KR20170014784A - Negative active material for electrochemical device - Google Patents

Negative active material for electrochemical device Download PDF

Info

Publication number
KR20170014784A
KR20170014784A KR1020150108668A KR20150108668A KR20170014784A KR 20170014784 A KR20170014784 A KR 20170014784A KR 1020150108668 A KR1020150108668 A KR 1020150108668A KR 20150108668 A KR20150108668 A KR 20150108668A KR 20170014784 A KR20170014784 A KR 20170014784A
Authority
KR
South Korea
Prior art keywords
electrochemical device
negative electrode
carbon
electrode material
present
Prior art date
Application number
KR1020150108668A
Other languages
Korean (ko)
Other versions
KR102374369B1 (en
Inventor
선양국
오승민
황장연
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020150108668A priority Critical patent/KR102374369B1/en
Publication of KR20170014784A publication Critical patent/KR20170014784A/en
Application granted granted Critical
Publication of KR102374369B1 publication Critical patent/KR102374369B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The present invention relates to a negative electrode material for an electrochemical device and a production method thereof and, more specifically, to a silicon carbon composite negative electrode material and a production method thereof for hydrothermal synthesis. The negative electrode material for an electrochemical device according to the present invention can be produced by the simple hydrothermal synthesis, and shows an electrochemical effect of high capacity and high output by improving problems caused by volume expansion which is a problem of a conventional silicon material by comprising hard carbon and a Si/SiOx composite.

Description

전기화학소자용 음극 재료 및 이의 제조 방법{NEGATIVE ACTIVE MATERIAL FOR ELECTROCHEMICAL DEVICE} ≪ Desc / Clms Page number 1 > NEGATIVE ACTIVE MATERIAL FOR ELECTROCHEMICAL DEVICE <

본 발명은 전기화학소자용 음극 재료 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 실리콘 카본 복합 음극 재료 및 수열 합성을 위한 이의 제조 방법에 관한 것이다.
The present invention relates to a negative electrode material for an electrochemical device and a manufacturing method thereof, and more particularly, to a silicon carbon composite negative electrode material and a method for manufacturing the same for hydrothermal synthesis.

리튬 이온 배터리는 산업적으로, 매우 중요한 에너지 저장 시스템으로, 특히 휴대용 일렉트로닉스의 분야, 예를 들어, 노트북 또는 휴대전화에 사용된다. 또한 수송 수단 분야, 예를 들어, 자전거 또는 자동차 분야에서의 리튬 이온 배터리의 사용 또한 최근 연구 개발되고 있다. Lithium-ion batteries are industrially very important energy storage systems, particularly in the field of portable electronics, e.g., notebooks or cell phones. The use of lithium ion batteries in the transportation sector, for example in the bicycle or automotive field, is also under research.

리튬 이온 배터리는 실제로 사용될 수 있는 공지된 화학 및 전기화학 에너지 저장소 중에서 180 Wh/kg 이하의 가장 고에너지 밀도를 가진다. 리튬 이온 배터리에 사용되는 음극 재료 (애노드)는 거의 흑연 탄소이다. 흑연 탄소는 "리튬 이온"에 사용되는 리튬 금속과 비교하여 안정한 주기성 및 매우 높은 정도의 취급 안전성을 갖는다. 음극 재료에 흑연 탄소를 사용하는 것은 리튬의 층간 삽입 및 방출과 관련된 호스트(host) 재료의 부피 변화가 적다는 면에서, 즉, 전극이 대체로 안정하다는 면에서 중요하다. 이에 따라, LiC6의 한정된 화학양론의 경우에 있어, 흑연 탄소에의 리튬의 층간 삽입시 약 10%의 부피 증가가 측정된다. 하지만, 흑연 탄소는 흑연이 상대적으로 낮은 전기화학 용량, 즉, 이론적으로 372 mAh/흑연g을 가진다는 점에 단점이 있는데, 이는 리튬 금속을 사용하여 이론적으로 달성될 수 있는 3862 mAh/리튬g의 전기화학 용량의 약 1/10에 불과하다.Lithium-ion batteries have the highest energy density of less than 180 Wh / kg in well-known chemical and electrochemical energy stores that can actually be used. The anode material (anode) used in lithium ion batteries is almost graphitic carbon. Graphite carbon has a stable periodicity and a very high degree of handling safety compared to the lithium metal used for "lithium ions ". The use of graphitic carbon in the cathode material is important in that the volume change of the host material associated with the intercalation and deintercalation of lithium is small, i.e., the electrode is generally stable. Thus, in the case of the limited stoichiometry of LiC 6 , a volume increase of about 10% is measured when intercalating lithium into graphite carbon. However, graphite carbon has a disadvantage in that graphite has a relatively low electrochemical capacity, theoretically 372 mAh / graphite g, which is theoretically achievable using lithium metal of 3862 mAh / g It is only about 1/10 of the electrochemical capacity.

