KR20170017519A - Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2 - Google Patents

Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2 Download PDF

Info

Publication number
KR20170017519A
KR20170017519A KR1020150111577A KR20150111577A KR20170017519A KR 20170017519 A KR20170017519 A KR 20170017519A KR 1020150111577 A KR1020150111577 A KR 1020150111577A KR 20150111577 A KR20150111577 A KR 20150111577A KR 20170017519 A KR20170017519 A KR 20170017519A
Authority
KR
South Korea
Prior art keywords
mir
expression
inflammatory
slit3
lps
Prior art date
Application number
KR1020150111577A
Other languages
Korean (ko)
Other versions
KR101713428B1 (en
Inventor
장은주
김은영
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to KR1020150111577A priority Critical patent/KR101713428B1/en
Publication of KR20170017519A publication Critical patent/KR20170017519A/en
Application granted granted Critical
Publication of KR101713428B1 publication Critical patent/KR101713428B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/10Musculoskeletal or connective tissue disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7095Inflammation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a pharmaceutical composition for preventing or treating inflammatory bone diseases containing miR-218-2 as an active ingredient and, more specifically, miR-218-2 inhibits the expression of inflammatory factors which are activated by an inflammatory signal and inhibits the expression of receptor activator of nuclear factor kappa B ligand (RANKL) proteins which induce differentiation into osteoclasts. As the miR-218-2 is confirmed to inhibit inflammatory bone loss, the composition containing miR-218-2 as an active ingredient can be used as a therapeutic agent for inflammatory bone diseases and an osteoclast differentiation inhibitor. Furthermore, the degree of miR-218-2 expression of macrophages in blood can be identified, thereby being used to diagnose bone diseases.

Description

miR 218-2를 유효성분으로 함유하는 염증성 뼈 질환 예방 또는 치료용 약학조성물{Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2}[0001] The present invention relates to a pharmaceutical composition for preventing or treating inflammatory bone diseases containing miR 218-2 as an active ingredient,

본 발명은 miR 218-2를 유효성분으로 함유하는 염증성 뼈 질환 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing or treating inflammatory bone diseases, which comprises miR 218-2 as an active ingredient.

뼈는 인체의 연조직과 체중을 지탱해주고 내부기관을 둘러싸고 있어 외부의 충격으로부터 내부 장기를 보호한다. 또한, 근육이나 장기를 구조적으로 지탱할 뿐만 아니라 체내의 칼슘이나 다른 필수 무기질 즉 인이나 마그네슘과 같은 물질을 저장하는 인체의 중요한 부분 중 하나이다. 따라서 성장이 끝난 성인의 뼈는 멈추지 않고 오래된 뼈는 제거하고 새로운 뼈로 대체하는 생성 및 흡수과정을 지속적으로 반복하여 균형을 유지시키는데, 이를 뼈의 재형성이라고 한다. 이러한 뼈의 재형성은 성장과 스트레스에 의해 일어나는 뼈의 미세한 손상을 회복시키고 뼈의 기능을 적절히 유지하는데 필수적이다.The bones support the body's soft tissue and body weight and surround the internal organs to protect the internal organs from external shocks. It is also an important part of the human body that not only supports the muscles and organs but also stores calcium and other essential minerals, such as phosphorus and magnesium, in the body. Thus, adult bones do not stop growing, but old bones are removed and replaced with new bones. The process of production and absorption is repeated continuously to maintain balance, which is called bone remodeling. Such bone reshaping is essential for restoring fine bone damage caused by growth and stress and for maintaining bone function properly.

뼈의 재형성에는 크게 두 종류의 세포가 관여하는 것으로 알려져 있는데, 뼈를 형성하는 조골세포(osteoblast)와 뼈를 파괴하는 파골세포(osteoclast)에 의해 건강한 뼈가 유지된다. 파골세포의 분화 및 활성을 위해서는 랭클(RANKL)이라는 단백질이 중요한 역할을 하는데, 랭클은 파골 전구세포 표면에 존재하는 수용체 랭크(RANK)와 결합하여 파골 전구세포가 파골세포로 분화되어 골 흡수가 일어난다. Two types of cells are involved in bone remodeling. Healthy bones are maintained by osteoblasts forming bones and osteoclasts destroying bones. In order to differentiate and activate osteoclasts, a protein called RANKL plays an important role. RANKL binds to a receptor rank (RANK) existing on the surface of osteoclast precursor cells, and osteoclast precursor cells are differentiated into osteoclasts, resulting in bone resorption .

따라서, 오래된 뼈의 흡수 또는 파괴는 상기 기작을 통하여 파골세포에 의해 이루어지며, 이는 뼈에 구멍을 내어 적은 양의 칼슘이 혈류로 방출되어 신체기능을 유지하는데 사용되며, 조골세포는 교원질로 구멍을 채우고 칼슘과 인의 침적물을 덮어서 단단한 새로운 뼈를 만들어 골격을 재건하게 된다.Thus, the absorption or destruction of old bone is accomplished by the osteoclast through the above mechanism, which is used to maintain a bodily function by releasing a small amount of calcium into the blood stream through a hole in the bone, Filling and depositing calcium and phosphorus deposits, and rebuilding the skeleton by making solid new bones.

그러나, 뼈의 형성과 파괴의 평형이 깨지게 되면 여러 가지 뼈 질환이 유발되는데, 그 중 염증반응에 의한 파골전구 세포의 이동 및 분화 증가는 과도한 뼈 흡수를 유도하고 이러한 현상은 뼈 질환을 유발하는 병인으로 작용하고 있다.However, when the equilibrium of bone formation and destruction is broken, various bone diseases are induced. Among them, increase of migration and differentiation of osteoclast precursor cells caused by inflammation induces excessive bone uptake, which is a cause of bone diseases .

이러한 염증반응에 의한 과도한 뼈의 파괴는 골밀도 감소를 유발하여 골다공증과 같은 질환의 원인이 되기 때문에 염증반응에 의해 유도되는 파골세포의 과분화를 억제하여 골밀도 감소에 따른 뼈 질환을 예방하거나 치료할 수 있는 기술의 개발이 필요한 실정이다.Since excessive bone destruction caused by the inflammatory reaction causes bone diseases such as osteoporosis by causing bone loss, it is possible to prevent or treat osteopathy due to reduction of bone density by inhibiting osteoclast hyperplasia induced by inflammation reaction It is necessary to develop technology.

한국등록특허 제10-1264014호(2013.05.07)Korean Patent No. 10-1264014 (2013.05.07)

본 발명은 염증반응에 의해 유도되는 파골세포의 분화를 억제하는 miR 218-2를 유효성분으로 함유하는 조성물을 염증성 뼈 질환을 예방하거나 치료할 수 있는 약학조성물 및 파골세포 분화 억제제로 제공하고자 한다.The present invention provides a composition comprising miR 218-2 as an active ingredient which inhibits osteoclast differentiation induced by an inflammatory reaction, as a pharmaceutical composition capable of preventing or treating inflammatory bone diseases and an osteoclast differentiation inhibitor.

본 발명은 miR 218-2를 유효성분으로 함유하는 염증성 뼈 질환 예방 또는 치료용 약학조성물을 제공하고자 한다.The present invention is intended to provide a pharmaceutical composition for preventing or treating inflammatory bone diseases containing miR 218-2 as an active ingredient.

본 발명은 miR 218-2를 유효성분으로 함유하는 파골세포 분화 억제제를 제공하고자 한다.The present invention provides an osteoclast differentiation inhibitor containing miR 218-2 as an active ingredient.

