KR20170006663A - A method for analyzing pore distribution in secondary battery cathode and polymer therefor - Google Patents

A method for analyzing pore distribution in secondary battery cathode and polymer therefor Download PDF

Info

Publication number
KR20170006663A
KR20170006663A KR1020150097631A KR20150097631A KR20170006663A KR 20170006663 A KR20170006663 A KR 20170006663A KR 1020150097631 A KR1020150097631 A KR 1020150097631A KR 20150097631 A KR20150097631 A KR 20150097631A KR 20170006663 A KR20170006663 A KR 20170006663A
Authority
KR
South Korea
Prior art keywords
secondary battery
cathode
polymer
anode
pores
Prior art date
Application number
KR1020150097631A
Other languages
Korean (ko)
Other versions
KR102048342B1 (en
Inventor
한정훈
채병준
장경희
이보리
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020150097631A priority Critical patent/KR102048342B1/en
Publication of KR20170006663A publication Critical patent/KR20170006663A/en
Application granted granted Critical
Publication of KR102048342B1 publication Critical patent/KR102048342B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0833Pore surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method of analyzing internal pores of a cathode of a secondary battery comprising: (1) a step of filling the internal pores of the cathode with a polymer having a repeat unit indicated as chemical formula 1 below; and (2) a step of manufacturing a specimen for observation using a telescope by emitting an ionic beam to the cathode of the secondary battery with an ion milling device and the polymer for the same. According to the method of analyzing the internal pores of the cathode of the secondary battery provided by the present invention, the present invention is capable of clearly sort and observe the pores and other components of the cathode; and obtain an effect of predicting a performance of the cathode by computing a distribution of the pores of an upper layer, a middle layer, and a lower layer. <Chemical formula 1>, n is 20-400.

Description

이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자{A METHOD FOR ANALYZING PORE DISTRIBUTION IN SECONDARY BATTERY CATHODE AND POLYMER THEREFOR} TECHNICAL FIELD The present invention relates to a method for analyzing the pore distribution in an anode of a secondary battery, and a polymer for the same. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자에 대한 것이다. The present invention relates to a method for analyzing the pore distribution in the anode of a secondary battery and a polymer for the same.

전지는 크게 양극, 음극, 분리막, 전해액으로 구성되어 있다. 이들 구성 재료가 3차원적으로 분포하고 있어서, 이들의 틈새에 무수한 기공이 존재하고 있다. 전극의 기공은 실제로 이차 전지 내에서 전해액으로 채워져 리튬 이온 등의 통로가 된다. 따라서 기공의 크기, 개수, 분포 등이 상기 리튬 이온의 확산성에 영향을 주며, 이것이 전극 성능에 큰 영향을 미치기 때문에 양극 내부 기공의 분포를 정확하게 분석하는 것이 중요하다.The battery is largely composed of an anode, a cathode, a separator, and an electrolytic solution. These constituent materials are distributed three-dimensionally, so that there are innumerable pores in these gaps. The pores of the electrode are actually filled with an electrolyte in the secondary battery, thereby becoming a passage for lithium ions and the like. Therefore, it is important to accurately analyze the distribution of the pores in the anode, since the size, number, and distribution of the pores influence the diffusibility of the lithium ions, which greatly affects the electrode performance.

하지만 종래에는 양극 단면 상에서는 기공 분포의 관찰이 어려웠으며, 주사 전자 현미경에서는 깊은 초점 심도 때문에 기공 뒤에 존재하는 활물질이 단면 이미지 상에서 함께 나타나 기공 및 활물질의 구분이 어려운 문제가 있었다.Conventionally, however, it has been difficult to observe the pore distribution on the anode section. In the scanning electron microscope, there is a problem in that the active material existing behind the pore is difficult to distinguish between the pore and the active material due to the deep focal depth.