이에 따라 대체 재료, 특히 합금 중에서, 예를 들면, 알루미늄 (Lindsay et al. in J. Power Sources 119 (2003), 84), 주석 ([Winter et al. in Electrochim . Acta 45 (1999), 31]; [Tirado in Mater. Sci . Eng . R-Rep. 40 (2003), 103]) 또는 안티몬 (Tirado in Mater. Sci . Eng . R-Rep. 40 (2003), 103) 기재의 2원 합금, 구리-주석 (Kepler et al. in Electrochem Solid-State Lett 2 (1999), 307) 또는 구리-안티몬 (Yang et al. in Electrochem . Solid-State Lett . 2 (1999), 161) 기재의 3원 합금, 또는 주석 산화물 (Huggins in Solid-State ion. 152 (2002), 61) 기재의 금속 산화물이 오랫동안 연구되어 왔다. Thus, in alternative materials, especially alloys such as aluminum (Lindsay et al., J. Power Sources 119 (2003), 84), tin (Winter et al. In Electrochim . Acta 45 (1999), 31] ; [.... Tirado in Mater Sci Eng R-Rep 40 (2003), 103]) or antimony binary alloy of the (Tirado in Mater Sci Eng R- Rep 40 (2003....), 103) described, Copper-tin (Kepler et al. In Electrochem Solid-State Lett 2 (1999), 307) or a copper-antimony (... Yang et al in Electrochem Solid-State Lett. 2 (1999), 161) 3 alloy, or a tin oxide base material (Huggins in Solid-State ion 152 ( 2002), 61) have been studied for a long time.

이러한 합금 재료는 높은 이론적 비용량, 예를 들어, 주석의 경우 994 mAh/g을 가진다. 이렇게 높은 이론적 용량이 가역적으로 사용될 수 있다면, 리튬 이온 배터리의 에너지 밀도는 상당히 증가될 수 있다. 금속성 리튬과 비교하여, 합금 기재의 애노드 재료는 리튬 증착 동안 수지상 결정이 형성되지 않는다는 장점을 가진다. 또한, 흑연 재료와는 대조적으로, 합금 기재 애노드 재료는 프로필렌 카르보네이트 기재의 전해질과 함께 사용시에 적합하다. 이에 따라 리튬 이온 배터리를 저온에서 사용할 수 있다. 하지만, 이러한 합금은 주기 동안, 즉, 리튬의 층간 삽입 및 방출 동안의 큰 부피 팽창이라는 단점을 가지는데, 이는 200% 초과, 때때로는 심지어 최대 300%까지도 팽창한다 (Besenhard et al. in J. Power Sources 68 (1997), 87).Such alloying materials have a high theoretical capacity, for example, 994 mAh / g for tin. If such a high theoretical capacity can be used reversibly, the energy density of a lithium ion battery can be significantly increased. Compared to metallic lithium, the anode material of the alloy substrate has the advantage that no dendritic crystals are formed during lithium deposition. In addition, in contrast to graphite materials, alloy-based anode materials are suitable for use with electrolytes based on propylene carbonate. As a result, lithium ion batteries can be used at low temperatures. However, such alloys have the disadvantage of a large volume expansion during the cycle, i. E. , During intercalation and deintercalation of lithium, which expands by more than 200%, sometimes even up to 300% (Besenhard et al. In J. Power Sources 68 (1997), 87).

이를 해결하기 위한 대체 재료로 규소 또한 연구되어 왔는데, 규소 또한 주석처럼 전기화학적으로 활성인 리튬과 이원 화합물을 형성하기 때문이다 ([Weydanz et al. in Journal of Power Sources 82 (1999), 237]; [Seefurth et al. in J. Electrochem. Soc . 124 (1977), 1207]; [Lai in J. Electrochem . Soc. 123 (1976), 1196]). 리튬과 규소의 이러한 이원 화합물은 매우 높은 리튬 함량을 가진다. 이론적인 최대 리튬 함량은 Li4 .2Si로, 약 4400 mAh/규소g라는 매우 높은 이론적 비용량을 가진다 (Lupu et al. in Inorg . Chem . 42 (2003), 3765). 이러한 이원 화합물은 Li/Li+에 대하여 (즉, 비교물질로 작용하는 금속성 리튬의 전위에 대하여), 흑연 중 리튬의 층간삽입 화합물의 < 500 mVs과 유사하게 낮은 전위에서 형성된다. 그러나, 규소의 경우 앞에서 설명한 이원 합금의 경우에서와 같이, 리튬의 층간삽입 및 방출은 최대 323% 이하일 수 있는 매우 큰 부피 팽창 문제를 나타낸다. 이러한 부피 팽창은 미세 결정 상에서 심한 기계적 응력을 유도하여, 입자가 무정형이 되게 하고 전기적 접촉의 손실에 의해 파괴되게 한다. ([Winter et al. in Adv . Mater. 10 (1998), 725]; [Yang et al. in Solid-State Ion. 90 (1996), 281]; [Bourderau et al. in J. Power Sources 82 (1999), 233]). 이러한 기계적 응력은 특히 매우 높은 비가역 용량(최대 50% 또는 그 이상)이 발생하는 최초 충방전에 큰 영향을 미치며, 이에 따라 지금까지 이 재료를 음극으로 사용할 수 없게 만들었다.
Silicon has also been studied as an alternative material to solve this problem, because silicon also forms binary compounds with lithium, which is electrochemically active, like tin (Weydanz et al., Journal of Power Sources 82 (1999), 237); (See Furth et al., J. Electrochem. Soc . 124 (1977), 1207]; Lai in J. Electrochem . Soc . 123 (1976), 1196). These binary compounds of lithium and silicon have a very high lithium content. The theoretical maximum lithium content is Li 4 .2 Si, which has a very high theoretical capacity of about 4400 mAh / g of silicon (Lupu et al. In Inorg . Chem . 42 (2003), 3765). This binary compound is formed at a low potential similar to < 500 mVs of lithium intercalation compound in graphite relative to Li / Li + (i.e., relative to the potential of metallic lithium acting as a comparative material). However, in the case of silicon, as in the case of the binary alloy described above, the intercalation and release of lithium presents a very large volume expansion problem which can be up to 323%. This volumetric expansion induces severe mechanical stresses on the microcrystals, causing the particles to become amorphous and destroyed by loss of electrical contact. ([... Winter et al in Adv Mater 10 (1998), 725]; [.. Yang et al in Solid-State Ion 90 (1996), 281];. [Bourderau et al in J. Power Sources 82 ( 1999), 233). This mechanical stress has a great effect on the initial charge and discharge, especially when very high irreversible capacities (up to 50% or more) occur, thus making this material unusable as a cathode until now.

규소의 지지 물질에 대한 접착성을 개선시키기 위해 다양한 기술, 예를 들어, 수 시간 동안의 강한 밀링 ([Dimov et al. in Electrochim . Acta 48 (2003), 1579]; [Niu et al. in Electrochem . Solid State Lett . 5 (2002), A107]), 기상으로부터의 탄소 코팅 (Wilson et al. in J. Electrochem . Soc. 142 (1995), 326), 및 각각의 전구체의 치밀 혼합물의 열분해 ([Larcher et al. in Solvently State ion. 122 (1999), 71]; [Wen et al. in Electrochem . Commun 5 (2003), 165])가 사용되어져 왔다.
In order to improve the adhesion of silicon to the support material, various techniques have been used, such as strong milling for several hours (Dimov et al. In Electrochim . Acta 48 (2003), 1579); Niu et al. In Electrochem , Solid State Lett . 5 (2002), A107), carbon coating from the gas phase (Wilson et al., J. Electrochem . Soc . 142 (1995), 326), and pyrolysis of dense mixtures of the respective precursors Larcher et al., Solvent State Vol. 122 (1999), 71]; [Wen et al in Electrochem . Commun 5 (2003), 165).

본 발명은 상기와 같은 과제를 해결하기 위하여 새로운 구조의 전기화학소자용 음극 재료를 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a negative electrode material for an electrochemical device having a new structure in order to solve the above problems.

본 발명은 또한, 본 발명에 의한 새로운 구조의 전기화학소자용 음극 재료의 제조 방법을 제공하는 것을 목적으로 한다.
Another object of the present invention is to provide a method of manufacturing a negative electrode material for an electrochemical device having a novel structure according to the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여 아래 화학식으로 표시되는 전기화학소자용 음극 재료를 제공한다. Disclosure of the Invention The present invention provides an anode material for an electrochemical device,

[화학식] -C-[(1-y)Si + ySiOx] (0<x<2, 0<y<1)
(0 < x < 2, 0 < y < 1)

본 발명은 또한, The present invention also relates to

실란 작용기를 포함하는 고분자와 탄소 전구체를 수열 합성기에서 혼합하는 단계; Mixing a polymer containing a silane functional group and a carbon precursor in a hydrothermal synthesizer;

수열 반응 시키는 단계; 및 Hydrothermal reaction; And

환원 분위기에서 열처리하는 단계; 를 포함하는 본 발명에 의한 전기화학소자용 음극 재료의 제조 방법을 제공한다.
A heat treatment in a reducing atmosphere; The present invention also provides a method of manufacturing an anode material for an electrochemical device according to the present invention.

본 발명에 의한 전기화학소자용 음극 재료의 제조 방법에 있어서, 상기 실란 작용기를 포함하는 고분자는 아미노실란, 테트라에톡시실란, 메틸트리메톡시실란 및 트리에톡시카프릴실란으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. In the method for producing an anode material for an electrochemical device according to the present invention, the polymer containing the silane functional group is selected from the group consisting of aminosilane, tetraethoxysilane, methyltrimethoxysilane and triethoxysulfur silane .

본 발명에 의한 전기화학소자용 음극 재료의 제조 방법에 있어서, 상기 탄소 전구체는 활성탄, 활성탄 섬유, 탄소나노튜브, 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐알코올(polyvinyl alchol), 셀룰로오스(cellulose) 및 피치(pitch)로 이루어진 그룹에서 선택되는 것을 특징으로 한다.In the method of manufacturing an anode material for an electrochemical device according to the present invention, the carbon precursor may be activated carbon, activated carbon fiber, carbon nanotube, polyacrylonitrile, polyvinyl alchol, cellulose, And a pitch is selected.

본 발명에 의한 전기화학소자용 음극 재료의 제조 방법에 있어서, 상기 수열 반응 시키는 단계는 80 ℃ 내지 200℃ 에서 1 시간 내지 10 시간 동안 반응시키는 것을 특징으로 한다.
In the method for producing an anode material for an electrochemical device according to the present invention, the hydrothermal reaction may be performed at 80 to 200 ° C for 1 to 10 hours.

본 발명에 의한 전기화학소자용 음극 재료는 간단한 수열합성에 의해 제조가 가능하고, hard carbon과 Si/SiOx 복합체로 구성되어 기존 실리콘 재료의 문제점인 부피 팽창에 따른 문제점을 개선함으로써 고용량 고출력의 전기화학적 효과를 나타낸다.
The anode material for an electrochemical device according to the present invention can be produced by a simple hydrothermal synthesis and is composed of a hard carbon and a Si / SiOx composite to solve the problem of volume expansion which is a problem of existing silicon material, Effect.

도 1은 본 발명의 일 실시예에서 제조된 코인셀에 대해 초기 충방전 특성을 측정한 결과를 나타낸다.
도 2는 본 발명의 일 실시예에서 제조된 코인셀에 대해 수명 특성을 측정한 결과를 나타낸다.
FIG. 1 shows a result of measurement of initial charging / discharging characteristics for a coin cell manufactured in an embodiment of the present invention.
FIG. 2 shows the result of measuring the life characteristics of a coin cell manufactured in an embodiment of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example > 카본 실리콘 복합체의 제조 > Preparation of Carbon Silicon Composite

Silane을 작용기를 기본으로 가지는 고분자 물질과 탄소(C)를 갖는 Carbon Source를 사용하여 수열합성기를 통해 합성하고 환원 분위기에서 열처리하여 Hard Carbon 과 Si/SiOx 복합체의 음극활물질을 제조하였다.
The synthesis of hard carbon and Si / SiOx composite anode active materials was carried out by synthesizing silane with functional group and carbon source with carbon (C) through hydrothermal synthesis and heat treatment in reducing atmosphere.

<< 제조예Manufacturing example > 전지 제조> Battery Manufacturing

직접체로서 Li 금속을 사용하고, 상기 실시예에서 제조된 음극활물질 및 바인더로서 PAA, 아세틸렌 블랙을 혼합하여 음극 및 코인셀을 제조하였다.
A negative electrode and a coin cell were prepared by mixing LiA metal as a direct sieve and PAA and acetylene black as a negative active material and a binder prepared in the above examples.

<< 실험예Experimental Example > 초기 > Initial 충방전Charging and discharging 특성 평가 Character rating

상기 제조예에서 제조된 코인셀에 대해 초기 충방전 특성을 측정하고 그 결과를 도 1에 나타내었다.
The initial charge and discharge characteristics of the coin cell manufactured in the above production example were measured and the results are shown in FIG.

<< 실험예Experimental Example > 수명 특성 평가> Evaluation of life characteristics

상기 제조예에서 제조된 코인셀에 대해 수명 특성을 측정하고 그 결과를 도 2에 나타내었다. The life characteristics of the coin cell manufactured in the above production example were measured and the results are shown in Fig.

Claims (7)

아래 화학식으로 표시되는 전기화학소자용 음극 재료
[화학식]
-C-[(1-y)Si + ySiOx] (0<x<2, 0<y<1).
An anode material for an electrochemical device represented by the following chemical formula
[Chemical Formula]
-C - [(1-y) Si + ySiOx] (0 <x <2, 0 <y <1).
실란 작용기를 포함하는 고분자와 탄소 전구체를 수열 합성기에서 혼합하는 단계;
수열 반응 시키는 단계; 및
환원 분위기에서 열처리하는 단계; 를 포함하는
제 1 항에 의한 전기화학소자용 음극 재료의 제조 방법.
Mixing a polymer containing a silane functional group and a carbon precursor in a hydrothermal synthesizer;
Hydrothermal reaction; And
A heat treatment in a reducing atmosphere; Containing
A method for producing a negative electrode material for an electrochemical device according to claim 1.
제 2 항에 있어서,
상기 실란 작용기를 포함하는 고분자는 아미노실란, 테트라에톡시실란, 메틸트리메톡시실란 및 트리에톡시카프릴릴실란으로 이루어진 그룹에서 선택되는 것인 음극 재료의 제조 방법.
3. The method of claim 2,
Wherein the polymer containing the silane functional group is selected from the group consisting of aminosilane, tetraethoxysilane, methyltrimethoxysilane, and triethoxycaprylylsilane.
제 2 항에 있어서,
상기 탄소 전구체는 활성탄, 활성탄 섬유, 탄소나노튜브, 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐알코올(polyvinyl alchol), 셀룰로오스(cellulose) 및 피치(pitch)로 이루어진 그룹에서 선택되는 것인 음극 재료의 제조 방법.
3. The method of claim 2,
Wherein the carbon precursor is selected from the group consisting of activated carbon, activated carbon fiber, carbon nanotube, polyacrylonitrile, polyvinyl alchol, cellulose and pitch. Way.
제 2 항에 있어서,
상기 수열 반응 시키는 단계는 80 ℃ 내지 200℃ 에서 1 시간 내지 10 시간 동안 반응시키는 것인 음극 재료의 제조 방법.
3. The method of claim 2,
Wherein the hydrothermal reaction is carried out at a temperature of 80 ° C to 200 ° C for 1 hour to 10 hours.
제 1 항에 의한 전기 화학 소자용 음극 재료를 포함하는 전기 화학 소자.
An electrochemical device comprising a negative electrode material for an electrochemical device according to claim 1.
제 6 항에 있어서,
상기 전기화학 소자는 이차 전지, 커패시터인 것인 전기 화학 소자.
The method according to claim 6,
Wherein the electrochemical device is a secondary battery or a capacitor.
KR1020150108668A 2015-07-31 2015-07-31 Negative active material for electrochemical device KR102374369B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150108668A KR102374369B1 (en) 2015-07-31 2015-07-31 Negative active material for electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150108668A KR102374369B1 (en) 2015-07-31 2015-07-31 Negative active material for electrochemical device

Publications (2)

Publication Number Publication Date
KR20170014784A true KR20170014784A (en) 2017-02-08
KR102374369B1 KR102374369B1 (en) 2022-03-14

Family

ID=58154942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150108668A KR102374369B1 (en) 2015-07-31 2015-07-31 Negative active material for electrochemical device

Country Status (1)

Country Link
KR (1) KR102374369B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360958A (en) * 2018-10-11 2019-02-19 大同新成新材料股份有限公司 A kind of silicon-carbon cathode material preparation method and device
CN115231548A (en) * 2022-09-20 2022-10-25 中国科学院山西煤炭化学研究所 High-capacity modified natural polymer-based hard carbon material and preparation and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130123698A (en) * 2012-05-03 2013-11-13 한양대학교 산학협력단 Manufacturing method of carbon sulfur complex, carbon sulfur complex made by the same, and electrochemical cell including the same
WO2014095811A1 (en) * 2012-12-20 2014-06-26 Umicore Negative electrode material for a rechargeable battery and method for producing the same
JP2015064983A (en) * 2013-09-24 2015-04-09 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130123698A (en) * 2012-05-03 2013-11-13 한양대학교 산학협력단 Manufacturing method of carbon sulfur complex, carbon sulfur complex made by the same, and electrochemical cell including the same
WO2014095811A1 (en) * 2012-12-20 2014-06-26 Umicore Negative electrode material for a rechargeable battery and method for producing the same
JP2015064983A (en) * 2013-09-24 2015-04-09 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360958A (en) * 2018-10-11 2019-02-19 大同新成新材料股份有限公司 A kind of silicon-carbon cathode material preparation method and device
CN109360958B (en) * 2018-10-11 2020-09-15 大同新成新材料股份有限公司 Preparation method and device of silicon-carbon negative electrode material
CN115231548A (en) * 2022-09-20 2022-10-25 中国科学院山西煤炭化学研究所 High-capacity modified natural polymer-based hard carbon material and preparation and application thereof
CN115231548B (en) * 2022-09-20 2023-01-13 中国科学院山西煤炭化学研究所 High-capacity modified natural polymer-based hard carbon material and preparation and application thereof

Also Published As

Publication number Publication date
KR102374369B1 (en) 2022-03-14

Similar Documents

Publication Publication Date Title
Choi et al. Advanced lithium‐ion batteries for practical applications: Technology, development, and future perspectives
JP6092885B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
KR20180114061A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
JP6355163B2 (en) Lithium ion battery
KR20030047037A (en) Electrode, lithium battery adopting the same, and method for manufacturing the same
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
CN111422919A (en) Quaternary positive electrode material, preparation method thereof, positive electrode and battery
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
EP3675252A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
Haruta et al. Oxygen-content dependence of cycle performance and morphology changes in amorphous-SiOx thin-film negative electrodes for lithium-ion batteries
JPWO2013042610A1 (en) Lithium ion secondary battery
KR20140058928A (en) The non-aqueous and high-capacity lithium secondary battery
CN115132969A (en) Negative electrode for secondary battery and lithium secondary battery comprising same
KR20160034516A (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
KR102477915B1 (en) Method of producing lithium-ion battery
CN112204777A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
KR20150065078A (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
EP3471176A1 (en) Deposition of lithium fluoride on lithium metal surface and lithium secondary battery using same
KR102374369B1 (en) Negative active material for electrochemical device
KR20220017748A (en) Anode active material and lithium seceondary battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP5544981B2 (en) Method for producing electrode active material
CN108539151B (en) Electrode material for secondary battery and secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant