KR20170021595A - Lipase with sn-1 specificity and method for production thereof - Google Patents

Lipase with sn-1 specificity and method for production thereof Download PDF

Info

Publication number
KR20170021595A
KR20170021595A KR1020150116185A KR20150116185A KR20170021595A KR 20170021595 A KR20170021595 A KR 20170021595A KR 1020150116185 A KR1020150116185 A KR 1020150116185A KR 20150116185 A KR20150116185 A KR 20150116185A KR 20170021595 A KR20170021595 A KR 20170021595A
Authority
KR
South Korea
Prior art keywords
lipase
ala
leu
gly
pro
Prior art date
Application number
KR1020150116185A
Other languages
Korean (ko)
Other versions
KR101713885B1 (en
Inventor
장판식
박경민
권창우
유윤정
박정하
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020150116185A priority Critical patent/KR101713885B1/en
Publication of KR20170021595A publication Critical patent/KR20170021595A/en
Application granted granted Critical
Publication of KR101713885B1 publication Critical patent/KR101713885B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3571Microorganisms; Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/02Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)

Abstract

The present invention relates to a lipase which has an amino acid sequence represented by sequence number 2, and which specifically hydrolyzes or esterifies only an sn-1 site of glycerin fatty acid ester. The present invention also relates to a production method thereof using Pichia yeast. According to the present invention, the use of the Cordyceps militaris-derived site-specific lipase targeting sn-1 enables the highly efficient production of biologically active substances and specific restructured lipids such as 1-monoglyceride and 2,3-diglyceride, as the site-specific lipase specifically acts on a number 1 site on a skeletal structure of glycerol.

Description

sn-1 위치 특이적 리파아제 및 그 생산방법 {Lipase with sn-1 specificity and method for production thereof} SN-1 POSITION SPECIFIC LIPHASE AND LIPASE WITH SN-1 SPECIFICITY AND METHOD FOR PRODUCTION THEREOF

본 발명은 sn-1 위치 특이적 리파아제 및 그 생산방법에 관한 것으로, 더욱 상세하게는 글리세린 지방산 에스테르의 sn-1 위치만을 특이적으로 가수분해 또는 에스테르화하는 서열번호 2의 아미노산 서열을 갖는 리파아제 및 피키아(Pichia) 효모를 이용한 그것의 생산방법에 관한 것이다. The present invention having lipase sn -1 position specific lipase, and relates to its production method, and more particularly, to the amino acid sequence of SEQ ID NO: 2 or an ester hydrolysis to screen only the sn -1 position of glycerol fatty acid ester and a specific The present invention relates to a process for producing it using Pichia yeast.

현재 상업적으로 사용되는 효소의 대부분은 자연계에서 발견된 것이며, 미생물에서 유래한 효소는 전체의 95%에 이른다. 자연계에서 발굴된 효소가 실제 산업 공정에 바로 쓰일 수도 있으나, 최근 효소를 디자인하고 개량하는 기술이 발달함에 따라, 효소를 최적화한 후, 공정에 적용하는 방법으로 패러다임이 바뀌고 있다. Most of the enzymes currently in commercial use are found in nature, and 95% of all enzymes are derived from microorganisms. Enzymes discovered in the natural world may be used directly in actual industrial processes. However, recently, as the technology for designing and improving enzymes has developed, paradigms have been changed by optimizing enzymes and applying them to processes.

한편, 재구성지질 등 새로운 유지 개발에 사용되는 리파아제(lipase)는 최근 주목 받고 있는 효소로서 향후 시장 활성화가 기대된다. 높은 활성과 특이성을 갖는 새로운 형태의 리파아제를 확보하고, 유전자 조작 및 단백질 개량기술을 적용하여 우수한 형태로 개량하면, 부가가치가 높은 재구성 지방질 생산 시장을 선점할 수 있을 것으로 예상된다.On the other hand, lipase used for new maintenance development such as reconstitution lipids is a recently attracted enzyme and is expected to activate the market in the future. It is expected that a new form of lipase with high activity and specificity will be secured and improved to excellent form by applying genetic manipulation and protein modification technology, leading to the market for high value added recombinant lipid production.

동식물에서 미생물까지 자연계에 널리 분포하고 있는 리파아제는 생물전환(bioconversion), 유화제, 향미 강화, 특이적 유기합성 등의 다양한 역할을 하기 때문에, 높은 가격에도 불구하고 식품, 제약, 화장품, 세제산업 등 다방면에 걸쳐 이용된다. Lipase, which is widely distributed in nature from plants and animals to microorganisms, plays various roles such as bioconversion, emulsifier, flavor enhancement and specific organic synthesis. Therefore, lipase can be applied to food, pharmaceutical, cosmetics, Lt; / RTI >

자연계에 존재하는 대부분의 리파아제는 기질에 대한 위치특이성이 없는 것이 일반적인데, 1번 위치와 3번 위치만 촉매하는 sn-1,3 위치 특이적 리파아제와 sn-1 또는 sn-2 위치를 촉매하는 특이적 리파아제는 드물게나마 학계에 보고되어 있다. Most lipases present in the natural world do not have a site specificity for substrates, which catalyze sn -1 or sn- 2 positions with sn- 1, 3 position-specific lipases catalyzing only positions 1 and 3 Specific lipases are rarely reported in the academia.

효소를 이용한 재구성 지방질의 생산에 있어서, 효소의 활성 및 위치 특이적 특성은 가장 중요한 요소 중의 하나이다. 현재 sn-1,3 위치 특이적 리파아제를 이용하여 지방질의 물리적, 화학적, 영양학적 특성을 개선시킨 재구성 지방질의 합성에 대한 연구가 활발히 진행 중이다. 이러한 특성을 갖는 리파아제는 신소재 기능성 유지 생산에 사용되고 있으나, sn-1과 sn-3 즉 글리세롤(glycerol) 골격의 1번과 3번 위치를 함께 인지하여 반응함으로써 완전한 위치 특이성을 갖지 못하여 촉매 효율이 떨어지는 단점이 아직도 있다. Enzyme-mediated Reconstitution In the production of lipids, enzyme activity and site-specific properties are among the most important factors. Currently, studies on the synthesis of reconstructed lipids which improve the physical, chemical and nutritional characteristics of lip using sn -1,3 position specific lipase are actively under way. Lipase having such characteristics is used for production of new functional material but it does not have complete position specificity by reacting sn- 1 and sn- 3, ie, positions 1 and 3 of glycerol skeleton together, There are still disadvantages.

한편, 높은 활성 및 위치 특이성을 가지는 sn-1 위치 특이적 리파아제는 기능성 재구성 지방질인 모노글리세라이드(monoglyceride), 다이글리세라이드(diglyceride)를 고수율·고순도로 합성할 수 있는데, sn-1 위치에 특이적으로 작용하는 특성으로 인해 에스테르교환반응(interesterification)에 의한 재구성 지방질 합성 과정에서 부산물 생성을 억제할 수 있어 부가가치가 높은 효소라 할 수 있다. 더 나아가서는, 트리글리세라이드(triglyceride)의 sn-1 위치에 있는 지방산 종류를 분석함으로써 리파아제 반응 기작 규명에서 획기적인 기법으로 활용할 수도 있다.On the other hand, the specific lipases sn -1 position having a high activity and specificity is located there and the functional lipid reorganization of monoglyceride (monoglyceride), di glyceride (diglyceride) can be synthesized in a high yield, high purity, the sn -1 position Due to its specific function, it can inhibit the formation of by-products during the synthesis of lipids by interesterification and thus can be considered as an enzyme with high added value. Furthermore, by analyzing the type of fatty acid at the sn- 1 position of triglyceride, it can be used as a breakthrough technique in the identification of lipase reaction mechanism.

대한민국 특허공개번호 제10-2011-0121393호 (공개일자: 2011년 11월 07일)에는, 피키아 린페르디 (Pichia lynferdii) NRRL Y-7723 균주로부터 생산되는 리파아제, 및 이의 용도가 기재되어 있는데, 이 리파아제는 피키아 린페르디 NRRL Y-7723 균주가 성장하면서 분비하는 효소로서, 리파아제 효소의 활성이 낮아지는 0~30 ℃ 온도 범위에서도 높은 활성을 유지하는 것으로 기재되어 있다.Korean Patent Publication No. 10-2011-0121393 (Published Date: November 07, 2011) discloses a lipase produced from a strain of Pichia lynferdii NRRL Y-7723, and its use , This lipase is an enzyme secreted by the growth of Pichia rinferredi NRRL Y-7723 strain, and it is said that it maintains high activity even in the temperature range of 0 to 30 캜 at which the activity of the lipase enzyme is lowered.