이와 관련하여, 일본 특허공개공보 제2015-041434호에서 전극의 기공에 금속을 압입 충전하여 기공 구조를 평가하는 방법에 대해 개시하고 있으나, 상기와 같은 단점은 여전히 해결하지 못한 실정이다. In this regard, Japanese Laid-Open Patent Application No. 2015-041434 discloses a method of pressurizing and charging a metal into pores of an electrode to evaluate a pore structure. However, such disadvantages as described above have not yet been solved.

일본 특허공개공보 제2015-041434호Japanese Patent Application Laid-Open No. 2015-041434

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 다른 양극 구성 물질과 기공을 명확하게 구분하여 관찰하고, 이를 통해 전극의 상층, 중층 및 하층에 따른 기공의 분포를 계산하여 전극 성능을 예상하기 위하여, 신규한 이차 전지 양극 내부 기공 분포 분석 방법 및 이차 전지 양극 내부 기공 분포 분석용 고분자를 제공하는 것을 목적으로 한다.DISCLOSURE OF THE INVENTION The present invention has been made to solve the problems of the prior art as described above, and it is an object of the present invention to observe clearly the pores of other cathode materials and to analyze the distribution of pores according to the upper layer, middle layer and lower layer, It is an object of the present invention to provide a novel method for analyzing the pore distribution in the anode of a secondary battery and a polymer for analyzing the pore distribution in the cathode of the secondary battery.

상기 목적을 달성하기 위해서, 본 발명은 1) 이차 전지 양극 내부에 하기 화학식 1로 표시되는 반복 단위를 갖는 고분자를 매립하여 양극 내부의 기공을 채우는 제 1단계; 및In order to achieve the above object, the present invention provides a method for manufacturing a secondary battery, comprising the steps of: 1) filling a polymer having a repeating unit represented by the following formula (1) And

2) 이온 밀링(ion milling) 장치를 이용하여 이차 전지 양극에 이온 빔을 조사하여 현미경 관찰용 시료를 제작하는 제 2단계2) a second step of preparing a sample for observing the microscope by irradiating the ion beam to the anode of the secondary battery using an ion milling apparatus

를 포함하는 이차 전지 양극 내부 기공 분포 분석 방법을 제공한다:The method comprising the steps of:

<화학식 1>&Lt; Formula 1 >

Figure pat00001
Figure pat00001

식 중, n은 20 내지 400임.Wherein n is from 20 to 400;

또 본 발명은 상기 화학식 1로 표시되는 반복 단위를 갖는, 이차 전지 양극 내부 기공 분포 분석용 고분자를 제공한다. The present invention also provides a polymer for analyzing the internal pore distribution of a cathode of a secondary battery having the repeating unit represented by the above formula (1).

본 발명에서 제공하는 이차 전지 양극 내부 기공 분포 분석 방법에 따르면 다른 양극 구성 물질과 기공을 명확하게 구분하여 관찰할 수 있으며, 관찰한 사진을 이용하여 전극의 상층, 중층 및 하층에 따른 기공의 분포를 계산하여 전극 성능을 예상할 수 있는 효과가 있다. According to the method for analyzing the internal pore distribution of a cathode of a secondary battery provided in the present invention, it is possible to clearly distinguish between other cathode materials and pores, and the distribution of pores according to the upper, middle, There is an effect that the electrode performance can be estimated by calculation.