또한, 본 발명은 혈액에서 대식세포를 분리하는 단계; 및 상기 분리된 대식세포의 miR 218-2 발현 정도를 확인하는 단계를 포함하는 염증성 뼈 질환 진단방법을 제공하고자 한다. In addition, the present invention provides a method for treating a hematopoietic cell, comprising: separating macrophages from blood; And confirming the expression level of miR 218-2 in the isolated macrophages.

본 발명에 따르면, miR 218-2는 염증 신호에 의해 활성화되는 염증성 인자의 발현을 억제하고 파골세포로의 분화를 유도하는 RANK 단백질의 발현을 억제하여 염증성 뼈 소실을 억제하는 하는 것이 확인됨에 따라, miR 218-2를 유효성분으로 함유하는 조성물을 염증성 뼈 질환 치료제 및 파골세포 분화 억제제로 사용할 수 있으며, 혈액 내 대식세포의 miR 218-2 발현 정도를 확인하여 뼈 질환을 진단하는데 이용될 수 있다. According to the present invention, it has been confirmed that miR 218-2 inhibits the expression of an inflammatory factor activated by an inflammatory signal and suppresses the expression of RANK protein inducing differentiation into osteoclasts, thereby suppressing inflammatory bone loss, a composition containing miR 218-2 as an active ingredient can be used as a therapeutic agent for inflammatory bone disease and an osteoclast differentiation inhibitor and can be used for diagnosing bone diseases by confirming the expression level of miR 218-2 in macrophages in blood.

도 1은 SLIT3 및 miR 218-2가 염증 신호에 의해 유도되는 염증성 인자들의 발현에 미치는 영향을 확인한 결과로, 도 1A는 SLIT3 siRNA가 형질주입된 대식세포를 LPS로 자극시켜 SLIT3이 염증성 인자들의 발현에 미치는 영향을 확인한 결과이며, 도 1B는 LPS로 자극시킨 대식세포에 miR 218-2 억제제를 처리하여 miR 218-2이 염증성 인자들의 발현에 미치는 영향을 확인한 결과이다.
도 2는 염증 신호인 LPS에 의한 SLIT3을 활성을 확인한 결과로, 도 1A는 LPS에 의한 SLIT3 및 ROBO1의 RNA 발현 수준을 확인한 RT-PCR 결과이며, 도 1B는 실시간 PCR 결과이며, 도 1C는 SLIT3 및 ROBO1 단백질의 발현 수준 및 발현 위치를 확인한 형광면역염색 결과이다.
도 3은 SLIT3의 파골세포분화 조절 효과를 확인한 결과로, 도 3A는 SLIT3 siRNA가 형질주입된 대식세포에서 LPS 처리에 따른 SLIT3 mRNA 발현 수준을 확인한 RT-PCR 결과이며, 도 3B는 SLIT3 siRNA가 형질주입된 대식세포에서 LPS 처리에 따른 RANK(Tnfrsf11a) mRNA 발현 수준을 확인한 RT-PCR 결과이며, 도 3C는 LPS가 처리된 대식세포에서 파골세포분화에 주요 신호 단백질인 RANK(Tnfrsf11a)와 Csf1r(M-CSF 수용체) 발현 수준을 확인한 GEO 프로필 분석결과이며, 도 3D는 LPS가 처리된 대식세포에서 RANK(Tnfrsf11a)와 Csf1r(M-CSF 수용체) mRNA 발현 수준을 확인한 RT-PCR 및 실시간 PCR 결과이다.
도 4는 SLIT3 발현이 RANKL에 의한 파골세포분화에 미치는 영향을 확인한 결과로, 도 4A는 RANKL이 처리된 대식세포에 LPS를 처리하거나 비처리하고 3일 후 TRAP 염색하여 대식세포의 파골세포 분화 정도를 확인한 결과이며, 도 4B는 SLIT3 siRNA가 형질주입된 대식세포에 LPS를 처리 또는 비처리하고 3일 후 TRAP 염색하여 파골세포 분화 정도를 확인한 결과이다.
도 5는 SLIT3 발현과 상관없이 LPS에 의한 신호과정에 따른 단백질 발현 효과를 확인한 결과로, 도 5A는 SLIT3 siRNA가 형질주입된 대식세포에 LPS를 10 ng/ml 농도로 표시된 시간 동안 처리하고 LPS 처리에 의해 발현되는 단백질의 수준을 확인한 웨스턴 블롯 결과이며, 도 5B는 SLIT3 siRNA가 형질주입된 대식세포에서 LPS 처리에 따른 miR 218-2의 발현 정도를 확인한 RT-PCR 결과이다.
도 6은 miR 218-2가 RANK 발현에 미치는 영향을 확인한 결과로, 도 6A는 SLIT3 siRNA가 형질주입된 대식세포에 1 및 10 ng/ml 농도의 LPS를 처리하고 miR 218-2 발현 수준을 확인한 결과이며, 도 6B는 miR 218-2가 결합하는 RANK 3'TUR 영역의 2개의 부위 및 이를 돌연변이 시킨 모식도이며, 도 6C는 WT 플라스미드 DNA 또는 각각의 돌연변이 플라스미드 DNA(Mut1, Mut2 또는 Mut1/Mut2)를 마우스 NIH 3T3 세포에 100 nM 농도의 miR 218-2 모의체(mimic) 올리고뉴클레오타이드와 함께 형질주입하고 24시간 후 수행한 루시퍼레이즈 분석결과이며, 도 6D는 RT-PCR 결과이며, 도 6E는 실시간 RT-PCR 결과이며, 도 6F는 miR 218-2 또는 anti-miR 218-2를 세포에 형질주입하고 24시간 후 RANKL 및 LPS로 자극을 주어 파골세포분화를 유도하여 miR 218-2가 파골세포분화 미치는 영향을 확인한 결과이다.
Figure 1 shows the effect of SLIT3 and miR 218-2 on the expression of inflammatory factors induced by inflammatory signals. Figure 1A shows that SLIT3 stimulates SLPS3 siRNA-transfected macrophages with LPS to induce the expression of inflammatory factors FIG. 1B shows the results of examining the effect of miR 218-2 on the expression of inflammatory factors by treating miR 218-2 inhibitor with LPS-stimulated macrophages.
FIG. 2A shows RT-PCR results of SLIT3 and ROBO1 RNA expression levels confirmed by LPS, FIG. 1B shows real-time PCR results, FIG. 1C shows SLIT3 And ROBO1 protein expression levels and expression positions.
FIG. 3 shows the results of confirming the effect of SLIT3 on osteoclast differentiation. FIG. 3A shows RT-PCR results of SLIT3 mRNA expression level by LPS treatment in SLIT3 siRNA transfected macrophages, and FIG. 3B shows SLIT3 siRNA (Tnfrsf11a) mRNA expression level by LPS treatment in the injected macrophages. FIG. 3C shows RT-PCR results of RANK (Tnfrsf11a) and Csf1r (M) in osteoclast differentiation in LPS- FIG. 3D shows RT-PCR and RT-PCR results of RANK (Tnfrsf11a) and Csf1r (M-CSF receptor) mRNA expression levels in LPS-treated macrophages.
FIG. 4 shows the results of confirming the effect of SLIT3 expression on RANKL-induced osteoclast differentiation. FIG. 4A shows the results of RANKL-treated macrophages treated with LPS or untreated, and 3 days after TRAP staining, FIG. 4B shows the results of confirming the osteoclast differentiation level by TRAP staining 3 days after treatment with SLP3 siRNA-treated macrophages with or without LPS treatment.
FIG. 5 shows the effect of LPS on signal transduction of SLIT3 regardless of SLIT3 expression. FIG. 5A shows that SLIT3 siRNA transfected macrophages were treated with LPS at a concentration of 10 ng / ml for the indicated time and treated with LPS FIG. 5B shows RT-PCR results of confirming the expression level of miR 218-2 by LPS treatment in SLIT3 siRNA-transfected macrophages.
FIG. 6 shows the results of confirming the effect of miR 218-2 on the expression of RANK. FIG. 6A shows the expression of miR 218-2 in LPS treated with 1 and 10 ng / ml of SLIT3 siRNA transfected macrophages 6B is a schematic diagram showing two regions of the RANK 3'TUR region to which miR 218-2 binds and a mutant thereof, and Fig. 6C is a schematic diagram showing the WT plasmid DNA or each mutant plasmid DNA (Mut1, Mut2 or Mut1 / Mut2) 6D is a result of RT-PCR, and FIG. 6E is a graph showing the results of the RT-PCR in the case of real-time PCR FIG. 6F shows the results of RT-PCR. FIG. 6F shows that miR 218-2 or anti-miR 218-2 was transfected into cells and stimulated with RANKL and LPS at 24 hours, The results are confirmed.

