화, 스마트폰 또는 다른 적절한 장치와 같이, 컴퓨팅 기능을 갖는 장치일 수 있다. 클라이언트 장치(110)는 네트워크(120)를 통해 통신하도록 구성된다. 일실시예로, 클라이언트 장치(110)는 클라이언트 장치(110)의 사용자가 온라인 시스템(140)과 상호작용할 수 있게 하는 애플리케이션을 실행한다. 예컨대, 클라이언트 장치(100)는 네트워크(120)를 통해 클라이언트 장치(100)와 온라인 시스템(140) 사이의 상호작용을 가능하게 하는 브라우저 애플리케이션을 실행한다. 또 다른 실시예로, 클라이언트 장치(110)는, 가령 iOS® 및 ANDROIDTM와 같이, 클라이언트 장치(110)의 네이티브 운영 시스템에서 실행하는 응용 프로그래밍 인터페이스(API)를 통해 온라인 시스템(140)과 상호작용한다. 클라이언트 장치(110)는 한 명 이상의 사용자들과 연관될 수 있다. 일부 실시예에서, 사용자는 사용자와 관련된 클라이언트 장치(110)를 통해 다수의 애플리케이션, 제3자 시스템(130) 또는 임의의 이들의 조합에 액세스할 수 있다.
클라이언트 장치(110)는 유선 및 무선 통신 시스템 모두를 사용하여 근거리 네트워크 및/또는 광역 네트워크의 임의의 조합을 포함할 수 있는 네트워크(120)를 통해 통신하도록 구성된다. 일실시예로, 네트워크(120)는 표준 통신 기술 및/또는 프로토콜을 사용한다. 예컨대, 네트워크(120)는 가령 이더넷, 802.11, WiMAX(worldwide interoperability for microwave access), 3G, 4G, CDMA(code division multiple access), DSL(digital subscriber line) 등과 같은 기술을 사용하는 통신 링크를 포함한다. 네트워크(120)를 통한 통신을 위해 사용되는 네트워킹 프로토콜의 예는 MPLS(multiprotocol label switching), TCP/IP(transmission control protocol/Internet protocol), HTTP(hypertext transport protocol), SMTP(simple mail transfer protocol) 및 FTP(file transfer protocol)를 포함한다. 네트워크(120)에서 교환되는 데이터는 하이퍼텍스트 마크업 언어(HTML) 또는 확장형 마크업 언어(XML)와 같은 임의의 적절한 포맷을 사용하여 표현될 수 있다. 일부 실시예로, 네트워크(120)의 통신 링크의 전부 또는 일부는 임의의 적절한 기술(들)을 사용하여 암호화될 수 있다.
하나 이상의 제3자 시스템(130)은 온라인 시스템(140)과 통신하기 위한 네트워크(120)와 연결될 수 있는데, 이는 도 2와 함께 더 후술된다. 일실시예로, 제3자 시스템(130)은 클라이언트 장치에서 실행되는 애플리케이션에서 사용되기 위하여 클라이언트 장치(110)에서 실행되기 위한 애플리케이션을 설명하는 정보를 통신하거나 데이터를 클라이언트 장치(110)로 통신하는 애플리케이션 제공자이다. 다른 실시예에서, 제3자 시스템(130)은 클라이언트 장치(110)를 통해 표시되기 위한 컨텐츠 또는 다른 정보를 제공한다. 또한, 제3자 시스템(130)은 가령 제3자 시스템(130)에서 제공하는 애플리케이션에 대한 광고, 컨텐츠 또는 정보와 같은 정보를 온라인 시스템(140)으로 정보를 전달할 수 있다.
도 2는 온라인 시스템(120)의 구조의 블록도이다. 도 2에 도시된 온라인 시스템(140)은 행위 로그(210a), 필터링 모듈(215), 기여 모듈(220) 및 웹 서버 (225)를 포함한다. 다른 실시예로, 온라인 시스템(140)은 다양한 애플리케이션을 위한 추가 모듈, 더 적은 모듈 또는 다른 모듈을 포함할 수 있다. 가령 네트워크 인터페이스, 보안 기능, 부하 균형기, 장애복구 서버, 관리와 네트워크 동작 콘솔 등과 같은 종래의 구성요소들은 시스템 구조의 세부사항을 모호하게 하지 않도록 도시되지 않는다.
온라인 시스템(120)의 각각의 사용자는 사용자 프로필 스토어(205)에 저장되는 사용자 프로필과 관련된다. 사용자 프로필은 사용자에 의해 명시적으로 공유되었던 사용자에 대한 선언형 정보를 포함하고, 또한 온라인 시스템(140)에 의해 추론된 프로필 정보를 포함할 수 있다. 일실시예에서, 사용자 프로필은 대응하는 온라인 시스템 사용자의 하나 이상의 속성을 각각 설명하는 다수의 데이터 필드를 포함한다. 사용자 프로필에 저장된 정보의 예는 가령 경력, 학력, 성별, 취미나 기호, 위치 등과 같은 인명 정보, 인구학적 정보 및 다른 타입의 설명적 정보를 포함한다. 또한, 사용자 프로필 스토어(205) 내 사용자 프로필은 행위 로그(210)에 저장된 행위에 대한 레퍼런스를 관리할 수 있다.
다양한 실시예에서, 사용자와 관련된 다수의 물리적 위치는 사용자의 사용자 프로필에 포함된다. 위치 타입은 각각의 물리적 위치에 관련되며 물리적 위치의 하나 이상의 특성을 설명한다. 예를 들면, 위치 타입은 물리적 위치가 결정되었던 소스를 특정한다. 일실시예에서, 물리적 위치와 관련된 위치 타입은 위치 타입들의 세트로부터 선택된다. 예를 들면, 위치 타입은 사용자에 의해 특정되거나 사용자와 관련된 정보로부터 추론되는 고정의 물리적 위치(예컨대, 연고지, 거주지)를 식별하고, 또 다른 위치 타입은 사용자에 의해 온라인 시스템(140)으로 제공되는 컨텐츠에서 식별된 물리적 위치(예컨대, 사용자에 의한 온라인 시스템(140)으로의 게시물로 식별된 위치, 클라이언트 장치(110)를 통해 사용자가 체크인한 위치)를 식별하며, 추가의 위치 타입은 사용자와 관련된 클라이언트 장치(110)에 의해 온라인 시스템(140)으로 전달되는 정보에 의해 식별된 물리적 위치(예컨대, 온라인 시스템(140)과 관련된 애플리케이션을 실행하는 클라이언트 장치(110)에 의해 온라인 시스템(140)으로 전달되는 GPS(Global Positioning System) 좌표)를 식별한다. 그러나, 다른 실시예에서, 물리적 위치와 관련된 위치 타입은 물리적 위치의 특성들의 조합 중 임의의 적절한 특성을 식별할 수 있다. 또한, 일부 실시예에서, 위치 타입은 사용자의 현재의 물리적 위치를 식별한다. 예를 들어, 온라인 시스템(140)은 (예컨대, 상술한 바와 같이 사용자와 관련된 클라이언트 장치(110)에 의해 온라인 시스템(140)으로 전달되는 정보 및/또는 사용자에 의해 온라인 시스템(140)으로 제공되는 컨텐츠를 통해) 클라이언트 장치(110)로부터 수신된 정보와 관련된 타임스탬프를 현재시간과 비교함으로써 사용자와 관련된 물리적 위치가 사용자의 현재의 물리적 위치인지를 여부를 결정한다. 비교되는 시간들의 차이가 임계값 미만이라면, 온라인 시스템(140)은 사용자와 관련된 물리적 위치가 사용자의 현재 위치라고 식별한다.
