KR20170024579A - 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막 - Google Patents

산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막 Download PDF

Info

Publication number
KR20170024579A
KR20170024579A KR1020167032885A KR20167032885A KR20170024579A KR 20170024579 A KR20170024579 A KR 20170024579A KR 1020167032885 A KR1020167032885 A KR 1020167032885A KR 20167032885 A KR20167032885 A KR 20167032885A KR 20170024579 A KR20170024579 A KR 20170024579A
Authority
KR
South Korea
Prior art keywords
phase
oxide
sintered body
thin film
less
Prior art date
Application number
KR1020167032885A
Other languages
English (en)
Inventor
도쿠유키 나카야마
에이이치로 니시무라
후미히코 마츠무라
마사시 이와라
Original Assignee
스미토모 긴조쿠 고잔 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모 긴조쿠 고잔 가부시키가이샤 filed Critical 스미토모 긴조쿠 고잔 가부시키가이샤
Publication of KR20170024579A publication Critical patent/KR20170024579A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/2206Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/245Pb compounds, e.g. PbO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명은 스퍼터링법에 따라 산화물 반도체 박막으로 한 경우에, 낮은 캐리어 농도, 높은 캐리어 이동도가 얻어지는 산화물 소결체 및 그것을 이용한 스퍼터링용 타겟을 제공한다. 이 산화물 소결체는, 인듐, 갈륨 및 니켈, 코발트, 칼슘, 스트론튬 및 납으로 이루어지는 군에서 선택된 하나 이상의 +2가 원소를 산화물로서 함유한다. 갈륨의 함유량이 Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만이고, 상기 +2가 원소(M)의 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.05 이하이다. 이 산화물 소결체를 스퍼터링용 타겟으로서 형성한 결정질의 산화물 반도체 박막은, 캐리어 농도 1.0×1018-3 미만으로, 캐리어 이동도 10 cm2V- 1sec-1 이상이 얻어진다.