도 1은 비교예 1에 의해 얻은 SEM 사진을 확대한 사진이다.
도 2는 비교예 2에 의해 얻은 SEM 사진을 확대한 사진이다.
도 3은 실시예 1에 의해 얻은 SEM 사진을 확대한 사진이다.
도 4는 이차 전지 양극 상층 및 하층의 기공률(porosity)이 상이한 시료의 SEM 사진이다.
도 5는 이차 전지 양극 상층 및 하층의 기공률이 유사한 시료의 SEM 사진이다.
도 6은 이차 전지 양극 상층 및 하층의 기공률 분포에 따른 방전 특성을 나타낸 그래프이다.
도 7은 실시예 1에 의해 얻은 SEM 사진이다.
도 8은 실시예 1에 의해 얻은 SEM 사진을 이미지 프로세싱에 적용하여 얻은 공극률(porosity) 정량 결과 값을 나타낸 그래프이다.
도 9는 이온 밀링(ion milling) 장치의 모식도이다.
Fig. 1 is an enlarged photograph of a SEM photograph obtained in Comparative Example 1. Fig.
Fig. 2 is an enlarged photograph of the SEM photograph obtained in Comparative Example 2. Fig.
3 is an enlarged photograph of the SEM photograph obtained in Example 1. Fig.
4 is an SEM photograph of a sample having different porosities in the upper and lower layers of the secondary battery anode.
5 is a SEM photograph of a sample having a similar porosity in the upper and lower layers of the secondary battery anode.
6 is a graph showing discharge characteristics according to the porosity distribution in the upper and lower layers of the secondary battery anode.
7 is a SEM photograph taken in Example 1. Fig.
8 is a graph showing porosity quantification result values obtained by applying the SEM photograph obtained in Example 1 to image processing.
9 is a schematic diagram of an ion milling apparatus.

본 발명은 하기 단계를 포함하는 이차 전지 양극 내부 기공 분포 분석 방법에 대한 것이다.The present invention relates to a method for analyzing the internal pore distribution of a cathode of a secondary battery including the following steps.

이차 전지 양극 내부 기공 분포 분석은, 동일한 기공률을 갖더라도 표면의 기공이 넓은 경우 리튬의 이동 통로에 저항이 적게 걸려서 방전 특성이 좋아지기 때문에 중요하다. 수치상으로 평균 기공률이 동일하더라도 본 발명에 따라 기공 분포 분석을 하였을 때 상층은 높은 기공률을 갖고 하층은 낮은 기공률을 갖는 경우(도 4)에, 상층과 하층이 유사한 기공률을 갖는 경우(도 5)보다 방전 특성이 좋기 때문이다(도 6). Analysis of the internal pore distribution of the secondary battery anode is important because it has less resistance to the lithium passage when the pores on the surface are wide even though they have the same porosity. The pore distribution analysis according to the present invention shows that when the upper layer has a high porosity and the lower layer has a low porosity (FIG. 4), the upper and lower layers have similar porosity (FIG. 5) This is because the discharge characteristics are good (Fig. 6).

이하에서 본 발명의 분석 방법에 대해 상세하게 설명한다. Hereinafter, the analysis method of the present invention will be described in detail.

먼저, 1) 이차 전지 양극 내부에 하기 화학식 1로 표시되는 반복 단위를 갖는 고분자를 매립하여 양극 내부의 기공을 채우는 제 1단계를 수행한다:First, 1) a first step of filling the pores inside the anode with a polymer having a repeating unit represented by the following formula (1) in the interior of the anode of the secondary battery is performed:

<화학식 1> &Lt; Formula 1 >

Figure pat00002
Figure pat00002

식 중, n은 20 내지 400이다.Wherein n is from 20 to 400.

종래에는 이차 전지 양극 내부 기공 관찰을 위해 에폭시 수지를 매립하였으나, 이 경우 기공이 전부 에폭시 수지로 채워져 기공 뒤에 존재하는 활물질의 형상이 보이지는 않았지만, 양극 구성 물질인 바인더, 도전재 등과 구분이 명확하게 되지 않아 단면 상에서 기공 분포를 보기가 어려웠다. Conventionally, an epoxy resin is embedded for observing the pores in the anode of the secondary battery. In this case, the pores are completely filled with the epoxy resin and the shape of the active material existing behind the pores is not visible. However, And it was difficult to see the pore distribution on the cross section.