본 발명은 miR 218-2를 유효성분으로 함유하는 염증성 뼈 질환 예방 또는 치료용 약학조성물을 제공할 수 있다. The present invention can provide a pharmaceutical composition for preventing or treating inflammatory bone diseases containing miR 218-2 as an active ingredient.

상기 염증성 뼈 질환은 골다공증, 퇴행성 관절염 및 강직성 척추염으로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다.The inflammatory bone disease may be selected from the group consisting of osteoporosis, degenerative arthritis and ankylosing spondylitis, but is not limited thereto.

상기 miR 218-2는 염증성 인자의 발현을 억제하고, RANK 단백질의 발현을 억제하여 파골세포로의 분화를 억제할 수 있다.The miR 218-2 inhibits the expression of inflammatory factors and inhibits the expression of RANK protein to inhibit osteoclast differentiation.

본 발명의 일실시예에 따르면, 도 1과 같이 SILT3 및 miR 218-2는 염증 신호인 LPS에 의해 활성화되는 단백질로 SILT3가 활성화될 경우, 염증성 인자의 발현이 증가되는 반면, miR 218-2는 염증신호인 LPS에 의해 활성화되는 염증성 인자의 발현을 억제시키는 효과를 나타내었다. 또한, miR 218-2는 파골세포분화를 유도하는 RANKL 신호작용에 있어서, RANKL 단백질이 결합하는 수용체 단백질인 RANK의 발현을 억제하여 대식세포의 파골세포로의 분화를 억제하는 것을 확인함에 따라, 본 발명의 miR 218-2는 염증 신호로부터 발현이 유도되는 염증성 인자의 발현 및 파골세포분화를 억제하여 염증성 뼈 소실에 의한 뼈 질환을 예방하거나 치료할 수 있다.As shown in FIG. 1, SILT3 and miR 218-2 are proteins activated by LPS, which is an inflammatory signal. When SILT3 is activated, expression of inflammatory factors is increased, whereas miR 218-2 And inhibited the expression of inflammatory factors activated by LPS, an inflammatory signal. In addition, miR 218-2 inhibited the expression of RANK, a receptor protein bound to RANKL protein, and inhibited the differentiation of macrophages into osteoclasts in RANKL signaling that induces osteoclast differentiation, MiR 218-2 of the invention can prevent or treat osteopathy caused by inflammatory bone loss by inhibiting osteoclast differentiation and expression of inflammatory factors that are induced expression from an inflammatory signal.

또한, 본 발명은 miR 218-2를 유효성분으로 함유하는 파골세포 분화 억제제로 사용될 수 있다.In addition, the present invention can be used as an osteoclast differentiation inhibitor containing miR 218-2 as an active ingredient.

본 발명의 한 구체예에서, 상기 약학조성물은 약학조성물 100 중량부에 대하여 miR 218-2를 0.01 내지 90 중량부, 0.1 내지 90 중량부, 1 내지 90 중량부 또는 10 내지 90 중량부로 포함할 수 있으나 이에 한정되는 것은 아니고, 환자의 상태, 질환의 종류 및 진행 정도에 따라 달라질 수 있다.In one embodiment of the invention, the pharmaceutical composition may comprise 0.01 to 90 parts by weight, 0.1 to 90 parts by weight, 1 to 90 parts by weight or 10 to 90 parts by weight of miR 218-2 relative to 100 parts by weight of the pharmaceutical composition But the present invention is not limited thereto, and may vary depending on the condition of the patient, the type of disease, and the progress of the disease.

본 발명의 다른 구체예에서, 상기 약학조성물은 담체, 부형제, 붕해제, 감미제, 피복제, 팽창제, 윤활제, 활택제, 향미제, 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제로 이루어진 군에서 선택되는 하나 이상의 보조제를 추가로 포함할 수 있다.In another embodiment of the present invention, the pharmaceutical composition comprises a carrier, an excipient, a disintegrant, a sweetener, a coating agent, a swelling agent, a lubricant, a lubricant, a flavoring agent, an antioxidant, a buffer, a bacteriostatic agent, a diluent, a dispersant, A lubricant, and a lubricant.

구체적으로 담체, 부형제 및 희석제는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 사용할 수 있으며, 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용할 수 있다. 경구를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 있으며 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기재로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.Specific examples of carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, Cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil. Solid formulations for oral administration may be in the form of tablets, pills, powders, granules, capsules These solid preparations can be prepared by mixing at least one excipient, for example, starch, calcium carbonate, sucrose or lactose, gelatin, etc., into the composition. In addition to simple excipients, lubricants such as magnesium stearate and talc may also be used. Examples of the liquid preparation for oral use include suspensions, solutions, emulsions, syrups and the like, and various excipients such as wetting agents, sweeteners, fragrances, preservatives and the like may be included in addition to water and liquid paraffin which are commonly used simple diluents. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, suppositories, and the like. Examples of the suspending agent include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like. As the suppository base, witepsol, macrogol, tween 61, cacao paper, laurin, glycerogelatin and the like can be used.

본 발명의 또 다른 구체예에서, 상기 약학조성물의 제형은 과립제, 산제, 피In another embodiment of the invention, the formulation of the pharmaceutical composition comprises granules, powders,

복정, 정제, 환제, 캡슐제, 좌제, 겔, 시럽, 즙, 현탁제, 유제, 점적제 또는 액제로 이루어진 군에서 선택될 수 있다.And may be selected from the group consisting of tablets, tablets, pills, capsules, suppositories, gels, syrups, juices, suspensions, emulsions, drops or solutions.

본 발명의 일실시예에 따르면, 상기 약학조성물은 정맥내, 동맥내, 복강내,근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 대상체로 투여할 수 있다.According to one embodiment of the present invention, the pharmaceutical composition may be administered orally, intraarterally, intraperitoneally, intramuscularly, intraarterally, intraperitoneally, intrasternally, transdermally, nasally, inhaled, topically, rectally, Can be administered to a subject in a conventional manner via the intradermal route.

상기 약학조성물의 바람직한 투여량은 환자의 상태 및 체중, 질환의 종류 및 정도, 약물 형태, 투여경로 및 기간에 따라 달라질 수 있으며 당업자에 의해 적절하게 선택될 수 있다. 본 발명의 일실시예에 따르면 이에 제한되는 것은 아니지만 1일 투여량이 0.01 내지 1,000 mg/kg, 구체적으로는 0.1 내지 1,000 mg/kg, 보다 구체적으로는 0.1 내지 100 mg/kg 일 수 있다. 투여는 하루에 한 번 투여할 수도 있고 수회로 나누어 투여할 수도 있으며, 이에 의해 본 발명의 범위가 제한되는 것은 아니다.The preferred dosage of the pharmaceutical composition may vary depending on the condition and body weight of the patient, the type and degree of disease, the type of drug, the route of administration, and the duration, and may be appropriately selected by those skilled in the art. According to one embodiment of the present invention, the daily dose may be 0.01 to 1,000 mg / kg, specifically 0.1 to 1,000 mg / kg, more specifically 0.1 to 100 mg / kg, though it is not limited thereto. The administration may be performed once a day or divided into several times, and thus the scope of the present invention is not limited thereto.