서로 다른 위치 타입을 서로 다른 물리적 위치와 연관시킴으로써, 사용자 프로필은 사용자가 현재 서로 다른 물리적 위치들과 연관될 가능성이 얼마나 되는지에 대한 표시를 제공할 수 있다. 예를 들어, 물리적 위치가 클라이언트 장치(110)로부터 온라인 시스템(140)에 의해 수신된 정보로 식별되었음을 나타내는 위치 타입과 관련된 물리적 위치는 물리적 위치가 사용자-특정의 고정된 물리적 위치임을 나타내는 위치 타입과 관련된 물리적 위치보다 현재시간에 사용자와 관련될 가능성이 상대적으로 더 높다. 온라인 시스템(140)은 물리적 위치와 함께 수신된 추가 정보에 기반하여 물리적 위치와 관련된 위치 타입을 결정할 수 있다. 일부 실시예에서, 위치 타입을 특정하는 메타 데이터는 물리적 위치와 함께 온라인 시스템(140)에 의해 수신된다.
행위 로그(210)는 가령 외부 웹사이트와 같은 제3자 시스템(130)에서 행해지고 온라인 시스템(140)으로 전달되는 사용자 행위를 저장할 수 있다. 예컨대, 전자상거래 웹사이트는 전자상거래 웹사이트가 온라인 시스템(140)의 사용자를 식별할 수 있게 하는 소셜 플러그-인을 통해 온라인 시스템(140)의 사용자를 인식할 수 있다. 온라인 시스템(140)의 사용자는 고유하게 식별가능하기 때문에, 상기 예에서와 같이, 전자상거래 웹사이트는 온라인 시스템(140)의 외부의 사용자의 행위에 대한 정보를 사용자와의 연관을 위하여 온라인 시스템(140)과 통신할 수 있다. 따라서, 행위 로그(210)는, 웹페이지 열람 이력, 연계되었던 광고, 행해진 구매, 제3자 서비스의 구독(예컨대, 영화 구독, 음악 구독, 전자책 구독 등) 및 쇼핑과 구입으로부터의 다른 패턴들을 포함하는, 사용자가 제3자 시스템(130)에서 수행한 행위에 대한 정보를 기록할 수 있다.
행위 로그(210)는 온라인 시스템 사용자에 의한 컨텐츠와의 상호작용뿐 아니라 온라인 시스템 사용자와 관련된 전환을 설명하는 정보를 포함한다. 전환은 광고자에 의해 요구되고 사용자가 수행한 행위이며, 모니터링되거나 추적될 광고자에 의해 특정되는 사용자의 하나 이상의 상호 작용에 기인할 수 있다. 일실시예에서, 행위 로그(210)는 상호작용 및 전환과 관련된 정보를 저장하는 다양한 데이터베이스를 포함한다. 예를 들어, 행위 로그(210)는 광고자와 관련된 다수의 상호작용 및 전환과 관련된 정보를 저장하는 쓰기-최적화(write-optimized) 데이터베이스를 포함한다. 추가적인 예로서, 행위 로그(210)는 전환과 관련된 정보를 식별하는 사용자에 부합하는 사용자 식별 정보와 관련된 다수의 상호작용과 관련된 정보를 저장하는 읽기-최적화(read-optimized) 데이터베이스를 포함한다. 대안으로, 행위 로그(210)는 상호작용의 가장 빈번한 타입에 대하여 최적화된 단일의 데이터베이스를 포함한다; 예를 들어, 행위 로그(210)는 데이터베이스에 기록하는 것이 가장 일반적인 행위인 구현에서 쓰기-최적화 데이터베이스를 포함한다. 서로 다른 타입의 데이터베이스를 포함시킴으로써 행위 로그(210)는 임의의 타입의 정보에 대한 검색 시간을 최적화하고 다른 타입의 정보의 저장을 최적화할 수 있다.
행위 로그(210)에 저장된 상호작용 또는 전환과 관련된 정보 타입의 예는: 상호작용의 타입의 설명(예컨대, 광고의 노출, 광고 또는 링크의 액세스, 사용자가 수행한 검색, 사용자와 관련된 이전의 전환) 및 상호작용이나 전환과 관련된 시간(예컨대, 타임스탬프)을 포함한다. 또한, 행위 로그는 사용자 식별 정보를 각각의 상호작용이나 전환과 연관시켜서 상호작용이나 전환을 수행한 사용자를 식별한다. 사용자를 식별하는 다수의 정보 타입은 상호작용 또는 전환과 연관될 수 있다. 사용자를 식별하는 정보의 예시적인 타입은 온라인 시스템 사용자 식별자, 클라이언트 장치 식별자, 애플리케이션 식별자 및 임의의 다른 적절한 정보를 포함한다.
필터링 모듈(215)은 광고자에 의해 상호작용 및 전환과 관련된 정보를 데이터베이스로 인덱싱한다. 예를 들어, 필터링 모듈(215)은 행위 로그(210)로부터 다양한 광고자와 관련된 다수의 상호작용 및 전환과 관련된 정보를 검색하고, 검색된 정보를 각각의 광고자와 관련된 데이터베이스로 인덱싱한다. 또한, 필터링 모듈(215)은 전환과 관련된 사용자 식별 정보 및 상호작용과 관련된 사용자 식별 정보에 기반하여 행위 로그(210)로부터 전환과 관련된 상호작용을 필터링한다. 예를 들어, 필터링 모듈(215)은 행위 로그(210)로부터 전환과 관련된 사용자 식별 정보와 매치하는 사용자 식별 정보와 관련된 상호작용에 관한 정보를 검색하고, 추후 검색을 위해 데이터베이스에 검색된 정보를 저장한다.
행위 로그(210)로부터 전환과 관련된 사용자 식별 정보와 연관되는 상호작용에 관한 정보를 검색할 때, 필터링 모듈(215)은 사용자를 식별하는 다양한 정보 타입과 관련된 정보를 행위 로그(210)로부터 검색할 수 있다. 예를 들어, 온라인 시스템(140)은 사용자와 다양한 사용자 식별 정보 타입(예컨대, 온라인 시스템 사용자 식별자, 장치 식별자, 애플리케이션 식별자)을 연관시킨다. 전환과 관련된 사용자 식별 정보의 타입이 전환과 연관된 사용자 식별 정보와 일치하는 경우, 필터링 모듈(215)은 또한 사용자를 식별하는 정보의 추가 타입을 결정할 수 있다. 사용자 식별 정보의 추가 타입과 관련된 상호 작용은 필터링 모듈(215)에 의해 검색되며, 사용자에 관한 사용자 식별 정보의 다수의 타입과 관련된 상호작용의 검색을 가능하게 한다.
기여 모듈(220)은 전환에 대한 다른 상호작용들의 공헌을 식별하도록 식별된 전환에 적용되는 하나 이상의 기여 규칙(attribution rules)을 포함한다. 일실시예에서, 필터링 모듈(215)은 전환과 관련된 사용자 식별 정보 및 사용자를 식별하는 적어도 하나의 정보 타입과 관련된 하나 이상의 상호작용 타입과 관련된 상호작용을 기여 모듈(220)로 전달한다. 기여 모듈(220)은 서로 다른 타입의 사용자 식별 정보와 관련된 신뢰도 값을 포함하는데, 이때 한 타입의 사용자 식별 정보와 관련된 신뢰도 값은 온라인 시스템(140)의 특정 사용자를 식별하는 한 타입의 사용자 식별 정보의 가능성의 척도를 제공한다. 예를 들어, 온라인 시스템 사용자 식별자는 온라인 시스템 사용자 식별자가 온라인 시스템(140)의 특정 사용자를 식별할 가능성이 더 크기 때문에 클라이언트 장치 식별자보다 더 큰 신뢰도 값과 연관된다. 신뢰도 값을 사용자 상호작용의 타입과 연관시키는 것이 도 3과 함께 더 후술된다.
일부 실시예에서, 기여 모듈(220)은 서로 다른 상호작용들과 관련된 사용자 식별 정보의 타입들에 기반하여 필터링 모듈(215)로부터 수신된 다양한 상호작용과 가중치를 연관시킨다. 예를 들어, 상호작용과 관련된 가중치는 상호작용과 관련된 사용자를 식별하는 정보의 타입과 관련된 신뢰도 값에 비례하며, 따라서 더 높은 신뢰도 값을 갖는 사용자 식별 정보의 타입과 관련된 상호 작용이 더 높은 가중치와 연관된다. 기여 모듈(220)은 전환에 대한 다양한 상호작용의 공헌을 결정할 때 다양한 상호작용과 관련된 가중치를 참작한다. 일부 실시예에서, 기여 모델(220)은 사용자 및/또는 상호작용과 관련된 다른 정보에 기반하여 필터링 모듈(215)로부터 수신된 다양한 상호작용과 가중치를 연관시킨다. 예를 들어, 기여 모듈(220)은 대화가 발생했을 때의 시간에 대해 경과된 시간량에 기반하여 광고 노출, 클릭, 또는 다른 상호작용의 중요성을 감소시키는 "시간 감쇠(time decay)"모델을 포함한다.
웹 서버(225)는 네트워크(120)를 통해 온라인 시스템(140)을 하나 이상의 클라이언트 장치(110)뿐 아니라 하나 이상의 제3자 시스템(130)으로 링크한다. 웹 서버(225)는 웹 페이지뿐만 아니라 가령 JAVA®, FLASH®, XML 등과 같은 다른 컨텐츠를 제공한다. 웹 서버(225)는, 예컨대 인스턴트 메시지, 큐잉된 메시지(예컨대, 이메일), 텍스트 메시지, SMS(단문 메시지 서비스) 메시지 또는 임의의 다른 적절한 메시징 기술을 사용하여 송신되는 메시지와 같은, 온라인 시스템(140)과 클라이언트 장치(110) 사이의 메시지를 수신하고 라우팅할 수 있다. 사용자는 웹 서버(225)로 요청을 송신하여 컨텐츠 스토어(210)에 저장된 정보(예컨대, 이미지 또는 비디오)를 업로드할 수 있다. 추가로, 웹 서버(225)는 가령 IOS®, ANDROIDTM, WEBOS® 또는 Blackberry OS와 같은 네이티브 클라이언트 장치 운영 시스템으로 직접 데이터를 송신하는 응용 프로그래밍 인터페이스(API) 기능을 제공할 수 있다.
전환에 대한 상호작용의 공헌의 결정
도 3은 광고와 관련된 전환에 대한 다양한 상호작용의 공헌을 결정하기 위한 방법의 일실시예의 흐름도이다. 다른 실시예에서, 본 방법은 도 3에 도시된 것보다 상이하거나, 더 많거나, 더 적은 단계를 포함한다. 추가로, 일부 실시예에서, 도 3과 관련하여 서술된 단계는 상이한 순서로 수행될 수 있다.
온라인 시스템(140)은 온라인 시스템 사용자를 식별하는 다양한 정보 타입과 관련된 신뢰도 값을 저장(305)한다. 사용자를 식별하는 정보 타입과 관련된 신뢰도 값은 그 정보 타입이 정확하게 사용자를 식별할 가능성의 척도를 제공한다. 사용자를 식별하는 정보 타입의 예는: 온라인 시스템 사용자 식별자, 클라이언트 장치 식별자 및 애플리케이션 식별자를 포함한다. 일실시예에서, 온라인 시스템(140)은 그와 관련된 신뢰도 값에 기반하여 사용자를 식별하는 정보 타입을 순위화한다. 예를 들어, 사용자 식별 정보의 타입의 순위는 순위의 더 높은 위치에 사용자를 정확히 식별할 가능성이 더 많은 사용자 식별 정보 타입(즉, 더 높은 신뢰도 값과 관련된 사용자 식별 정보 타입)을 가진다.
또한, 온라인 시스템(140)은 온라인 시스템(140)의 사용자와 관련된 하나 이상의 상호작용을 설명하는 정보를 수신(310)하고, 하나 이상의 상호작용을 설명하는 정보를 저장(315)한다. 예를 들어, 온라인 시스템(140)은 온라인 시스템(140)의 사용자가 광고를 제시받았음을 나타내는 정보를 광고 내 매립된 추적 픽셀(310)을 통해 수신(310)하고, 온라인 시스템 사용자 식별자, 브라우저 식별자 및 클라이언트 장치 식별자를 가진 사용자를 식별하며, 사용자가 광고를 제시받았던 시간을 나타낸다. 사용자 상호작용을 설명하는 정보는 실시간으로 또는 거의 실시간으로 수신 될 수 있다. 일부 실시예에서, 온라인 시스템(140)은 온라인 시스템(140)의 사용자가 아닌 엔티티와 관련된 상호작용을 설명하는 정보를 수신(310) 및 저장(315)한다. 예를 들어, 온라인 시스템(140)은 광고와의 상호작용을 식별하는 정보, 상호작용과 관련된 타임스탬프 및 상호작용을 수행하는데 사용되는 클라이언트 장치(110)와 관련된 클라이언트 장치 식별자를 수신(310)한다. 일부 실시예에서, 온라인 시스템(140)은 상호작용을 설명하는 정보를 더 효율적으로 저장하도록 광고와의 하나 이상의 상호작용을 설명하는 정보를 쓰기-최적화된 데이터베이스에 저장한다.
온라인 시스템(140)은 광고와 관련되고 행위중인 사용자와 관련된 전환을 설명하는 정보를 수신한다(320). 상술한 바와 같이, 전환은 광고의 제시에 응답하여 원하는 상호작용의 타입으로서 광고자에 의한 광고와 관련된 행위 타입이다. 전환의 예는 구매, 광고와의 상호작용 또는 온라인 시스템(140)의 행위중인 사용자 및 광고와 관련된 다른 적절한 상호작용을 포함한다. 전환을 설명하는 정보는 제3자 시스템(130)의 추적 픽셀 또는 다른 추적 메커니즘으로부터 또는 임의의 적절한 소스로부터 수신(320)될 수 있다. 또한, 전환을 설명하는 정보는 실시간으로 또는 거의 실시간으로 수신될 수 있다. 전환을 설명하는 정보는 행위중인 사용자를 식별하는 정보(예컨대, 온라인 시스템 사용자 식별자, 클라이언트 장치 식별자, 애플리케이션 식별자), 전환에 대한 설명 및 전환과 관련된 시간을 포함한다. 온라인 시스템(140)은 전환을 설명하는 정보를 저장(325)한다. 예를 들어, 온라인 시스템(140)은 전환 및 전환과 관련된 광고자에 관한 다른 상호작용들을 설명하는 정보를 행위 로그(210)의 쓰기-최적화 데이터베이스에 저장한다.
행위중인 사용자를 식별하는 정보는 전환을 설명하는 정보로부터 식별(330)되고, 행위중인 사용자와 관련된 하나 이상의 추가 상호작용을 설명하는 정보는 행위중인 사용자를 식별하는 정보를 사용하여 검색(335)된다. 또한, 일부 실시예들에서, 행위중인 사용자를 식별하는 정보가 사용자를 식별하는 특정 타입의 정보인 경우, 행위중인 사용자를 식별하는 다른 타입의 정보가 식별되고, 행위중인 사용자를 식별하는 다른 타입의 정보와 관련된 상호 작용이 또한 검색(335)된다. 예를 들면, 행위중인 사용자를 식별하는 정보가 장치 식별자라면, 온라인 시스템(140)은 행위중인 사용자를 식별하는 다른 정보 타입(예컨대, 온라인 시스템 사용자 식별자, 애플리케이션 식별자)를 식별하며 장치 식별자와 관련된 상호작용과 함께 행위중인 사용자를 식별하는 다른 정보 타입과 관련된 상호작용을 검색(335)한다.
일실시예에서, 온라인 시스템(140)에 의해 수신되고 전환 및 하나 이상의 상호작용을 설명하는 정보는 수행된 상호작용의 타입, 상호작용이나 전환을 수행하는 사용자를 식별하는 하나 이상의 정보 타입 및 각각의 상호작용이나 전환과 관련된 시간에 대한 정보를 포함하는 쓰기-최적화된 데이터베이스에 저장된다. 온라인 시스템(140)이 전환을 설명하는 정보를 수신(320)할 때, 행위중인 사용자와 관련된 사용자 식별 정보의 하나 이상의 타입이 수신된 정보로부터 식별(330)되고, 전환을 설명하는 정보에 포함된 사용자를 식별하는 정보 타입과 일치하는 행위중인 사용자를 식별하는 적어도 하나의 정보 타입을 가지는 행위중인 사용자와 관련된 하나 이상의 추가 상호작용을 검색(335)하는데 사용된다. 일부 실시예에서, 검색된 하나 이상의 추가 상호작용을 설명하는 정보는 온라인 시스템(140)에 의한 추후 정보 검색을 신속히 처리하는 읽기-최적화된 데이터베이스에 저장된다.
일부 실시예에서, 상호작용 및/또는 전환과 관련된 사용자를 식별하는 정보는 추론될 수 있다. 사용자를 식별하는 정보 타입과 관련된 적어도 임계 수 또는 비율의 상호작용이 사용자를 식별하는 추가 정보 타입과도 또한 관련된다면, 사용자를 식별하는 정보 타입과 관련된 상호작용은 사용자를 식별하는 추가 정보 타입과도 또한 관련되는 것으로 추론된다. 예를 들어, 장치 식별자와 관련된 적어도 임계 비율의 상호작용이 온라인 시스템 사용자 식별자와도 또한 관련된다면, 오직 장치 식별자에만 관련된 상호작용은 온라인 시스템 사용자 식별자와도 또한 관련된 것으로 추론된다. 사용자 식별 정보의 타입과의 추론된 관련성을 가지는 상호작용의 전환에 대한 공헌은 디스카운트(discounted)될 수 있다.
일부 실시예에서, 온라인 시스템(140)은 정보의 추후 검색을 최적화할 수 있는 위치에 상호작용을 설명하는 검색된 정보를 저장(340)한다. 예를 들어, 검색된 정보는 검색된 정보로의 후속 액세스를 신속하게 처리하도록 행위 로그(210)보다 별도의 데이터베이스에 저장(340)된다. 일부 실시예에서, 검색된 정보는 온라인 시스템(140)이 검색된 정보에 더 신속히 액세스하도록 해주는 읽기-최적화된 데이터베이스에 저장(340)된다.
상호작용을 설명하는 검색된 정보에 기반하여, 온라인 시스템(140)은 전환에 대한 다양한 상호작용의 공헌도 값(contribution value)을 결정하는 기여 모델에 상호작용을 전달한다. 일실시예에서, 온라인 시스템(140)은 전환에 대한 다양한 상호작용의 공헌을 결정(345)한다. 가중치는 검색된 정보로부터의 다양한 상호작용과 관련된다. 일실시예에서, 가중치는 검색된 정보에 의해 설명되는 각각의 상호작용과 관련된다. 상호작용과 관련된 가중치는 전환에 대한 상호작용의 공헌량(amount of contribution)의 측정을 제공한다. 다양한 실시예에서, 상호작용과 관련된 가중치는 상호작용과 관련된 사용자를 식별하는 정보의 타입에 적어도 부분적으로 기반한다.상호작용과 관련된 가중치는 상호작용과 관련된 행위중인 사용자를 식별하는 정보의 타입과 관련된 신뢰도 값에 비례할 수 있다. 예를 들어, 더 높은 신뢰도 값을 갖는 사용자 식별 정보의 타입과 관련된 상호작용은 더 높은 가중치와 관련된다. 일부 실시예들에서, 온라인 시스템(140)은 다양한 상호작용과 관련된 가중치를 결정하고, 가중치에 적어도 부분적으로 기반하여 전환에 대한 다양한 상호작용의 공헌도 값을 결정(345)하는 기여 모델에 가중치 및 상호작용을 설명하는 정보를 전달한다. 일부 실시예들에서, 온라인 시스템은 사용자 및/또는 상호작용과 관련된 다른 정보(예컨대, 상호작용 이후의 경과 시간의 길이 및 전환이 발생한 시간)에 기반하여 다양한 상호작용에 가중치를 부여한다.
기여 모델 또는 하나 이상의 기여 규칙은 전환에 대한 다양한 상호작용의 공헌을 결정(345)하도록 검색된 정보에 대응하는 상호작용에 적용된다. 기여 규칙 또는 기여 모델은 전환에 대한 다양한 상호작용의 공헌을 결정(345)할 때 다양한 상호작용과 관련된 가중치에 적용될 수 있다. 예를 들어, 상호작용은 다양한 상호작용과 관련되는 행위중인 사용자의 식별 정보 타입에 관한 신뢰도 값에 기반하여 순위화되며, 순위에서 적어도 한 임계 위치를 가지는 상호작용은 전환에 대한 상호작용의 공헌을 결정하는 기여 모델로 전달된다. 다른 예로서, 적어도 한 임계 신뢰도 값을 갖는 행위중인 사용자를 식별하는 정보의 타입과 관련된 상호작용은 기여 모델로 전달된다. 다양한 실시예에서, 전환에 대한 상호작용의 공헌은 상호작용과 관련된 가중치에 적어도 부분적으로 기반한다. 온라인 시스템(140)은 전환에 대한 다양한 상호작용의 공헌을 식별하는 기여 모델 또는 기여 규칙의 적용에 기반하여 광고자에 대한 기여 보고서(attribution report)를 생성할 수 있다.
상호작용의 식별의 예
도 4는 행위중인 사용자를 식별하는 정보의 타입(405)과 상호작용을 연관시키는 정보의 예를 도시한다. 도 4의 예에서, 온라인 시스템 사용자 식별자, 클라이언트 장치 식별자 및 애플리케이션 식별자는 행위중인 사용자를 식별하는 정보의 타입(405)이다. 도시의 목적상, 도 4는 온라인 시스템(140)이 행위중인 사용자와 관련된 온라인 시스템 사용자 식별자 및 애플리케이션 식별자를 포함하는 행위중인 사용자와 관련된 전환(410)을 설명하는 정보를 수신하는 예를 나타낸다.
전환(410)을 설명하는 정보에 포함된 온라인 시스템 사용자 식별자 및 애플리케이션 식별자에 기반하여, 온라인 시스템(140)은 행위중인 사용자를 식별하는 정보의 다양한 타입과 관련된 상호작용들을 검색한다. 도 4의 예에서, 온라인 시스템(140)는 행위중인 사용자와 각각 관련되지만 행위중인 사용자를 식별하는 서로 다른 타입(405)의 정보와 관련되는 상호작용들((415), (420), (425))을 검색한다. 상호작용(415)은 행위중인 사용자와 관련된 클라이언트 장치 식별자와 관련된다. 상호작용(420)은 행위중인 사용자와 각각 관련되는 온라인 시스템 사용자 식별자, 클라이언트 장치 식별자 및 애플리케이션 식별자와 관련된다. 또한, 상호작용(425)은 행위중인 사용자와 관련된 클라이언트 장치 식별자 및 애플리케이션 식별자와 관련된다.
행위중인 사용자와 관련된 정보의 타입(405)과 관련된 상호작용으로부터, 온라인 시스템(140)은 전환(410)과도 또한 관련되는 사용자를 식별하는 정보와 관련된 하나 이상의 상호작용을 식별한다. 도 4의 예에서, 상호작용(420)은 전환과 관련된 온라인 시스템 사용자 식별자와 관련되고, 상호작용(425)은 전환(410)과 관련된 애플리케이션 식별자와 관련된다. 따라서, 온라인 시스템(140)은 전환(410)에 대한 상호작용(420) 및 상호작용(425) 모두의 공헌을 결정하도록 기여 모델 또는 하나 이상의 기여 규칙을 상호작용(420) 및 상호작용(425) 모두에 적용한다. 도 3과 함께 상술한 바와 같이, 가중치는 각각의 상호작용과 관련된 행위중인 사용자를 식별하는 정보의 타입과 관련된 신뢰도 값에 기반하여 상호작용(420) 및 상호작용(425)과 관련될 수 있다. 예를 들어, 온라인 시스템 사용자 식별자가 애플리케이션 식별자보다 더 높은 신뢰도 값을 갖는다면, 더 큰 가중치는 상호작용(425)보다 상호작용(420)과 관련된다. 다양한 실시예에서, 상호작용과 관련된 가중치는 기여 모델 또는 기여 규칙에 의해 전환(410)에 대한 각각의 상호작용의 공헌을 결정하는데 사용된다.
요약
본 발명의 실시예들에 대한 상기 설명은 설명의 목적으로 제공되고, 배타적이거나 개시된 정확한 형태들로 특허권을 제한하고자 하는 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기 개시로부터 다양한 변형 및 변경이 가능함을 인식할 수 있을 것이다.
본 명세서의 일부는 실시예들을 정보에 대한 동작의 알고리즘 및 기호적 표현으로 설명한다. 이러한 알고리즘적 설명 및 표현은 본 기술분야에서 통상의 지식을 가진 자들에게 효과적으로 그들의 작업의 실체를 다른 통상의 지식을 가진 자에게 전달하기 위하여 데이터 프로세싱 분야에서 통상의 지식을 가진 자에 의하여 공통적으로 사용되는 것이다. 기능적으로, 계산적으로 또는 논리적으로 설명되고 있는 이들 동작은 컴퓨터 프로그램 또는 등가의 전기 회로, 마이크로 코드 등에 의해 구현되는 것으로 이해된다. 또한, 종종 이러한 동작의 배열은 일반성의 손실 없이 모듈로 언급될 수 있는 것으로 확인된다. 기술된 동작 및 그와 관련된 모듈들은 소프트웨어, 펌웨어, 하드웨어 또는 이들의 임의의 결합으로 구현될 수 있을 것이다.
본 명세서에 기술된 임의의 단계들, 동작들 또는 프로세스들은 하나 이상의 하드웨어 또는 소프트웨어 모듈들에 의해 또는 이들과 다른 장치들의 결합에 의해 수행되거나 구현될 수 있다. 일실시예에서, 소프트웨어 모듈은 설명된 단계들, 동작들 또는 프로세스들 일부 또는 전부를 수행하기 위하여 컴퓨터 프로세서에 의해 실행될 수 있는 컴퓨터 프로그램 코드를 포함하는 컴퓨터 판독가능한 매체를 포함하는 컴퓨터 프로그램 제품으로 구현된다.