Description

산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막{OXIDE SINTERED COMPACT, SPUTTERING TARGET, AND OXIDE SEMICONDUCTOR THIN FILM OBTAINED USING SAME}
본 발명은 산화물 소결체, 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막에 관한 것으로, 보다 자세하게는, 낮은 캐리어 농도와 높은 캐리어 이동도를 나타내는 결정질의 인듐, 갈륨 및 +2가 원소(니켈, 코발트, 칼슘, 스트론튬 및 납으로 이루어지는 군에서 선택되는 하나 이상의 +2가 원소)를 함유하는 산화물 반도체 박막, 그 형성에 적합한 인듐, 갈륨 및 +2가 원소(니켈, 코발트, 칼슘, 스트론튬 및 납으로 이루어지는 군에서 선택되는 하나 이상의 +2가 원소)를 함유하는 스퍼터링용 타겟, 그것을 얻는 데 적합한 인듐, 갈륨 및 +2가 원소(니켈, 코발트, 칼슘, 스트론튬 및 납으로 이루어지는 군에서 선택되는 하나 이상의 +2가 원소)를 함유하는 산화물 소결체에 관한 것이다.
박막 트랜지스터(Thin Film Transistor, TFT)는, 전계 효과 트랜지스터(Field Effect Transistor, 이하 FET)의 1종이다. TFT는, 기본 구성으로서, 게이트 단자, 소스 단자 및 드레인 단자를 구비한 3단자 소자이며, 기판 상에 성막한 반도체 박막을, 전자 또는 홀이 이동하는 채널층으로서 이용하여, 게이트 단자에 전압을 인가하고, 채널층에 흐르는 전류를 제어하며, 소스 단자와 드레인 단자 사이의 전류를 스위칭하는 기능을 갖는 능동 소자이다. TFT는, 현재, 가장 많이 실용화되어 있는 전자 디바이스이며, 그 대표적인 용도로서 액정 구동용 소자가 있다.
TFT로서, 현재, 가장 널리 사용되고 있는 것은 다결정 실리콘막 또는 비정질 실리콘막을 채널층 재료로 한 MIS-FET(Metal-Insulator-Semiconductor-FET)이다. 실리콘을 이용한 MIS-FET는, 가시광에 대하여 불투명이기 때문에, 투명 회로를 구성할 수 없다. 이 때문에, MIS-FET를 액정 디스플레이의 액정 구동용 스위칭 소자로서 응용한 경우, 그 디바이스는, 디스플레이 화소의 개구비가 작아진다.
또한, 최근에는, 액정의 고선명화가 요구되는 데에 따라, 액정 구동용 스위칭 소자에도 고속 구동이 요구되도록 되어 오고 있다. 고속 구동을 실현하기 위해서는, 전자 또는 홀의 이동도가 적어도 비정질 실리콘의 것보다 높은 반도체 박막을 채널층에 이용할 필요가 생겨나고 있다.
이러한 상황에 대하여, 특허문헌 1에서는, 기상 성막법으로 성막되고, In, Ga, Zn 및 O의 원소로 구성되는 투명 비정질 산화물 박막으로서, 그 산화물의 조성은, 결정화하였을 때의 조성이 InGaO3(ZnO)m(m은 6 미만의 자연수임)이고, 불순물 이온을 첨가하는 일없이, 캐리어 이동도(캐리어 전자 이동도라고도 함)가 1 cm2V-1sec-1 초과이고, 또한 캐리어 농도(캐리어 전자 농도라고도 함)가 1016-3 이하인 반절연성인 것을 특징으로 하는 투명 반절연성 비정질 산화물 박막과 더불어 이 투명 반절연성 비정질 산화물 박막을 채널층으로 한 것을 특징으로 하는 박막 트랜지스터가 제안되어 있다.
그러나, 특허문헌 1에서 제안된, 스퍼터법, 펄스 레이저 증착법 중 어느 하나의 기상 성막법으로 성막되고, In, Ga, Zn 및 O의 원소로 구성되는 투명 비정질 산화물 박막(a-IGZO막)은, 대략 1 ㎠V- 1sec-1∼10 ㎠V- 1sec-1의 범위의 비교적 높은 전자 캐리어 이동도를 나타내지만, 비정질 산화물 박막이 본래 산소 결손을 생성하기 쉬운 것과, 열 등 외적 인자에 대하여 전자 캐리어의 움직임이 반드시 안정적이지 않은 것이 악영향을 끼쳐, TFT 등의 디바이스를 형성한 경우에 불안정함이 종종 문제가 되는 것이 지적되어 있었다.
이러한 문제를 해결하는 재료로서, 특허문헌 2에서는, 갈륨이 산화인듐에 고용되어 있고, 원자수비[Ga/(Ga+In)]가 0.001∼0.12이며, 전체 금속 원자에 대한 인듐과 갈륨의 함유율이 80 원자% 이상이고, In2O3의 빅스바이트 구조를 갖는 산화물 박막을 이용하는 것을 특징으로 하는 박막 트랜지스터가 제안되어 있으며, 그 원료로서, 갈륨이 산화인듐에 고용되어 있고, 원자비[Ga/(Ga+In)]가 0.001∼0.12이며, 전체 금속 원자에 대한 인듐과 갈륨의 함유율이 80 원자% 이상이고, In2O3의 빅스바이트 구조를 갖는 것을 특징으로 하는 산화물 소결체가 제안되어 있다.
그러나, 특허문헌 2의 실시예 1∼8에 기재된 캐리어 농도는 1018-3대이고, TFT에 적용하는 산화물 반도체 박막으로서는 너무 높는 것이 과제로서 남겨져 있었다.
그래서, 특허문헌 3에서는, In과 In 이외의 2종 이상의 금속을 포함하며, 또한 전자 캐리어 농도가 1×1018-3 미만인 다결정 산화물 반도체 박막을 이용한 반도체 디바이스가 제안되어 있다. 특허문헌 3의 청구항 6에는, 상기 In 이외의 2종 이상의 금속이, +2가 원소 금속과 +3가 금속인 것, 또한 특허문헌 3의 청구항 7에는, 상기 +2가 원소 금속이 Zn, Mg, Cu, Ni, Co, Ca 및 Sr에서 선택된 적어도 하나의 원소이며, 상기 +3가 금속이 Ga, Al, B, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu에서 선택된 적어도 하나의 원소인 것이 기재되어 있다.
그러나, 특허문헌 3에는, Ga와, Ni, Co, Ca 및 Sr에서 선택된 적어도 하나의 원소의 조합의 실시예는 기재되어 있지 않다. 또한, 이들의 조합 이외의 실시예에 대해서는, 그 홀 이동도가 10 cm2V- 1sec-1 미만으로 낮다. 또한, 산화물 반도체 박막의 스퍼터링 성막에 이용하는 산화물 소결체는, 아킹이나 노듈의 발생을 회피하기 위해, 어떠한 소결체 조직이 바람직한지에 대한 교사(敎唆)는 없다. 또한, 스퍼터링 성막은 고주파(RF) 스퍼터링으로 행해지고 있고, 스퍼터링 타겟이 직류(DC) 스퍼터링이 가능한 것인지도 분명하지 않다.
특허문헌 1: 일본 특허 공개 제2010-219538호 공보 특허문헌 2: WO2010/032422호 공보 특허문헌 3: WO2008/117739호 공보 특허문헌 4: WO2003/014409호 공보 특허문헌 5: 일본 특허 공개 제2012-253372호 공보
본 발명의 목적은 결정질의 산화물 반도체 박막의 캐리어 농도 저감을 가능하게 하는 스퍼터링용 타겟, 그것을 얻는 데 최적의 산화물 소결체 및 그것을 이용하여 얻어지는 낮은 캐리어 농도와 높은 캐리어 이동도를 나타내는 산화물 반도체 박막을 제공하는 것에 있다.
본 발명자들은, 특히, 인듐과 갈륨의 Ga/(In+Ga)비를 0.08 이상 0.20 미만으로 하여 갈륨을 산화물로서 함유하는 산화물 소결체에, 소량의 니켈, 코발트, 칼슘, 스트론튬 및 납으로 이루어지는 군에서 선택되는 하나 이상의 +2가 원소(M)를, 구체적으로는 M/(In+Ga+M)의 비를 0.0001 이상 0.05 이하로 함유시킴으로써, 소결된 산화물 소결체가 실질적으로 빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상에 의해 구성되며, 그 산화물 소결체를 이용하여 제작된 산화물 반도체 박막이 캐리어 이동도 10 cm2V-1sec-1 이상인 것을 새롭게 발견하였다.
즉, 제1 발명은, 인듐, 갈륨 및 +2가 원소를 산화물로서 함유하고, 상기 갈륨의 함유량이 Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만이며, 상기 +2가 원소 전체의 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.05 이하이고, 상기 +2가 원소가 니켈, 코발트, 칼슘, 스트론튬 및 납으로 이루어지는 군에서 선택되는 하나 이상이며, 빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상에 의해 구성되고, 상기 +2가 원소와 갈륨으로 이루어지는 복합 산화물의 NiGa2O4상, CoGa2O4상, CaGa4O7상, Ca5Ga6O14상, SrGa12O19상, SrGa2O4상, Sr3Ga2O6상, Ga2PbO4상, 또는 이들의 복합 산화물상을 실질적으로 포함하지 않는 것을 특징으로 하는 산화물 소결체이다.
제2 발명은, 상기 +2가 원소 전체의 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.03 이하인 제1 발명에 기재된 산화물 소결체이다.
제3 발명은, 상기 갈륨의 함유량이 Ga/(In+Ga) 원자수비로 0.08 이상 0.15 이하인 제1 또는 제2 발명에 기재된 산화물 소결체이다.
제4 발명은, 상기 +2가 원소 이외의 +2가 원소 및 인듐과 갈륨 이외의 +3가 내지 +6가의 원소를 실질적으로 함유하지 않는 제1 내지 제3 발명 중 어느 하나에 기재된 산화물 소결체이다.
제5 발명은, 하기의 식 1로 정의되는 β-Ga2O3형 구조의 GaInO3상의 X선 회절 피크 강도비가 2% 이상 75% 이하의 범위인 제1 내지 제4 발명 중 어느 하나에 기재된 산화물 소결체이다.
100×I[GaInO3상 (111)]/{I[In2O3상 (400)]+I[GaInO3상 (111)]}[%]··식 1
제6 발명은, 제1 내지 제5 발명 중 어느 하나에 기재된 산화물 소결체를 가공하여 얻어지는 스퍼터링용 타겟이다.
제7 발명은, 제6 발명에 기재된 스퍼터링용 타겟을 이용하여 스퍼터링법에 따라 비정질막이 기판 상에 형성된 후, 산화성 분위기에 있어서의 열 처리에 의해 상기 비정질막을 결정화시킨 결정질의 산화물 반도체 박막이다.
제8 발명은, 캐리어 이동도가 10 cm2V- 1sec-1 이상인 제7 발명에 기재된 산화물 반도체 박막이다.
제9 발명은, 캐리어 농도가 1.0×1018-3 미만인 제7 또는 제8 발명에 기재된 산화물 반도체 박막이다.
본 발명의 인듐 및 갈륨을 산화물로서 함유하고, 또한 상기 +2가 원소(M)를 M/(In+Ga+M)의 원자수비로 0.0001 이상 0.05 이하 함유하는 산화물 소결체는, 예컨대 스퍼터링용 타겟으로서 이용된 경우에, 스퍼터링 성막에 의해 형성되며, 그 후 열 처리에 의해 얻어진, 본 발명의 결정질의 산화물 반도체 박막을 얻을 수 있다. 상기 결정질의 산화물 반도체 박막은 빅스바이트형 구조를 가지고 있고, 소정량의 상기 +2가 원소(M)가 포함되어 있기 때문에, 캐리어 농도를 억제하는 효과가 얻어진다. 따라서, 본 발명의 결정질의 산화물 반도체 박막을 TFT에 적용한 경우에는, TFT의 on/off를 높이는 것이 가능해진다. 본 발명에서는, 캐리어 농도의 억제뿐만 아니라, 산화물 소결체가 실질적으로 빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상에 의해 구성됨으로써, 캐리어 이동도가 10 cm2V- 1sec-1 이상인 우수한 산화물 반도체막을 안정적으로 스퍼터링 성막에 따라 얻을 수 있다. 따라서, 본 발명의 산화물 소결체, 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막은 공업적으로 매우 유용하다.
이하에, 본 발명의 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 박막에 대해서 상세하게 설명한다.
본 발명의 산화물 소결체는, 인듐, 갈륨 및 +2가 원소(M)를 산화물로서 함유하고, 또한 갈륨이 Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만이고, 상기 +2가 원소(M)가 M/(In+Ga+M) 원자수비로 0.0001 이상 0.05 이하이며, 상기 +2가 원소(M)가 니켈, 코발트, 칼슘, 스트론튬 및 납으로 이루어지는 군에서 선택되는 하나 이상의 원소인 산화물 소결체인 것을 특징으로 한다.
갈륨의 함유량은, Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만이고, 0.08 이상 0.15 이하인 것이 보다 바람직하다. 갈륨은 산소와의 결합력이 강하여, 본 발명의 결정질의 산화물 반도체 박막의 산소 결손량을 저감시키는 효과가 있다. 갈륨의 함유량이 Ga/(In+Ga) 원자수비로 0.08 미만인 경우, 이 효과가 충분히 얻어지지 않는다. 한편, 0.20 이상인 경우, 결정화 온도가 지나치게 높아지기 때문에, 반도체 프로세스에서 바람직하다고 하는 온도 범위에서는 결정성을 높일 수 없고, 산화물 반도체 박막으로서 충분히 높은 캐리어 이동도를 얻을 수 없다.
본 발명의 산화물 소결체는, 상기한 바와 같이 규정되는 조성 범위의 인듐과 갈륨에 더하여, 상기 +2가 원소(M)를 함유한다. 상기 +2가 원소(M) 농도는 M/(In+Ga+M)의 원자수비로 0.0001 이상 0.05 이하이고, 0.0001 이상 0.03 이하인 것이 바람직하다.
본 발명의 산화물 소결체는, 상기 범위 내의 상기 +2가 원소(M)을 첨가함으로써, 주로 산소 결손에 의해 생성된 전자가 중화되는 작용에 의해 캐리어 농도가 억제되어, 본 발명의 결정질의 산화물 반도체 박막을 TFT에 적용한 경우에는, TFT의 on/off를 높이는 것이 가능해지는 것이다.
또한, 본 발명의 산화물 소결체에는, 상기 +2가 원소(M) 이외의 +2가 원소 및 인듐과 갈륨 이외의 +3가 내지 +6가의 원소인 원소(M')를 실질적으로 함유하지 않는 것이 바람직하다. 여기서, 실질적으로 함유하지 않는다는 것은, 각각 단독의 원소(M')가, M'/(In+Ga+M')의 원자수비로 500 ppm 이하이며, 바람직하게는 200 ppm 이하, 보다 바람직하게는 100 ppm 이하이다. 구체적인 원소(M')의 예시로서, +2가 원소로서는 Cu, Mg, Zn을 예시할 수 있고, +3가 원소로서는 Al, Y, Sc, B, 란타노이드를 예시할 수 있으며, +4가 원소로서는 Sn, Ge, Ti, Si, Zr, Hf, C, Ce를 예시할 수 있고, +5가 원소로서는 Nb, Ta를 예시할 수 있으며, +6가 원소로서는 W, Mo를 예시할 수 있다.
1. 산화물 소결체 조직
본 발명의 산화물 소결체는, 빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상에 의해 구성되는 것이 바람직하다. 산화물 소결체가 In2O3상에 의해서만 구성되면, 상기 +2가 원소(M)의 함유에 관계없이, 예컨대 특허문헌 4(WO2003/014409호 공보)의 비교예 11과 마찬가지로 노듈이 발생한다. 한편, 상기 NiGa2O4상, CoGa2O4상, CaGa4O7상, Ca5Ga6O14상, SrGa12O19상, SrGa2O4상, Sr3Ga2O6상, Ga2PbO4상, 또는 이들의 복합 산화물상은, In2O3상이나 GaInO3상과 비교하여 전기 저항값이 높기 때문에, 스퍼터링 성막으로 파여 남는 것이 쉬워 노듈이 발생하기 쉽다. 또한, 이들 상이 생성한 산화물 소결체를 이용하여 스퍼터링 성막된 산화물 반도체 박막은 In2O3상의 결정성이 낮으며, 캐리어 이동도가 낮아지는 경향이 있다.
갈륨 및 상기 +2가 원소(M)는 In2O3상에 고용된다. 또한, 갈륨은 GaInO3상이나 (Ga,In)2O3상을 구성한다. In2O3상에 고용되는 경우, 갈륨과 상기 +2가 원소(M)는 +3가 이온인 인듐의 격자 위치로 치환된다. 소결이 진행되지 않는 등의 이유에 의해, 갈륨이 In2O3상에 고용되지 않고, β-Ga2O3형 구조의 Ga2O3상을 형성하는 것은 바람직하지 못하다. Ga2O3상은 도전성이 부족하기 때문에, 이상 방전의 원인이 된다.
본 발명의 산화물 소결체는, 빅스바이트형 구조의 In2O3상 이외에 β-Ga2O3형 구조의 GaInO3상만, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상을, 하기의 식 1로 정의되는 X선 회절 피크 강도비가 2% 이상 75% 이하의 범위에 있어서 포함하여도 좋다.
100×I[GaInO3상 (111)]/{I[In2O3상 (400)]+I[GaInO3상 (111)]}[%]··식 1
(식 중, I[In2O3상 (400)]은 빅스바이트형 구조의 In2O3상의 (400) 피크 강도이고, I[GaInO3상 (111)]은 β-Ga2O3형 구조의 복합 산화물 β-GaInO3상 (111) 피크 강도를 나타낸다.)
2. 산화물 소결체의 제조 방법
본 발명의 산화물 소결체는, 산화인듐 분말과 산화갈륨 분말로 이루어지는 산화물 분말 및 상기 +2가 원소(M)의 산화물 분말을 원료 분말로 한다.
본 발명의 산화물 소결체의 제조 공정에서는, 이들 원료 분말이 혼합된 후, 성형되고, 성형물이 상압 소결법에 의해 소결된다. 본 발명의 산화물 소결체 조직의 생성상은, 산화물 소결체의 각 공정에 있어서의 제조 조건, 예컨대 원료 분말의 입경, 혼합 조건 및 소결 조건에 강하게 의존한다.