본 발명에 있어서, 상기 '대상체'는 인간을 포함하는 포유동물일 수 있으나, 이들 예에 한정되는 것은 아니다.In the present invention, the 'subject' may be a mammal including a human, but is not limited thereto.

본 발명은 혈액에서 대식세포를 분리하는 단계; 및 상기 분리된 대식세포의 miR 218-2 발현 정도를 확인하는 단계를 포함하는 염증성 뼈 질환 진단방법을 제공할 수 있다. The present invention relates to a method for the isolation of macrophages from blood; And confirming the expression level of miR 218-2 in the isolated macrophages.

보다 상세하게는 혈액 유래 대식세포에서 miR 218-2 발현이 감소되는 것을 확인하여 염증성 뼈 질환을 진단할 수 있다.More specifically, miR 218-2 expression is reduced in blood-derived macrophages, thereby diagnosing inflammatory bone diseases.

또한, 본 발명은 miR 218-2를 검출하는 제제를 포함하는 염증성 뼈 질환 진단용 바이오마커 조성물을 제공할 수 있다.In addition, the present invention can provide a biomarker composition for the diagnosis of inflammatory bone diseases, which comprises an agent for detecting miR 218-2.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 실시예Example 1> 염증 신호에 의한 단백질 활성 확인 1> Identification of protein activity by inflammatory signal

염증 신호인 LPS에 의해 발현되는 SLIT3과 miR 218-2가 대식세포에 미치는 영향을 확인하였다.The effects of SLIT3 and miR 218-2 expressed by LPS, an inflammatory signal, on macrophages were examined.

대식세포에 SLIT3 siRNA(Thermo Scientific Dharmacon, Lafayette, CO) 또는 control siRNA(Thermo Scientific Dharmacon)를 각각 형질주입하고 24시간 후, 10 ng/ml LPS를 처리하여 4시간 동안 자극을 주었다. 그 후, LPS에 의한 염증성 단백질의 발현 수준을 확인하기 위해, 세포를 수집하여 RNA를 추출하고 cDNA 합성 후 특이적인 MMP-9, IL-1β, TNF-α 및 IL-6 프라이머를 이용하여 실시간 PCR을 수행하였다.Macrophages were stimulated with SLIT3 siRNA (Thermo Scientific Dharmacon, Lafayette, CO) or control siRNA (Thermo Scientific Dharmacon) for 24 hours and then treated with 10 ng / ml LPS for 4 hours. Thereafter, in order to confirm the level of expression of the inflammatory protein by LPS, the cells were collected and RNA was extracted and subjected to real-time PCR using MMP-9, IL-1β, TNF-α and IL-6 primers specific for cDNA synthesis Respectively.

그 결과, 도 1A와 같이 SLIT3의 활성이 감소된 경우, 염증성 인자인 MMP-9, TNF-α 및 IL-6의 RNA 발현이 감소하였다.As a result, when the activity of SLIT3 was decreased as shown in Fig. 1A, RNA expression of the inflammatory factors MMP-9, TNF-a and IL-6 decreased.

또한, LPS를 처리하여 miR 218-2 활성이 증가된 대식세포에 miR 218-2 활성 억제제인 anti-miR 218-2(Qiagen, Hilden, Germany)를 처리한 후, 세포를 수집하여 RNA를 추출하고 cDNA 합성 후 특이적인 MMP-9, IL-1β, TNF-α 및 IL-6 프라이머를 이용하여 실시간 PCR을 수행하였다.In addition, anti-miR 218-2 (Qiagen, Hilden, Germany), which is an inhibitor of miR 218-2 activity, was treated with macrophages having increased miR 218-2 activity by treatment with LPS, After cDNA synthesis, real-time PCR was performed using specific MMP-9, IL-1β, TNF-α and IL-6 primers.

그 결과, 도 1B와 같이 miR 218-2 활성 억제제에 의해 miR 218-2 활성이 억제됨에 따라, 염증성 단백질인 MMP-9, IL-1β, TNF-α 및 IL-6 발현이 증가하는 것을 확인할 수 있었다.As a result, as shown in FIG. 1B, miR 218-2 activity was inhibited by the miR 218-2 activity inhibitor, indicating that the inflammatory proteins MMP-9, IL-1β, TNF-α and IL-6 there was.

상기 결과로부터 염증 신호에 의해 발현되는 SLIT3 및 miR 218-2는 서로 다른 이중 신호를 통하여 대식세포의 분화 및 활성을 조절하는 신호 인자로 작용하는 것이 확인되었다.From these results, it was confirmed that SLIT3 and miR 218-2 expressed by the inflammatory signal function as signaling factors to regulate macrophage differentiation and activity through different double signals.

<< 실시예Example 2> 염증 신호에 따른  2> According to inflammation signal SLIT3SLIT3  And ROBO1ROBO1 단백질의 발현 수준 확인 Identify protein expression levels

앞선 실험결과를 확인하기 위해, 골수(Bone marrow)에서 유래된 대식세포를 배양 플레이트에 5×105 세포로 분주하고 24시간 배양한 후, 1 또는 10 ng/ml 농도의 LPS를 4시간 동안 처리하여 자극을 주고 세포를 수집하여 RNA를 추출하였다. 추출된 RNA를 이용하여 cDNA를 합성하고 특이적인 SLIT3 및 ROBO1 수용체의 프라이머를 사용하여 PCR 증폭하였으며, RT-PCR 및 실시간 PCR를 수행하여 발현량을 확인하였다.In order to confirm the previous experimental results, macrophages derived from bone marrow were divided into 5 × 10 5 cells on a culture plate, cultured for 24 hours, treated with 1 or 10 ng / ml of LPS for 4 hours The cells were harvested by stimulation and RNA was extracted. CDNA was synthesized using the extracted RNA and PCR amplification was performed using specific SLIT3 and ROBO1 receptor primers. RT-PCR and real time PCR were performed to confirm the expression level.

또한, SLIT3과 ROBO1의 단백질의 발현 수준 및 위치를 확인하기 위해, 커버 글라스에 8×103개의 대식세포를 부착시키고 10 ng/ml 농도의 LPS를 6시간 동안 처리하여 자극을 주고 세포를 고정한 후, 특이적인 SLIT3과 ROBO1의 1차 항체를 결합시키고 2차 항체인 Alexa-fluor 488 dye(녹색)로 SLIT3를 발현시켰으며, Alexa-fluor 649 dye(적색)로 ROBO1를 발현시켜 SLIT3과 ROBO1 단백질의 발현 수준과 위치를 확인하였다.In order to confirm the expression levels and positions of the proteins of SLIT3 and ROBO1, 8 × 10 3 macrophages were attached to cover glasses and treated with LPS at a concentration of 10 ng / ml for 6 hours to stimulate and fix the cells , SLIT3 was expressed with Alexa-fluor 488 dye (green) as a secondary antibody, and ROBO1 was expressed with Alexa-fluor 649 dye (red) to bind SLIT3 and ROBO1 Expression level and location were confirmed.

그 결과, 도 2와 같이 LPS에 의해 SLIT3과 ROBO1 단백질의 발현 수준이 증가하였으며, 상기 단백질 모두 핵막 주변에서 높은 발현밀도를 나타내었다.As a result, as shown in FIG. 2, expression levels of SLIT3 and ROBO1 proteins were increased by LPS, and all of the proteins showed high expression density around the nuclear membrane.

또한, 움직이는 세포의 원형질막(plasma membrane)에서도 SLIT3과 ROBO1 단백질의 발현이 확인되었다.In addition, SLIT3 and ROBO1 protein expression was also observed in the plasma membrane of the moving cells.

상기 결과로부터 LPS에 의한 염증 신호가 SLIT3과 ROBO1 단백질의 발현에 관여하는 것을 확인할 수 있었다.From the above results, it was confirmed that the inflammatory signal due to LPS is involved in the expression of SLIT3 and ROBO1 proteins.

<< 실시예Example 3>  3> SLIT3SLIT3 of RANKRANK 발현 조절능력 확인 Confirm expression control ability

앞선 실험결과와 같이 LPS에 의해 발현이 증가된 SLIT3가 RANK 발현에 미치는 영향을 확인하기 위해, SLIT3 특이적 siRNA 100 nM의 농도로 세포에 도입하고, 24시간 배양한 후 세포를 수집하여 siRNA을 추출하고, RT-PCR 및 실시간 PCR를 수행하여 단백질 발현 변화를 확인하였다.To confirm the effect of SLIT3 expression, which is increased by LPS, on RANK expression, SLIT3-specific siRNA was introduced into cells at a concentration of 100 nM and cultured for 24 hours. And RT-PCR and real-time PCR were performed to confirm changes in protein expression.

그 결과, 도 3과 같이 SLIT3 siRNA 도입 후 LPS에 의해 증가되었던 SLIT3 단백질의 발현이 감소하였으며, SLIT3에 의해 발현이 억제되었던 RANK의 발현이 회복되었다.As a result, as shown in FIG. 3, the expression of SLIT3 protein, which was increased by LPS after SLIT3 siRNA introduction, was decreased and the expression of RANK, which was inhibited by SLIT3, was restored.

실제로 GEO profile analysis 분석 결과에 따르면, LPS 신호에 의해 골수 유래 대식세포(Bone marrow-derived macrophages; BMMs)에서 파골세포형성(Osteoclastogenesis)에 주요한 신호 단백질인 RANK와 Csf1r(M-CSF 수용체)의 발현이 감소되는 것으로 보고되었으며, 본 발명자들 역시 도 3과 같이 LPS 신호에 의해 RANK와 Csf1r의 발현이 감소되는 것을 RT-PCR 및 실시간 PCR을 통하여 확인되었으며, 상기 결과로부터 RANK 발현이 SLIT3에 의해 조절되는 것을 확인할 수 있었다.In fact, according to the GEO profile analysis, the expression of RANK and Csf1r (M-CSF receptor), the major signal proteins in osteoclastogenesis in bone marrow-derived macrophages (BMMs) As shown in FIG. 3, the present inventors also confirmed by RT-PCR and real-time PCR that the expression of RANK and Csf1r is reduced by the LPS signal, and that the expression of RANK is regulated by SLIT3 I could confirm.

파골세포분화에 있어서, 염증신호 물질인 LPS는 RANK의 발현을 억제하여 RANKL의 활성을 억제시킴으로써, 초기의 파골세포분화를 억제하는 것으로 알려져있다.In osteoclast differentiation, LPS, which is an inflammatory signaling substance, is known to suppress early osteoclast differentiation by inhibiting the expression of RANK and inhibiting the activity of RANKL.

이를 확인하기 위해, RANKL 및 LPS를 세포에 처리한 결과, 도 4A와 같이 RANKL 와 LPS가 처리된 실험군에서는 파골세포분화가 현저하게 감소한 것이 확인되었다. 이에 대하여, SLIT3의 기능을 확인하기 위해 SLIT3 특이적 siRNA를 세포에 도입하고 24시간 배양 후, RANKL 및 LPS를 처리하여 파골세포의 분화를 유도하고 분화유도 3일 후, 세포를 고정하여 TRAP 염색(PMID: 24664887; Lee et al., PTX3 stimulates osteoclastogenesis by increasing osteoblast RANKL production, J Cell Physiol. 2014 Nov;229(11):1744-52)을 수행하였다.In order to confirm this, RANKL and LPS treatment of cells showed that osteoclast differentiation was significantly reduced in the experimental group treated with RANKL and LPS as shown in FIG. 4A. In order to confirm the function of SLIT3, SLIT3-specific siRNA was introduced into cells and incubated for 24 hours. RANKL and LPS were treated to induce differentiation of osteoclasts. After 3 days of induction of differentiation, cells were fixed and TRAP staining PMID: 24664887; Lee et al., PTX3 stimulates osteoclastogenesis by increasing osteoblast RANKL production, J Cell Physiol. 2014 Nov; 229 (11): 1744-52).

그 결과, 도 4B와 같이 SLIT3 발현이 억제된 세포군에서는 LPS 처리에 의해 파골세포 분화가 다시 회복되는 것이 확인되었다.As a result, it was confirmed that osteoclast differentiation was restored by LPS treatment in the cell group in which SLIT3 expression was suppressed as shown in Fig. 4B.

상기 결과로부터 LPS에 의한 RANK의 발현억제는 SLIT3 발현 억제를 통하여 회복될 수 있으며, 이는 RANKL 신호과정이 활성화되어 파골세포분화가 부분적으로 회복될 수 있음을 시사한다.These results suggest that inhibition of RANK expression by LPS can be restored through inhibition of SLIT3 expression, suggesting that osteoclast differentiation may be partially restored by activation of the RANKL signaling process.

상기 결과와 같이 SLIT3 발현 억제에도 LPS에 의한 신호전달 과정이 독립적으로 조절될 수 있는지를 웨스턴 블롯팅으로 확인하였다.As described above, it was confirmed by Western blotting that the signal transduction process by LPS could be independently controlled even in the inhibition of SLIT3 expression.

먼저, 대식세포 5×105 세포를 6-well 플레이트에 분주하여 24시간 배양하고, 대조군 siRNA 또는 SLIT3 siRNA 100 nM을 리포펙타민 RNAi Max reagent를 이용하여 형질주입시켰다. 형질주입 24시간 후 LPS 10 ng/ml로 표시된 시간에 따라 자극을 주고 2×SDS-sample buffer를 이용하여 단백질을 수집한 후 각각의 항체를 이용하여 웨스턴 블롯팅하였다.First, macrophages (5 × 10 5 cells) were seeded on a 6-well plate, cultured for 24 hours, and 100 nM of control siRNA or SLIT3 siRNA was transfected using lipofectamine RNAi Max reagent. After 24 hours of transfection, stimulation was given at the time indicated by 10 ng / ml of LPS, and proteins were collected using 2 x SDS-sample buffer, followed by Western blotting using each antibody.

그 결과, 도 5A와 같이 LPS에 영향을 받는 단백질들의 발현 및 활성이 SLIT3 넉아웃이 되었어도 영향을 받지 않는 것을 확인할 수 있었다.As a result, as shown in FIG. 5A, it was confirmed that the expression and activity of proteins affected by LPS were not affected even when SLIT3 knockout occurred.

상기 결과로부터 본 발명가들은 LPS에 의해 RANK의 발현을 조절하는 다른 인자가 있을 것으로 예상하고 SLIT3 발현에 의해 조절되는 miR 218-2의 발현을 확인하였다.From the above results, the present inventors expected that there would be another factor that regulates the expression of RANK by LPS and confirmed the expression of miR 218-2 regulated by SLIT3 expression.

그 결과, 도 5B와 같이 특이적으로 LPS에 의해서도 miR 218-2의 발현이 증가되는 것을 확인할 수 있었다. As a result, it was confirmed that the expression of miR 218-2 was also increased by LPS specifically as shown in FIG. 5B.

상기 결과로부터 SLIT3의 인트론에 코딩되어 SLIT3 발현에 따라 조절되는 miRNA로 알려져 있는 miR 218-2이 LPS에 의해서도 발현이 조절될 수 있음이 확인됨에 따라, miR 218-2가 RANK의 발현을 조절할 수 있을 것으로 제안될 수 있다.From the above results, it was confirmed that miR 218-2, which is encoded by the intron of SLIT3 and regulated by SLIT3 expression, can be regulated by LPS, suggesting that miR 218-2 can regulate the expression of RANK &Lt; / RTI &gt;

<< 실시예Example 4>  4> miRmiR 218-2의  218-2 RANKRANK 발현 조절능력 확인 Confirm expression control ability

앞선 실험결과를 확인하기 위해, 먼저 miR 218-2에 의해 SLIT3의 발현이 조절될 수 있는지 확인하였다.To confirm the previous experimental results, we first checked whether the expression of SLIT3 can be regulated by miR 218-2.

세포에 SLIT3 siRNA를 형질주입하고 24시간 후 10 ng/ml LPS를 처리하여 세포를 자극시키고 세포를 수집하여 단백질 발현량을 확인하였다.SLIT3 siRNA was transfected into the cells, and after 24 hours, 10 ng / ml LPS was treated to stimulate the cells and the amount of protein expression was confirmed by collecting the cells.

그 결과, 도 6A와 같이 대조군에서는 LPS에 의해 miR 218-2의 발현이 증가된 반면, SLIT3 발현이 억제된 세포에서는 miR 218-2의 발현이 억제된 것을 확인할 수 있었다.As a result, it was confirmed that the expression of miR 218-2 was increased by LPS in the control group as shown in FIG. 6A, whereas the expression of miR 218-2 was inhibited in the group with the suppression of SLIT3 expression.

상기 결과로부터 miR 218-2의 발현이 SLIT3에 의해 조절되어 지는 것이 확인되었다.From the above results, it was confirmed that the expression of miR 218-2 was regulated by SLIT3.

다음으로, miR 218-2가 RANK 3'UTR 영역에 결합할 수 있는지를 miR binding prediction program을 이용하여 확인하였다.Next, we confirmed whether miR 218-2 can bind to the RANK 3'UTR region using the miR binding prediction program.

그 결과, 도 6B와 같이 RANK 3'UTR 영역에 miR 218-2가 결합할 수 있는 2개의 부위를 확인하였다.As a result, as shown in FIG. 6B, two regions in which the miR 218-2 could bind were identified in the RANK 3'UTR region.

상기 확인된 2개의 부위에 miR 218-2가 결합하여 RANK의 발현을 조절할 수 있는지를 확인하기 위해, RANK 3'UTR 1kb 영역을 pMIR-리포트 벡터 DNA에 클로닝하고(도 6B, WT), 각각 두 개의 결합 부위(binding site)는 pMIR-리포트를 기본으로 한 Muta-DirectTM Site-directed mutagenesis kit(intron, seoul)를 이용하여 돌연변이 시켰다(도 6B, Mut1 또는 Mut2). In order to confirm whether miR 218-2 binds to the above-identified two sites to regulate the expression of RANK, the RANK 3'UTR 1kb region was cloned into pMIR-report vector DNA (Fig. 6B, WT) Binding sites were mutagenized using the pMIR-report based Muta-Direct TM site-directed mutagenesis kit (intron, seoul) (Fig. 6B, Mut1 or Mut2).

상기 WT 플라스미드 DNA 또는 각각의 돌연변이 플라스미드 DNA(Mut1, Mut2 또는 Mut1/Mut2)를 마우스 NIH 3T3 세포에 100 nM 농도의 miR 218-2 모의체(mimic) 올리고뉴클레오타이드와 함께 형질주입하였다.The WT plasmid DNA or each mutated plasmid DNA (Mut1, Mut2 or Mut1 / Mut2) was transfected into mouse NIH 3T3 cells with miR 218-2 mimic oligonucleotides at a concentration of 100 nM.

형질주입 24시간 후, 세포를 수집하여 단백질을 추출하고 루시퍼레이즈 분석을 수행하였다.After 24 hours of transfection, cells were harvested, proteins were extracted and luciferase assay was performed.

그 결과, 도 6C와 같이 WT에서는 miR 218-2에 의해 활성이 감소된 반면, 두 개의 결합 부위를 모두 돌연변이시킨 군에서는 활성 저하가 나타나지 않았다. As a result, activity was decreased by miR 218-2 in WT as shown in Fig. 6C, but activity did not decrease in the mutagenized group of both binding sites.

또한, RT-PCR 결과(도 6D) 및 실시간 RT-PCR 결과(도 6E), LPS가 처리된 세포군과 miR 218-2가 형질주입된 세포군에서는 RANK의 발현이 감소된 반면, anti-miR 218-2가 형질주입된 세포군과 LPS와 anti-miR 218-2를 함께 처리하여 miR 218-2의 활성을 억제시킨 세포군에서는 RANK의 발현이 현저하게 증가하였다.In addition, RT-PCR (FIG. 6D) and real-time RT-PCR (FIG. 6E) showed that RANK expression was decreased in the LPS treated cells and in the miR 218-2 transfected cells, whereas anti-miR 218- The expression of RANK was significantly increased in the cell line in which the miR 218-2 activity was inhibited by treatment with LPS and anti-miR 218-2.

또한, miR 218-2가 파골세포분화에 영향을 줄 수 있는지를 확인하기 위해, 각각 100 nM 농도의 miR 218-2 또는 anti-miR 218-2를 세포에 형질주입하고 24시간 후 RANKL 및 LPS로 자극을 주어 파골세포분화를 유도하였다.In order to confirm whether miR 218-2 could affect osteoclast differentiation, cells were transfected with miR 218-2 or anti-miR 218-2 at a concentration of 100 nM respectively, and after 24 hours, RANKL and LPS Stimulated osteoclast differentiation.

그 결과, 도 6F와 같이 miR 218-2가 형질주입된 세포에서 파골세포로의 분화가 감소된 반면, anti-miR 218-2가 형질주입된 세포에서는 파골세포로의 분화가 증가 되었으며, LPS와 anti-miR 218-2가 함께 처리된 세포군에서도 LPS에 의한 miR 218-2 활성 증가가 억제됨에 따라 파골세포분화가 증가된 것을 확인할 수 있었다. As a result, as shown in FIG. 6F, the differentiation of miR 218-2 into osteoclast was reduced in the cells transfected with miR 218-2, whereas the differentiation into osteoclasts was increased in the cells transfected with anti-miR 218-2, It was also confirmed that osteoclast differentiation was increased by inhibiting the increase of miR 218-2 activity by LPS in the cell group treated with anti-miR 218-2.

상기 결과로부터 miR 218-2의 발현은 RANK의 발현을 타겟으로 하며, LPS에 의한 신호활성을 통하여 파골세포분화를 음성 조절하는 것을 확인할 수 있었다.From the above results, it was confirmed that miR 218-2 expression targets RANK expression, and that osteoclast differentiation is negatively regulated through signaling by LPS.

이름name 서열(5'-3')The sequence (5'-3 ') AccessionAccession 서열번호SEQ ID NO: mir-218-2(mmu-mir-218-2-3p)mir-218-2 (mmu-mir-218-2-3p) CAUGGUUCUGUCAAGCACCGCGCAUGGUUCUGUCAAGCACCGCG MIMAT0005444MIMAT0005444 1One ROBO1
ROBO1
정방향 프라이머Forward primer AGGGAAGCCTACGCAGATGAGGGAAGCCTACGCAGATG NM_09413.2
NM_09413.2
22
역방향 프라이머Reverse primer TGGACAGTGGGCGATTTTATTGGACAGTGGGCGATTTTAT 33 SLIT3
SLIT3
정방향 프라이머Forward primer CTAAACCAGACCCTGAACCTGGTGGTAGACCTAAACCAGACCCTGAACCTGGTGGTAGAC NM_011412.3
NM_011412.3
44
역방향 프라이머Reverse primer AAGGTAGAGGGGGCTGTTGCTGCCCACTAAGGTAGAGGGGGCTGTTGCTGCCCACT 55 MMP-9
MMP-9
정방향 프라이머Forward primer GAGACGGGTATCCCTTCGACGAGACGGGTATCCCTTCGAC NM_013599.3
NM_013599.3
66
역방향 프라이머Reverse primer TGACATGGGGCACCATTTGAGTGACATGGGGCACCATTTGAG 77 IL-1β
IL-1?
정방향 프라이머Forward primer AAATACCTGTGGCCTTGAAATACCTGTGGCCTTG NM_008361.3
NM_008361.3
88
역방향 프라이머Reverse primer TTAGGAAGACACGGATTCTTAGGAAGACACGGATTC 99 TNF-α
TNF-a
정방향 프라이머Forward primer AGTGACAAGCCTGTAGCCAGTGACAAGCCTGTAGCC NM_013693.3
NM_013693.3
1010
역방향 프라이머Reverse primer AGGTTGACTTTCTCCTGGAGGTTGACTTTCTCCTGG 1111 IL-6
IL-6
정방향 프라이머Forward primer GGAGTACCATAGCTACCTGGGGAGTACCATAGCTACCTGG NM_031168.1
NM_031168.1
1212
역방향 프라이머Reverse primer CTAGGTTTGCCGAGTAGATCCTAGGTTTGCCGAGTAGATC 1313 c-fms
(csf1r)
c-fms
(csf1r)
정방향 프라이머Forward primer CCCACCCTGAAGTCCTGAGTCCCACCCTGAAGTCCTGAGT NM_001037859.2
NM_001037859.2
1414
역방향 프라이머Reverse primer CTTTGTCCTAGGGAGACGGCCTTTGTCCTAGGGAGACGGC 1515 RANK
(Tnfrsf11a)
RANK
(Tnfrsf11a)
정방향 프라이머Forward primer CAGATGTCTTTTCGTCCACAGACAGATGTCTTTTCGTCCACAGA NM_009399.3
NM_009399.3
1616
역방향 프라이머Reverse primer AGACTGGGCAGGTAAGCCTAGACTGGGCAGGTAAGCCT 1717 GAPDH
GAPDH
정방향 프라이머Forward primer TGGCCTTCCGTGTTCCTACTGGCCTTCCGTGTTCCTAC GU214026.1
GU214026.1
1818
역방향 프라이머Reverse primer GAGTTGCTGTTGAAGTCGCAGAGTTGCTGTTGAAGTCGCA 1919

이하, 본 발명의 약학조성물의 제제예를 설명하나, 본 발명은 이를 한정하고자 함이 아닌 단지 구체적으로 설명하고자 함이다.Hereinafter, formulation examples of the pharmaceutical composition of the present invention will be described, but the present invention is not intended to be limited thereto but is specifically explained.

<< 제제예Formulation example 1> 주사제의 제조 1> Preparation of injection

miR 218-2 10 mg, 소디움 메타비설파이트 3.0 mg, 메틸파라벤 0.8 mg, 프로필파라벤 0.1 mg 및 주사용 멸균증류수 적량을 혼합하고 통상의 방법으로 최종 부피가 2 ㎖이 되도록 제조한 후, 2 ㎖ 용량의 앰플에 충전하고 멸균하여 주사제를 제조하였다.10 mg of miR 218-2, 3.0 mg of sodium metabisulfite, 0.8 mg of methylparaben, 0.1 mg of propylparaben and an appropriate amount of sterilized distilled water for injection were mixed to prepare a final volume of 2 ml by a conventional method, Ampicillin and sterilized to prepare an injection.

<< 제제예Formulation example 2> 정제의 제조 2> Preparation of tablets

miR 218-2 10 mg, 유당 100 mg, 전분 100 mg 및 스테아린산 마그네슘 적량을 혼합하고 통상의 정제 제조방법에 따라 타정하여 정제를 제조하였다.10 mg of miR 218-2, 100 mg of lactose, 100 mg of starch and an appropriate amount of magnesium stearate were mixed and tableted according to a conventional preparation method.

<제제예 3> 캡슐제의 제조&Lt; Formulation Example 3 > Preparation of capsules

miR 218-2 10 mg, 유당 50 ㎎, 전분 50 ㎎, 탈크 2 ㎎ 및 스테아린산 마그네슘 적량을 혼합하고 통상의 캡슐제 제조방법에 따라 젤라틴 캡슐에 충전하여 캡슐제를 제조하였다.10 mg of miR 218-2, 50 mg of lactose, 50 mg of starch, 2 mg of talc, and an appropriate amount of magnesium stearate were mixed and filled in gelatin capsules according to a conventional capsule preparation method to prepare capsules.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

<110> University of Ulsan Foundation For Industry Cooperation <120> Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2 <130> ADP-2015-0236 <160> 19 <170> KopatentIn 2.0 <210> 1 <211> 22 <212> RNA <213> miR-218-2 <400> 1 caugguucug ucaagcaccg cg 22 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ROBO1 forward primer <400> 2 agggaagcct acgcagatg 19 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ROBO1 reverse primer <400> 3 tggacagtgg gcgattttat 20 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SLIT3 forward primer <400> 4 ctaaaccaga ccctgaacct ggtggtagac 30 <210> 5 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> SLIT3 reverse primer <400> 5 aaggtagagg gggctgttgc tgcccact 28 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MMP-9 forward primer <400> 6 gagacgggta tcccttcgac 20 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> MMP-9 reverse primer <400> 7 tgacatgggg caccatttga g 21 <210> 8 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> IL-1 beta forward primer <400> 8 aaatacctgt ggccttg 17 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> IL-1 beta reverse primer <400> 9 ttaggaagac acggattc 18 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TNF-a forward primer <400> 10 agtgacaagc ctgtagcc 18 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TNF-a reverse primer <400> 11 aggttgactt tctcctgg 18 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IL-6 forward primer <400> 12 ggagtaccat agctacctgg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IL-6 reverse primer <400> 13 ctaggtttgc cgagtagatc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> c-fms forward primer <400> 14 cccaccctga agtcctgagt 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> c-fms reverse primer <400> 15 ctttgtccta gggagacggc 20 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RANK forward primer <400> 16 cagatgtctt ttcgtccaca ga 22 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RANK reverse primer <400> 17 agactgggca ggtaagcct 19 <210> 18 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 18 tggccttccg tgttcctac 19 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 19 gagttgctgt tgaagtcgca 20 <110> University of Ulsan Foundation for Industry Cooperation <120> Pharmaceutical composition for or treating          inflammatory bone disease comprising miR 218-2 <130> ADP-2015-0236 <160> 19 <170> Kopatentin 2.0 <210> 1 <211> 22 <212> RNA <213> miR-218-2 <400> 1 caugguucug ucaagcaccg cg 22 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ROBO1 forward primer <400> 2 agggaagcct acgcagatg 19 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ROBO1 reverse primer <400> 3 tggacagtgg gcgattttat 20 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SLIT3 forward primer <400> 4 ctaaaccaga ccctgaacct ggtggtagac 30 <210> 5 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> SLIT3 reverse primer <400> 5 aaggtagagg gggctgttgc tgcccact 28 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MMP-9 forward primer <400> 6 gagacgggta tcccttcgac 20 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> MMP-9 reverse primer <400> 7 tgacatgggg caccatttga g 21 <210> 8 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> IL-1 beta forward primer <400> 8 aaatacctgt ggccttg 17 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> IL-1 beta reverse primer <400> 9 ttaggaagac acggattc 18 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TNF-a forward primer <400> 10 agtgacaagc ctgtagcc 18 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TNF-a reverse primer <400> 11 aggttgactt tctcctgg 18 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> IL-6 forward primer <400> 12 ggagtaccat agctacctgg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> IL-6 reverse primer <400> 13 ctaggtttgc cgagtagatc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> c-fms forward primer <400> 14 cccaccctga agtcctgagt 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> c-fms reverse primer <400> 15 ctttgtccta gggagacggc 20 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RANK forward primer <400> 16 cagatgtctt ttcgtccaca ga 22 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RANK reverse primer <400> 17 agactgggca ggtaagcct 19 <210> 18 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 18 tggccttccg tgttcctac 19 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 19 gagttgctgt tgaagtcgca 20

Claims (7)

miR 218-2를 유효성분으로 함유하는 염증성 뼈 질환 예방 또는 치료용 약학조성물.A pharmaceutical composition for preventing or treating inflammatory bone diseases, comprising miR 218-2 as an active ingredient. 제1항에 있어서, 상기 염증성 뼈 질환은 골다공증, 퇴행성 관절염 및 강직성 척추염으로 이루어진 군에서 선택되는 것을 특징으로 하는 약학조성물.The pharmaceutical composition according to claim 1, wherein the inflammatory bone disease is selected from the group consisting of osteoporosis, degenerative arthritis and ankylosing spondylitis. 제1항에 있어서, 상기 miR 218-2는 염증성 인자의 발현을 억제하고, RANK 단백질의 발현을 억제하여 파골세포로의 분화를 억제하는 것을 특징으로 하는 약학조성물.The pharmaceutical composition according to claim 1, wherein the miR 218-2 inhibits the expression of an inflammatory factor and inhibits the expression of RANK protein to inhibit osteoclast differentiation. miR 218-2를 유효성분으로 함유하는 파골세포 분화 억제제.An inhibitor of osteoclast differentiation comprising miR 218-2 as an active ingredient. 혈액에서 대식세포를 분리하는 단계; 및
상기 분리된 대식세포의 miR 218-2 발현 정도를 확인하는 단계를 포함하는 염증성 뼈 질환 진단방법.
Separating the macrophages from the blood; And
And determining the degree of miR 218-2 expression of the isolated macrophage.
제5항에 있어서, 상기 진단방법은 혈액 유래 대식세포의 miR 218-2 발현이 감소하는 것을 특징으로 하는 염증성 뼈 질환 진단방법. 6. The method according to claim 5, wherein the diagnostic method is characterized in that miR 218-2 expression of blood-derived macrophages is decreased. miR 218-2를 검출하는 제제를 포함하는 염증성 뼈 질환 진단용 바이오마커 조성물.A biomarker composition for the diagnosis of inflammatory bone disease comprising an agent for detecting miR 218-2.
KR1020150111577A 2015-08-07 2015-08-07 Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2 KR101713428B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150111577A KR101713428B1 (en) 2015-08-07 2015-08-07 Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150111577A KR101713428B1 (en) 2015-08-07 2015-08-07 Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2

Publications (2)

Publication Number Publication Date
KR20170017519A true KR20170017519A (en) 2017-02-15
KR101713428B1 KR101713428B1 (en) 2017-03-08

Family

ID=58111737

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150111577A KR101713428B1 (en) 2015-08-07 2015-08-07 Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2

Country Status (1)

Country Link
KR (1) KR101713428B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611264A1 (en) 2018-08-08 2020-02-19 Ente Ospedaliero Specializzato In Gastroenterologia "Saverio De Bellis" Pharmaceutical composition for treating chronic inflammatory diseases comprising mir-369-3p as active ingredient

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264014B1 (en) 2011-03-29 2013-05-13 숙명여자대학교산학협력단 Composition for Preventing or Treating Bone Disease Comprising of Aminocoumarins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264014B1 (en) 2011-03-29 2013-05-13 숙명여자대학교산학협력단 Composition for Preventing or Treating Bone Disease Comprising of Aminocoumarins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bo Qu, et al., Exp Cell Res. 2015 Oct 15;338(1):89-96. (2015.07.26. 공개)* *
Mohammad Q. Hassan, et al., J Biol Chem. 2012 Dec 7; Vol.287(50): pp. 42084-42092. (2012.10.11. 공개)* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611264A1 (en) 2018-08-08 2020-02-19 Ente Ospedaliero Specializzato In Gastroenterologia "Saverio De Bellis" Pharmaceutical composition for treating chronic inflammatory diseases comprising mir-369-3p as active ingredient

Also Published As

Publication number Publication date
KR101713428B1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
CN107106580B (en) Composition for treating cancer stem cells
Tang et al. Piceatannol inhibits the IL-1β-induced inflammatory response in human osteoarthritic chondrocytes and ameliorates osteoarthritis in mice by activating Nrf2
Liu et al. Inhibitory effects of tubeimoside I on synoviocytes and collagen‐induced arthritis in rats
KR102150239B1 (en) Anticarcinogenic composition comprising an inhibitor of DRG2 as an active ingredient
KR101713428B1 (en) Pharmaceutical composition for preventing or treating inflammatory bone disease comprising miR 218-2
JP6170613B2 (en) A composition for cancer treatment or metastasis suppression comprising an expression inhibitor or activity inhibitor of p34 as an active ingredient
EP3969027B1 (en) Polypeptides for treatment of cancer
KR101701597B1 (en) Pharmaceutical compositions for treatment of stk11-mutated cancer comprising cardiac glycosides
KR102132222B1 (en) miR-143-3p and miR-373-5p as a marker for diagnosing of anti-cancer drug resistance, and use thereof
Liu et al. Upregulated expression of Ebp1 contributes to schwann cell differentiation and migration after sciatic nerve crush
Tang et al. Role of far upstream element binding protein 1 in colonic epithelial disruption during dextran sulphate sodium-induced murine colitis
JP2016222605A (en) Synthetic peptide for increasing radiation sensitivity of tumor cell, and use of the same
Fan et al. Periplocymarin alleviates pathological cardiac hypertrophy via inhibiting the JAK2/STAT3 signalling pathway
KR102026142B1 (en) Anti-Cancer and Anti-Metastasis Composition Comprising CRIF1 Antagonist
KR102337860B1 (en) Composition for enhancing the sensitivity of anti-breast cancer drug, comprising the expression inhibitor of Shwachman-Bodian-Diamond syndrome gene as an active ingredient
KR102143974B1 (en) Composition for preventing or treating lapatinib resistant cancer
KR101755076B1 (en) Screening method of anti-inflammatory agent using ELL3, and anti-inflammation composition containing the inhibitors of ELL3 expression or activity
CN113702635A (en) BIRC6 as a triple negative breast cancer diagnosis and treatment target
KR101863433B1 (en) Composition for preventing or treating cancer comprising inducer or activator of KRT19
KR101847170B1 (en) Cancer therapy method
KR101848106B1 (en) An anti-cancer supplement containing GKN2
US20180028611A1 (en) Compositions and methods to induce targeted apoptosis by modulating protein tyrosine phosphatase 13 (ptpn13)
WO2022192528A1 (en) Gal3bp polypeptide compositions and methods for treatment of cancer and determining treatment responsiveness
KR20130051362A (en) Use of hsp90 alpha in cancer cells in hypoxia condition
Decostre et al. GP 5.12 Glutathione depletion in Emery–Dreifuss muscular dystrophy. Treatment of KI-LmnaH222P mice with the glutathione precursor N-Acetyl-L-Cysteine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 4