또한, 본 발명의 실시예들은 본 명세서의 동작들을 수행하기 위한 장치와 관련될 수 있다. 이 장치는 요청된 목적을 위하여 구체적으로 구성될 수 있고/있거나 컴퓨터에 저장된 컴퓨터 프로그램에 의해 선택적으로 활성화되거나 재구성되는 범용 컴퓨팅 장치를 포함할 수 있다. 이런 컴퓨터 프로그램은 비-일시적 유형의 컴퓨터 판독가능한 저장 매체 또는 컴퓨터 시스템 버스에 결합될 수 있는 전자 명령어를 저장하기에 적절한 임의의 타입의 매체에 저장될 수 있다. 게다가, 본 명세서에서 언급된 임의의 컴퓨팅 시스템들은 단일 프로세서를 포함할 수 있거나, 증가한 컴퓨팅 능력을 위해 다중 프로세서 설계를 채용한 구조일 수 있다.
또한, 본 발명의 실시예들은 본 명세서에 기술된 컴퓨팅 프로세스로 제조된 제품에 관한 것일 수 있다. 이런 제품은 컴퓨팅 프로세스의 결과로 생성된 정보를 포함할 수 있는데, 여기서 정보는 비-일시적인 유형의 컴퓨터 판독가능한 저장 매체에 저장되며, 본 명세서에 기술된 컴퓨터 프로그램 제품 또는 다른 데이터 조합의 임의의 실시예를 포함할 수 있다.
마지막으로, 본 명세서에서 사용되는 언어는 원칙적으로 가독성 및 훈시적 목적으로 선택되었으며, 특허권을 상세히 설명하거나 제한하려고 선택된 것은 아닐 수 있다. 따라서, 특허권의 범위는 본 상세한 설명에 의해서가 아니라, 이에 근거하여 본 출원이 제출하는 임의의 청구범위에 의해 한정되는 것으로 의도된다. 따라서, 실시예들에 관한 개시는 하기의 청구범위에서 제시되는 특허권의 범위의 예시가 되지만 이에 국한되지 않는 것으로 의도된다.

Claims (20)

  1. 온라인 시스템에서, 온라인 시스템의 사용자들을 식별하는 복수의 정보 타입들과 각각 관련되는 신뢰도 값을 저장하는 단계;
    광고와 관련된 전환(conversion)을 설명하고 상기 전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 정보를 포함하는 정보를 수신하는 단계;
    전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 정보의 각각의 타입과 관련하여 전환에 기여할 수 있는 하나 이상의 상호작용을 검색하는 단계;
    검색된 하나 이상의 상호작용과 가중치를 각각 연관시키는 단계; 및
    전환에 대해 검색된 하나 이상의 상호작용 중 하나 이상에 공헌량(contribution amount)을 할당하도록 구성된 기여 모델(attribution model)로 가중치 및 검색된 하나 이상의 상호작용을 전달하는 단계를 포함하며,
    정보 타입과 관련된 신뢰도 값은 온라인 시스템의 사용자를 식별하는 정보 타입의 가능성의 척도를 제공하고,
    검색된 상호작용과 관련된 가중치는 전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 정보의 타입에 적어도 부분적으로 기반하는 방법.
  2. 제 1 항에 있어서,
    온라인 시스템에서, 온라인 시스템의 사용자들을 식별하는 복수의 정보 타입들과 각각 관련되는 신뢰도 값을 저장하는 단계는:
    신뢰도 값에 적어도 부분적으로 기반하여 온라인 시스템의 사용자들을 식별하는 복수의 정보 타입들을 순위화하는 단계를 포함하는 방법.
  3. 제 1 항에 있어서,
    전환에 기여할 수 있는 하나 이상의 상호작용은 행위중인 사용자와 관련된 하나 이상의 이전의 전환들을 포함하는 방법.
  4. 제 1 항에 있어서,
    전환에 기여할 수 있는 하나 이상의 상호작용은: 하나 이상의 광고를 열람하기, 하나 이상의 광고와 상호작용하기, 하나 이상의 광고와 관련된 하나 이상의 객체에 액세스하기, 광고에 대한 광고자와 관련된 하나 이상의 구매를 하기, 광고에 대한 광고자와 관련된 하나 이상의 서비스를 요청하기, 광고에 대한 광고자와 관련된 하나 이상의 이벤트에 참여하기, 하나 이상의 제3자 서비스를 구독하기, 및 이들의 임의의 조합으로 구성된 그룹에서 선택되는 방법.
  5. 제 1 항에 있어서,
    검색된 하나 이상의 상호작용과 각각 관련된 가중치 및 기여 모델에 적어도 부분적으로 기반하여 전환에 대해 검색된 하나 이상의 사용자의 상호작용 중 하나 이상의 공헌량을 결정하는 단계를 더 포함하는 방법.
  6. 제 1 항에 있어서,
    검색된 하나 이상의 상호작용과 각각 관련된 가중치 및 기여 모델에 적어도 부분적으로 기반하여 전환에 대해 검색된 하나 이상의 사용자의 상호작용 중 하나 이상의 공헌량을 결정하는 단계는:
    검색된 하나 이상의 상호작용과 각각 관련된 행위중인 사용자를 식별하는 정보의 타입과 관련된 신뢰도 값에 적어도 부분적으로 기반하여, 전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 정보의 각각의 타입과 관련하여 전환에 기여할 수 있는 검색된 하나 이상의 상호작용의 서브세트를 식별하는 단계; 및
    가중치에 적어도 부분적으로 기반하여 전환에 대해 검색된 하나 이상의 상호작용의 서브세트 내 각각의 상호작용의 공헌량을 결정하는 단계를 포함하는 방법.
  7. 제 6 항에 있어서,
    신뢰도 값에 적어도 부분적으로 기반하여, 전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 정보의 각각의 타입과 관련하여 전환에 기여할 수 있는 검색된 하나 이상의 상호작용의 서브세트를 식별하는 단계는:
    신뢰도 값에 적어도 부분적으로 기반하여 정보 타입을 순위화하는 단계; 및
    순위 내에서 적어도 하나의 임계 위치를 가지는 정보 타입과 관련되는 검색된 상호작용을 선택하는 단계를 포함하는 방법.
  8. 제 1 항에 있어서,
    전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 정보의 각각의 타입과 관련하여 전환에 기여할 수 있는 하나 이상의 상호작용을 검색하는 단계는:
    전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 복수의 정보 타입과 관련된 상호작용을 검색하는 단계를 포함하는 방법.
  9. 제 1 항에 있어서,
    전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 정보의 각각의 타입과 관련하여 전환에 기여할 수 있는 하나 이상의 상호작용을 검색하는 단계는:
    행위중인 사용자의 하나 이상의 상호작용과 관련된 행위중인 사용자를 식별하고 행위중인 사용자의 하나 이상의 상호작용의 적어도 하나의 임계 비율(threshold percentage)과 관련되는 복수의 정보 타입을 식별하는 단계;
    행위중인 사용자를 식별하는 복수의 정보 타입의 서브세트와 관련된 온라인 시스템의 행위중인 사용자의 하나 이상의 추가 상호작용을 식별하는 단계;
    행위중인 사용자의 하나 이상의 추가 상호작용과 사용자를 식별하는 복수의 정보 타입을 연관시키는 단계; 및
    행위중인 사용자를 식별하는 적어도 하나의 정보 타입과 관련하여 전환에 기여할 수 있는 하나 이상의 상호작용을 검색하는 단계를 포함하는 방법.