본 발명에서는 글리세린 지방산 에스테르의 sn-1 위치만을 특이적으로 가수분해 또는 에스테르화할 수 있는 리파아제 효소를 개발하여 제공하고자 한다. In the present invention, a lipase enzyme capable of specifically hydrolyzing or esterifying only the sn- 1 position of the glycerol fatty acid ester is developed and provided.

본 발명은 sn-1 위치를 특이적으로 가수분해하거나 에스테르화할 수 있는 것으로, 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제를 제공한다. The present invention provides a lipase having an amino acid sequence as set forth in SEQ ID NO: 2, which is capable of specifically hydrolyzing or esterifying the sn- 1 position.

본 발명에서는 코디셉스 밀리타리스(Cordyceps militaris)로부터 높은 활성 및 sn-1 위치 특이성을 가지는 신규 리파아제의 유전 정보를 확보하였다. PCR을 이용하여 정확한 부분만을 증폭시키고, 이것을 효모용 벡터에 삽입하여 리파아제 발현을 위한 벡터를 구축하였다. 구축한 벡터를 피키아 파스토리스 효모 균주에 도입하여 형질전환시킨 후, 배양하여 형질전환체를 얻었다. 확보한 형질전환체를 배양하여 리파아제의 sn-1 위치 특이적 가수분해 활성을 최종 확인하였다. In the present invention, Cordyceps militaris ) to obtain genetic information of novel lipases with high activity and sn- 1 locus specificity. PCR was used to amplify only the correct portion and inserted into the yeast vector to construct a vector for lipase expression. The constructed vector was introduced into a P. pastoris yeast strain, transformed, and then cultured to obtain a transformant. The sec -1 locus specific hydrolytic activity of lipase was finally confirmed by culturing the obtained transformants.

한편, 본 발명은 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제를 생산함에 있어서, 발현용 호스트 균주로 피키아(Pichia) 속 균주를 사용하는 것을 특징으로 하는 리파아제의 생산방법을 제공한다. 호스트로 피카아 속 균주를 사용할 경우, 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제를 활성형 형태로 대량 생산할 수 있다. 이때, 상기 피키아 속 균주는 일 예로, 피키아 파스토리스 (Pichia pastoris) 일 수 있다. On the other hand, the present invention provides a method for producing lipase, wherein a strain of the genus Pichia is used as an expression host strain in producing lipase having the amino acid sequence of SEQ ID NO: 2. When the host strain Picaca is used, the lipase having the amino acid sequence shown in SEQ ID NO: 2 can be mass-produced in an active form. In this case, the Pichia spp. Strain may be, for example, Pichia pastoris .

한편, 본 발명의 리파아제 생산방법에 있어서, 상기 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제는, 코디셉스 밀리타리스 (Cordyceps militaris)로부터 유래한 것일 수 있다. 상기 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제는 sn-1 위치 특이적 리파아제인 특성이 있다. On the other hand, in the lipase production method of the present invention, the lipase having the amino acid sequence of SEQ ID NO: 2 is a lipase produced by Cordyceps militaris . < / RTI > The lipase having the amino acid sequence shown in SEQ ID NO: 2 is a sn- 1 site-specific lipase.

한편, 본 발명은 글리세린 지방산 에스테르의 sn-1 위치를 가수분해함에 있어서, 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제를 사용하는 것을 특징으로 하는 sn-1 위치 특이적 가수분해방법을 제공한다. 또한, 본 발명은 글리세린 sn-1 위치에 지방산 결합시키는 에스테르화 반응에 있어서, 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제를 사용하는 것을 특징으로 하는 sn-1 위치 특이적 에스테르화 반응방법을 제공한다. On the other hand, the present invention provides a sn- 1 site-specific hydrolysis method characterized by using lipase having the amino acid sequence of SEQ ID NO: 2 in hydrolyzing the sn- 1 position of the glycerin fatty acid ester. Further, the present invention provides a sn- 1 position-specific esterification reaction method characterized by using a lipase having an amino acid sequence as set forth in SEQ ID NO: 2 in an esterification reaction in which a fatty acid is bonded to a glycerin sn- 1 position .

본 발명의 리파아제는 가수분해 및 에스테르화 반응 두 개 모두를 매개할 수 있는데, 본 발명의 리파아제를 이용할 경우, 글리세롤 골격구조의 1번 위치에만 특이적으로 작용함으로써, 1-모노글리세라이드 및 2,3-다이글리세라이드와 같은 특이한 재구성 지방질 및 생리활성 물질을 고효율로 생산할 수 있다. The lipase of the present invention can mediate both the hydrolysis and the esterification reaction. When the lipase of the present invention is used, the lipase specifically acts only on the 1-position of the glycerol backbone structure. Thus, the 1-monoglyceride and 2, Specific recombinant lipids such as 3-diglyceride and physiologically active substances can be produced with high efficiency.

지방산이 일부 혹은 완전히 제거되면 식품의 특성이 변화되므로 자연계에 존재하는 중성지방질의 글리세롤 골격구조에 위치한 지방산들의 조성과 위치적 분포(sn-1(3), sn-2)를 화학적 또는 효소적 반응을 통하여 재조합하여 지방질의 물리적, 화학적, 영양학적 특성을 개선하는 연구가 활발히 진행되고 있다. The composition and positional distribution ( sn -1 (3), sn -2) of fatty acids located in the glycerol skeleton of the neutral lipid present in the natural world is changed chemically or enzymatically And the like, to improve the physical, chemical and nutritional characteristics of lipids.

재구성 지방질은 화학적 혹은 효소적 반응을 통하여 생성될 수 있다. Reconstituted lipids can be produced through chemical or enzymatic reactions.

화학적 반응은 소디움 메톡사이드 (sodium methoxide), 소디움/리튬 하이드록사이드 (sodium/lithium hydroxide) 등의 촉매제를 사용하고, 고온 및 고압 하에서 수행되기 때문에 에너지 소비가 크다. 또한, 부반응물이 생성되어 제거하기가 어려울 뿐만 아니라, 유해한 촉매제의 잔존 및 이를 제거하기 위한 정제공정이 복잡하다는 단점이 있다. The chemical reaction is carried out under high temperature and high pressure using a catalyst such as sodium methoxide, sodium / lithium hydroxide and the like, and thus the energy consumption is large. In addition, the byproducts are generated and are difficult to remove, and there is a disadvantage that complicated purification processes for removing harmful catalysts and removing them are complicated.

그런데, 효소적 반응은 비교적 온화한 온도(30~60℃)에서 수행되어 부반응이 일어나지 않아 생성물의 정제공정이 화학적 방법보다 간편하다. 또한, 기질 및 위치 특이성을 나타내어 맞춤형 유지 합성에 적절한 특성이 있다. However, since the enzymatic reaction is carried out at a relatively mild temperature (30 to 60 ° C), side reactions do not occur and the purification process of the product is simpler than the chemical method. In addition, it exhibits substrate and position specificity and is suitable for customized maintenance and synthesis.

sn-1 위치 특이성을 가지는 본 발명의 리파아제 효소를 무트랜스, 저칼로리, 기능성 재구성 지방질 합성에 이용한다면, 특이적인 합성 과정으로 인해 발생하는 부산물의 생성을 억제할 수 있고, 높은 수율 및 간편한 정제과정 등의 장점이 있다. If the lipase enzyme of the present invention having the sn- 1 position specificity is used for the synthesis of trans-free, low-calorie, and functional reconstituted lipids, the production of byproducts due to the specific synthesis process can be suppressed, and a high yield and easy purification process .

즉, 본 발명의 코디셉스 밀리타리스 유래 sn-1 위치 특이적 라이페이스를 이용할 경우, 글리세롤 골격구조의 1번 위치에만 특이적으로 작용함으로써, 1-모노글리세라이드 및 2,3-다이글리세라이드와 같은 특이한 재구성 지방질 및 생리활성 물질을 고효율로 생산하는데 적용할 수 있는 것이다. That is, when the sn- 1 site-specific lyase derived from the Coryseps milliliterus of the present invention is used, it specifically acts only at the 1-position of the glycerol backbone structure, and thus, 1-monoglyceride and 2,3-diglyceride The present invention can be applied to the production of specific recombinant lipids and physiologically active substances with high efficiency.

또한, 본 발명의 코디셉스 밀리타리스 유래 sn-1 위치 특이적 리파아제는, 트리글리세라이드의 sn-1과 sn-2에 위치하는 지방산을 구별해 낼 수 있는 분석법으로도 활용할 수 있다.The sn- 1 site-specific lipase derived from the Coryseps milliliterus of the present invention can also be used as an analytical method capable of distinguishing fatty acids located at sn- 1 and sn- 2 of triglyceride.