에폭시 수지 대신 상기 화학식 1의 반복 단위를 갖는 고분자를 이차 전지 양극 내부에 매립할 경우 기공 뒤에 존재하는 활물질의 형상도 보이지 않으며, 이차 전지 양극 구성 물질과 기공을 명확하게 구분하여 관찰할 수 있다. When the polymer having the repeating unit represented by the above formula (1) is embedded in the anode of the secondary battery instead of the epoxy resin, the shape of the active material existing behind the pores is not seen, and the constituent material of the anode and the pores of the secondary battery can be clearly distinguished.

이후, 2) 이온 밀링(ion milling) 장치를 이용하여 이차 전지 양극에 이온 빔을 조사하여 현미경 관찰용 시료를 제작하는 제 2단계를 수행한다. 이후 상기 현미경 관찰용 시료를 현미경으로 관찰한다.Thereafter, a second step of irradiating the ion beam to the anode of the secondary battery using an ion milling apparatus to produce a sample for observing the microscope is performed. Thereafter, the sample for observing the microscope is observed with a microscope.

이온 밀링(ion milling) 장치에 대해 보다 상세하게 설명한다. The ion milling device will be described in more detail.

이온 건(ion gun)에서 생성된 집속 이온 빔(ion beam)이 마스크(mask)를 거쳐 양극 시료의 표면 끝단에 조사된다. 시료의 끝단에서 약 100 ㎛ 안쪽으로 조사된 이온 빔에 의해 양극 물질들이 스퍼터링(sputtering)되어 물리적 손상이 없는 깨끗한 단면 시료를 얻을 수 있게 되는 것이다. 도 9에 이온 밀링 장치의 모식도를 나타내었다. The focused ion beam generated from the ion gun is irradiated to the surface of the cathode sample through a mask. The anode materials are sputtered by the ion beam irradiated to the inside of about 100 탆 at the end of the sample to obtain a clean section sample free from physical damage. 9 is a schematic view of the ion milling apparatus.

이렇게 얻은 단면 시료를 똑바로 세워 주사 전자 현미경(SEM)으로 단면의 표면을 관찰할 수 있다. The section sample thus obtained can be stood upright and the surface of the cross section can be observed with a scanning electron microscope (SEM).

본 발명의 일 실시예에 있어서, 상기 이온 빔은 아르곤(Ar) 이온 빔인 것이 바람직하나 이에 한정되지 않는다.In one embodiment of the present invention, the ion beam is preferably an argon (Ar) ion beam, but is not limited thereto.

본 발명의 다른 일 실시예에 있어서, 상기 현미경 관찰용 시료는 주사 전자 현미경(SEM)으로 관찰하는 것이 바람직하나 이에 한정되지 않는다.In another embodiment of the present invention, the sample for microscopic observation is preferably observed with a scanning electron microscope (SEM), but is not limited thereto.

이하 본 발명을 비한정적인 실시예에 의해 더욱 상세하게 설명한다. 하기에 개시되는 본 발명의 실시 형태는 어디까지 예시로써, 본 발명의 범위는 이들의 실시 형태에 한정되지 않는다. 본 발명의 범위는 특허청구범위에 표시되었고, 더욱이 특허 청구범위 기록과 균등한 의미 및 범위 내에서의 모든 변경을 함유하고 있다. 또한, 이하의 실시예, 비교예에서 함유량을 나타내는 "%" 및 "부"는 특별히 언급하지 않는 한 질량 기준이다.Hereinafter, the present invention will be described in more detail by way of non-limiting examples. The embodiments of the present invention described below are by way of example only and the scope of the present invention is not limited to these embodiments. The scope of the present invention is indicated in the claims, and moreover, includes all changes within the meaning and range of equivalency of the claims. In the following Examples and Comparative Examples, "%" and "part" representing the content are on a mass basis unless otherwise specified.