  10. 광고와 관련된 전환을 설명하고 상기 전환과 관련된 온라인 시스템의 사용자를 식별하는 정보를 포함하는 정보를 수신하는 단계;
    사용자를 식별하는 수신된 정보에 기반하여 사용자를 식별하는 하나 이상의 정보 타입을 식별하는 단계;
    사용자를 식별하는 하나 이상의 식별된 정보 타입에 적어도 부분적으로 기반하여 전환에 기여할 수 있는 하나 이상의 상호작용을 검색하는 단계; 및
    전환에 대해 검색된 하나 이상의 상호작용 중 하나 이상에 공헌량을 할당하도록 구성된 기여 모델로 검색된 하나 이상의 상호작용을 전달하는 단계를 포함하는 방법.
  11. 제 10 항에 있어서,
    사용자를 식별하는 수신된 정보에 기반하여 사용자를 식별하는 하나 이상의 정보 타입을 식별하는 단계는:
    온라인 시스템의 사용자를 식별하는 하나 이상의 정보 타입과 각각 관련된 신뢰도 값을 검색하는 단계를 포함하며,
    정보 타입과 관련된 신뢰도 값은 온라인 시스템의 사용자를 식별하는 정보 타입의 가능성의 척도를 제공하는 방법.
  12. 제 11 항에 있어서,
    사용자를 식별하는 수신된 정보에 기반하여 사용자를 식별하는 하나 이상의 정보 타입을 식별하는 단계는:
    신뢰도 값에 적어도 부분적으로 기반하여 온라인 시스템의 사용자를 식별하는 하나 이상의 정보 타입을 순위화하는 단계를 더 포함하는 방법.
  13. 제 10 항에 있어서,
    전환에 기여할 수 있는 검색된 하나 이상의 상호작용은 사용자와 관련된 하나 이상의 이전의 전환들을 포함하는 방법.
  14. 제 10 항에 있어서,
    전환에 기여할 수 있는 검색된 하나 이상의 상호작용은: 하나 이상의 광고를 열람하기, 하나 이상의 광고와 상호작용하기, 하나 이상의 광고와 관련된 하나 이상의 객체에 액세스하기, 광고에 대한 광고자와 관련된 하나 이상의 구매를 하기, 광고에 대한 광고자와 관련된 하나 이상의 서비스를 요청하기, 광고에 대한 광고자와 관련된 하나 이상의 이벤트에 참여하기, 하나 이상의 제3자 서비스를 구독하기, 및 이들의 임의의 조합으로 구성된 그룹에서 선택되는 방법.
  15. 제 10 항에 있어서,
    기여 모델 및 하나 이상의 상호작용과 각각 관련된 사용자를 식별하는 하나 이상의 정보 타입에 적어도 부분적으로 기반하여, 전환에 기여할 수 있는 하나 이상의 상호작용 각각의 공헌량을 결정하는 단계를 더 포함하는 방법.
  16. 제 15 항에 있어서,
    기여 모델 및 하나 이상의 상호작용과 각각 관련된 사용자를 식별하는 하나 이상의 정보 타입에 적어도 부분적으로 기반하여, 전환에 기여할 수 있는 하나 이상의 상호작용 각각의 공헌량을 결정하는 단계는:
    온라인 시스템의 사용자를 식별하는 하나 이상의 정보 타입과 각각 관련된 신뢰도 값을 검색하는 단계;
    신뢰도 값에 적어도 부분적으로 기반하여 온라인 시스템의 사용자를 식별하는 각각의 정보 타입과 가중치를 연관시키는 단계; 및
    전환에 기여할 수 있는 하나 이상의 상호작용과 각각 관련된 사용자를 식별하는 하나 이상의 정보 타입과 관련된 가중치를 적어도 부분적으로 기반하여, 전환에 대한 사용자의 하나 이상의 상호작용 각각의 공헌(contribution)을 결정하는 단계를 포함하며,
    정보 타입과 관련된 신뢰도 값은 온라인 시스템의 사용자를 식별하는 정보 타입의 가능성의 척도를 제공하는 방법.
  17. 제 15 항에 있어서,
    기여 모델 및 하나 이상의 상호작용과 각각 관련된 사용자를 식별하는 하나 이상의 정보 타입에 적어도 부분적으로 기반하여, 전환에 기여할 수 있는 하나 이상의 상호작용 각각의 공헌량을 결정하는 단계는:
    온라인 시스템의 사용자를 식별하는 하나 이상의 정보 타입과 각각 관련된 신뢰도 값을 검색하는 단계;
    신뢰도 값에 적어도 부분적으로 기반하여, 전환에 기여할 수 있는 검색된 하나 이상의 상호작용의 서브세트를 식별하는 단계; 및
    신뢰도 값에 적어도 부분적으로 기반하여, 전환에 기여할 수 있는 검색된 하나 이상의 상호작용의 서브세트 내 각각의 상호작용의 공헌을 결정하는 단계를 포함하며,
    정보 타입과 관련된 신뢰도 값은 온라인 시스템의 사용자를 식별하는 정보 타입의 가능성의 척도를 제공하는 방법.
  18. 제 17 항에 있어서,
    신뢰도 값에 적어도 부분적으로 기반하여, 전환과 관련된 온라인 시스템의 행위중인 사용자를 식별하는 정보의 각각의 타입과 관련하여 전환에 기여할 수 있는 검색된 하나 이상의 상호작용의 서브세트를 식별하는 단계는:
    신뢰도 값에 적어도 부분적으로 기반하여 정보 타입을 순위화하는 단계; 및
    순위 내에서 적어도 하나의 임계 위치를 가지는 정보 타입과 관련되는 검색된 상호작용을 선택하는 단계를 포함하는 방법.
  19. 프로세서에 의한 실행시, 프로세서가:
    광고와 관련된 전환을 설명하고 상기 전환과 관련된 온라인 시스템의 사용자를 식별하는 정보를 포함하는 정보를 수신하고;
    사용자를 식별하는 수신된 정보에 기반하여 사용자를 식별하는 하나 이상의 정보 타입을 식별하며;
    사용자를 식별하는 하나 이상의 식별된 정보 타입에 적어도 부분적으로 기반하여 전환에 기여할 수 있는 하나 이상의 상호작용을 검색하고;
    전환에 대해 검색된 하나 이상의 상호작용 중 하나 이상에 공헌량을 할당하도록 구성된 기여 모델로 검색된 하나 이상의 상호작용을 전달하게 하도록 인코딩된 명령어를 기록한 컴퓨터 판독가능한 저장매체를 포함한 컴퓨터 프로그램 제품.
  20. 제 19 항에 있어서,
    사용자를 식별하는 수신된 정보에 기반하여 사용자를 식별하는 하나 이상의 정보 타입을 식별하는 것은:
    온라인 시스템의 사용자를 식별하는 하나 이상의 정보 타입과 각각 관련된 신뢰도 값을 검색하는 것을 포함하며,
    정보 타입과 관련된 신뢰도 값은 온라인 시스템의 사용자를 식별하는 정보 타입의 가능성의 척도를 제공하는 컴퓨터 프로그램 제품.
KR1020177004082A 2014-07-25 2015-06-15 전환에 대한 다양한 사용자 상호작용의 공헌의 결정 KR102447691B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/340,588 2014-07-25
US14/340,588 US20160027040A1 (en) 2014-07-25 2014-07-25 Determining contributions of various user interactions to a conversion
PCT/US2015/035815 WO2016014170A1 (en) 2014-07-25 2015-06-15 Determining contributions of various user interactions to a conversion

Publications (2)

Publication Number Publication Date
KR20170035949A true KR20170035949A (ko) 2017-03-31
KR102447691B1 KR102447691B1 (ko) 2022-09-28

Family

ID=55163502

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177004082A KR102447691B1 (ko) 2014-07-25 2015-06-15 전환에 대한 다양한 사용자 상호작용의 공헌의 결정

Country Status (6)

Country Link
US (1) US20160027040A1 (ko)
JP (1) JP6683681B2 (ko)
KR (1) KR102447691B1 (ko)
AU (1) AU2015294540A1 (ko)
CA (1) CA2955589A1 (ko)
WO (1) WO2016014170A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10169778B1 (en) 2015-03-26 2019-01-01 Amazon Technologies, Inc. Cross-channel online advertising attribution
US10977685B1 (en) * 2015-04-30 2021-04-13 Amazon Technologies, Inc. Identity resolution service
US20170228768A1 (en) * 2016-02-09 2017-08-10 Google Inc. Attributing conversions relating to content items
EP3701473B1 (en) * 2017-10-24 2024-08-28 A.C.N. 629 573 093 Pty. Ltd. A system for improved digital advertising display device proof-of-play data logging
CN115018558A (zh) * 2022-07-01 2022-09-06 腾云天宇科技(苏州)有限公司 用于归因的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050071218A1 (en) * 2003-06-30 2005-03-31 Long-Ji Lin Methods to attribute conversions for online advertisement campaigns
US20130124309A1 (en) * 2011-11-15 2013-05-16 Tapad, Inc. Managing associations between device identifiers
US20140136332A1 (en) * 2012-11-14 2014-05-15 Facebook, Inc. Providing social context for products in advertisements

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039022A2 (en) * 1999-11-22 2001-05-31 Avenue A, Inc. Targeting electronic advertising placement in accordance with an analysis of user inclination and affinity
JP2007018446A (ja) * 2005-07-11 2007-01-25 Fujitsu Ltd 情報提供システムおよび情報提供方法
JP5583696B2 (ja) * 2009-01-30 2014-09-03 グーグル・インコーポレーテッド コンバージョン信頼度評価
JP5355198B2 (ja) * 2009-04-20 2013-11-27 株式会社博報堂 実店舗アフィリエイトシステムのコンピューティングの方法
JP5501021B2 (ja) * 2010-01-28 2014-05-21 Kauli株式会社 広告効果測定データ作成システム
CA2794040A1 (en) * 2010-03-23 2011-09-29 Google Inc. Conversion path performance measures and reports
US8788339B2 (en) * 2011-05-27 2014-07-22 Google Inc. Multiple attribution models with return on ad spend
US20130124327A1 (en) * 2011-11-11 2013-05-16 Jumptap, Inc. Identifying a same user of multiple communication devices based on web page visits
US20140074602A1 (en) * 2012-09-11 2014-03-13 Millmobile Bv Consumer targeting platform system
US9514478B2 (en) * 2013-01-23 2016-12-06 Facebook, Inc. Conversion tracking for installation of applications on mobile devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050071218A1 (en) * 2003-06-30 2005-03-31 Long-Ji Lin Methods to attribute conversions for online advertisement campaigns
US20130124309A1 (en) * 2011-11-15 2013-05-16 Tapad, Inc. Managing associations between device identifiers
US20140136332A1 (en) * 2012-11-14 2014-05-15 Facebook, Inc. Providing social context for products in advertisements

Also Published As

Publication number Publication date
CA2955589A1 (en) 2016-01-28
JP2017529587A (ja) 2017-10-05
US20160027040A1 (en) 2016-01-28
KR102447691B1 (ko) 2022-09-28
WO2016014170A1 (en) 2016-01-28
JP6683681B2 (ja) 2020-04-22
AU2015294540A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US10733638B1 (en) Analyzing tracking requests generated by client devices based on attributes describing items
US10846614B2 (en) Embeddings for feed and pages
KR20150110602A (ko) 모바일 장치에서 애플리케이션의 설치를 위한 전환 추적
US11537623B2 (en) Deep semantic content selection
US20170024764A1 (en) Evaluating Content Items For Presentation To An Online System User Based In Part On Content External To The Online System Associated With The Content Items
US11687974B1 (en) Identifying content to present to a group of online system users based on user actions and specified by a third-party system
US11062361B1 (en) Predicting demographic information of an online system user based on online system login status
KR102447691B1 (ko) 전환에 대한 다양한 사용자 상호작용의 공헌의 결정
US20180218286A1 (en) Generating models to measure performance of content presented to a plurality of identifiable and non-identifiable individuals
KR101765720B1 (ko) 다양한 소셜 네트워킹 시스템에 의해 관리되는 사용자 프로필 정보의 조합
US10715850B2 (en) Recommending recently obtained content to online system users based on characteristics of other users interacting with the recently obtained content
US20160292729A1 (en) Identifying products related to interactions performed by an online system user with content from a third party system
US11222366B2 (en) Determining accuracy of a model determining a likelihood of a user performing an infrequent action after presentation of content
US10504136B2 (en) Measuring performance of content among groups of similar users of an online system
US10592931B2 (en) Presenting content to an online system user promoting interaction with an application based on installation of the application on a client device
US20180218399A1 (en) Generating a content item for presentation to an online system user including content describing a product selected by the online system based on likelihoods of user interaction
US20160027035A1 (en) Optimizing retrieval of user interactions for determining contributions to a conversion
US10621256B2 (en) Determining a rate for sampling information describing presentation of content based on previously received information describing presentation of content
US10552874B2 (en) Prompting a user to purchase items for use in an application in a feed of content provided by an online system
US10885545B1 (en) Identifying products purchased by an online system user via a third-party system to a content publishing user of the online system associated with the products
US11093555B2 (en) Determining correlations between locations associated with a label and physical locations based on information received from users providing physical locations to an online system
US10475088B2 (en) Accounting for online system user actions occurring greater than a reasonable amount of time after presenting content to the users when selecting content for users
US20180349950A1 (en) Determining long-term value to a publishing user for presenting content to users of an online system
US20180253651A1 (en) Data transmission between two systems to improve outcome predictions
KR101860801B1 (ko) 모바일 클라이언트 장치에서 애플리케이션을 검색하기 위한 알림의 전송

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right