도 1은 코디셉스 밀리타리스 (Cordyceps militaris)로부터 분리한 본 발명 리파아제의 크기를 보여준다.
도 2는 본 발명 리파아제의 반응 특이성 (sn-1)을 보여준다.
도 3은 본 발명 리파아제의 유전자 크기를 보여준다.
도 4는 본 발명 리파아제 유전자 (서열번호 1)의 핵산서열이다.
도 5는 본 발명 리파아제의 발현을 위한 재조합 벡터의 지도이다.
도 6은 재조합 벡터를 통한 본 발명 리파아제의 발현 여부를 확인시켜 주는 그래프이다.
Figure 1 is a schematic diagram of Cordyceps < RTI ID = 0.0 > militaris. < / RTI >
Fig. 2 shows the reaction specificity ( sn- 1) of the lipase of the present invention.
Figure 3 shows the gene size of the lipase of the present invention.
4 is a nucleic acid sequence of the lipase gene of the present invention (SEQ ID NO: 1).
5 is a map of a recombinant vector for expression of the lipase of the present invention.
6 is a graph showing the expression of the lipase of the present invention through a recombinant vector.

이하, 본 발명의 내용을 하기 실시예 및 실험예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예 및 실험예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다. Hereinafter, the present invention will be described in more detail with reference to the following Examples and Experimental Examples. However, the scope of the present invention is not limited to the following embodiments and experimental examples, and includes modifications of equivalent technical ideas.

[[ 실시예Example 1:  One: 코디셉스Cody's 밀리타리스로부터From Militaris 리파아제 분리] Lipase separation]

코디셉스 밀리타리스 (Cordyceps militaris)로부터 리파아제를 분리 및 정제하기 위해 코디셉스 밀리타리스 추출물을 암모니움 설페이트 (ammonium sulfate) 침전법으로 분획한 후, FPLC에 적용하였다. Cordyceps To separate and purify lipase from militaris , Coryseps milliliter extract was fractionated by ammonium sulfate precipitation method and applied to FPLC.

FPLC를 이용하여 효소의 분리·정제를 수행하기 전, pH 7.0의 50 mM Tris-Cl 버퍼로 컬럼을 안정화시켰고, HiTrap DEAE sepharose FF 컬럼 (GE healthcare)을 이용하여, 이온 강도에 따라 효소를 분리·정제하였다. 이 컬럼의 기능기는 -N+(C2H5)2H로서, 단백질의 음전하 부분과 결합을 형성하고, 1 M NaCl의 농도를 증가시키면서, 단백질과 기능기 간 결합 정도에 따라 단백질을 분리하였다. 이온강도 단위는 5%로, 스텝 일루션 (step elution)을 이용하여 분리하였다. Prior to separation and purification of the enzyme using FPLC, the column was stabilized with 50 mM Tris-Cl buffer (pH 7.0), and the enzyme was separated according to the ionic strength using a HiTrap DEAE sepharose FF column (GE healthcare) Lt; / RTI > The functional group of this column is -N + (C 2 H 5 ) 2 H, which forms a bond with the negative charge portion of the protein and separates the protein according to the degree of binding between protein and functional group, increasing the concentration of 1 M NaCl . The ionic strength unit was separated by 5% using step elution.

컬럼을 통과하여 용출되는 단백질은 280 nm에서 흡광도를 측정하여 피크(peak) 형태로 확인하였고, 1.0 mL/min의 속도로 용출된 단백질을 5.0 mL씩 분획하였다. 분획한 단백질을 모아 활성 측정을 한 결과, 5% NaCl 농도에서 리파아제 활성을 나타내는 분획물을 얻었으며, 색소 및 불필요한 단백질을 제거하고 정제도를 높였다. Proteins eluted through the column were identified as peaks by measuring the absorbance at 280 nm. Proteins eluted at 1.0 mL / min were fractionated into 5.0 mL. The fractions which showed the lipase activity at 5% NaCl concentration were obtained by collecting the fractionated proteins, and the pigment and unnecessary protein were removed and the purification degree was increased.

음이온 교환 크로마토그래피 과정을 통해 부분적으로 분리한 단백질을 모아 농축한 후, Hitrap Phenyl FF 컬럼 (GE healthcare)을 이용하여 소수성 강도에 따라 효소를 분리하였다. 버퍼의 염 농도가 높을 때 발현되는 단백질의 소수성 부분이 컬럼의 기능기와 상호 결합을 하게 되고, 염의 농도를 낮춰줌으로써 단백질을 용출하였다. Partially separated proteins were collected and concentrated through anion exchange chromatography, and the enzymes were separated by hydrophobic strength using Hitrap Phenyl FF column (GE healthcare). When the salt concentration of the buffer is high, the hydrophobic part of the protein expressed mutually binds to the functional group of the column, and the protein is eluted by lowering the salt concentration.

pH 7.0의 50 mM Tris-Cl 버퍼로 컬럼을 안정화시킨 후, 암모니움 설페이트의 농도를 100%에서 25% 단위로 0%까지 감소시켜 단백질을 분리하였다. 0.7 mL/min의 속도로 용출된 단백질을 5.0 mL씩 분획하였다. 분획물을 모아 농축한 후, 활성을 측정한 결과, 75% 소수성 농도에서 가장 높은 리파아제 활성을 나타내는 것을 확인하였다. After the column was stabilized with 50 mM Tris-Cl buffer at pH 7.0, the protein was separated by reducing the concentration of ammonium sulfate from 0% to 100% in 25% increments. The protein eluted at a rate of 0.7 mL / min was fractionated into 5.0 mL. The fractions were collected and concentrated, and the activity was measured. As a result, it was confirmed that the lipase activity exhibited the highest lipase activity at 75% hydrophobic concentration.

소수성 강도에 따라 부분적으로 분리한 단백질을 모아 농축한 후 Sephacryl S-100 컬럼 (GE healthcare)을 이용하여 정제를 실시하였다. 0.15 M NaCl을 포함하는 50 mM Tris-Cl 버퍼를 이용하여 0.4 mL/min 속도로 흘려준 결과, 40~50 mL 사이에 용출된 분획물에서 리파아제 활성을 나타내었다. The partially separated proteins were collected by concentration according to the hydrophobic strength, and then purified using a Sephacryl S-100 column (GE healthcare). The fractions eluted at between 40 and 50 mL showed lipase activity at a flow rate of 0.4 mL / min using 50 mM Tris-Cl buffer containing 0.15 M NaCl.

리파아제 활성을 나타내는 분획물을 모아 농축한 후, 겔 투과 크로마토그래피를 반복 시행하였다. 분리 조건은 앞서 시행한 겔 투과 크로마토그래피 조건을 동일하게 적용하였으며, 단일 피크를 나타내는 것을 확인하였다. 순수 분리 정제된 리파아제는 2.47%의 수율과 94.54%의 정제도를 보였으며, 60 kDa의 분자량을 가진 단량체로 나타났다 (도 1).The fractions showing lipase activity were pooled and concentrated, followed by repeated gel permeation chromatography. The separation conditions were the same as those of the gel permeation chromatography as described above, and it was confirmed that the separation showed a single peak. The purified lipase exhibited a yield of 2.47% and a purity of 94.54%, and was a monomer having a molecular weight of 60 kDa (FIG. 1).

[[ 실시예Example 2:  2: 실시예Example 1에서 분리한  Separated from 1 코디셉스Cody's 밀리타리스Millitaris 유래 리파아제의 위치 특이성 확인]  Identification of position specificity of derived lipase]

상기에서 분리한 리파아제의 위치 특이성을 확인하기 위하여 TLC를 시행하였다. TLC was performed to confirm the position specificity of the lipase separated from the above.

20 mM 트리올레인(triolein)이 첨가된 50 mM 'Clark and Lubs' 버퍼(pH 9.0)에 상기 코디셉스 밀리타리스로부터 분리한 리파아제 효소를 첨가하여 40℃ 조건에서 40시간 반응시킨 후, 0.2 mL의 클로로포름(chloroform)을 첨가하여 지방질층을 분리하였다. The lipase enzyme isolated from the above-mentioned Coryseps milliliter was added to 50 mM 'Clark and Lubs' buffer (pH 9.0) supplemented with 20 mM triolein, and reacted at 40 ° C. for 40 hours. Then, 0.2 mL Of chloroform was added to separate the lipid layer.

표준물질과 분리한 지방질층을 실리카겔 플레이트 (silica gel plate, 150 Å, Whatman)에 적용하고, TLC 판을 챔버에 넣어 chloroform/acetone/acetic acid (96:4:1, v/v/v) 용매 조건 하에 전개시켰다. 분리된 스팟(spot)은 이오딘 증기 (iodine vapor)를 이용하여 발색하였다. TLC 결과, 효소반응의 주된 생성물은 1,2-다이올레인(diolein)으로서, 트리올레인(triolein)의 1번 위치만 특이적으로 가수분해하는 것을 확인하였다 (도 2).Acetone / acetic acid (96: 4: 1, v / v / v) solvent was added to the silica gel plate (150 Å, Whatman) Lt; / RTI > Separated spots were developed using iodine vapor. As a result of TLC, it was confirmed that the main product of the enzymatic reaction was 1,2-diolein, specifically hydrolyzing only the 1-position of triolein (FIG. 2).

[[ 실시예Example 3:  3: 실시예Example 1에서 분리한  Separated from 1 코디셉스Cody's 밀리스Millis 유래파아제의Derived phage 분자 수준 특성 분석] Analysis of molecular level characteristics]

실시예 1에서 분리한 리파아제 특성 분석 및 유전자 재조합기술에 대한 자료 확보를 위해 MALDI-TOF 분석을 사용하였다. MALDI-TOF analysis was used to obtain data on the lipase characterization and recombinant DNA technology that were isolated in Example 1.

상기 코디셉스 밀리타리스 유래 효소 단백질을 단백분해효소로 가수분해한 후 잘려진 펩타이드 조각(DLLWTNLLANR, VAAVIGDFVFTLAR, VGGFGFLAGSEVLEDGSTNLGLRDQR)의 질량을 측정하여, National Center for Biotechnology Information (NCBI)에 등재된 단백질 정보와 비교·동정하였다. After hydrolysis of the enzyme protein derived from Coryseps milliliterus with proteolytic enzymes, the mass of the cleaved peptide fragment (DLLWTNLLANR, VAAVIGDFVFTLAR, VGGFGFLAGSEVLEDGSTNLGLRDQR) was measured and compared with the protein information listed in the National Center for Biotechnology Information (NCBI) Respectively.

그 결과, 중국에서 게놈 서열 분석으로 밝힌 코디셉스 밀리타리스 유래 세포 외 방출형 리파아제(1743 base pair)와 높은 상동성을 보이는 것으로 나타났다 (표 1).As a result, it showed high homology with the 1743 base pair of extracellular releasing lipase derived from Codishes milliliterus, which was confirmed by genome sequencing in China (Table 1).

Accession number1) Accession number 1) Precursor (m/z)Precursor ( m / z ) Peptide (mass)Peptide (mass) Identified proteinIdentified protein Database searched peptideDatabase searched peptide MASCOT
SCORE
MASCOT
SCORE
G3J6X7G3J6X7 664.9664.9 1327.81327.8 Extracellular lipase, putativeExtracellular lipase, putative 547DLLWTNLLANR557 547 DLLWTNLLANR 557 6262 G3J6X7G3J6X7 739.9739.9 1477.81477.8 Extracellular lipase, putativeExtracellular lipase, putative 449VAAVIGDFVFTLAR462 449 VAAVIGDFVFFS 462 6767 G3J6X7G3J6X7 898.8898.8 2693.42693.4 Extracellular lipase, putativeExtracellular lipase, putative 192VGGFGFLAGSEVLEDGSTNLGLRDQR217 192 VGGFGFLAGSEVLEDGSTNLGLRDQR 217 7171

1) Accession numbers from http://www.uniprot.org1) Accession numbers from http://www.uniprot.org

NCBI에 등재된 세포 외 방출형 리파아제는 본 발명자들이 분리정제한 리파아제와 부분적 아미노산 서열에서 높은 상동성을 가지지만, 본 발명에서 사용한 코디셉스 밀리타리스 리파아제와 동일한 DNA 정보를 갖는 것은 확인되지 않았다. Although the extracellular release lipase listed in NCBI has high homology with the partial amino acid sequence of the lipase isolated and purified by the present inventors, it has not been confirmed that it has the same DNA information as the Coryseps milliliter lipase used in the present invention.

따라서, 본 발명자들이 보유한 코디셉스 밀리타리스 핵산으로부터 cDNA를 제작하여 DNA 서열분석을 하였다. 액체질소를 사용하여 분쇄한 코디셉스 밀리타리스를 트리졸(Trizol) 시약을 사용하여 총 RNA를 추출하고 mRNA를 주형으로 역전사 반응을 진행하여 cDNA를 합성하였다. 이후, NCBI에 등재된 세포 외 방출형 리파아제 C-말단과 N-말단의 상위유전자 및 하위유전자 염기서열을 바탕으로 프라이머를 제작하였으며, cDNA를 주형으로 PCR을 이용하여 증폭하였다. Therefore, cDNA was prepared from the Coryseps milliliter nucleic acid possessed by the present inventors and subjected to DNA sequence analysis. The total RNA was extracted with Trizol reagent, which was pulverized using liquid nitrogen, and the cDNA was synthesized by reverse transcription using mRNA as a template. Subsequently, primers were prepared based on NCBI C-terminal and N-terminal upper gene and subgeneric base sequences, and cDNA was amplified using PCR as a template.

증폭된 PCR 산물의 크기를 아가로스 겔 전기영동(agarose gel electrophoresis)을 통해 확인해 본 결과, 1.5 kb보다는 크고 2.0 kb보다는 작은 위치에서 증폭산물이 확인되었다 (도 3). The size of the amplified PCR product was confirmed by agarose gel electrophoresis. As a result, amplification product was confirmed at a position larger than 1.5 kb and smaller than 2.0 kb (FIG. 3).

아가로스 겔로부터 DNA를 추출하여 염기서열을 분석한 결과, NCBI에 등재되어 있는 세포 외 방출형 리파아제와 아미노산 수준에서 비교분석 하였을 때, 총 580개의 아미노산 중 575개가 일치(99%)하는 것으로 나타났으며, 1740개 중 18개의 뉴클레오타이드 변이가 확인되었다 (도 4). When DNA was extracted from the agarose gel and the nucleotide sequence was analyzed, it was found that 575 of the total 580 amino acids were identical (99%) when compared with the extracellular releasing lipase listed in NCBI at the amino acid level And 18 nucleotide mutations among 1740 nucleotides were confirmed (FIG. 4).

서열번호 1은 본 발명 리파아제의 핵산 서열이고, 서열번호 2는 본 발명 리파아제의 아미노산 서열이다. SEQ ID NO: 1 is the nucleic acid sequence of the lipase of the present invention, and SEQ ID NO: 2 is the amino acid sequence of the lipase of the present invention.

[[ 실시예Example 4: 상기  4: 실시예Example 1에서 분리한  Separated from 1 코디셉스Cody's 밀리타리스Millitaris 유래 리파아제의 발현] Expression of Derived Lipase]

코디셉스 밀리타리스 리파아제의 염기서열을 바탕으로 아래와 같이 프라이머를 제작하고, 프라이머를 이용하여 PCR 증폭을 실시하였다. Based on the nucleotide sequence of Coryseps milliliter lipase, the following primers were prepared and subjected to PCR amplification using a primer.

CML_F: 5'-AGGGGTATCTCTCGAGAAAAGAGCGCCTCATTGCCCGGGA-3' CML_F: 5'-AGGGGTATCTCTCGAGAAAAGAGCGCCTCATTGCCCGGGA-3 '

CML_R: 5'-AGA AAGCTGGCGGCCGCGAAGTAGAGTACCTCCGTA-3' CML_R: 5'-AGA AAGCTGGCGGCCGCGAAGTAGAGTACCTCCGTA-3 '

각각의 프라이머는 pPICZα-A 벡터의 XhoI와 NotI 부위에 삽입될 수 있도록 XhoI/NotI 인식 부위를 인위적으로 부가하였다. PCR 조건은 95℃에서 3분간 변성(denaturation)시킨 다음, 30 사이클(cycle)의 PCR 증폭을 실시하였다. 변성은 95℃에서 30초간, 어닐링(annealing)은 58℃에서 30초, 신장(extension)은 72℃에서 120초간, 그리고 마지막 사이클(cycle)에서 마지막 신장(last extension)은 72℃에서 5분간 실시하였다. PCR을 통해 증폭된 DNA는 아가로스 겔 전기영동과 유전자 염기서열을 결정하여 확인하였다. Each primer was artificially added to the Xho I / Not I recognition site so that it could be inserted into the Xho I and Not I sites of the pPICZ alpha -A vector. The PCR conditions were denaturation at 95 ° C for 3 minutes, followed by 30 cycles of PCR amplification. The denaturation was carried out at 95 ° C for 30 seconds, annealing at 58 ° C for 30 seconds, extension at 72 ° C for 120 seconds, and final extension at 72 ° C for 5 minutes in the last cycle Respectively. The DNA amplified by PCR was confirmed by determining agarose gel electrophoresis and gene base sequence.