실시예Example

실시예Example 1. 이차 전지 양극 내부 기공 분포 분석 방법 1. Analysis of pore distribution in anode of secondary battery

1) 이차 전지 양극 내부에 하기 화학식 1의 반복단위를 갖는 고분자를 매립하였다:1) A polymer having a repeating unit represented by the following formula (1) was embedded in an anode of a secondary battery:

<화학식 1>&Lt; Formula 1 >

Figure pat00003
Figure pat00003

식 중, n은 20 내지 400임.Wherein n is from 20 to 400;

2) 아르곤 이온 밀링(Ar ion milling) 장치(IM 4000, Hitachi 사 제조)를 이용하여 고분자가 매립된 이차 전지 양극에 집속 아르곤(Ar) 이온 빔을 조사하여 표면을 깎아 내어 평활한 현미경 관찰용 시료를 제작하였다. 2) Using a Ar ion milling apparatus (IM 4000, manufactured by Hitachi), a focused ion beam of an argon (Ar) ion beam was applied to a secondary battery cell filled with a polymer, and the surface was shaved to obtain a smooth microscope observation sample Respectively.

3) 상기 현미경 관찰용 시료를 주사 전자 현미경(SEM)으로 관찰하고, SEM 사진을 촬영하였다. 촬영한 SEM 사진을 확대하여 도 3에 나타내었다.3) The sample for microscopic observation was observed with a scanning electron microscope (SEM), and a SEM photograph was taken. The photographed SEM photograph is enlarged and shown in Fig.

상기 화학식 1의 반복 단위를 갖는 고분자를 매립하는 경우, 상기 고분자 내 Si 성분을 이용하여 주사 전자 현미경 내에서 원자 번호 차이에 의한 대비(contrast)를 극대화시켜서 기공(pore) 지역을 바인더 지역 및 도전재 지역과 명확하게 구분할 수 있었다. When the polymer having the repeating unit represented by Formula 1 is embedded, the contrast due to the difference in atomic number is maximized in the scanning electron microscope using the Si component in the polymer, so that the pore region is divided into the binder region and the conductive material It was able to distinguish clearly from area.

비교예Comparative Example 1. 이차 전지 양극 내부 기공 분포 분석 방법 1. Analysis of pore distribution in anode of secondary battery

상기 실시예 1의 1)에서 이차 전지 양극 내부에 고분자를 매립하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지 양극 내부 기공 분포를 분석하기 위해 SEM 사진을 촬영하였다. SEM photographs were taken to analyze the pore distribution in the anode of the secondary battery in the same manner as in Example 1, except that the polymer was not embedded in the anode of the secondary battery in 1) of Example 1 above.

그 결과를 도 1에 나타내었다. 고분자를 매립하지 않은 양극 단면에서는 주사 전자 현미경(SEM)의 높은 초점 심도 때문에 기공(pore) 뒤에 존재하는 양극 활물질이 함께 관찰되어 순수한 기공만을 구분하여 관찰하기에는 어려움이 있었다. The results are shown in Fig. In the anode section where the polymer is not buried, the cathode active material existing behind the pore is observed together due to the high depth of focus of the scanning electron microscope (SEM), and it is difficult to observe only the pure pores.

비교예Comparative Example 2. 이차 전지 양극 내부 기공 분포 분석 방법 2. Analysis of pore distribution in anode of secondary battery

상기 실시예 1의 1)에서 이차 전지 양극 내부에 하기 화학식 1의 반복단위를 갖는 고분자 대신 에폭시 수지를 매립한 것을 제외하고는 실시예 1과 동일한 방법으로 이차 전지 양극 내부 기공 분포를 분석하기 위해 SEM 사진을 촬영하였다. In the same manner as in Example 1 except that an epoxy resin was embedded in the interior of the secondary battery anode in place of the polymer having a repeating unit represented by the following formula 1 in Example 1, the secondary battery anode internal pore distribution was analyzed by SEM A photograph was taken.

<화학식 1>&Lt; Formula 1 >

Figure pat00004
Figure pat00004

그 결과를 도 2에 나타내었다. 에폭시 수지를 매립한 경우 도 2에 나타난 것처럼 바인더 및 도전재 지역과 기공(pore) 지역의 이미지 대비 차이가 크지 않아 구분하는 데 어려움이 있었다. The results are shown in Fig. As shown in FIG. 2, when the epoxy resin was embedded, it was difficult to distinguish between the binder and the conductive material region and the pore region.