본 발명의 산화물 소결체의 조직이, 빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상에 의해 원하는 비율로 구성되는 것이 바람직하고, 그것을 위해서는, 상기 각 원료 분말의 평균 입경을 3 ㎛ 이하로 하는 것이 바람직하며, 1.5 ㎛ 이하로 하는 것이 보다 바람직하다. 상기한 바와 같이, In2O3상 이외에 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상이 포함되기 때문에, 이들 상의 과도한 생성을 억제하기 위해서는, 각 원료 분말의 평균 입경을 1.5 ㎛ 이하로 하는 것이 바람직하다.
산화인듐 분말은, ITO(인듐-주석 산화물)의 원료이며, 소결성이 우수한 미세한 산화인듐 분말의 개발은, ITO의 개량과 함께 진행되어 왔다. 산화인듐 분말은, ITO용 원료로서 대량으로 계속해서 사용되고 있기 때문에, 최근에는 평균 입경 0.8 ㎛ 이하의 원료 분말을 입수하는 것이 가능하다.
그런데, 산화갈륨 분말이나 상기 +2가 원소(M)의 산화물 분말의 경우, 산화인듐 분말에 비해서 여전히 사용량이 적기 때문에, 평균 입경 1.5 ㎛ 이하의 원료 분말을 입수하는 것은 곤란하다. 따라서, 조대한 산화갈륨 분말밖에 입수할 수 없는 경우, 평균 입경 1.5 ㎛ 이하까지 분쇄할 필요가 있다.
본 발명의 산화물 소결체의 소결 공정에서는, 상압 소결법의 적용이 바람직하다. 상압 소결법은, 간편하고 또한 공업적으로 유리한 방법으로서, 저비용의 관점에서도 바람직한 수단이다.
상압 소결법을 이용하는 경우, 상기한 바와 같이, 먼저 성형체를 제작한다. 원료 분말을 수지제 포트에 넣고, 바인더(예컨대, PVA) 등과 함께 습식 볼밀 등으로 혼합한다. 본 발명의 산화물 소결체의 제작에 있어서는, In2O3상 이외에 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상의 과도한 생성을 억제하거나, 혹은 β-Ga2O3형 구조의 Ga2O3상을 생성시키지 않기 때문에, 상기 볼밀 혼합을 18시간 이상 행하는 것이 바람직하다. 이때, 혼합용 볼로서는, 경질 ZrO2 볼을 이용하면 좋다. 혼합 후, 슬러리를 취출하여, 여과, 건조, 조립을 행한다. 그 후, 얻어진 조립물을, 냉간 정수압 프레스로 9.8 ㎫(0.1 ton/cm2)∼294 ㎫(3 ton/cm2) 정도의 압력을 가하여 성형하여, 성형체로 한다.
상압 소결법의 소결 공정에서는, 산소가 존재하는 분위기로 하는 것이 바람직하고, 분위기 중의 산소 체적 분율이 20%를 초과하는 것이 보다 바람직하다. 특히, 산소 체적 분율이 20%를 초과함으로써, 산화물 소결체가 한층 더 고밀도화한다. 분위기 중의 과도한 산소에 의해, 소결 초기에는 성형체 표면의 소결이 먼저 진행된다. 계속해서 성형체 내부의 환원 상태에서의 소결이 진행되어, 최종적으로 고밀도의 산화물 소결체가 얻어진다.
산소가 존재하지 않는 분위기에서는, 성형체 표면의 소결이 선행되지 않기 때문에, 결과로서 소결체의 고밀도화가 진행되지 않는다. 산소가 존재하지 않으면, 특히 900℃∼1000℃ 정도에 있어서 산화인듐이 분해되어 금속 인듐이 생성되게 되기 때문에, 목적으로 하는 산화물 소결체를 얻는 것은 곤란하다.
상압 소결의 온도 범위는, 1200℃ 이상 1550℃ 이하로 하는 것이 바람직하고, 보다 바람직하게는 소결로 내의 대기에 산소 가스를 도입하는 분위기에서 1350℃ 이상 1450℃ 이하에서 소결한다. 소결 시간은 10시간∼30시간인 것이 바람직하고, 보다 바람직하게는 15시간∼25시간이다.
소결 온도를 상기 범위로 하고, 상기 평균 입경 1.5 ㎛ 이하로 조정한 산화인듐 분말과 산화갈륨 분말로 이루어지는 산화물 분말 및 상기 +2가 원소(M)의 산화물 분말을 원료 분말로서 이용함으로써, 빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상에 의해 구성되는 산화물 소결체가 얻어진다.
소결 온도 1200℃ 미만의 경우에는 소결 반응이 충분히 진행되지 않아, 산화물 소결체의 밀도가 6.4 g/cm3 미만이 된다고 하는 문제점이 생긴다. 한편, 소결 온도가 1550℃를 초과하면, (Ga,In)2O3상의 형성이 현저해진다. (Ga,In)2O3상은, GaInO3상보다 전기 저항값이 높고, 그 때문에 성막 속도 저하의 원인이 된다. 소결 온도 1550℃ 이하, 즉 소량의 (Ga,In)2O3상이면 문제는 되지 않는다. 이러한 관점에서, 소결 온도를 1200℃ 이상 1550℃ 이하로 하는 것이 바람직하고, 1350℃ 이상 1450℃ 이하로 하는 것이 보다 바람직하다.
소결 온도까지의 승온 속도는, 소결체의 균열을 막고, 탈바인더를 진행시키기 위해서, 승온 속도를 0.2℃/분∼5℃/분의 범위로 하는 것이 바람직하다. 이 범위이면, 필요에 따라, 상이한 승온 속도를 조합하여, 소결 온도까지 승온하여도 좋다. 승온 과정에 있어서, 탈바인더나 소결을 진행시킬 목적으로, 특정 온도에서 일정 시간 유지하여도 좋다. 특히, 원료 분말로서 산화납 분말을 이용하는 경우, In2O3상으로의 납 원소의 고용을 촉진시키기 위해, 1100℃ 이하의 온도에서 일정 시간 유지하는 것은 유효하다. 유지 시간은, 특별히 제한은 없지만, 1시간 이상 10시간 이하가 바람직하다. 소결 후, 냉각할 때는 산소 도입을 멈추고, 1000℃까지를 0.2℃/분∼5℃/분, 특히 0.2℃/분 이상 1℃/분 미만의 범위의 강온 속도로 강온하는 것이 바람직하다.
3. 타겟
본 발명의 타겟은, 상기 산화물 소결체를 소정의 크기로 절단하고, 표면을 연마 가공하며, 백킹 플레이트에 접착하여 얻을 수 있다. 타겟 형상은, 평판형이 바람직하지만, 원통형이어도 좋다. 원통형 타겟을 이용하는 경우에는, 타겟 회전에 의한 파티클 발생을 억제하는 것이 바람직하다.
스퍼터링용 타겟으로서 이용하기 때문에, 본 발명의 산화물 소결체의 밀도는 6.4 g/cm3 이상인 것이 바람직하고, 갈륨의 함유량은 Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만인 경우는, 6.8 g/cm3 이상이 바람직하다. 밀도가 6.4 g/cm3 미만인 경우, 양산 사용 시의 노듈 발생의 원인이 되기 때문에 바람직하지 못하다.
4. 산화물 반도체 박막과 그 성막 방법
본 발명의 결정질의 산화물 반도체 박막은, 상기 스퍼터링용 타겟을 이용하여, 스퍼터링법으로 기판 상에 일단 비정질의 박막을 형성하고, 계속해서 열 처리를 실시함으로써 얻어진다.
상기 스퍼터링용 타겟은 산화물 소결체로부터 얻어지지만, 그 산화물 소결체 조직, 즉 빅스바이트형 구조의 In2O3상 및 β-Ga2O3형 구조의 GaInO3상에 의해 기본 구성되어 있는 조직이 중요하다. 본 발명에 따른 결정질의 산화물 반도체 박막을 얻기 위해서는, 일단 형성되는 비정질의 산화물 박막의 결정화 온도가 충분히 높은 것이 중요하지만, 이것에는 산화물 소결체 조직이 관계한다. 즉, 본 발명에 이용되는 산화물 소결체와 같이, 빅스바이트형 구조의 In2O3상뿐만 아니라, 더욱 β-Ga2O3형 구조의 GaInO3상을 포함하는 경우에는, 이로부터 얻어지는 성막 후의 산화물 박막은 높은 결정화 온도, 즉 바람직하게는 250℃ 이상, 보다 바람직하게는 300℃ 이상, 더욱 바람직하게는 350℃ 이상의 결정화 온도를 나타내며, 안정된 비정질이 된다. 이에 대하여, 예컨대 특허문헌 2(WO2010/032422호 공보)에 개시되어 있는 바와 같이, 산화물 소결체가 빅스바이트형 구조의 In2O3상에 의해서만 구성되는 경우, 성막 후의 산화물 박막은, 그 결정화 온도가 190℃∼230℃ 정도로 낮아, 완전한 비정질이 되지 않는 경우가 있다. 이 경우에는, 성막 후에 이미 미결정이 생성되어 버려, 습식 에칭에 의한 패터닝 가공이, 잔사가 발생함으로써 곤란해지기 때문이다.
비정질의 박막 형성 공정에서는, 일반적인 스퍼터링법이 이용되지만, 특히, 직류(DC) 스퍼터링법이면, 성막 시의 열 영향이 적고, 고속 성막이 가능하기 때문에 공업적으로 유리하다. 본 발명의 산화물 반도체 박막을 직류 스퍼터링법으로 형성하기 위해서는, 스퍼터링 가스로서 불활성 가스와 산소, 특히 아르곤과 산소로 이루어지는 혼합 가스를 이용하는 것이 바람직하다. 또한, 스퍼터링 장치의 챔버 내를 0.1 ㎩∼1 ㎩, 특히 0.2 ㎩∼0.8 ㎩의 압력으로 하여, 스퍼터링하는 것이 바람직하다.
기판은, 유리 기판이 대표적이며, 무알칼리 유리가 바람직하지만, 수지판이나 수지 필름 중 상기 프로세스의 온도에 견딜 수 있는 것이면 사용할 수 있다.
상기 비정질의 박막 형성 공정은, 예컨대, 1×10-4 ㎩ 이하까지 진공 배기 후, 아르곤과 산소로 이루어지는 혼합 가스를 도입하고, 가스압을 0.2 ㎩∼0.5 ㎩로 하여, 타겟의 면적에 대한 직류 전력, 즉 직류 전력 밀도가 1 W/cm2∼7 W/cm2 정도의 범위가 되도록 직류 전력을 인가하여 직류 플라즈마를 발생시킴으로써, 예비 스퍼터링을 실시할 수 있다. 이 예비 스퍼터링을 5분∼30분간 행한 후, 필요에 따라 기판 위치를 수정한 뒤에 스퍼터링 성막하는 것이 바람직하다. 스퍼터링 성막에서는, 성막 속도를 향상시키기 위해, 허용되는 범위에서 투입하는 직류 전력을 높이는 것이 행해진다.
본 발명의 결정질의 산화물 반도체 박막은, 상기 비정질의 박막 형성 후, 이것을 열 처리하여 결정화시킴으로써 얻어진다. 열 처리 조건은, 산화성 분위기에 있어서, 결정화 온도 이상의 온도이다. 산화성 분위기로서는, 산소, 오존, 수증기, 혹은 질소 산화물 등을 포함하는 분위기가 바람직하다. 열 처리 온도는, 250℃∼600℃가 바람직하고, 300℃∼550℃가 보다 바람직하며, 350℃∼500℃가 더욱 바람직하다. 열 처리 시간은, 열 처리 온도로 유지되는 시간이 1분∼120분간인 것이 바람직하고, 5분∼60분간이 보다 바람직하다. 결정화시키기까지의 방법으로서는, 예컨대 실온 근방 등 저온 혹은 100℃∼300℃의 기판 온도로서 일단 비정질막을 형성하고, 그 후, 결정화 온도 이상에서 열 처리하여 산화물 박막을 결정화시키거나, 혹은 기판을 산화물 박막의 결정화 온도 이상으로 가열함으로써 결정질의 산화물 박막을 성막하는 방법이 있다. 이들 2가지 방법에서의 가열 온도는 대략 600℃ 이하로 해결되며, 예컨대 특허문헌 5(일본 특허 공개 제2012-253372호 공보)에 기재된 공지의 반도체 프로세스와 비교하여 처리 온도에 큰 차는 없다.
상기 비정질의 박막 및 결정질의 산화물 반도체 박막의 인듐, 갈륨 및 상기 +2가 원소(M)의 조성은, 본 발명의 산화물 소결체의 조성과 거의 동일하다. 즉, 인듐 및 갈륨을 산화물로서 함유하며, 또한 상기 +2가 원소(M)를 함유하는 결정질의 산화물 반도체 박막이다. 갈륨의 함유량이 Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만이고, 상기 +2가 원소(M)의 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.05 이하이다. 갈륨의 함유량은 Ga/(In+Ga) 원자수비로 0.08 이상 0.15 이하인 것이 보다 바람직하다. 또한, 상기 +2가 원소(M)의 함유량은 M/(In+Ga+M) 원자수비로 0.0001 이상 0.03 이하인 것이 보다 바람직하다.
본 발명의 결정질의 산화물 반도체 박막은, 빅스바이트형 구조의 In2O3상에 의해서만 구성되는 것이 바람직하다. In2O3상에는, 산화물 소결체와 마찬가지로, +3가 이온의 인듐의 격자 위치에 갈륨이 치환 고용되어 있고, 또한 상기 +2가 원소(M)가 치환 고용되어 있다. 본 발명의 산화물 반도체 박막은, 주로 산소 결손에 의해 생성하는 캐리어 전자를 상기 +2가 원소(M) 첨가에 의해 중화하는 작용에 의해, 캐리어 농도가 1.0×1018-3 미만으로 저하하고, 보다 바람직하게는 3.0×1017-3 이하이다. 한편, 캐리어 이동도는 캐리어 농도의 저하와 함께 감소하는 경향이 있지만, 10 cm2V- 1sec-1 이상을 나타내는 것이 바람직하고, 보다 바람직하게는 15 cm2V-1sec-1 이상이며, 더욱 바람직하게는 20 cm2V-1sec-1 이상이다.
본 발명의 결정질의 산화물 반도체 박막은, 습식 에칭 혹은 건식 에칭에 의해, TFT 등의 용도에서 필요한 미세 가공을 실시한다. 저온에서 일단 비정질막을 형성하고 그 후, 결정화 온도 이상에서 열 처리하여 산화물 박막을 결정화시키는 경우, 비정질막 형성 후에 약산을 이용한 습식 에칭에 의한 미세 가공을 실시할 수 있다. 약산이면 대체로 사용할 수 있지만, 수산(蓚酸)을 주성분으로 하는 약산이 바람직하다. 예컨대, 간토카가쿠 제조 ITO-06N 등을 사용할 수 있다. 기판을 산화물 박막의 결정화 온도 이상에서 가열함으로써 결정질의 산화물 박막을 성막하는 경우에는, 예컨대 염화 제2철 수용액과 같은 강산에 의한 습식 에칭 혹은 건식 에칭을 적용할 수 있지만, TFT 주변에의 손상을 고려하면 건식 에칭이 바람직하다.
본 발명의 결정질의 산화물 반도체 박막의 막 두께는 한정되는 것이 아니지만, 10 ㎚∼500 ㎚, 바람직하게는 20 ㎚∼300 ㎚, 더욱 바람직하게는 30 ㎚∼100 ㎚이다. 10 ㎚ 미만이면 충분한 결정성이 얻어지지 않고, 결과로서 높은 캐리어 이동도가 실현되지 않는다. 한편, 500 ㎚를 초과하면 생산성의 문제가 생겨 버리기 때문에 바람직하지 못하다.
또한, 본 발명의 결정질의 산화물 반도체 박막은, 가시 영역(400 ㎚∼800 ㎚)에서의 평균 투과율이 80% 이상인 것이 바람직하고, 85% 이상이 보다 바람직하며, 더욱 바람직하게는 90% 이상이다. 투명 TFT에 적용하는 경우에는, 평균 투과율이 80% 미만이면, 투명 표시 장치로서 액정 소자나 유기 EL 소자 등의 광의 취출 효율이 저하한다.
실시예
이하에, 본 발명의 실시예를 이용하여, 더욱 상세하게 설명하지만, 본 발명은 이들 실시예에 의해 한정되는 것이 아니다.
<산화물 소결체의 평가>
얻어진 산화물 소결체의 금속 원소의 조성을 ICP 발광 분광법에 따라 조사하였다. 얻어진 산화물 소결체의 단재(端材)를 이용하고, X선 회절 장치(필립스 제조)를 이용하여 분말법에 따른 생성상의 동정을 행하였다.
<산화물 박막의 기본 특성 평가>
얻어진 산화물 박막의 조성을 ICP 발광 분광법에 따라 조사하였다. 산화물 박막의 막 두께는 표면 조도계(텐콜사 제조)로 측정하였다. 성막 속도는, 막 두께와 성막 시간으로부터 산출하였다. 산화물 박막의 캐리어 농도 및 이동도는, 홀 효과 측정 장치(도요테크니카 제조)에 의해 구하였다. 막의 생성상은 X선 회절 측정에 의해 동정하였다.
1. +2가 원소(M)가 Ni인 경우
(소결체의 제작 및 평가)
산화인듐 분말과 산화갈륨 분말 및 상기 +2가 원소(M)로서 산화니켈 분말을 평균 입경 1.5 ㎛ 이하가 되도록 조정하여 원료 분말로 하였다. 이들 원료 분말을, 표 1 및 표 2의 실시예 및 비교예의 Ga/(In+Ga) 원자수비, M/(In+Ga+M) 원자수비와 같아지도록 조합하고, 물과 함께 수지제 포트에 넣어, 습식 볼밀로 혼합하였다. 이때, 경질 ZrO2 볼을 이용하여, 혼합 시간을 18시간으로 하였다. 혼합 후, 슬러리를 취출하여, 여과, 건조, 조립하였다. 조립물을, 냉간 정수압 프레스로 3 ton/cm3의 압력을 가하여 성형하였다.
다음에, 성형체를 다음과 같이 소결하였다. 노 내 용적 0.1 m3당 5 리터/분의 비율로, 소결로 내의 대기에 산소를 도입하는 분위기에서, 1000℃∼1550℃의 소결 온도로 20시간 소결하였다. 이때, 1℃/분으로 승온하고, 소결 후의 냉각 시는 산소 도입을 멈추며, 1000℃까지를 10℃/분으로 강온하였다.
얻어진 산화물 소결체의 조성 분석을 ICP 발광 분광법으로 행한 바, 금속 원소에 대해서, 원료 분말의 배합 시의 주입 조성과 거의 동일하다는 것이 어떤 실시예에서도 확인되었다.
다음에, X선 회절 측정에 의한 산화물 소결체의 상동정을 행한 바, 표 1 및 표 2와 같이, 빅스바이트형 구조의 In2O3상에 의한 회절 피크만, 혹은 빅스바이트형 구조의 In2O3상, β-Ga2O3형 구조의 GaInO3상 및 (Ga,In)2O3상의 회절 피크만이 확인되었다.
또한, β-Ga2O3형 구조의 GaInO3상을 포함하는 경우에는, 하기의 식 1로 정의되는 β-Ga2O3형 구조의 GaInO3상의 X선 회절 피크 강도비를 표 1 및 표 2에 나타내었다.
100×I[GaInO3상 (111)]/{I[In2O3상 (400)]+I[GaInO3상 (111)]}[%]··식 1
Figure pct00001
(+2가 원소는 Ni임)
Figure pct00002
(+2가 원소는 Ni임)
산화물 소결체를, 직경 152 ㎜, 두께 5 ㎜의 크기로 가공하고, 스퍼터링면을 컵 지석으로 최대 높이(Rz)가 3.0 ㎛ 이하가 되도록 연마하였다. 가공한 산화물 소결체를, 무산소 구리제의 백킹 플레이트에 금속 인듐을 이용하여 본딩하여, 스퍼터링용 타겟으로 하였다.
2. +2가 원소(M)가 Co, Ca, Sr, Pb인 경우
상기 +2가 원소(M)로서 산화코발트(II), 산화칼슘(II), 산화스트론튬(II), 산화납(II)을 이용한 것 이외에, +2가 원소(M)가 Ni인 경우와 마찬가지로 산화물 소결체의 제작을 행하고, 조성 분석, 상동정을 행하여, β-Ga2O3형 구조의 GaInO3상의 X선 회절 피크 강도비를 산출하였다. 그 결과를, 산화코발트(II)를 이용한 경우를 표 3에, 산화칼슘(II)을 이용한 경우를 표 4에, 산화스트론튬(II)을 이용한 경우를 표 5에, 그리고 산화납(II)을 이용한 경우를 표 6에 나타내었다. 또한, 조성 분석에 있어서, 금속 원소에 대해서, 원료 분말의 배합 시의 주입 조성과 거의 동일한 것이 어떤 실시예에서도 확인되었다.
Figure pct00003
(+2가 원소는 Co임)
Figure pct00004
(+2가 원소는 Ca임)
Figure pct00005
(+2가 원소는 Sr임)
Figure pct00006
(+2가 원소는 Pb임)
(스퍼터링 성막 평가)
각 실시예 및 비교예 의 스퍼터링용 타겟 및 무알칼리의 유리 기판(코닝 제조 Eagle XG)을 이용하며, 실시예 1∼11, 17∼22, 25, 26, 29, 30, 33, 34 및 비교예 1∼5, 8, 9, 11, 12, 14, 15, 17, 18에서는 기판 가열하지 않고 실온에서, 또한 상기 이외의 실시예 및 비교예에서는 기판 온도 200℃에서 직류 스퍼터링에 의한 성막을 행하였다. 아킹 억제 기능이 없는 직류 전원을 장비한 직류 마그네트론 스퍼터링 장치(톳키 제조)의 캐소드에, 상기 스퍼터링 타겟을 부착하였다. 이때 타겟-기판(홀더) 사이 거리를 60 ㎜로 고정하였다. 1×10-4 ㎩ 이하까지 진공 배기 후, 아르곤과 산소의 혼합 가스를 각 타겟의 갈륨량에 따라 적당한 산소의 비율이 되도록 도입하여, 가스압을 0.6 ㎩로 조정하였다. 직류 전력 300 W(1.64 W/cm2)를 인가하여 직류 플라즈마를 발생시켰다. 10분간의 예비 스퍼터링 후, 스퍼터링 타겟의 바로 위에, 즉 정지 대향 위치에 기판을 배치하여, 막 두께 50 ㎚의 산화물 박막을 형성하였다. 얻어진 산화물 박막의 조성은, 타겟과 거의 동일한 것이 확인되었다. 또한, X선 회절 측정의 결과, 비정질인 것이 확인되었다. 얻어진 비정질의 산화물 박막에는, RTA(Rapid Thermal Annealing) 장치를 이용하여, 산화 분위기 중, 300℃∼600℃에 있어서 30분간 이내의 열 처리를 실시하였다. 열 처리 후의 산화물 박막은, X선 회절 측정의 결과, 결정화되어 있는 것이 확인되며, In2O3 (111)을 주피크로 하고 있었다. 얻어진 결정질의 산화물 반도체 박막의 홀 효과 측정을 행하여, 캐리어 농도 및 이동도를 구하였다. 얻어진 평가 결과를, 표 7∼표 12에 정리하여 기재하였다.
Figure pct00007
(+2가 원소는 Ni임)
Figure pct00008
(+2가 원소는 Ni임)
Figure pct00009
(+2가 원소는 Co임)
Figure pct00010
(+2가 원소는 Ca임)
Figure pct00011
(+2가 원소는 Sr임)
Figure pct00012
(+2가 원소는 Pb임)
(노듈 발생 평가)
실시예 3, 13, 18, 26, 30, 34 및 비교예 1, 4, 7, 9, 12, 15, 18의 스퍼터링용 타겟에 대해서, 양산을 모의한 스퍼터링 성막에 의한 노듈 발생의 평가를 실시하였다. 스퍼터링 장치는, 아킹 억제 기능이 없는 직류 전원을 장비한 로드록식 통과형 마그네트론 스퍼터링 장치(알박 제조)를 이용하였다. 타겟은, 세로 5인치, 가로 15인치의 각형의 타겟을 이용하였다. 스퍼터링 성막 평가 스퍼터실을 7×10-5 ㎩ 이하까지 진공 배기 후, 아르곤과 산소의 혼합 가스를 각 타겟의 갈륨량에 따라 적당한 산소의 비율이 되도록 도입하여, 가스압을 0.6 ㎩로 조정하였다. 이러한 조건의 스퍼터링 가스를 선택한 이유는, 스퍼터실의 진공도가 1×10-4 ㎩를 초과하여 챔버 내의 수분압이 높거나, 혹은 수소 가스가 첨가되는 경우에는, 정당한 평가를 할 수 없게 되기 때문이다. ITO 등으로 잘 알려진 바와 같이 막 중에 수분이나 수소 가스 유래의 H+가 취입되면 막의 결정화 온도가 높아져, 타겟 비-부식부에 부착되는 막이 비정질화하기 쉬워진다. 그 결과, 막 응력이 저하하기 때문에 비-부식부로부터 벗겨지기 어려워져, 노듈이 발생하기 어려워진다. 직류 전력은, 일반적으로 양산으로 채용되는 직류 전력 밀도는 3 W/cm2∼6 W/cm2 정도인 것을 고려하여, 2500 W(직류 전력 밀도 5.17 W/cm2)로 하였다.
노듈 발생 평가는, 상기 조건으로, 50 kWh의 연속 스퍼터링 방전 후에, 타겟 표면을 관찰하여, 노듈 발생의 유무를 평가하였다.
「평가」
표 1∼표 6에 나타내는 바와 같이, 실시예 1∼36의 갈륨 함유량이 Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만이고, 상기 +2가 원소(M)의 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.05 이하인 경우에는, 빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상에 의해 구성되어 있었다.
이에 대하여, 비교예 1의 산화물 소결체는 갈륨 함유량이 Ga/(In+Ga) 원자수비로 0.08을 하회하고 있고, 비교예 2, 3, 8, 11, 14, 17의 산화물 소결체는, 상기 +2가 원소(M)의 함유량이 M/(In+Ga+M) 원자수비로 0.0001을 하회하고 있기 때문에, 빅스바이트형 구조의 In2O3상에 의해서만 구성되는 산화물 소결체로 되어 있다. 즉, 본 발명의 빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상으로 이루어지는 산화물 소결체가 얻어지지 않는다. 또한, 비교예 4, 5, 6, 9, 12, 15, 18의 산화물 소결체에서는, 상기 +2가 원소(M)의 함유량이 M/(In+Ga+M) 원자수비로 0.05를 초과하기 때문에, 빅스바이트형 구조의 In2O3상 이외의 생성상이 상기 +2가 원소(M)와 Ga로 이루어지는 복합 산화물의 NiGa2O4상, CoGa2O4상, CaGa4O7상, Ca5Ga6O14상, SrGa12O19상, SrGa2O4상, Sr3Ga2O6상, Ga2PbO4상, 또는 이들의 복합 산화물상을 포함해 버리고 있어, 본 발명의 목적으로 하는 산화물 소결체가 얻어지지 않는다.
또한, 실시예 3, 13, 18, 26, 30, 34 및 비교예 1, 4, 7, 9, 12, 15, 18의 노듈 발생 평가에서는, 본 발명의 산화물 소결체인 실시예 3, 13, 18, 26, 30, 34의 타겟에서는 노듈의 발생은 보이지 않았다. 한편, 비교예 1, 4, 7, 9, 12, 15, 18의 타겟에서는, 다수의 노듈 발생이 보였다. 비교예 1에서는, 소결체 밀도는 높지만, 빅스바이트형 구조의 In2O3상에 의해서만 소결체 조직이 구성되었기 때문이라고 생각된다. 비교예 4, 7, 9, 12, 15, 18에서는, 소결체 밀도가 낮은 것 및 전기 저항이 높아 스퍼터링으로 파여 남기 쉬운 상기 +2가 원소(M)와 Ga로 이루어지는 복합 산화물의 NiGa2O4상, CoGa2O4상, CaGa4O7상, Ca5Ga6O14상, SrGa12O19상, SrGa2O4상, Sr3Ga2O6상, Ga2PbO4상, 또는 이들의 복합 산화물상이 포함되어 있던 것이 원인으로서 생각된다. 이 때문에, 스퍼터링 방전 중에 아킹이 종종 발생하였다.
또한, 표 7∼표 12에 따르면, 갈륨 함유량이 Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만이고, 상기 +2가 원소(M) 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.05 이하로 제어된 실시예의 산화물 반도체 박막은, 모두 빅스바이트형 구조의 In2O3상만으로 이루어져 있다는 것을 알았다. 또한, 실시예의 산화물 반도체 박막은, 캐리어 농도가 1.0×1018-3 미만이며, 캐리어 이동도가 10 cm2V- 1sec-1 이상인 것을 알았다.
그 중에서도, 갈륨 함유량이 Ga/(In+Ga) 원자수비 0.08 이상 0.15 이하이며, 상기 +2가 원소(M) 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.03 이하인 실시예 1∼4, 6, 8∼10, 17∼19, 21, 22, 25, 29, 33의 산화물 반도체 박막은, 캐리어 이동도 15 cm2V-1sec-1 이상의 우수한 특성을 나타낸다.
이에 대하여, 비교예 1∼3, 8, 11, 14, 17의 산화물 반도체 박막은, 빅스바이트형 구조의 In2O3상에 의해서만 구성되는 산화물 반도체 박막이기는 하지만, 캐리어 농도가 1.0×1018-3을 상회하여, TFT의 활성층에는 알맞지 않다. 또한, 비교예 4, 5, 6, 9, 12, 15, 18의 산화물 반도체 박막에서는, 상기 +2가 원소(M)의 함유량이 M/(In+Ga+M) 원자수비로 0.05를 초과하여, 캐리어 이동도가 10 cm2V- 1sec-1을 하회하기 때문에, 본 발명의 목적으로 하는 산화물 반도체 박막이 얻어지지 않는다.

Claims (9)

  1. 인듐, 갈륨 및 +2가 원소를 산화물로서 함유하고,
    상기 갈륨의 함유량이 Ga/(In+Ga) 원자수비로 0.08 이상 0.20 미만이며,
    상기 +2가 원소 전체의 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.05 이하이고,
    상기 +2가 원소가 니켈, 코발트, 칼슘, 스트론튬 및 납으로 이루어지는 군에서 선택되는 하나 이상이며,
    빅스바이트형 구조의 In2O3상과, In2O3상 이외의 생성상으로서 β-Ga2O3형 구조의 GaInO3상, 혹은 β-Ga2O3형 구조의 GaInO3상과 (Ga,In)2O3상에 의해 구성되고,
    상기 +2가 원소와 갈륨으로 이루어지는 복합 산화물의 NiGa2O4상, CoGa2O4상, CaGa4O7상, Ca5Ga6O14상, SrGa12O19상, SrGa2O4상, Sr3Ga2O6상, Ga2PbO4상, 또는 이들의 복합 산화물상을 실질적으로 포함하지 않는 것을 특징으로 하는 산화물 소결체.
  2. 제1항에 있어서, 상기 +2가 원소 전체의 함유량이 M/(In+Ga+M) 원자수비로 0.0001 이상 0.03 이하인 산화물 소결체.
  3. 제1항 또는 제2항에 있어서, 상기 갈륨의 함유량이 Ga/(In+Ga) 원자수비로 0.08 이상 0.15 이하인 산화물 소결체.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 +2가 원소 이외의 +2가 원소 및 인듐과 갈륨 이외의 +3가 내지 +6가의 원소를 실질적으로 함유하지 않는 산화물 소결체.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 하기의 식 1로 정의되는 β-Ga2O3형 구조의 GaInO3상의 X선 회절 피크 강도비가 2% 이상 75% 이하의 범위인 산화물 소결체:
    100×I[GaInO3상 (111)]/{I[In2O3상 (400)]+I[GaInO3상 (111)]}[%]··식 1
  6. 제1항 내지 제5항 중 어느 한 항에 기재된 산화물 소결체를 가공하여 얻어지는 스퍼터링용 타겟.
  7. 제6항에 기재된 스퍼터링용 타겟을 이용하여 스퍼터링법에 따라 기판 상에 비정질막이 형성된 후, 산화성 분위기에서의 열 처리에 의해 상기 비정질막을 결정화시킨 결정질의 산화물 반도체 박막.
  8. 제7항에 있어서, 캐리어 이동도가 10 cm2V- 1sec-1 이상인 산화물 반도체 박막.
  9. 제7항 또는 제8항에 있어서, 캐리어 농도가 1.0×1018-3 미만인 산화물 반도체 박막.
KR1020167032885A 2014-06-26 2015-06-24 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막 KR20170024579A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2014-131838 2014-06-26
JP2014131838 2014-06-26
PCT/JP2015/068163 WO2015199122A1 (ja) 2014-06-26 2015-06-24 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜

Publications (1)

Publication Number Publication Date
KR20170024579A true KR20170024579A (ko) 2017-03-07

Family

ID=54938200

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020167032887A KR20170023801A (ko) 2014-06-26 2015-06-24 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막
KR1020167032885A KR20170024579A (ko) 2014-06-26 2015-06-24 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020167032887A KR20170023801A (ko) 2014-06-26 2015-06-24 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막

Country Status (6)

Country Link
US (2) US10000842B2 (ko)
JP (2) JP6424893B2 (ko)
KR (2) KR20170023801A (ko)
CN (2) CN106458759A (ko)
TW (2) TWI552976B (ko)
WO (2) WO2015199121A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6424893B2 (ja) * 2014-06-26 2018-11-21 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
TWI702294B (zh) * 2018-07-31 2020-08-21 日商田中貴金屬工業股份有限公司 磁氣記錄媒體用濺鍍靶
TWI770407B (zh) * 2018-08-01 2022-07-11 日本商出光興產股份有限公司 化合物
CN109433273B (zh) * 2018-12-18 2021-08-24 辽宁大学 一种光催化剂NiGa2O4/AQ/MoO3及其制备方法和应用
JP6830089B2 (ja) * 2018-12-26 2021-02-17 Jx金属株式会社 スパッタリングターゲット部材、スパッタリングターゲット部材の製造方法、スパッタリングターゲット、スパッタ膜の製造方法、膜体の製造方法、積層構造体の製造方法、及び有機el装置の製造方法
CN110797395A (zh) * 2019-09-18 2020-02-14 华南理工大学 掺杂型金属氧化物半导体及薄膜晶体管与应用
CN110767745A (zh) * 2019-09-18 2020-02-07 华南理工大学 复合金属氧化物半导体及薄膜晶体管与应用
CN110937648B (zh) 2019-12-25 2021-03-30 浙江工业大学 一种连续化处理高浓度有机废水的工艺及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014409A1 (fr) 2001-08-02 2003-02-20 Idemitsu Kosan Co., Ltd. Cible de pulverisation, film conducteur transparent et leur procede de fabrication
WO2008117739A1 (ja) 2007-03-23 2008-10-02 Idemitsu Kosan Co., Ltd. 半導体デバイス、多結晶半導体薄膜、多結晶半導体薄膜の製造方法、電界効果型トランジスタ、及び、電界効果型トランジスタの製造方法
WO2010032422A1 (ja) 2008-09-19 2010-03-25 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
JP2010219538A (ja) 2004-03-12 2010-09-30 Japan Science & Technology Agency アモルファス酸化物薄膜
JP2012253372A (ja) 2009-09-16 2012-12-20 Semiconductor Energy Lab Co Ltd 酸化物半導体層

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4351036B2 (ja) * 2003-12-15 2009-10-28 日鉱金属株式会社 スパッタリングターゲット
JP4816116B2 (ja) * 2006-02-08 2011-11-16 住友金属鉱山株式会社 スパッタリングターゲット用酸化物焼結体および、それを用いて得られる酸化物膜、それを含む透明基材
JP4779798B2 (ja) * 2006-05-11 2011-09-28 住友金属鉱山株式会社 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜
JPWO2008136505A1 (ja) * 2007-05-08 2010-07-29 出光興産株式会社 半導体デバイス及び薄膜トランジスタ、並びに、それらの製造方法
KR101627491B1 (ko) * 2007-07-06 2016-06-07 스미토모 긴조쿠 고잔 가부시키가이샤 산화물 소결물체와 그 제조 방법, 타겟, 및 그것을 이용해 얻어지는 투명 도전막 및 투명 도전성 기재
KR100922756B1 (ko) * 2008-02-13 2009-10-21 삼성모바일디스플레이주식회사 전극, 이의 제조 방법, 이를 구비한 전자 소자
CN101960625B (zh) * 2008-03-06 2013-01-23 住友金属矿山株式会社 半导体发光元件、该半导体发光元件的制造方法以及使用该半导体发光元件的灯
KR20130080063A (ko) * 2008-06-06 2013-07-11 이데미쓰 고산 가부시키가이샤 산화물 박막용 스퍼터링 타겟 및 그의 제조 방법
JP5442234B2 (ja) * 2008-10-24 2014-03-12 株式会社半導体エネルギー研究所 半導体装置及び表示装置
JP2010165922A (ja) * 2009-01-16 2010-07-29 Idemitsu Kosan Co Ltd 電界効果型トランジスタ、電界効果型トランジスタの製造方法及び半導体素子の製造方法
JP5763064B2 (ja) * 2010-06-02 2015-08-12 出光興産株式会社 スパッタリングターゲット
JP5414632B2 (ja) * 2010-06-30 2014-02-12 出光興産株式会社 スパッタリングターゲット
JP2012144410A (ja) * 2011-01-14 2012-08-02 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット
TWI495615B (zh) * 2012-09-28 2015-08-11 Ind Tech Res Inst p型金屬氧化物半導體材料
JP5907086B2 (ja) * 2013-02-06 2016-04-20 住友金属鉱山株式会社 酸化インジウム系の酸化物焼結体およびその製造方法
JP6424893B2 (ja) * 2014-06-26 2018-11-21 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014409A1 (fr) 2001-08-02 2003-02-20 Idemitsu Kosan Co., Ltd. Cible de pulverisation, film conducteur transparent et leur procede de fabrication
JP2010219538A (ja) 2004-03-12 2010-09-30 Japan Science & Technology Agency アモルファス酸化物薄膜
WO2008117739A1 (ja) 2007-03-23 2008-10-02 Idemitsu Kosan Co., Ltd. 半導体デバイス、多結晶半導体薄膜、多結晶半導体薄膜の製造方法、電界効果型トランジスタ、及び、電界効果型トランジスタの製造方法
WO2010032422A1 (ja) 2008-09-19 2010-03-25 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
JP2012253372A (ja) 2009-09-16 2012-12-20 Semiconductor Energy Lab Co Ltd 酸化物半導体層

Also Published As

Publication number Publication date
TWI552976B (zh) 2016-10-11
US20170137324A1 (en) 2017-05-18
JPWO2015199121A1 (ja) 2017-06-08
CN106458759A (zh) 2017-02-22
TW201605761A (zh) 2016-02-16
US20170130329A1 (en) 2017-05-11
KR20170023801A (ko) 2017-03-06
CN106414366A (zh) 2017-02-15
JP6424892B2 (ja) 2018-11-21
TWI550145B (zh) 2016-09-21
US10000842B2 (en) 2018-06-19
TW201608066A (zh) 2016-03-01
JP6424893B2 (ja) 2018-11-21
JPWO2015199122A1 (ja) 2017-06-01
WO2015199121A1 (ja) 2015-12-30
WO2015199122A1 (ja) 2015-12-30

Similar Documents

Publication Publication Date Title
KR20170024579A (ko) 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막
JP6376215B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
KR101861459B1 (ko) 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막
JP6387823B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6354841B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
KR20160127732A (ko) 산화물 소결체, 스퍼터링용 타겟, 및 그것을 이용하여 얻어지는 산화물 반도체 박막
KR20180117631A (ko) 산화물 소결체 및 스퍼터링용 타겟