PCR을 이용하여 증폭한 리파아제 유전자를 XhoI/NotI 제한 효소 처리를 하고, 마찬가지로 pPICZα-A 벡터도 동일한 효소인 XhoI/NotI 제한 효소로 처리한 다음 삽입시켰다(도면 6). 삽입 산물(ligation product)을 100 μL의 콤페턴트 세포(competent cell)에 섞은 후, 42℃에서 1분간 배양하여 형질전환하였다. The lipase gene amplified by PCR was subjected to Xho I / Not I restriction enzyme treatment, and the pPICZ alpha -A vector was similarly treated with the same enzyme Xho I / Not I restriction enzyme (FIG. 6). The ligation product was mixed with 100 μL of competent cells and then transformed by incubation at 42 ° C. for 1 minute.

형질전환된 대장균 (E. coli)은, 'low salt LB 배지(1L 당 10 g 트립톤, 5 g NaCl, 5 g 효모추출물)'을 10 N 수산화나트륨(NaOH)을 이용하여 pH 7.5로 조정하고, 항생제 제오신(Zeocin)을 1 mL당 25㎍이 첨가되도록 하여 제조한 아가 배지에서 배양하였다. The transformed Escherichia coli (E. coli) is adjusted to pH 7.5 and to a 'low salt LB medium (10 g tryptone, 5 g NaCl, 5 g yeast extract per 1L)' using a 10 N sodium hydroxide (NaOH) And Zeocin antibiotics (25 당 / mL) were added to each well.

형질전환체로부터 플라스미드 DNA를 추출한 후, DNA 염기서열을 확인하여 리파아제를 발현시킬 수 있는 재조합 플라스미드 pPICZα-CML 벡터를 최종 선발하였다. After the plasmid DNA was extracted from the transformant, the recombinant plasmid pPICZa-CML vector capable of expressing the lipase was finally selected by confirming the DNA base sequence.

정제한 pPICZα-CML DNA 10 μg을 사용하여, 숙주로 사용할 효모인 피키아 파스토리스 (Pichia pastoris) KM71에 형질전환을 실시하였다. 먼저, DNA는 SacI 제한 효소로 소화시켜 선형으로(linear) 만들어 준 후 실행하였다. 숙주 균주인 피키아 파스토리스는 YPD 배지 50 mL에 접종하여 30℃에서 하룻밤 배양하여 OD600이 0.9가 될 때까지 배양하였다. Using 10 μg of the purified pPICZα-CML DNA, the yeast Pichia to be used as a host ( Pichia pastoris) were transformed in KM71. First, the DNA was digested with Sac I restriction enzyme and made linear. The host strain, Pichia pastoris, was inoculated into 50 mL of YPD medium, incubated overnight at 30 ° C, and cultured until OD 600 reached 0.9.

배양 후, 1,500×g로 10분간 원심 분리한 후 25 mL의 멸균 증류수로 현탁하여 동일한 조건으로 원심분리하고 다시 100 mM LiCl 로 같은 과정을 반복하여 최종 부피가 0.4 mL이 되는 컴페턴트 세포를 만들었다. 이 컴페턴트 세포와 선형(linearized) DNA, PEG, LiCl, single-stranded DNA를 섞어 최종부피 0.4 mL이 되게 하고, 30℃에서 30분간 배양하였다. 그 후, 즉시 42℃에서 25분간 배양하여 형질전환시켰다. YPD/제오신 판에 도말하고 30℃에서 콜로니가 형성될 때까지 배양하였다. 본 단계에서는 상기 단계에서 형성한 콜로니가 형질전환체인지 여부를 확인하기 위하여 선별 과정을 거쳤다. 벡터 내에 포함되어 있는 제오신 내성 유전자(Zeocin resistant gene)가 배지 내에 존재하는 제오신에 대해 저항성을 주는 점을 이용하여 YPD/제오신 배지에 도말하여 살아 남은 형질전환체를 선발하였다. 다음으로 형질전환된 콜로니를 용해시키고, PCR 증폭하여, 증폭산물이 확인되는 형질전환체를 선별하였다. After culturing, the cells were centrifuged at 1,500 × g for 10 minutes, suspended in 25 mL of sterilized distilled water, centrifuged under the same conditions, and the same procedure was repeated with 100 mM LiCl to obtain a final volume of 0.4 mL . This compartment was mixed with linearized DNA, PEG, LiCl, and single-stranded DNA to a final volume of 0.4 mL and incubated at 30 ° C for 30 minutes. Then, it was immediately transformed by incubating at 42 DEG C for 25 minutes. YPD / Zeocin plate and cultured at 30 캜 until colonies were formed. In this step, the colonies formed in the above step were screened to determine whether they were transformed. The surviving transformants were selected by plating on YPD / Zeocin medium using the fact that the zeocin resistant gene contained in the vector is resistant to myosin present in the medium. Next, the transformed colonies were dissolved and PCR amplified to select transformants whose amplification products were confirmed.

한편, 리파아제 배양 시료를 420 μM의 p-니트로페닐 팔미테이트 (p-nitrophenyl palmitate)와 0.2 M Tris-Cl 버퍼 (pH 7.0)가 함유된 용액 2.5 mL에 넣어 5 mL이 되게 하여 40℃에서 반응시켰다. 반응 15분, 30분, 60분 경과 후 반응액 500 μL를 0.1 M Tris-Cl 버퍼(pH 7.0)와 섞어 총 1 mL의 혼합액을 410 nm에서 p-니트로페닐 팔미테이트의 분해산물인 p-니트로페놀의 흡광도를 측정하였다. On the other hand, of a lipase culture samples 420 μM p - to nitrophenyl palmitate (p -nitrophenyl palmitate) and placed in a 2.5 mL solution containing 0.2 M Tris-Cl buffer (pH 7.0) to be a 5 mL was reacted at 40 ℃ . After 15 minutes, 30 minutes, and 60 minutes of reaction, 500 μL of the reaction mixture was mixed with 0.1 M Tris-Cl buffer (pH 7.0), and a total of 1 mL of the mixture was added at 410 nm to the p -nitrophenyl palmitate decomposition product p- The absorbance of phenol was measured.

실험 결과, pPICZα-A 벡터로 형질 전환된 균주를 대조구(control)로 설정하였을 때, pPICZα-CML로 형질 전환된 균주에서만 유의적인 흡광도 증가를 보였다. 이와 같은 실험 결과는 본 발명의 리파아제가 피키아 파스토리스에서 효율적으로 발현되었음을 의미하는 것이다. As a result, when the strain transformed with pPICZα-A vector was set as a control, significant increase in absorbance was observed only in the strain transformed with pPICZα-CML. These experimental results indicate that the lipase of the present invention was efficiently expressed in Pichia pastoris.

[[ 실시예Example 5:  5: 실시예Example 1에서 분리한  Separated from 1 코디셉스Cody's 밀리타리스Millitaris 유래 리파아제의 호스트별 발현 여부 및 발현 특성 비교] Expression and Expression Characteristics of Derived Lipase by Host]

본 실시예에서는 호스트를 달리하여, 실시예 1에서 분리한 코디셉스 밀리타리스 유래 리파아제의 발현 여부 및 발현 특성을 비교하고자 하였다. 호스트별 발현 벡터 및 균주는 하기 표 2에 기재된 바와 같았고, 형질 전환 방법 및 배양 조건은 해당 호스트 및 벡터에 관해 공지되어 있는 방법을 사용하였다. In this Example, the expression and expression characteristics of the lipase from Codisceps mililitaris isolated in Example 1 were compared by using different hosts. The host-specific expression vectors and strains were as shown in Table 2 below. Transformation methods and culturing conditions used a known method for the host and vector.