응용예Application example 1. 이미지 프로세싱(image processing)을 적용한 양극 내부 기공률 정량 분석 1. Quantitative analysis of porosity inside the anode with image processing

본 발명이 제공하는 이차 전지 양극 내부 기공 분포 분석에 의해 전극의 성능을 미리 예측해 볼 수 있다. 도 7에 나타낸 실시예 1에 의해 얻은 SEM 사진을 이미지 프로세싱(image processing)에 적용하면 전극의 상층, 중층 및 하층에 따른 정량 결과값(하기 표 1, 도 8)을 도출할 수 있으며, 이를 이용하여 전극의 성능을 미리 예측할 수 있다.The performance of the electrode can be estimated in advance by analyzing the distribution of the pores in the anode of the secondary battery provided by the present invention. When the SEM photograph obtained in Example 1 shown in FIG. 7 is applied to image processing, quantitative result values according to the upper layer, middle layer and lower layer of the electrode can be derived (Table 1, FIG. 8) So that the performance of the electrode can be predicted in advance.

SEM 사진SEM picture 평균(%)Average(%) 상층Upper layer 중층Middle layer 하층substratum 양극 활물질
(녹색)
Cathode active material
(green)
78.678.6 78.078.0 80.380.3 77.577.5
바인더+도전재
(흰색)
Binder + Conductive material
(White)
4.54.5 7.57.5 3.43.4 2.72.7
기공
(적색)
pore
(Red)
16.916.9 14.514.5 16.316.3 19.819.8

Claims (4)

1) 이차 전지 양극 내부에 하기 화학식 1로 표시되는 반복 단위를 갖는 고분자를 매립하여 양극 내부의 기공(pore)을 채우는 제 1단계; 및
2) 이온 밀링(ion milling) 장치를 이용하여 이차 전지 양극에 이온 빔을 조사하여 현미경 관찰용 시료를 제작하는 제 2단계
를 포함하는 이차 전지 양극 내부 기공 분포 분석 방법:
<화학식 1>
Figure pat00005

식 중, n은 20 내지 400임.
1) a first step of filling a polymer having a repeating unit represented by the following formula (1) into a positive electrode of a secondary battery to fill pores inside the positive electrode; And
2) a second step of preparing a sample for observing the microscope by irradiating the ion beam to the anode of the secondary battery using an ion milling apparatus
Lt; RTI ID = 0.0 &gt; of: &lt; / RTI &gt;
&Lt; Formula 1 &gt;
Figure pat00005

Wherein n is from 20 to 400;
청구항 1에 있어서,
상기 현미경 관찰용 시료를 주사 전자 현미경(SEM)으로 관찰하는 것을 특징으로 하는 이차 전지 양극 내부 기공 분포 분석 방법.
The method according to claim 1,
Wherein the sample for observing the microscope is observed with a scanning electron microscope (SEM).
청구항 1에 있어서,
상기 이온 빔은 아르곤(Ar) 이온 빔인 것을 특징으로 하는 이차 전지 양극 내부 기공 분포 분석 방법.
The method according to claim 1,
Wherein the ion beam is an argon (Ar) ion beam.
하기 화학식 1로 표시되는 반복 단위를 갖는, 이차 전지 양극 내부 기공 분포 분석용 고분자:
<화학식 1>
Figure pat00006

식 중, n은 20 내지 400임.
A polymer for analyzing the internal pore distribution of a cathode of a secondary battery having a repeating unit represented by the following formula (1)
&Lt; Formula 1 >
Figure pat00006

Wherein n is from 20 to 400;
KR1020150097631A 2015-07-09 2015-07-09 A method for analyzing pore distribution in secondary battery cathode and polymer therefor KR102048342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150097631A KR102048342B1 (en) 2015-07-09 2015-07-09 A method for analyzing pore distribution in secondary battery cathode and polymer therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150097631A KR102048342B1 (en) 2015-07-09 2015-07-09 A method for analyzing pore distribution in secondary battery cathode and polymer therefor

Publications (2)

Publication Number Publication Date
KR20170006663A true KR20170006663A (en) 2017-01-18
KR102048342B1 KR102048342B1 (en) 2019-11-25

Family

ID=57992275

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150097631A KR102048342B1 (en) 2015-07-09 2015-07-09 A method for analyzing pore distribution in secondary battery cathode and polymer therefor

Country Status (1)

Country Link
KR (1) KR102048342B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169095A (en) * 2017-12-13 2018-06-15 中国石油大学(华东) Mid-deep strata sandstone burial diagenesis andesine dissolves secondary pore Areal porosity assay method
WO2018221929A1 (en) * 2017-05-29 2018-12-06 주식회사 엘지화학 Method for measuring pore distribution in electrode for secondary battery
KR20190112502A (en) * 2018-03-26 2019-10-07 주식회사 엘지화학 Analysis method of high loading electrode using optical microscope
KR20200010932A (en) * 2018-07-23 2020-01-31 주식회사 엘지화학 Method of predicting properties of lithium secondary battery
KR20200027693A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Method for performance analysis of secondary battery electrode
KR20200044550A (en) * 2018-10-19 2020-04-29 주식회사 엘지화학 Method for analysis of battery electrode
EP3764429A1 (en) * 2019-07-10 2021-01-13 Lg Chem, Ltd. Analysis method for crack rate of electrode active material of electrode for lithium secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194283A (en) * 1992-12-22 1994-07-15 Nippon Steel Corp Resin for embedding sample of microscope and embedding method for the same resin in the sample
JP2007123207A (en) * 2005-10-31 2007-05-17 Mitsui Mining & Smelting Co Ltd Evaluation method of electrode for battery
KR20080022139A (en) * 2005-07-28 2008-03-10 마쯔시다덴기산교 가부시키가이샤 Electrode for lithium ion rechargeable battery
JP2014137285A (en) * 2013-01-17 2014-07-28 Toppan Printing Co Ltd Liquid resin for electron microscope observation
JP2015041434A (en) 2013-08-20 2015-03-02 株式会社住化分析センター Evaluation method and manufacturing method for electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194283A (en) * 1992-12-22 1994-07-15 Nippon Steel Corp Resin for embedding sample of microscope and embedding method for the same resin in the sample
KR20080022139A (en) * 2005-07-28 2008-03-10 마쯔시다덴기산교 가부시키가이샤 Electrode for lithium ion rechargeable battery
JP2007123207A (en) * 2005-10-31 2007-05-17 Mitsui Mining & Smelting Co Ltd Evaluation method of electrode for battery
JP2014137285A (en) * 2013-01-17 2014-07-28 Toppan Printing Co Ltd Liquid resin for electron microscope observation
JP2015041434A (en) 2013-08-20 2015-03-02 株式会社住化分析センター Evaluation method and manufacturing method for electrode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633359A4 (en) * 2017-05-29 2020-06-24 LG Chem, Ltd. Method for measuring pore distribution in electrode for secondary battery
WO2018221929A1 (en) * 2017-05-29 2018-12-06 주식회사 엘지화학 Method for measuring pore distribution in electrode for secondary battery
KR20180130462A (en) * 2017-05-29 2018-12-07 주식회사 엘지화학 Method for measuring distribution of pores in secondary battery electrode
CN110352347A (en) * 2017-05-29 2019-10-18 株式会社Lg化学 The method for measuring the distribution of pores in electrode for secondary battery
CN108169095A (en) * 2017-12-13 2018-06-15 中国石油大学(华东) Mid-deep strata sandstone burial diagenesis andesine dissolves secondary pore Areal porosity assay method
KR20190112502A (en) * 2018-03-26 2019-10-07 주식회사 엘지화학 Analysis method of high loading electrode using optical microscope
KR20200010932A (en) * 2018-07-23 2020-01-31 주식회사 엘지화학 Method of predicting properties of lithium secondary battery
KR20200027693A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Method for performance analysis of secondary battery electrode
KR20200044550A (en) * 2018-10-19 2020-04-29 주식회사 엘지화학 Method for analysis of battery electrode
CN112189142A (en) * 2018-10-19 2021-01-05 株式会社Lg化学 Method for analyzing battery electrode
US11650223B2 (en) 2018-10-19 2023-05-16 Lg Energy Solution, Ltd. Battery electrode analysis method
CN112189142B (en) * 2018-10-19 2023-12-05 株式会社 Lg新能源 Analysis method of battery electrode
EP3764429A1 (en) * 2019-07-10 2021-01-13 Lg Chem, Ltd. Analysis method for crack rate of electrode active material of electrode for lithium secondary battery
KR20210007165A (en) * 2019-07-10 2021-01-20 주식회사 엘지화학 Analysing method for electrode active material crack rate of electrode for lithium secondary battery
US11334984B2 (en) 2019-07-10 2022-05-17 Lg Energy Solution, Ltd. Analysis method for crack rate of electrode active material of electrode for lithium secondary battery

