KR20170032219A - 폴리우레탄 스코치 억제제 - Google Patents

폴리우레탄 스코치 억제제 Download PDF

Info

Publication number
KR20170032219A
KR20170032219A KR1020167030988A KR20167030988A KR20170032219A KR 20170032219 A KR20170032219 A KR 20170032219A KR 1020167030988 A KR1020167030988 A KR 1020167030988A KR 20167030988 A KR20167030988 A KR 20167030988A KR 20170032219 A KR20170032219 A KR 20170032219A
Authority
KR
South Korea
Prior art keywords
derivative
weight
additive composition
scorch
hydroquinone
Prior art date
Application number
KR1020167030988A
Other languages
English (en)
Inventor
죤 디. 데마사
Original Assignee
반더빌트 케미칼스, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 반더빌트 케미칼스, 엘엘씨 filed Critical 반더빌트 케미칼스, 엘엘씨
Publication of KR20170032219A publication Critical patent/KR20170032219A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2612Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aromatic or arylaliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2615Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen the other compounds containing carboxylic acid, ester or anhydride groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • C08K5/08Quinones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

본 발명은 폴리우레탄 발포체 내의 스코치를 방지하는 첨가제 조성물에 관한 것이고, 첨가제 조성물은 하이드로퀴논 유도체; 락톤 유도체; 및 페놀성 화합물 유도체를 포함한다. 폴리우레탄 발포체 조성물은 첨가제 조성물을 포함한다.

Description

폴리우레탄 스코치 억제제{POLYURETHANE SCORCH INHIBITOR}
본 발명은 폴리우레탄 발포체(foam)에 대한 스코치를 억제하는 첨가제에 관한 것이다.
폴리우레탄 슬래브-스톡(slab-stock) 발포체 제조는 활발한 발열(exo-thermic) 반응을 포함한다. 지속성의 후-반응(post-reaction) 열 노출(exposire)은 제조 발포체 블록의 코아에서 흑화(darkening)로 나타나고 스코치(scorch; 그을음, 눌어붙기)으로 정의되는 화학적 변화를 초래한다. 제조자는 원하지 않는 스코치를 억제하기 위하여 일반적으로 스코치 억제제로 칭해지는 항산화제 혼합물(antioxidant blends)을 첨가한다. 스코치 억제제는 열적으로 야기되는 흑화의 손상 효과를 감소하는 복합 손실성(complex sacrificial) 반응을 통하여 작용한다. 스코치 억제제는 제품 손실(loss)을 최소화하는데 효과적이다.
폴리우레탄 스코칭(scorching)의 개요
폴리우레탄 슬래브-스톡 발포체의 제조 중에 내부 변색으로 귀결되는 활발한 발열반응이 관찰되었다 *1. 이는 폴리올과 디-이소시아네이트 축합(겔) 반응과 "블로우(blow) 반응"의 결과로 이해되고 있다 *2.
Figure pct00001
반응식 1. 이소시아네이트의 가수분해
반응식 2. 우레아를 얻는 이소시아네이트와 아민 축합
작업자는 폴리우레탄 발포체 매트릭스에 형성된 구성 성분에 대응하는 반응열을 측정하였다. 각각 우레탄은 약 24 kcal/몰 및 우레아는 47 kcal/몰 이다. 시각적으로, 제조 발포체 블럭의 코아에서 비-소산(un-dissipated) 열로부터 유래하는 스코치로 알려져 있는 흑화 황 변색이 전개된다.
연구자는 복합 프리 라디칼(free radical) 반응이 스코칭 현상을 만드는 것으로 보고하였다 *3. 체인 절단(chain scission) 및 폴리에테르 폴리올 제제 성분의 산화를 나타내는 열화(degradation) 효과가 간접적으로 측정되었다 *4. 본 발명에 사용된 제제는 PUR 발포체의 체인 절단 및 일반적 화학적 변화(alteration)를 감소시킨다.
환경 요소 및 발포체 변색
PUR 발포체의 변색으로 유도된 니트로겐 옥사이드(Nitrogen Oxide)
폴리우레탄 발포체 제조자는 다른 PUR 발포체 열화 현상에 대하여 우려한다 *5. 일반적으로 열, 빛, 광-산화(photo-oxidation) 및 NOx 가스(fumes)(주로, 니트릭 옥사이드(Nitric Oxide)(NO), 니트로겐 디옥사이드(Nitrogen Dioxide)(NO2))는 발포체 표면에 황 또는 핑크 색상(hues)을 생성한다(반응식 3).
Figure pct00002
반응식 3 프로판의 연소(combustion)
니트로겐 옥사이드 가스에 대하여, 변색은 창고의 상승된 NOx 레벨에 매우 관련되어 있다. 문헌에 계절 효과에 대하여 검토되었다. 보다 추운 몇 달에, 배기가 잘 안된 창고는 프로판-동력 포크 리프트(fork lifts) 및 가스 연소로(gas-fired furnaces)로부터 발생하는 높은 농도의 NOx 가스를 축적하는 경향이 있다 *7. 상기 효과는 잘 알려져 있다. 톰킨스(Tompkins) 및 스미스(Smith)는 카본 모노옥사이드, 흡연자부터의 2차 흡연, 새 제품으로부터의 화학적 오프-가스(off-gases), 배기 가스와 같은 복수의 이탈하기 쉬운 방출(fugitive emissions)이 창고에 모인다고 설명한다 *8. 보다 따뜻한 몇 달에, 공장 작동 및 자동차 배출로부터의 환경에서 NOx 의 상승된 레벨에 의하여 변색이 가동된다 *9. 따뜻한 몇 달은 NOx 가스 농도 및 그 화학 작용에 영향을 미치는 부가 요소를 특징짓는다. 다수의 대기 연구에 의하면, NOx는 산소 및 수증기와 계속 반응하여 공중부유(air born) 질산(nitric acid) 에어졸이 된다 *10. 질산은 높은 습도 조건에서 하이드레이트(hydrate) 형태로 발견된다. 하나의 연구에서 유리섬유 상의 질산 입자의 양은 낮은 습도 조건에 대비하여 높은 습도 조건에서 매우 증가한다고 나타났다. 따라서, NOx 가스가 많은 창고 대기압은 산성 에어졸을 형성할 수 있다. NOx 가스의 화학 작용은 복잡하고, 발포체 성분(ingredients) 및 칼라에 대한 영향은 넓게 받아들인다 * 12, 13. 본 발명은 다른 알려진 항산화제 스코치 억제제와 비교하여 PUR 발포체가 저장된 창고에서 일반적으로 관찰되는 변색 효과를 감소한다.
PUR 발포체의 형광(Fluorescent light) 및 UV 유도 변색
광산화 효과로부터 발생하는 칼라에 PUR이 어떻게 기여하는 지를 제안하는 다수의 관련 연구가 이루어졌다 *14. 챤드라(Chandra)는 단 파장(<340nm) 방사선 조사(irradiation)는 우레탄 결합이 파괴되고 방향족 링에 재결합하여 자유(free)-NH2를 남기는 광-프리이스(photo-Fries) 메카니즘을 촉진한다고 보고하였다. 장 파장에서는 하이드로퍼옥사이드 반응에 의하여 착색 종(colored species)이 유도된다. 노아크(Noack) 및 스베틀릭(Schwetlick)에 의하여 관찰된 황화는 방향족 링 상에 노출된 아미노 작용기의 산화의 결과이다 (반응식 4).
Figure pct00003
반응식 4: PUR에서 아민-프리 TDI 단편(segment)의 광-산화 제안
MDI-기준 폴리우레탄은 유사하게 수소 원자 추출(abstraction)에 이은 퍼옥사이드 형성을 통하여 퀴논 종을 얻는 2-스텝 경로를 수행한다 *15. 발포체 조성물 내의 다른 성분은 컬러에 기여할 수 있다. 예를 들어, BHT 및 알킬레이티드 디페닐아민은 니트로겐 옥사이드에 노출됨으로써 착색(staining) 퀴논 화합물을 형성한다고 보고되었다 (도 19) *1. 본 발명은 다른 항산화제 스코치 억제제와 비교하여 도 3과 같이 변환을 지연시키거나 광-산화 유도 컬러체(color bodies)에 덜 기여한다.
폴리우레탄 발포체로부터 FOG 및 VOC 방출
실내(집, 자동차, 작업장) 공기의 품질에 대한 우려는 세계적으로 계속하여 커졌고, 결과적으로 입법적 요구는 잠재적으로 해로운 휘발성 성분을 목표로 하였다. 모든 첨가제 공급자를 포함하는 폴리우레탄 발포체 분야는 비-유연(non-compliant) 제품을 감소 또는 제거하는 전략 방향으로 움직였다. 자동차 실내를 위하여, 플라스틱, 고무 및 폴리우레탄 제품에서 전체 휘발성 함량을 측정하기 위하여 특별한 테스트가 전개되었다. 독일 자동차 연합에 의하여 현재 수용된 방법 세트는, 휘발성 유기 함량(volatile organic content; VOC) 및 자동차 트림 물질(trim materials)의 포그 전위(fogging potential)를 판단하는 열탈착(thermo-desorption) GC 분석을 이용하는 VDA 278이다 *16. 상기 방법은 n-C20 까지 범위의 휘발성 유기 화합물(90℃에서 30분 동안 샘플에서 탈착된)과 n-C16 에서 n-C32 (FOG 값)까지의 반-휘발성 및 중화합물(heavy compounds)(120℃에서 60분 동안 샘플에서 탈착된)을 측정한다. 보고된 값은 이어서 제품 규격과 비교되어 통과 또는 실패된다. 여기서 제시되는 유기 액체의 휘발성을 특징짓기 위하여 중량법이 또한 스크리닝 도구로 사용될 수 있다.
본 발명은 폴리우레탄 발포체의 제조에 사용되는 첨가제 액체 혼합물 조성물을 제공하는 것을 그 목적으로 한다.
본 발명의 첨가제 조성물은 다음 A, B 및 C를 포함한다.
A: 하이드로퀴논 유도체(derivatized hydroquinones);
B: 락톤 유도체(derivatized lactones); 및
C: 페놀성 화합물 유도체(derivatized phenolic compounds)
하이드로퀴논 유도체(A) 성분은 다음 화합물로부터 선택된다:
디-t-부틸-하이드로퀴논(DTBHQ), t-부틸하이드로퀴논(TBHQ), 2-메틸-5-이소프로필하이드로퀴논, 그리고 바람직한 화합물은 2,5-디-t-아밀-하이드로퀴논 (DTAHQ);
알킬레이티드(alkylated) 하이드로퀴논 모노글리시딜 에테르, 미국특허번호(United States Patent No.) 2758119에 개시;
모노옥틸레이티드 하이드로퀴논, 미국특허번호 4209648에 개시;
65 ℃에서 올레핀의 비등점 미만의 온도에서 프리델-크라프트(Friedel-Crafts) 촉매의 존재하에 하이드로퀴논을 포함하는 화합물과 노넨(nonenes)과 2,4,4-트리메틸-1-펜텐으로 구성되는 그룹으로부터 선택된 올레핀의 반응에 의하여 제조된 하이드로퀴논 제품, 하이드로퀴논에 대한 올레핀의 몰비는 올레핀이 노넨인 경우 1:1 내지 10:1 이고, 올레핀이 2,4,4-트리메틸-1-펜텐인 경우 1.5: 1 내지 3:1이다, 미국특허번호 4209648에 개시; 및
상기 성분의 결합
락톤 유도체 화합물(B) 성분은 미국특허번호 7390912 및 7601853 그리고 미국특허 출원공개번호 20060135792에 개시된 락톤 안정제(stabilizers) 또는 혼합물(blends)로부터 선택되고, 바람직하게는 밀리가드(Milliguard®) AOX-1로 알려진 제품을 상업적으로 구입 가능하다.
이들 락톤 안정제는 폴리(옥시알킬렌) 체인 치환 3-아릴벤조푸라논 (benzofuranones) 또는 폴리(카프로락톤) 체인 치환 3-아릴벤조푸라논과 같은 일반적으로 폴리머 또는 올리고머 락톤 항산화제로 개시된다.
폴리머 락톤 화합물로 개시된 특히 바람직한 락톤은 미국특허번호 7390912에 개시되어 있다.
Figure pct00004
여기서, R1 및 R3 는 각각 H, F, Cl, Br, I, C1-C20 알킬, C1-C20 사이클로알킬, C1-C20 알콕시그룹, C7-C20 펜알킬(phenalkyls) 및 페닐 그룹으로 구성되는 그룹으로부터 각각 선택되고; q 는 1-20 사이의 양(positive) 정수이고, t 는 0-20 사이의 양 정수이고, q+t는 3과 동일하거나 그 이상이다.
페놀성 화합물 유도체(C)는 4 위치에서 지방족, 방향족 또는 지방족-방향족 성분으로 치환된 (2,6-디-t-부틸)페놀 및 그 혼합물을 포함하고, 선택적으로 O, N, S 및 P의 이종원자(hetero atoms)의 결합을 소유한다.
이러한 종류의 바람직한 예는 여기에 한정되는 것은 아니고,
2,6-디-t-부틸-4-노닐페놀, 2,4-디옥틸치오메틸-6-메틸페놀, 4,6-(비스(옥틸치오메틸)-o-크레솔, 이소트리데실-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트, 이소-옥틸-3-(3,5-디-t-부틸-4-하이등록시페닐)프로피오네이트를 포함한다.
고체 또는 액체 형태를 갖는 많은 다른 페놀성(phenolics) 화합물이 조성물 내에 혼합되거나 단독으로 사용될 수 있고, 2,6-디-t-부틸-4-메틸페놀, 2-t-부틸-4,6-디메틸페놀, 2,6-디-t-부틸-4-에틸페놀, 2,6-디-t-부틸-4-n-부틸페놀, 2,6-디-t-부틸-4-이소부틸페놀, 2,6-디사이클로펜틸-4-메틸페놀, 2-(α-메틸사이클로헥실)-4,6-디메틸페놀, 2,6-디옥타데실-4-메틸페놀, 2,4,6-트리사이클로헥실페놀, 2,6-디-t-부틸-4-메톡시메틸페놀, 노닐페놀을 포함하고, 이들은 선형이거나 또는 사이드 체인이 분기될 수 있고, 예를 들어 2,6-디-노닐-4-메틸페놀, 2,4-디메틸-6-(1'-메틸운데시(undec)-1'-일)페놀, 2,4-디메틸-6-(1'-메틸헵타데시-1'-일)페놀, 2,4-디메틸-6-(1'-메틸트리데시-1'-일)페놀, 2,4-디옥틸치오메틸-6-t-부틸페놀, 2,4-디옥틸치오메틸-6-메틸페놀, 2,4-디옥틸치오메틸-6-에틸페놀, 2,6-디-도데실치오메틸-4-노닐페놀, 2,6-디-t-부틸-4-메톡시페놀, 2,5-디-t-부틸하이드로퀴논, 2,5-디-t-아밀하이드로퀴논, 2,6-디페닐-4-옥타데실옥시페놀, 2,6-디-t-부틸하이드로퀴논, 2,5-디-t-부틸-4-하이드록시아니솔(anisole), 3,5-디-t-부틸-4-하이드록시아니솔, 3,5-디-t-부틸-4-하이드록시페닐 스테아레이트, 비스(3,5-디-t-부틸-4-하이드록시페닐) 아디페이트(adipate), α-토코페롤, β-토코페롤, γ-토코페롤, δ-토코페롤, 2,2'-메틸렌비스(6-t-부틸-4-메틸페놀), 2,2'-메틸렌비스(6-t-부틸-4-에틸페놀), 2,2'-메틸렌비스[4-메틸-6-(α-메틸사이클로헥실)페놀], 2,2'-메틸렌비스-(4-메틸-6-사이클로헥실페놀), 2,2'-메틸렌비스(6-노닐-4-메틸페놀), 2,2'-메틸렌비스-(4,6-디-t-부틸페놀), 2,2'-에틸렌비스(4,6-디-t-부틸페놀), 2,2'-에틸렌비스(6-t-부틸-4-이소부틸페놀), 2,2'-메틸렌비스[6-(α-메틸벤질)-4-노닐-페놀], 2,2'-메틸렌비스[6-(α,α-디메틸벤질)-4-노닐페놀], 4,4'-메틸렌비스(2,6-디-t-부틸페놀), 4,4'-메틸렌비스(6-t-부틸-2-메틸페놀), 1,1-비스(5-t-부틸-4-하이드록시-2-메틸페닐)부탄, 2,6-비스(3-t-부틸-5-메틸-2-하이드록시벤질)-4-메틸-페놀, 1,1,3-트리스(5-t-부틸-4-하이드록시-2-메틸페닐)부탄, 1,1-비스(5-t-부틸-4-하이드록시-2-메틸-페닐)-3-n-도데실멀캅토부탄, 에틸렌글리콜 비스[3,3-비스(3'-t-부틸-4'-하이드록시페닐)부티레이트], 비스(3-t-부틸-4-하이드록시-5-메틸-페닐)디사이클로펜타디엔, 비스[2-(3'-t-부틸-2'-하이드록시-5'-메틸벤질)-6-t-부틸-4-메틸페닐]테레프탈레이트, 1,1-비스(3,5-디메틸-2-하이드록시페닐)부탄, 2,2-비스(3,5-디-t-부틸-4-하이드록시페닐)프로판, 2,2-비스(5-t-부틸-4-하이드록시-2-메틸페닐)-4-n-도데실멀캅토부탄, 1,1,5,5-테트라-(5-t-부틸-4-하이드록시-2-메틸페닐)펜탄, β-(3,5-디-t-부틸-4-하이드록시페닐)-프로피온산과 예를 들어 메타놀, 에타놀, n-옥타놀, i-옥타놀, 옥타데카놀, 1,6-헥산디올, 1,9-노난디올, 에틸렌글리콜, 1,2-프로판디올, 네오펜틸글리콜, 치오디에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 펜타에리스리톨, 트리스(하이드록시에틸)이소시아누레이트 (isocyanurate), N,N'-비스(하이드록시에틸)옥사마이드, 3-치아언데카놀 (thiaundecanol), 3-치아펜타데카놀, 트리메틸헥산디올, 트리메티롤프로판, 4-하이드록시메틸-1-포스파-2,6,7-트리옥사비사이클로[2.2.2]옥탄과 같은 모노 또는 다가 (polyhydric) 알콜과의 에스테르, β-(5-t-부틸-4-하이드록시-3-메틸페닐)-프로피온산과 예를 들어 메타놀, 에타놀, n-옥타놀, i-옥타놀, 옥타데카놀, 1,6-헥산디올, 1,9-노난디올, 에틸렌글리콜, 1,2-프로판디올, 네오펜틸글리콜, 치오디에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 펜타에리스리톨, 트리스(하이드록시에틸)이소시아누레이트, N,N'-비스(하이드록시에틸)옥사마이드, 3-치아언데카놀, 3-치아펜타데카놀, 트리메틸헥산디올, 트리메티롤프로판, 4-하이드록시메틸-1-포스파-2,6,7-트리옥사비사이클로[2.2.2]옥탄과 같은 모노 또는 다가 알콜과의 에스테르; 3,9-비스[2-{3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오-닐옥시}-1,1-디메틸에틸]-2,4,8,10-테트라옥사스피로[5.5]언데칸; β-(3,5-디사이클로헥실-4-하이드록시페닐)-프로피온산과 예를 들어 메타놀, 에타놀, 옥타놀, 옥타데카놀, 1,6-헥산디올, 1,9-노난디올, 에틸렌글리콜, 1,2-프로판디올, 네오펜틸글리콜, 치오디에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 펜타에리스리톨, 트리스(하이드록시에틸)이소시아누레이트, N,N'-비스(하이드록시에틸)옥사마이드, 3-치아언데카놀, 3-치아펜타데카놀, 트리메틸헥산디올, 트리메티롤프로판, 4-하이드록시메틸-1-포스파-2,6,7-트리옥사비사이클로[2.2.2]옥탄과 같은 모노 또는 다가 알콜과의 에스테르, 3,5-디-t-부틸-4-하이드록시-페닐-아세트산과 예를 들어 메타놀, 에타놀, 옥타놀, 옥타데카놀, 1,6-헥산디올, 1,9-노난디올, 에틸렌글리콜, 1,2-프로판디올, 네오펜틸글리콜, 치오디에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 펜타에리스리톨, 트리스(하이드록시에틸)이소시아누레이트, N,N'-비스(하이드록시에틸)옥사마이드, 3-치아언데카놀, 3-치아펜타데카놀, 트리메틸헥산디올, 트리메티롤프로판, 4-하이드록시메틸-1-포스파-2,6,7-트리옥사비사이클로[2.2.2]옥탄과 같은 모노 또는 다가 알콜과의 에스테르, β-(3,5-디-t-부틸-4-하이드록시페닐)-프로피온산의 아마이드, 예를 들어 N,N'-비스(3,5-디-t-부틸-4-하이드록시페닐프로피오닐)헥사메틸렌디아마이드, N,N'-비스(3,5-디-t-부틸-4-하이드록시페닐프로피오닐)트리메틸렌디아마이드, N,N'-비스(3,5-디-t-부틸-4-하이드록시페닐프로피오닐)하이드라지드(hydrazide), N,N'-비스[2-(3-[3,5-디-t-부틸-4-하이드록시페닐]프로피오닐옥시)에틸]옥사마이드(유니로얄(Uniroyal)에서 제공되는 Naugard®XL-1) 및 그 혼합물을 포함한다.
바람직한 화합물은 이소-옥틸-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트와 C-13 내지 C-15 알콜 에스테르-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트의 혼합물이다.
스코치 억제제 제제의 바람직한 범위는 중량%로 다음을 포함한다:
그룹 A 하이드로퀴논 약 1-25%, 바람직하게는 5-15%;
그룹 B 락톤 약 5-25%, 예를 들어 Milliguard® AOX-1, 바람직하게는 5-15%;
그룹 C 페놀성 화합물 약 70-90%, 바람직하게는 75-85%.
폴리우레탄 발포체 내의 바람직한 제제의 범위는 약 0.001 내지 5 pbw; 더 바람직하게는 0.2-3.5 pbw, 가장 바람직하게는 0.2-0.5 pbw 이다.
본 발명의 예시적 스코치 억제제 제제인 실시예 1은 2,5-디-t-아밀-하이드로퀴논(그룹 A) 약 10%: Milliguard® AOX-1로 알려지고, 락톤 혼합물로 추정되는 상업적으로 구입 가능한 폴리머 또는 올리고머 락톤 제품(그룹 B) 약 10%: 및 이소-옥틸-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트(그룹 C) 약 80%를 포함한다. 야기에 개시된 모든 %는 중량%이다.
본 발명의 조성물은 그 단일 성분과 비교하였을 때 동일한 중량 기준의 성분에 비하여 상당히 스코치를 감소하여 진실한 상승 효과를 나타낸다.
본 발명의 제제는 또한 C4와 같은 알킬레이티드 디페닐아민에 비하여 NOx 가스 및 일반 형광 빛에 노출 동안 더 적은 색 전개에 기여한다.
본 발명의 조성물은 종래기술 또는 상업적 조성물보다 스코치를 더 잘 감소하고, 다양한 시장 분야에서 우려가 되는 휘발성도를 잠재적으로 감소하도록 변형될 수 있다.
전형적인 발포체 처방이 표 1(발포체 A)에 나타나 있다. 이어지는 몇 개의 실시예에서 비-가연성 지연제(retardant) 제제가 종래기술에 대한 새로운 혼합물의 유효성을 나타내기 위하여 사용되었다 (표 1, 발포체 B).
성분 A (pbw) B (pbw)
폴리에테르 폴리올 *1 100.00 100
6.00 7.25
트리에틸렌 디아민(촉매) 0.31 0.31
FR 실리콘 계면활성제 1.21 1.21
트리스(1,3-디클로로이소프로필
포스페이트)(방화제)
7.00 0.00
디부틸틴(dibytyltin)
디라우레이트 (주석 촉매)
0.25 0.25
톨루엔 디이소시아네이트
(106 TDI index)
70.45
(106 TDI index)
76.43
(106 TDI index)
스코치 억제제 최대 0.50 최대 0.50
*1. 3000 Mw, 보고된 하이드록실 넘버 = 54.1 mg/g KOH
*2. 성분 중량부(parts by weight; pbw)
PUR 박스(box) 발포체 처방
검사 프로토콜이 다음에 기재되었다.
발포체는 "평가기준(benchmarks)"과 비교하여 신규 혼합물의 성능을 평가하기 위하여 서로 다른 항산화제 패키지로 제조되었다.
케이크 박스 크기의 발포체를 마이크로파 가열에 노출시켜 스코치 성능이 평가되었다. 박스 발포체는 8분 동안 마이크로파 가열에 처해지고, 또는 요구되는 매일의 조건에 따라 습도에 따라 때로는 길게 때로는 짧게 할 수 있다 (마이크로파 오븐: General Electric Household Microwave Oven; Mod.Num. JE1860GB 001; KW:1.55; VAC/Hz: 120/60.8 분; @30% power in microwave). 오븐에서 짧은 경화 사이클(2분) 후에 제조된 발포체는 내부 스코치 영역의 검사 전에 실온으로 냉각된다. 발포체의 조각은 각각의 시험편에서 절단되고 변색이 평가되었다. 마이크로파 발포체의 스코치 영역에서 흑화의 범위가 정량적으로 평가되었다. 델타 E 값은 테크니딘 코포레이션(Technidyne Corp.)의 브라이티미터(Brightimeter) 마이크로 S4M을 사용하여 수집되었다.
실시예:
본 발명의 혼합물이 폴리우레탄 발포체 제제에서 시험 되었다 (표 1).
시험은 본 발명의 신규 혼합물의 성능을 3개의 상업적으로 이용 가능한 제품과 대비 평가하는 비교를 포함한다 (표 2).
실시예 C3은 본 발명의 스코치 억제제의 성분 B에 해당하고, 미국특허번호 7,390,912 B2에 개시된 Milliguard® AOX-1로 알려진 폴리머 또는 올리고머 락톤 항산화제로서 밀리켄 케미칼(Milliken Chemical)로부터 상업적으로 구입 가능하다.
실시예 C4는 미국특허번호 5219892에 개시되고 반더빌트 케미칼스, 엘엘씨로부터 구입 가능한 VANOX® 액체 스코치 억제제이고, 알킬레이티드 디페닐아민과 알킬레이티드 페놀성 화합물, 특히 (a) 테트라키스[메틸렌(3,5-디-t-부틸-4-하이드록시하이드로 신나메이트)메탄과 (b) 디페닐아민과 디이소부틸렌(몰비 1:1.1 내지 1: 2.5)의 반응 생성물을 포함한다. 안정제 조성물은 제3 상승 성분, 페노치아진 또는 페노치아진의 특정 알길 유도체를 포함할 수 있다.
실시예 C5는 미국특허번호 5356966의 개시에 따른 Irgastab® PUR 68로 알려진 시바 스페셜티 케미칼스(Ciba Specialty Chemicals)로부터 구입 가능한 제품이고, 락톤 유도체 및 다른 항산화제를 포함한다고 추정되지만 정확한 조성은 알려지지 않았다.
실시예 C6는 이소트리데실-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트 페놀 유도체(80%)와 Milliguard® AOX-1 락톤(실시예 C3)(20%)로 구성되어 있다. 비교 혼합물은 미국특허번호 7247658 (실시예 4)의 개시에 따른 성분비를 따른다.
실시예 C7은 이소옥틸-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트 페놀 유도체(9%); 디페닐아민과 디이소부틸렌(몰비 1:1.1 내지 1:2.5)의 반응 생성물(14%); Milliguard® AOX-1로 알려진 상업적으로 구입 가능한 폴리머 또는 올리고머 락톤 제품 (34%); 및 Songsorb® 3260, 2-(2'-하이드록시-3'-t-부틸-5'-메틸페닐)-5-클로로 벤조트리아졸 (43%)(송원(Songwon)에서 제조되고, 반더빌트 케미칼스, 엘엘씨로부터 구입 가능)로 구성된다.
비교 혼합물은 미국특허번호 7601853 B2 (부가 패키지 BB)의 개시에 따른 성분비를 따른다.
실시예 8
실시예 8은 2,5-디-t-아밀-하이드로퀴논(10%)와 Milliguard® AOX-1로 알려진 상업적으로 구입 가능한 폴리머 또는 올리고머 락톤 제품(10%)과 C-13 내지 C-15 알콜 에스테르-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트의 혼합물 (ANOX® 13-15(아디반트 유에스에이 엘엘씨(Addivant USA, LLC), CAS: 171090-93-0)을 포함한다.
하기 표 2 및 표 2a에 개시한 바와 같이, 본 발명의 혼합물 실시예 1은 발포체 조성물에서 동일한 함량 수준에서(0.2 pbw), 감소된 dE측정에 나타낸 바와 같이 매우 적게 변색되었다.
실시예 C6 실시예 1
이소-옥틸-3-(3,5-디-t-부틸-4-하이드록시페닐)
프로피오네이트 (PH-1)
80 80
실시예 C3*
미국특허번호 7,390,912 B2 혼합물
Milliguard® AOX-1
20 10
2,5-디-t-아밀-하이드로퀴논 (HQ-1) - 10
dE (스코치) 22.8 11.10
Figure pct00005
0.2 pbw 에서 폴리우레탄 발포체 조성물의 항산화제 패키지의 스코치 성능(dE 비색(colorimetric) 측정)
본 발명의 혼합물을 가장 가까운 선행기술(미국특허번호 7,390,912 B2)로부터 유도된 2개의 락톤 조성물에 비교하는 다른 시험에서는 본 발명의 혼합물(실시예 1)이 스코치를 더욱 현저하게 감소하는 것을 나타낸다 (표 3). 실시예 C7은, 상업적 응용에서 높은 바람직한 특성의 액체를 형성하는 실시예 1과는 달리 혼합에 의하여 액체 혼합물을 형성하지 않는, 페놀성 알킬레이티드 디페닐아민, 폴리머 각톤과 벤조트리아졸의 결합이다.
실시예 1 실시예 C3 * 실시예 C7
2.89 3.61 15.54
0.2 pbw 에서 폴리우레탄 발포체 조성물의 항산화제 패키지의 스코치 성능 (dE 비색 측정)
다른 시리즈는 본 발명의 제제는 내연제가 없는 경우에도 스코치를 계속 감소하는 것을 나타낸다. 특히 본 발명의 혼합물의 총 중량은 현재 제제의 아래이고 보다 낮은 스코치를 나타내다 (표 4).
실시예 C4:
알킬레이티트 페놀성 화합물(0.27 pbw)+
이소트리데실--3-(3,5-디-t-부틸-4-하이드록시페닐) 프로피오네이트 (0.15 pbw)의
알킬레이티트 디페닐아민 혼합물 (총 0.41 pbw)
실시예 1
0.22 (pbw)
실시예 1
0.25 (pbw)
15.19 10.18 7.78
폴리우레탄 발포체 조성물 B (표 1-B)의 항산화제 패키지의 스코치 성능(dE 비색 측정)
가스 퇴색 연구 (Gas Fade Studies)
환경 인자(Environmental Factors) 및 발포체 변색(Foam Discoloration)
발포체 제조자는 니트로겐 옥사이드 가스의 효과를 의식하고 오늘날 일반적으로 소비자에게 변색 문제를 경계시키고 효과를 완화하는 새 제품을 내는 정보 보고서를 발행한다 *18. NOx 가스에 대한 PUR 발포체의 노출을 실험하기 위하여, 우선 검사 물질이 노출된 발생된 연소 가스를 수집하는 간단한 실험 장치를 사용하는 가스 퇴색이라고 알려진 시험이 개발되었다. 이를 위하여, 제조자는 샘플 저장 선반(sample carousel)을 갖는 덮개(enclosures)에 위치한 분센(bunsen) 버너에 장착된 가스 챔버를 제공하였다. 시료가 수집된 연소 가스에 지정한 시간 동안 노출되었다 *20. 본 발명자의 평가에서, 시료는 챔버 내에 위치하고, 주기적으로 비색 측정장치를 사용하여 검사하였다.
이 연구에서, 종래기술 제제(C7)에 대한 본 발명의 혼합물을 비교하는 2개의 농도 수준이 검사되었다. 보다 높은 농도(3.5 pbw)에서, 본 발명이 혼합물은 종래기술 제제 (dE=7.05)에 비하여 매우 적은 변색 (dE=4.81)을 전개하였고, 또한 보다 낮은 농도(0.5 pbw)에서도, 종래기술에 대하여 주목할 이점을 나타내었다. 특히, C7이 유도된 특허에서 선택된 수준(3.5 pbw)이 인용되었고, 따라서 실시예 1에 대한 유용한 비교로서의 역할을 한다 (표 5).
조성물 실시예 1
(0.5 pbw)
실시예 C7
(0.5 pbw)
실시예 1
(3.5 pbw)
실시예 C7
(3.5 pbw)
dE 7.44 9.39 4.81 7.05
가스 퇴색 연구: 2 시간
United States Testing Co., Inc, 대기 가스 챔버, 모델번호 8727
시리얼번호 13411, 230 볼트, 50 사이클, 1 Phase
App. 번호 농도 3.3 최소- 5-8 최대(No2 미 검지)
비교 실시예 1 대 C4(페놀성/ADPA 혼합물)를 비교하는 가스 퇴색 평가 및 빛 퇴색(Light Fade) 연구
실시예 1(본 발명의 혼합물)은 산업적 제제에서 일반적으로 사용되고 있는 일반 페놀성/ADPA 혼합물과 2 수준에서 비교되었다. 추가적으로 제제는 표 1, 발포체 A에 따라, PUR 발포체에서 사용된 난연제로 변형되었다. 피롤(Fyrol®) HF-5 및 Hf-4 난연제는 독점의 포스포러스 에스테르 혼합물이고, 아이씨엘 인더스트리얼 프로덕츠(ICL Industrial Products)로부터 구입 가능한 각각 비-할로겐 포스포러스이다. 데이타는 운전 길이(length of run)에 따라 나타내었고, 일부는 흥미로웠다. 본 발명의 제제는 내연제 타입에 관계없이 실험 주기(2 시간)에 걸쳐 더 적은 색 전개를 부여하는 것으로 발견되었다 (표 6).
시간 C4
0.2 pbw
HF4
C4
0.2 pbw
HF5
실시예 1
0.2 pbw
HF4
실시예 1
0.2 pbw
HF5
C4
0.5 pbw
HF4
C4
0.5 pbw
HF5
실시예 1
0.5 pbw
HF4
실시예 1
0.5 pbw
HF5
1 2.19 1.15 1.14 0.59 1.87 0.99 0.76 0.45
1.5 3.55 3.15 2.98 2.21 4 3.55 3.2 1.82
2 5.26 4.31 4.44 3.1 5.74 3.6 4.54 2.85
가스 퇴색 연구: 2 시간
United States Testing Co., Inc, 대기 가스 챔버, 모델번호 8727
시리얼번호 13411, 230 볼트, 50 사이클, 1 Phase
App. 번호 농도 3.3 최소- 5-8 최대(No2 미 검지)
실시예 1 대 C4 (페놀성/ADPA 혼합물)를 비교하는 빛 퇴색 평가
마지막으로, 발포체 조각은 일반 형광에 노출하고 6일 동안 모니터하였다. 본 발명의 혼합물은 ADPA/페놀성 혼합물과 비교되었고, 2개의 선택된 농도에서 실험 주기를 통하여 낮은 변색을 나타내었다 (표 7).
일수 C4
0.2 pbw
HF4
C4
0.2 pbw
HF5
실시예 1
0.2 pbw
HF4
실시예 1
0.2 pbw
HF5
C4
0.5 pbw
HF4
C4
0.5 pbw
HF5
실시예 1
0.5 pbw
HF4
실시예 1
0.5 pbw
HF5
1 5.42 2.53 3.45 1.92 6.54 4.55 3.21 2.32
4 13.08 10.62 11.6 8.42 14.43 11.07 11.25 8.09
6 15.41 13.21 14.24 11.1 16.54 13.53 14.29 10.36
빛 퇴색 연구: 2 시간
성분 대 혼합물 평가
본 발명의 혼합물이 그 각각의 성분에 대하여 진실한 상승 작용을 보이는 것을 나타내기 위하여, 실시예 1의 각 성분의 스코치 성능이 평가되었다. 제조된 발포체에 대하여 가스 퇴색 연구가 수행되었다 (표 8).
단순 평균(simple mean)과 가중 평균(weighted mean)을 포함하는 2개의 수단(tools)이 혼합물 성능을 평가하기 위하여 사용되었고, 후자는 혼합물 내의 특정 성분의 농도에 기초하였다. 각각의 성분은 다음과 같이 가장 어두운 내부부터 가장 밝은 내부까지의 다양한 수준의 성능을 나타내었다: 페놀성 유도체 PH-1 (23.24) > 락톤 유도체 AOX-1 (8.88) > 하이드로퀴논 HQ-1 (4.14).
각각의 성분이 혼합물 내에서 마지막 스코치 성능에 동일하게 기여한다고 추정하면, 예측된 dE 값
Figure pct00006
= 12.53 이다. 각각의 성분이 혼합물 조성물 내에서 가중 존재에 따라 기여한다고 추정하면, 예측된 값 = 26.64 이다. 사실, 혼합물은 단순 평균 및 가중 평균 모두의 아래이고, 따라서 진실한 상승 작용을 나타낸다 (dE = 5.47). 가스 챔버 결과는 유사한 경향을 나타내었고, 놀랍게도 변색은 기대된 평균과 비교하여 가장 적을 뿐만 아니라 모든 측정된 값 이하이고 (표 8), 혼합물 내에서 진실한 상승 작용을 나타내었다.
화합물 미국특허
7390912 B2
실시예 C3*
혼합물
Milliguard®
AOX-1
이소-옥틸-3-
(3,5-디-t-부틸-
4-하이드록시페닐)
프로피오네이트
(PH-1)
2,5-디-t-아밀-
하이드로퀴논
(HQ-1)
Figure pct00008
Figure pct00009
실시예
1
스코치 성능
(dE)
8.88 23.24 4.14 12.53 19.87 5.47
가스 챔버
6 시간
(NOx)
(dE)
23.39 27.98 19.21 23.53 26.64 18.27
실시예 1 및 성분의 스코치 성능 및 가스 챔버 테스트
제제 조정(Formula Adjustments)
혼합물 내의 성분의 상대적 농도가 변형되고 평가되었다 (표 9). 이 일련의 시험에서, 락톤, 하이드로퀴논의 어느 하나 또는 모두의 증가는 일반적으로 실시예 1과 비교하여 스코치 성능(A-C)이 개선되었다. 페놀성 화합물의 증가와 락톤 및 하이드로퀴논 모두의 감소는 실시예 1과 비교하여 스코치 성능(A-C)이 감소되었다. 그러나, 하이드로퀴논 농도의 증가는 액체 불안정성을 초래하고 혼합물이 제조된 후 수일 내에 침전이 형성되었다. 성공적 상업적 제품의 하나의 요구는 가능한 한 오래 액체를 유지하여야 하고, 이는 변형된 혼합물의 일부는 덜 유리하다는 것을 시사한다.
A B C D 실시예 1
이소-옥틸-3-(3,5-디-t-부틸-
4-하이드록시페닐)프로피오
네이트 (PH-1)
70 70 60 90 80
미국특허7390912 B2
실시예 C3* 혼합물
Milliguard® AOX-1
20 10 20 5 10
2,5-디-t-아밀-하이드로퀴논
(HQ-1)
10 20 20 5 10
dE (스코치) 8.93 7.12 6.75 15.46 9.36
dE (NOx, 6 시간) 17.09 17.12 16.54 17.20 17.12
5일 후의 물리적 형태 액체 매우 중(heavy)
ppt
중 ppt 액체 액체
제제 조정: 스코치 성능 및 가스 챔버 노출
휘발성도 고찰 (Volatility considerations)
이상 이야기한 바와 같이, 폴리우레탄 발포체에 근거하는 성분의 휘발성도를 낮추는 것이 바람직하다. 고스너(Gossner et al,) 등은 폴리우레탄 발포체는 휘발성 유기 성분(volatile organic constituents; VOC)을 방출할 수 있고, 이러한 방출은 바람직하지 않다고 종래기술로부터 알려졌다고 설명한다 *21.
본 발명은 화합물의 휘발성도를 감소하는 고분자량 알킬레이티드 페놀성 화합물을 사용하도록 조정될 수 있다. 이것을 나타내기 위하여, 실시예 8은 고분자량 페놀성 화합물, 특히 C-13 내지 C-15 알콜 에스테르- 3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트 혼합물이 치환된 것을 제외하고는 실시예 1과 동일하게 제조되었다. 우선 변형된 혼합물 실시예 8은 실시예 1과 유사하게 수행하는지 관찰하였다 (표 10)
실시예 1 실시예 8
8.94 7.21
3 운전(run) 평균 알킬레이티드 페놀성 화합물 dE 값
스코치 억제제 패키지의 사용자에게 바람직하게, 제제는 VOC의 방출을 감소하도록 조정될 수 있다. 실시예 8의 조정된 조성물은 실시예 1과 비교하여 시간이 지남에 따라 더 적은 휘발성도를 나타내었다. 시간 경과에 따른 전하의 중량 손실을 측정하는 열 중량분석(Thermic gravimetric analysis)(ASTM E2008)에서 2개의 혼합물에서 중대한 차이가 나타났다 (표 11). 기대한 대로 고분자량 성분이 운전 전체를 통하여 중량 손실을 감소하는 것을 돕는다 (실시예 1 대 실시예 8)
샘플 초기 중량 (mg) 최종 중량 (mg) 총 중량 손실 (%)
실시예 1A 8.8800 0.928 90%
실시예 1B 10.3030 1.184 89%
실시예 8A 5.8270 3.681 37%
실시예 8B 9.4790 6.651 30%
중량 손실에 대한 알킬레이티드 페놀성 화합물의 효과
방법: 열 중량분석: 램프 5.0℃/분 내지 160℃, 240분 등온(isothermal)
열 중량분석기에 의한 휘발비 측정을 위한 ASTM E2008 표준시험 방법
시험 결과 검토
실시예 1 혼합물은 그 단일 성분과 비교하였을 때 동일한 중량 기준의 성분에 비하여 상당히 스코치를 감소하여 진실한 상승 효과를 나타낸다. 미국특허번호 7,390,912 B2 (실시예 3)의 락톤 항산화제는 락톤 혼합물 (실시예 1)을 사용하는 본 발명의 조성물과 비교하여 매우 불충분하게 스코치를 감소한다. 본 발명의 다른 항산화제 성분 또한 혼합물 (실시예 1)에 비하여 매우 부족하게 스코치를 감소한다. 또한, 상기 이야기한 바와 같이, C3 (0.5 pbw)의 평가에 사용된 락톤의 시험 전하 수준은 실시예 1 (0.05 pbw) 혼합물의 락톤 수준보다 매우 높았다. C6 및 C7과 같은 종래기술 C3와 관련한 '락톤" 특허의 패밀리에 개시된 다른 혼합물 또한 본 발명의 혼합물에 비하여 더 스코치를 전개하는 것으로 알려졌다.
실시예 C5는 그 정확한 제제는 제조자에 의하여 개시되어 있지 않지만 상업적으로 구매 가능한 락톤 조성물이다. 본 발명의 제제 (실시예 1)와 동일한 부하 수준에서 더 적은 스코치를 전개하였다.
실시예 1은 또한 알킬레이티드 디페닐아민 (실시예 4)과 그 모(parent) 출발 물질 디페닐아민이 없다. DPA는 많은 제품 및 유럽에서 바람직하지 않다 *23. 실시예 1은 개선된 스코치 감소를 제공하고 감소된 건강 우려를 제공한다. 따라서, 본 발명은 첨가 제제를 혼합하는 폴리우레탄 발포체를 포함하고, 디페닐아민이 없다. 본 발명의 제제는 또한 C4와 같은 알킬레이티드 디페닐아민에 비하여 NOx 가스 및 일반 형광 빛에 노출 동안 더 적은 색 전개에 기여한다.
실시예 1은 본 발명의 혼합물이 종래기술 또는 상업적 조성물보다 스코치를 더 잘 감소하고, 다양한 시장 분야에서 우려가 되는 휘발성도를 잠재적으로 감소하도록 변형될 수 있다.
*1. M.P.Luda et. al, Discoloration in fire retardant flexible polyurethane foams. Part I. Characterization, Polymer Degradation and Stabilization, 83 (2004), p.215.
*2. Brian Kaushiva, Structure-Property Relationships Of Flexible Polyurethane Foams, Ph.D. Thesis, Virginia Polytechnic Institute and State University, 1999, p. 5.
(http://scholar.lib.vt.edu/theses/available/etd-083199-185156/unrestricted/KAUSHIVA1.PDF, accessed 7-6-11.
*3. Y.Su, Wang Wan Jiang, Thermal Stability of Poly(oxypropylene-ether) Polyol, Thermochimica Acta, 123 (1988) 221-231.
*4. J.DeMassa, Polyol Stabilization and the Introduction of a New PUR Slabstock Foam Antioxidant, Conference: Polyurethanes 2011 Technical Conference
*5. J.DeMassa, PTZ: A Troublesome Ingredient; Promising Solutions, Polyurethane Foam Association, Spring Meeting 2012
*6. Klempner, p.74.
*7. John R. Richards, Control of Nitrogen Oxides Emissions, Student Manual, APTI Course 419, p3-4 (2000). "The leading contributors of anthropogenic NOX emissions are vehicles and electric generating units (EGUs)."
*8. James A. Tompkins, Jerry D. Smith, The Warehouse Management Handbook, Tompkins Press, 2nd Ed., p.399, 1998.
*9. Foamex web publication, http://www.fxi.com/assets/pdf/Dis-coloration_Info.pdf, accessed 4-11-12.
*10. Kobara et al., Aerosol and Air Quality Research, Vol. 7, No. 2, p. 194, 2007
*11. Jia L, Xu Y. Characterization of condensed phase nitric acid particles formed in the gas phase, J Environ Sci (China);23(3), p.412, 2011.
*12. Flexible polyurethane foam inhibited from discoloring, Bridgestone Corporation, United States Patent Application 20060247325 (2006).
*13. Additives for Polyurethanes, http://www.mufong.com.tw/Ciba/ciba _guid/additives_polyurethane.pdf, p.18, accessed 4-18-12.
*14. B.P.Thapliyal and R. Chandra, Prog. Polym. Sci. Vol. 15, 735-750, 1990, p.738.
*15. J. Gardette, et al. Makromol. Chem. 182 (1981) p.2723.
*16. Reduced VOC and Fog Emissions In Flame Retardant Automotive Foams, Polyurethane Foam Association , 2005 Fall Meeting October 6, 2005, Francis Marion Hotel, Charleston, South Carolina
*17. ASTM E2008 Standard Test Methods for Volatility Rate by Thermogravimetry
*18. Foamex technical literature, http://fxi.com/assets/pdf/Dis-coloration_Info.pdf, accessed 1-29-15,
*19. http://www.freepatentsonline.com/3988292.pdf
*20. Equipment: United States Testing Co., Inc, Atmospheric Fume Chamber, Model No. 8727, Serial Number 13411, 230 Volt, 50 Cycle, 1 Phase.
*21. Matthaus Gossner, Peter Haas, Sven Meyer-Ahrens, Bert Klesczewski, Process for production of flexible polyurethane foams with low emission US 20100305228 A1
*22. PFA Spring Meeting May 16-17, 2012, Baltimore Maryland, PTZ : Troublesome Ingredient; Promising Solutions.
*23. http://grist.org/news/chemical-banned-in-europe-is-probably-on-your-apple/, accesses 4-25-12.

Claims (14)

  1. 하이드로퀴논 유도체 1-25 중량%;
    락톤 유도체 5-25 중량%; 및
    페놀성 화합물 유도체 약 70-90 중량%를 포함하는,
    폴리우레탄 발포체 내의 스코치를 방지하는 첨가제 조성물.
  2. 제1항에 있어서,
    하이드로퀴논 유도체 5-15 중량%;
    락톤 유도체 5-20 중량%; 및
    페놀성 화합물 유도체 70-85 중량%를 포함하는,
    폴리우레탄 발포체 내의 스코치를 방지하는 첨가제 조성물.
  3. 제1항에 있어서,
    하이드로퀴논 유도체 10 중량%;
    락톤 유도체 10-20 중량%; 및
    페놀성 화합물 유도체 70-80 중량%를 포함하는,
    폴리우레탄 발포체 내의 스코치를 방지하는 첨가제 조성물.
  4. 제1항에 있어서,
    상기 하이드로퀴논 유도체가 2,5-디-t-아밀-하이드로퀴논;
    락톤 유도체가 다음 화합물이고,
    Figure pct00010

    여기서, R1 및 R3 는 각각 H, F, Cl, Br, I, C1-C20 알킬, C1-C20 사이클로알킬, C1-C20 알콕시그룹, C7-C20 펜알킬 및 페닐 그룹으로 구성되는 그룹으로부터 각각 선택되고, q 는 1-20 사이의 양 정수이고, t 는 0-20 사이의 양 정수이고, q+t는 3과 동일하거나 그 이상이고; 그리고
    페놀성 화합물 유도체가 (a) 이소트리데실-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트 또는 (b) C-13 내지 C-15 알콜 에스테르-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트 혼합물인,
    폴리우레탄 발포체 내의 스코치를 방지하는 첨가제 조성물.
  5. 제4항에 있어서,
    하이드로퀴논 유도체 5-15 중량%;
    락톤 유도체 5-20 중량%; 및
    페놀성 화합물 유도체 70-85 중량%를 포함하는,
    폴리우레탄 발포체 내의 스코치를 방지하는 첨가제 조성물.
  6. 제5항에 있어서,
    하이드로퀴논 유도체 10 중량%;
    락톤 유도체 10-20 중량%; 및
    페놀성 화합물 유도체 70-80 중량%를 포함하는,
    폴리우레탄 발포체 내의 스코치를 방지하는 첨가제 조성물.
  7. 스코치 방지 첨가제 조성물을 약 0.001-5 pbw 포함하고, 상기 스코치 방지 첨가제 조성물이 전체 첨가제 조성물에 대하여 다음을 포함하는 폴리우레탄 발포체 조성물.
    하이드로퀴논 유도체 1-25 중량%;
    락톤 유도체 5-25 중량%; 및
    페놀성 화합물 유도체 70-90 중량%
  8. 제7항에 있어서,
    상기 첨가제 조성물이 0.2-3.5 pbw 존재하는 폴리우레탄 발포체 조성물.
  9. 제7항에 있어서,
    상기 첨가제 조성물이 0.2-0.5 pbw 존재하는 폴리우레탄 발포체 조성물.
  10. 제9항에 있어서,
    상기 첨가제 조성물이 다음을 포함하는 폴리우레탄 발포체 조성물.
    하이드로퀴논 유도체 5-15 중량%;
    락톤 유도체 5-20 중량%; 및
    페놀성 화합물 유도체 70-85 중량%
  11. 제8항에 있어서,
    상기 첨가제 조성물이 다음을 포함하는 폴리우레탄 발포체 조성물.
    하이드로퀴논 유도체 10 중량%;
    락톤 유도체 10-20 중량%; 및
    페놀성 화합물 유도체 70-80 중량%
  12. 제7항에 있어서,
    상기 하이드로퀴논 유도체가 2,5-디-t-아밀-하이드로퀴논;
    락톤 유도체가 다음 화합물이고,
    Figure pct00011

    여기서, R1 및 R3 는 각각 H, F, Cl, Br, I, C1-C20 알킬, C1-C20 사이클로알킬, C1-C20 알콕시그룹, C7-C20 펜알킬 및 페닐 그룹으로 구성되는 그룹으로부터 각각 선택되고, q 는 1-20 사이의 양 정수이고, t 는 0-20 사이의 양 정수이고, q+t는 3과 동일하거나 그 이상이고; 그리고
    페놀성 화합물 유도체가 (a) 이소트리데실-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트 또는 (b) C-13 내지 C-15 알콜 에스테르-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트 혼합물인,
    폴리우레탄 발포체 조성물.
  13. 제12항에 있어서,
    상기 첨가제 조성물이 다음을 포함하는 폴리우레탄 발포체 조성물.
    하이드로퀴논 유도체 5-15 중량%;
    락톤 유도체 5-20 중량%; 및
    페놀성 화합물 유도체 70-85 중량%
  14. 제13항에 있어서,
    상기 첨가제 조성물이 다음을 포함하는 폴리우레탄 발포체 조성물.
    하이드로퀴논 유도체 10 중량%;
    락톤 유도체 10-20 중량%; 및
    페놀성 화합물 유도체 70-80 중량%
KR1020167030988A 2014-04-28 2015-05-05 폴리우레탄 스코치 억제제 KR20170032219A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461985127P 2014-04-28 2014-04-28
US61/985,127 2014-04-28
PCT/US2015/026808 WO2015167856A1 (en) 2014-04-28 2015-05-05 Polyurethane scorch inhibitor

Publications (1)

Publication Number Publication Date
KR20170032219A true KR20170032219A (ko) 2017-03-22

Family

ID=54334141

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167030988A KR20170032219A (ko) 2014-04-28 2015-05-05 폴리우레탄 스코치 억제제

Country Status (15)

Country Link
US (1) US9481775B2 (ko)
EP (1) EP3137541A4 (ko)
JP (1) JP6548669B2 (ko)
KR (1) KR20170032219A (ko)
CN (1) CN106332548B (ko)
AR (1) AR100764A1 (ko)
AU (1) AU2015253576C1 (ko)
BR (1) BR112016024879A2 (ko)
CA (1) CA2945385A1 (ko)
MX (1) MX2016013633A (ko)
MY (1) MY172329A (ko)
PH (1) PH12016502135A1 (ko)
RU (1) RU2686833C2 (ko)
TW (1) TWI664213B (ko)
WO (1) WO2015167856A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200097120A (ko) 2019-02-07 2020-08-18 맹근호 스코치방지 프레스장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2549061B (en) * 2015-09-03 2020-04-01 Si Group Switzerland Chaa Gmbh Stabilising Compositions
CN109923162A (zh) * 2016-09-30 2019-06-21 范德比尔特化工有限公司 用于聚氨酯泡沫的低排放焦化抑制剂
GB2579405B (en) 2018-11-30 2022-09-14 Si Group Switzerland Chaa Gmbh Antioxidant compositions
CN111715411B (zh) * 2020-07-01 2021-08-27 中南大学 一种高硫铅锌矿的选矿方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758119A (en) 1953-02-27 1956-08-07 Eastman Kodak Co Alkylated hydroquinone monoglycidyl ethers
US4209648A (en) 1973-11-07 1980-06-24 The Goodyear Tire & Rubber Company Alkylated hydroquinone antioxidants
JPS61130320A (ja) * 1984-11-29 1986-06-18 Daihachi Kagaku Kogyosho:Kk 難燃性ポリウレタンフオ−ム組成物
GB2267490B (en) 1992-05-22 1995-08-09 Ciba Geigy Ag 3-(Carboxymethoxyphenyl)benzofuran-2-one stabilisers
US5219892A (en) 1992-06-16 1993-06-15 R. T. Vanderbilt Company, Inc. Liquid stabilizer compositions for polyols and polyurethane foam
TW399079B (en) * 1995-05-12 2000-07-21 Ciba Sc Holding Ag Polyether polyol and polyurethane compositions protected against oxidation and core scorching
US6525108B2 (en) * 2000-06-02 2003-02-25 Milliken & Company Scorch inhibiting compositions for polyurethane foams
TW593303B (en) * 2001-09-11 2004-06-21 Ciba Sc Holding Ag Stabilization of synthetic polymers
AU2002360683A1 (en) * 2001-12-21 2003-07-15 Akzo Nobel N.V. Non-halogenated phosphate anti-scorch additive for polyurethane foam
US7247658B2 (en) 2003-07-08 2007-07-24 Milliken & Company Reduction of discoloration in white polyurethane foams
US7390912B2 (en) * 2004-12-17 2008-06-24 Milliken & Company Lactone stabilizing compositions
CA2677776A1 (en) * 2007-05-24 2008-11-27 Chemtura Corporation Stabilization of polymers with styrenated-p-cresols
WO2009009006A1 (en) * 2007-07-06 2009-01-15 Supresta Llc Flame retardant composition and flexible polyurethane foam prepared therewith
US8716359B2 (en) * 2010-03-18 2014-05-06 Vanderbilt Chemicals, Llc Polyurethane foam scorch inhibitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200097120A (ko) 2019-02-07 2020-08-18 맹근호 스코치방지 프레스장치

Also Published As

Publication number Publication date
CA2945385A1 (en) 2015-11-05
US9481775B2 (en) 2016-11-01
MX2016013633A (es) 2017-07-25
JP2017516889A (ja) 2017-06-22
RU2016146235A (ru) 2018-05-28
AU2015253576C1 (en) 2019-05-02
CN106332548A (zh) 2017-01-11
CN106332548B (zh) 2019-06-14
AU2015253576B2 (en) 2018-03-08
US20150307676A1 (en) 2015-10-29
JP6548669B2 (ja) 2019-07-24
TWI664213B (zh) 2019-07-01
WO2015167856A1 (en) 2015-11-05
TW201609904A (zh) 2016-03-16
AR100764A1 (es) 2016-11-02
RU2016146235A3 (ko) 2018-12-10
RU2686833C2 (ru) 2019-04-30
EP3137541A4 (en) 2017-12-20
PH12016502135A1 (en) 2017-01-09
MY172329A (en) 2019-11-21
EP3137541A1 (en) 2017-03-08
AU2015253576A1 (en) 2016-11-03
BR112016024879A2 (pt) 2017-08-15

Similar Documents

Publication Publication Date Title
KR20170032219A (ko) 폴리우레탄 스코치 억제제
JP7029463B2 (ja) アルデヒドの放散量が削減されたポリウレタン
EP2547725B1 (en) Polyurethane foam scorch inhibitor
Peltzer et al. Evaluation of the melt stabilization performance of hydroxytyrosol (3, 4-dihydroxy-phenylethanol) in polypropylene
JP2022003145A (ja) アルデヒドの放散量が削減されたポリウレタンフォーム
JP2020506272A (ja) 低レベルのアルデヒド放出を有するポリウレタンフォーム
CN109923162A (zh) 用于聚氨酯泡沫的低排放焦化抑制剂
JP4809643B2 (ja) ポリウレタン発泡体
KR101181253B1 (ko) 폴리우레탄 폼 발포시 발생되는 스코칭 현상을 효과적으로 억제하기 위한 폴리우레탄 첨가제 조성물 및 그 제조방법
WO2017037205A1 (en) Composition
CN101597384A (zh) 用于聚甲醛的复合抗氧化剂
KR101353359B1 (ko) 폴리우레탄용 안정제 조성물 및 이의 제조방법
Opryland Polyol Stabilization and the Introduction of a New PUR Slabstock Foam Antioxidant By John M. DeMassa, Ph. D. RT Vanderbilt Company, Inc. Norwalk, Connecticut
CA2564441A1 (en) Low scorching flame retardants for polyurethane foams
DeMassa PLX 982: A New Liquid Scorch Inhibitor
KR20220131523A (ko) 안정화제 조성물
KR20140092461A (ko) 폴리옥시메틸렌 수지 조성물