미생물microbe 발현벡터Expression vector 호스트 균주Host strain 발현 여부 및 정도Expression and degree 가용성(Soluble) 또는 불용성(Insoluble) 발현 여부Soluble or insoluble expression E. E. colicoli















pET29-CML-C6His

pET29-CML-C6His

BL21(DE3)BL21 (DE3) ++++ S < II <I
C43(DE3)C43 (DE3) ++++ II Origami(DE3)Origami (DE3) -- -- pET29-CML-MBP
pET29-CML-MBP
BL21(DE3)BL21 (DE3) ++++ S < II <I
C41(DE3)C41 (DE3) -- pET26-CML-C6His

pET26-CML-C6His

BL21(DE3)BL21 (DE3) ++++ II
C41(DE3)C41 (DE3) ++ II C43(DE3)C43 (DE3) ++ II pET26-CML-MBP
pET26-CML-MBP
BL21(DE3)BL21 (DE3) ++ S < II <I
C41(DE3)C41 (DE3) ++ S < II <I pCold-CML-C6His


pCold-CML-C6His


BL21(DE3)BL21 (DE3) -- --
C41(DE3)C41 (DE3) -- -- C43(DE3)C43 (DE3) -- -- Origami(DE3)Origami (DE3) ++ II pCold-CML-MBP

pCold-CML-MBP

BL21(DE3)BL21 (DE3) ++++ S < II <I
C41(DE3)C41 (DE3) ++ S < II <I Origami(DE3)Origami (DE3) -- -- YeastYeast pPICZα-CMLpPICZα-CML Pichia pastoris KM71 Pichia pastoris KM71 ++++ SS BaculovirusBaculovirus pDualBac-CMLpDualBac-CML Sf9 Sf 9 ++ SS

1) ++, high level of expression; +, low level of expression; -, no expression1) ++, high level of expression; +, low level of expression; -, no expression

2) S, soluble; I, insoluble 2) S, soluble; I, insoluble

실험결과, 대장균(E. coli) 시스템에서는 본 발명 리파아제가 비활성형인 불용성(insoluble) 내포체(inclusion body) 형태로 발현되었다. 하지만, 동충하초와 같은 진핵생물계인 배큘로바이러스(baculovirus) 시스템에서는 활성형인 가용성(soluble) 형태로 발현되었다. 다만, 발현된 단백질 발현량이 적은 문제가 있었는데, 배큘로바이러스는 원래 발현량 적고, 배양하는데 고비용 필요한 단점이 있다. 그런데, 배큘로바이러스에서 활성형으로 발현되었다는 것은 구축된 cDNA 시퀀스가 정확했음을 의미한다. As a result of the experiment, the E. coli system was expressed as an insoluble inclusion body in which the lipase of the present invention was inactive. However, it was expressed as an active form soluble in baculovirus system such as Cordyceps. However, there was a problem that the expression amount of the expressed protein was small, and the baculovirus originally exhibited a small amount of expression and had a disadvantage that it was expensive to cultivate. However, the expression of the baculovirus as an active form means that the constructed cDNA sequence is correct.

한편, 피키아에서 발현하였을 경우, 가용성 형태로 발현됨을 확인할 수 있었고, 생산량도 배큘로바이러스보다 많은 것으로 나타났다. On the other hand, when expressed in Pichia, it was confirmed to be expressed in a soluble form, and the production amount was higher than that of baculovirus.

이상의 결과, 배양비용 및 발현량을 고려할 때, 피키아(Pichia) 균주가 가장 적합한 호스트인 것으로 확인할 수 있었다. As a result, it was confirmed that the Pichia strain was the most suitable host considering the culture cost and the expression level.

<110> Seoul National University R&DB Foundation <120> Lipase with sn-1 specificity and method for production thereof <130> AP-2015-0132 <160> 2 <170> KopatentIn 2.0 <210> 1 <211> 1743 <212> DNA <213> Cordyceps militaris <400> 1 atgaaattct cacttgtggc tctggccact ctcccgtttt atgctgtcgc agcgcctcat 60 tgcccgggac aacccaatgg tccgcccagg gccgcggaag tgagggtcga tatacctggc 120 gccacaggcg gcacagtcat tggagtcgtc accgaagttg agagcttcaa cggcatcccc 180 tacgctgact gcccgtccgg tgcccttcga cttcgaccgc cgaggaagct ctcgcgcgcg 240 ctcggcgtct tcaacgccac ggccgccgcg ccggcctgtc cccagatgcc gcccaacacc 300 accgaagtgc tgctgccgcc gcttctcggc aaggacatga cgcccgagtt ctggccagac 360 gacctcatcc ggggccagga agactgcctc accgtcaacg tgcagcggcc caagggcacc 420 cgtgagggcg cccgcctgcc cgtgctcttc tacatctttg gaggcggctt cacggccggc 480 gccaccagcg ccaacaatgc cgaaaagttc ttgcggttcg ccgaggcgca gcagaagccg 540 cacccgttca tctttgtcgg cgtcaactac cgcgtcggcg ggttcgggtt cctcgccggc 600 agcgaggttc tcgaggacgg cagcaccaac ctcgggctcc gcgaccagcg gatgggcctc 660 gagtgggtgg cggacaacat tgcctacttt ggcggcgacc cggacagagt gaccatctgg 720 ggccagtcgt ccggctccat ctccgtgttt gaccagctcg cgctctacaa cggcaacgca 780 acctacaaac aaaagccgct tttccggagc gccatcatga actcgggcag cgtgattccc 840 acggagcggg tcgactcgca tcgggcgcag gccattttcg atgccgtcgt cgaagcggcc 900 aactgcagcg agccggccac ctccaagctg gactgtcttc gaaatgcctc ctttccgacc 960 ttctatcgcg cggcaaactc ggtcccgcgc atcttggaca actcgtctct cgccatctcc 1020 tacctgccgc ggcccgacgg ggagctgctg gcggacagtc ccgaggtcct tgccaacacg 1080 ggcaactact atgccgttcc cgccatcctc accaatcagg aggacgaagg aaccctgttc 1140 gctttcgccc agaggcacgt caacgacacc gacagcctcg tcgactatct caaggagacg 1200 tttttcgaca aggcgacaag ggagcaggtc gccggcctcg tggatacata cccagccgat 1260 tcggccgatg gaagcccgtt ccggactggt gatcagaacg agtggtacga ggaagcgtac 1320 ggtgccggca aaggcttcaa gagggtcgcg gctgtgatag gcgactttgt cttcacgctg 1380 gcccgtcgcc tggcgcttga tggcatggcc acttcgcatc cgacggtgcc tctttggtcc 1440 tctctgaact ccatggccca cgggattgtg ggcttctacg gtacgggaca cggtgcagat 1500 gtcaacatga tttttgaagg cattggcata cctgcgctga ctaccaggtc gtactatctg 1560 aatttcctat atactgccga cccgaataat ggtaccacgg aatttagaca gtggccaaag 1620 tggacgccac agggtaggga tttgctgtgg actaaccttt tggcgaatag agacttgaag 1680 gatactttca ggaatgatag ctatacattc ttgaaggaga atacggaggt actctacttc 1740 taa 1743 <210> 2 <211> 580 <212> PRT <213> Cordyceps militaris <400> 2 Met Lys Phe Ser Leu Val Ala Leu Ala Thr Leu Pro Phe Tyr Ala Val 1 5 10 15 Ala Ala Pro His Cys Pro Gly Gln Pro Asn Gly Pro Pro Arg Ala Ala 20 25 30 Glu Val Arg Val Asp Ile Pro Gly Ala Thr Gly Gly Thr Val Ile Gly 35 40 45 Val Val Thr Glu Val Glu Ser Phe Asn Gly Ile Pro Tyr Ala Asp Cys 50 55 60 Pro Ser Gly Ala Leu Arg Leu Arg Pro Pro Arg Lys Leu Ser Arg Ala 65 70 75 80 Leu Gly Val Phe Asn Ala Thr Ala Ala Ala Pro Ala Cys Pro Gln Met 85 90 95 Pro Pro Asn Thr Thr Glu Val Leu Leu Pro Pro Leu Leu Gly Lys Asp 100 105 110 Met Thr Pro Glu Phe Trp Pro Asp Asp Leu Ile Arg Gly Gln Glu Asp 115 120 125 Cys Leu Thr Val Asn Val Gln Arg Pro Lys Gly Thr Arg Glu Gly Ala 130 135 140 Arg Leu Pro Val Leu Phe Tyr Ile Phe Gly Gly Gly Phe Thr Ala Gly 145 150 155 160 Ala Thr Ser Ala Asn Asn Ala Glu Lys Phe Leu Arg Phe Ala Glu Ala 165 170 175 Gln Gln Lys Pro His Pro Phe Ile Phe Val Gly Val Asn Tyr Arg Val 180 185 190 Gly Gly Phe Gly Phe Leu Ala Gly Ser Glu Val Leu Glu Asp Gly Ser 195 200 205 Thr Asn Leu Gly Leu Arg Asp Gln Arg Met Gly Leu Glu Trp Val Ala 210 215 220 Asp Asn Ile Ala Tyr Phe Gly Gly Asp Pro Asp Arg Val Thr Ile Trp 225 230 235 240 Gly Gln Ser Ser Gly Ser Ile Ser Val Phe Asp Gln Leu Ala Leu Tyr 245 250 255 Asn Gly Asn Ala Thr Tyr Lys Gln Lys Pro Leu Phe Arg Ser Ala Ile 260 265 270 Met Asn Ser Gly Ser Val Ile Pro Thr Glu Arg Val Asp Ser His Arg 275 280 285 Ala Gln Ala Ile Phe Asp Ala Val Val Glu Ala Ala Asn Cys Ser Glu 290 295 300 Pro Ala Thr Ser Lys Leu Asp Cys Leu Arg Asn Ala Ser Phe Pro Thr 305 310 315 320 Phe Tyr Arg Ala Ala Asn Ser Val Pro Arg Ile Leu Asp Asn Ser Ser 325 330 335 Leu Ala Ile Ser Tyr Leu Pro Arg Pro Asp Gly Glu Leu Leu Ala Asp 340 345 350 Ser Pro Glu Val Leu Ala Asn Thr Gly Asn Tyr Tyr Ala Val Pro Ala 355 360 365 Ile Leu Thr Asn Gln Glu Asp Glu Gly Thr Leu Phe Ala Phe Ala Gln 370 375 380 Arg His Val Asn Asp Thr Asp Ser Leu Val Asp Tyr Leu Lys Glu Thr 385 390 395 400 Phe Phe Asp Lys Ala Thr Arg Glu Gln Val Ala Gly Leu Val Asp Thr 405 410 415 Tyr Pro Ala Asp Ser Ala Asp Gly Ser Pro Phe Arg Thr Gly Asp Gln 420 425 430 Asn Glu Trp Tyr Glu Glu Ala Tyr Gly Ala Gly Lys Gly Phe Lys Arg 435 440 445 Val Ala Ala Val Ile Gly Asp Phe Val Phe Thr Leu Ala Arg Arg Leu 450 455 460 Ala Leu Asp Gly Met Ala Thr Ser His Pro Thr Val Pro Leu Trp Ser 465 470 475 480 Ser Leu Asn Ser Met Ala His Gly Ile Val Gly Phe Tyr Gly Thr Gly 485 490 495 His Gly Ala Asp Val Asn Met Ile Phe Glu Gly Ile Gly Ile Pro Ala 500 505 510 Leu Thr Thr Arg Ser Tyr Tyr Leu Asn Phe Leu Tyr Thr Ala Asp Pro 515 520 525 Asn Asn Gly Thr Thr Glu Phe Arg Gln Trp Pro Lys Trp Thr Pro Gln 530 535 540 Gly Arg Asp Leu Leu Trp Thr Asn Leu Leu Ala Asn Arg Asp Leu Lys 545 550 555 560 Asp Thr Phe Arg Asn Asp Ser Tyr Thr Phe Leu Lys Glu Asn Thr Glu 565 570 575 Val Leu Tyr Phe 580 <110> Seoul National University R & DB Foundation <120> Lipase with sn-1 specificity and method for production thereof <130> AP-2015-0132 <160> 2 <170> Kopatentin 2.0 <210> 1 <211> 1743 <212> DNA <213> Cordyceps militaris <400> 1 atgaaattct cacttgtggc tctggccact ctcccgtttt atgctgtcgc agcgcctcat 60 tgcccgggac aacccaatgg tccgcccagg gccgcggaag tgagggtcga tatacctggc 120 gccacaggcg gcacagtcat tggagtcgtc accgaagttg agagcttcaa cggcatcccc 180 tacgctgact gcccgtccgg tgcccttcga cttcgaccgc cgaggaagct ctcgcgcgcg 240 ctcggcgtct tcaacgccac ggccgccgcg ccggcctgtc cccagatgcc gcccaacacc 300 accgaagtgc tgctgccgcc gcttctcggc aaggacatga cgcccgagtt ctggccagac 360 gacctcatcc ggggccagga agactgcctc accgtcaacg tgcagcggcc caagggcacc 420 cgtgagggcg cccgcctgcc cgtgctcttc tacatctttg gaggcggctt cacggccggc 480 gccaccagcg ccaacaatgc cgaaaagttc ttgcggttcg ccgaggcgca gcagaagccg 540 cacccgttca tctttgtcgg cgtcaactac cgcgtcggcg ggttcgggtt cctcgccggc 600 agcgaggttc tcgaggacgg cagcaccaac ctcgggctcc gcgaccagcg gatgggcctc 660 ggtgggtgg cggacaacat tgcctacttt ggcggcgacc cggacagagt gaccatctgg 720 ggccagtcgt ccggctccat ctccgtgttt gaccagctcg cgctctacaa cggcaacgca 780 acctacaaac aaaagccgct tttccggagc gccatcatga actcgggcag cgtgattccc 840 acggagcggg tcgactcgca tcgggcgcag gccattttcg atgccgtcgt cgaagcggcc 900 aactgcagcg agccggccac ctccaagctg gactgtcttc gaaatgcctc ctttccgacc 960 ttctatcgcg cggcaaactc ggtcccgcgc atcttggaca actcgtctct cgccatctcc 1020 tacctgccgc ggcccgacgg ggagctgctg gcggacagtc ccgaggtcct tgccaacacg 1080 ggcaactact atgccgttcc cgccatcctc accaatcagg aggacgaagg aaccctgttc 1140 gctttcgccc agaggcacgt caacgacacc gacagcctcg tcgactatct caaggagacg 1200 tttttcgaca aggcgacaag ggagcaggtc gccggcctcg tggatacata cccagccgat 1260 tcggccgatg gaagcccgtt ccggactggt gatcagaacg agtggtacga ggaagcgtac 1320 ggtgccggca aaggcttcaa gagggtcgcg gctgtgatag gcgactttgt cttcacgctg 1380 gcccgtcgcc tggcgcttga tggcatggcc acttcgcatc cgacggtgcc tctttggtcc 1440 tctctgaact ccatggccca cgggattgtg ggcttctacg gtacgggaca cggtgcagat 1500 gtcaacatga tttttgaagg cattggcata cctgcgctga ctaccaggtc gtactatctg 1560 aatttcctat atactgccga cccgaataat ggtaccacgg aatttagaca gtggccaaag 1620 tggacgccac agggtaggga tttgctgtgg actaaccttt tggcgaatag agacttgaag 1680 gatactttca ggaatgatag ctatacattc ttgaaggaga atacggaggt actctacttc 1740 taa 1743 <210> 2 <211> 580 <212> PRT <213> Cordyceps militaris <400> 2 Met Lys Phe Ser Leu Ala Leu Ala Thr Leu Pro Phe Tyr Ala Val   1 5 10 15 Ala Ala Pro His Cys Pro Gly Gln Pro Asn Gly Pro Pro Arg Ala Ala              20 25 30 Glu Val Arg Asp Ile Pro Gly Ala Thr Gly Gly Thr Val Ile Gly          35 40 45 Val Val Thr Glu Val Glu Ser Phe Asn Gly Ile Pro Tyr Ala Asp Cys      50 55 60 Pro Ser Gly Ala Leu Arg Leu Arg Pro Pro Arg Lys Leu Ser Arg Ala  65 70 75 80 Leu Gly Val Phe Asn Ala Thr Ala Ala Ala Pro Ala Cys Pro Gln Met                  85 90 95 Pro Pro Asn Thr Thr Glu Val Leu Leu Pro Pro Leu Leu Gly Lys Asp             100 105 110 Met Thr Pro Glu Phe Trp Pro Asp Asp Leu Ile Arg Gly Gln Glu Asp         115 120 125 Cys Leu Thr Val Asn Val Gln Arg Pro Lys Gly Thr Arg Glu Gly Ala     130 135 140 Arg Leu Pro Val Leu Phe Tyr Ile Phe Gly Gly Gly Phe Thr Ala Gly 145 150 155 160 Ala Thr Ser Ala Asn Ala Glu Lys Phe Leu Arg Phe Ala Glu Ala                 165 170 175 Gln Gln Lys Pro His Phe Ile Phe Val Gly Val Asn Tyr Arg Val             180 185 190 Gly Gly Phe Gly Phe Leu Ala Gly Ser Glu Val Leu Glu Asp Gly Ser         195 200 205 Thr Asn Leu Gly Leu Arg Asp Gln Arg Met Gly Leu Glu Trp Val Ala     210 215 220 Asp Asn Ile Ala Tyr Phe Gly Asp Pro Asp Arg Val Thr Ile Trp 225 230 235 240 Gly Gln Ser Ser Gly Ser Ile Ser Val Phe Asp Gln Leu Ala Leu Tyr                 245 250 255 Asn Gly Asn Ala Thr Tyr Lys Gln Lys Pro Leu Phe Arg Ser Ala Ile             260 265 270 Met Asn Ser Gly Ser Val Ile Pro Thr Glu Arg Val Asp Ser His Arg         275 280 285 Ala Gln Ala Ile Phe Asp Ala Val Val Glu Ala Ala Asn Cys Ser Glu     290 295 300 Pro Ala Thr Ser Lys Leu Asp Cys Leu Arg Asn Ala Ser Phe Pro Thr 305 310 315 320 Phe Tyr Arg Ala Asn Ser Val Pro Arg Ile Leu Asp Asn Ser Ser                 325 330 335 Leu Ala Ile Ser Tyr Leu Pro Arg Pro Asp Gly Glu Leu Leu Ala Asp             340 345 350 Ser Pro Glu Val Leu Ala Asn Thr Gly Asn Tyr Tyr Ala Val Pro Ala         355 360 365 Ile Leu Thr Asn Gln Glu Asp Glu Gly Thr Leu Phe Ala Phe Ala Gln     370 375 380 Arg His Val Asn Asp Thr Asp Ser Leu Val Asp Tyr Leu Lys Glu Thr 385 390 395 400 Phe Phe Asp Lys Ala Thr Arg Glu Gln Val Ala Gly Leu Val Asp Thr                 405 410 415 Tyr Pro Ala Asp Ser Ala Asp Gly Ser Pro Phe Arg Thr Gly Asp Gln             420 425 430 Asn Glu Trp Tyr Glu Glu Ala Tyr Gly Ala Gly Lys Gly Phe Lys Arg         435 440 445 Val Ala Val Ile Gly Asp Phe Val Phe Thr Leu Ala Arg Arg Leu     450 455 460 Ala Leu Asp Gly Met Ala Thr Ser His Pro Thr Val Pro Leu Trp Ser 465 470 475 480 Ser Leu Asn Ser Met Ala His Gly Ile Val Gly Phe Tyr Gly Thr Gly                 485 490 495 His Gly Ala Asp Val Asn Met Ile Phe Glu Gly Ile Gly Ile Pro Ala             500 505 510 Leu Thr Thr Arg Ser Tyr Tyr Leu Asn Phe Leu Tyr Thr Ala Asp Pro         515 520 525 Asn Asn Gly Thr Thr Glu Phe Arg Gln Trp Pro Lys Trp Thr Pro Gln     530 535 540 Gly Arg Asp Leu Leu Trp Thr Asn Leu Leu Ala Asn Arg Asp Leu Lys 545 550 555 560 Asp Thr Phe Arg Asn Asp Ser Tyr Thr Phe Leu Lys Glu Asn Thr Glu                 565 570 575 Val Leu Tyr Phe             580

Claims (7)

sn-1 위치를 특이적으로 가수분해하거나 에스테르화할 수 있는 것으로, 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제.
a lipase having an amino acid sequence as set forth in SEQ ID NO: 2, which is capable of specifically hydrolyzing or esterifying the sn- 1 position.
서열번호 2에 기재된 아미노산 서열을 갖는 리파아제를 생산함에 있어서,
발현용 호스트 균주로 피키아(Pichia) 속 균주를 사용하는 것을 특징으로 하는 리파아제의 생산방법.
In producing the lipase having the amino acid sequence shown in SEQ ID NO: 2,
Wherein the host strain for expression is a strain of the genus Pichia .
제2항에 있어서,
상기 피키아 속 균주는,
피키아 파스토리스 (Pichia pastoris)인 것을 특징으로 하는 리파아제의 생산방법.
3. The method of claim 2,
The above-
Pichia &lt; / RTI &gt; pastoris ).
제2항에 있어서,
상기 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제는,
코디셉스 밀리타리스 (Cordyceps militaris)로부터 유래한 것을 특징으로 하는 리파아제의 생산방법.
3. The method of claim 2,
The lipase having the amino acid sequence of SEQ ID NO:
Cordyceps militaris. &lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제2항에 있어서,
상기 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제는,
sn-1 위치 특이적 리파아제인 것을 특징으로 하는 리파아제의 생산방법.
3. The method of claim 2,
The lipase having the amino acid sequence of SEQ ID NO:
sec -1 position-specific lipase.
글리세린 지방산 에스테르의 sn-1 위치를 가수분해함에 있어서, 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제를 사용하는 것을 특징으로 하는 sn-1 위치 특이적 가수분해방법.
According, sn -1 position-specific hydrolysis methods characterized by using a lipase having the amino acid sequence shown in SEQ ID NO: 2 as the hydrolysis of the sn -1 position of glycerol fatty acid ester.
글리세린 sn-1 위치에 지방산 결합시키는 에스테르화 반응에 있어서, 서열번호 2에 기재된 아미노산 서열을 갖는 리파아제를 사용하는 것을 특징으로 하는 sn-1 위치 특이적 에스테르화 반응방법. A sn- 1 site-specific esterification reaction method characterized by using a lipase having an amino acid sequence as set forth in SEQ ID NO: 2 in an esterification reaction in which a fatty acid is bonded to the sn- 1 position of glycerin.
KR1020150116185A 2015-08-18 2015-08-18 Lipase with sn-1 specificity and method for production thereof KR101713885B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150116185A KR101713885B1 (en) 2015-08-18 2015-08-18 Lipase with sn-1 specificity and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150116185A KR101713885B1 (en) 2015-08-18 2015-08-18 Lipase with sn-1 specificity and method for production thereof

Publications (2)

Publication Number Publication Date
KR20170021595A true KR20170021595A (en) 2017-02-28
KR101713885B1 KR101713885B1 (en) 2017-03-09

Family

ID=58402573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150116185A KR101713885B1 (en) 2015-08-18 2015-08-18 Lipase with sn-1 specificity and method for production thereof

Country Status (1)

Country Link
KR (1) KR101713885B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110121393A (en) 2010-04-30 2011-11-07 경북대학교 산학협력단 Lipase produced from pichia lynferdii nrrl y-7723, and use of thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110121393A (en) 2010-04-30 2011-11-07 경북대학교 산학협력단 Lipase produced from pichia lynferdii nrrl y-7723, and use of thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI GenBank Accession No. XP_006666131: extracellular lipase, putative [Cordyceps militaris CM01] (2014.01.14.)* *

Also Published As

Publication number Publication date
KR101713885B1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US20040142441A1 (en) Enzymes with lipase/acyltransferase activity, nucleic acids encoding the same and methods of use thereof
CN113862233B (en) Method for improving acid stability of glucose oxidase, mutant Q241E/R499E, gene and application
Dong et al. Improving expression of thermostable trehalase from Myceliophthora sepedonium in Aspergillus niger mediated by the CRISPR/Cas9 tool and its purification, characterization
CN106591271A (en) Arginine deiminase mutant with improved enzyme activity and temperature stability and application of mutant
CN107858340A (en) The phosphate aldolase A mutant of D fructose 6, recombinant expression carrier, genetic engineering bacterium and its application of high catalytic activity
JP2024508555A (en) A gene that efficiently expresses hyaluronic acid hydrolase and its expression method
CN110904072A (en) Novel phospholipase D and method for preparing functional phospholipid by using same
CN106754818B (en) Heat-resistant esterase mutant and preparation method and application thereof
CN110129305B (en) Cephalosporin C acylase mutant for preparing 7-ACA
US20160298095A1 (en) Nucleic acid molecules for increased protein production
KR101713885B1 (en) Lipase with sn-1 specificity and method for production thereof
KR20200013439A (en) A mutant lipase having enhanced transesterification activity and its application for biodiesel production
CN110951711B (en) Esterase with activity of degrading chiral ester and coding gene and application thereof
CN109943618B (en) Application of recombinant lipase in resolution of (R, S) -alpha-ethyl-2-oxo-1-pyrrolidine methyl acetate
CN109762801B (en) Halogen alcohol dehalogenase mutant and application thereof in synthesizing chiral drug intermediate
RU2560577C2 (en) Compositions and methods of obtaining enterokinase in yeasts
KR101837130B1 (en) Novel lipase from yeast Candida butyri SH-14 and the Use thereof
US20020068349A1 (en) Gene encoding recombinant trehalose phosphorylase, vector containing the gene, transformant transformed by the gene, and method for producing recombinant trehalose phosphorylase with the use of transformant
KR101081012B1 (en) Chlorohydrin and hydroxy carboxylic ester hydrolase gene
CN113684195B (en) Sterol esterase and coding gene and mutant thereof
KR102065239B1 (en) Low temperature activated lipase and producing method thereof
KR100330359B1 (en) Novel esterase derived from Pseudomonas aeruginosa, its gene and process for production of optically active carboxylic acids using them
CN112410318B (en) Novel phospholipase A2Gene, preparation method and application thereof
KR101828080B1 (en) Cold-Active Lipase from Psychrobacter sp.
JP2017060424A (en) Lipases, polynucleotides, recombinant vectors, transformants, methods of producing lipase, methods of hydrolyzing glycerolipid and methods of producing glycerolipid hydrolysate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 4