Also Published As

Publication number Publication date
KR102048342B1 (en) 2019-11-25

Similar Documents

Publication Publication Date Title
KR20170006663A (en) A method for analyzing pore distribution in secondary battery cathode and polymer therefor
US10937210B2 (en) Method for reconstructing pore structure of core with micro-CT (computed tomography)
Pfaffmann et al. New method for binder and carbon black detection at nanometer scale in carbon electrodes for lithium ion batteries
KR102068764B1 (en) Method and system for observing pore distribution within the battery anode
Hao et al. 3D imaging of lithium protrusions in solid‐state lithium batteries using X‐ray computed tomography
JP5815617B2 (en) Electrode evaluation method and manufacturing method
JP6860129B2 (en) Method for measuring pore distribution of electrodes for secondary batteries
Zekri et al. Microstructure degradation of Ni/CGO anodes for solid oxide fuel cells after long operation time using 3D reconstructions by FIB tomography
KR102606425B1 (en) Method for performance analysis of secondary battery electrode
CN104155156A (en) Preparation method of TEM plane sample
Sadd et al. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy
Eswara-Moorthy et al. An in situ SEM-FIB-based method for contrast enhancement and tomographic reconstruction for structural quantification of porous carbon electrodes
Ates et al. Elucidating the Role of Microstructure in Thiophosphate Electrolytes–a Combined Experimental and Theoretical Study of β‐Li3PS4
KR20170019146A (en) A method for analyzing distribution of components and pores in secondary battery electrode and composition therefor
JP5687299B2 (en) Observation sample, preparation method of observation sample, and observation method
CN110779845A (en) Multi-dimensional observation method for pore structure of coating diaphragm of lithium ion battery
Taiwo et al. In-Situ examination of microstructural changes within a lithium-ion battery electrode using synchrotron X-ray microtomography
Cooper et al. Methods—Kintsugi Imaging of Battery Electrodes: Distinguishing Pores from the Carbon Binder Domain using Pt Deposition
JP2007123207A (en) Evaluation method of electrode for battery
CN110779945A (en) Evaluation method for lithium battery electrode quality
KR102197898B1 (en) Evaluation method for dispersibility of carbon nanotube in electrode
EP3633359B1 (en) Method for measuring pore distribution in electrode for secondary battery
Cooper et al. Kintsugi Imaging of Battery Electrodes: Unambiguously Distinguishing Pores from the Carbon Binder Domain using Pt Deposition
Peterson The Effect of Microstructure On Transport Properties of Porous Electrodes
Yamamoto et al. Analysis of void volume in composite electrode of all-solid-state lithium-ion battery employing FIB-SEM and union operation image processing

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant