KR20160128943A - Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method - Google Patents

Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method Download PDF

Info

Publication number
KR20160128943A
KR20160128943A KR1020160123360A KR20160123360A KR20160128943A KR 20160128943 A KR20160128943 A KR 20160128943A KR 1020160123360 A KR1020160123360 A KR 1020160123360A KR 20160123360 A KR20160123360 A KR 20160123360A KR 20160128943 A KR20160128943 A KR 20160128943A
Authority
KR
South Korea
Prior art keywords
single nucleotide
dna
artificial sequence
nucleotide polymorphism
markers
Prior art date
Application number
KR1020160123360A
Other languages
Korean (ko)
Other versions
KR101770075B1 (en
Inventor
서강석
임현태
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to KR1020160123360A priority Critical patent/KR101770075B1/en
Publication of KR20160128943A publication Critical patent/KR20160128943A/en
Application granted granted Critical
Publication of KR101770075B1 publication Critical patent/KR101770075B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/124Animal traits, i.e. production traits, including athletic performance or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for selecting a single nucleotide polymorphism marker for introducing a pig production and traceability system. More specifically, the single nucleotide polymorphism marker extracts tissue of Jeju native pig, Landrace, Yorkshire, Berkshire, and Duroc, and single nucleotide polymorphism markers commonly included in the five species of pigs are discriminated. Then, 96 single nucleotide polymorphism markers capable of being used as pig traceability agents are selected through an analyzing device.

Description

돼지 생산 및 이력 추적 시스템의 도입을 위한 단일염기다형성 마커 선정방법{Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method}Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method}

본 발명은 돼지 생산 및 이력 추적 시스템의 도입을 위한 단일염기다형성 마커 선정방법에 관한 것으로 더욱 상세하게는, 상기 단일염기다형성 마커는 제주재래돼지, 랜드레이스, 요크셔, 바크셔, 듀록의 조직을 채취하여 상기 5품종의 돼지에 공동으로 속하는 단일염기다형성 마커를 선별한 다음, 분석기기를 통해 돼지 이력제로 사용할 수 있는 96개의 단일염기다형성 마커를 선정하는 것을 특징으로 하는 돼지 생산 및 이력 추적 시스템의 도입을 위한 단일염기다형성 마커 선정방법에 관한 것이다.The present invention relates to a method for selecting a single nucleotide polymorphism marker for the introduction of a pig production and traceability system, and in more detail, the single nucleotide polymorphism marker collects tissues of Jeju native pigs, Landrace, Yorkshire, Barkshire, and Duroc. The introduction of a pig production and traceability system, characterized in that after selecting the single nucleotide polymorphism markers that jointly belong to the five varieties of pigs, and then selecting 96 single nucleotide polymorphism markers that can be used as a pig tracer through an analyzer. It relates to a method for selecting a single nucleotide polymorphism marker for

돼지 또는 집돼지는 가축화된 멧돼지를 말하며, 학명은 Sus domestica이다. 한국에서는 돝 또는 도야지로 불렀으며, 돼지가 가축화된 시기는 동남아시아에서는 약 4,800년 전, 유럽에서는 약 3,500년 전이며, 한국에 개량종 돼지가 들어온 것은 1903년이다. 현재 전세계에서 사육되고 있는 돼지의 품종은 약 1,000종에 달하고 있으며, 이용도에 따라서 지방형(라드형)·가공용형(베이컨형)·생육형(미트형)으로 나눌 수 있다.Pig or domestic pig refers to domesticated wild boar, and its scientific name is Sus domestica. In Korea, it was called Tonap or Toyaji, and pigs were domesticated about 4,800 years ago in Southeast Asia and about 3,500 years ago in Europe, and improved breed pigs were introduced to Korea in 1903. Currently, there are about 1,000 varieties of pigs raised around the world, and can be divided into fat type (lard type), processing type (bacon type), and growth type (meat type) according to usage.

돼지 생산 및 이력 추적을 위한 생산 이력제는 돼지 고기의 생산에서 유통에 이르는 전 과정을 전산화에 의한 추적가능한 시스템을 구축하는 것으로 소비자의 안전 및 안심 욕구에 부응하고 대도시 판매장에서 국산 및 제주산 돼지 고기로 둔갑하여 판매되는 등의 일을 사전에 예방함으로써 소비자에게 정확한 상품을 구매할 수 있도록 하고 양돈 농가에 소득의 향상과 육가공업의 경영 안정을 모도하기 위하여 시행되고 있다.The production tracer system for pig production and traceability is to establish a system that can trace the entire process from pork production to distribution by computerization.It responds to consumers' safety and safety needs and converts domestic and Jeju pork to domestic and Jeju-made pork from sales outlets in large cities. It is being implemented in order to ensure that consumers can purchase accurate products by preventing them from being sold in advance, and to improve income for pig farms and stabilize the management of the meat processing industry.

가축에 있어서 개체의 확인이나 혈통관계의 정확한 정보를 제공하기 위해서 DNA 마커를 이용하는 연구가 국내외적으로 활발히 이루어지고 있다. 기존에는 초위성체(Microsatellite) 마커를 이용하여 친자감별 및 개체추적이 이루어졌으나 고가의 분석가격과 판독하는 과정에서 높은 에러율이 나타나 문제점으로 부각되고 있다. 최근 연구 결과에 따르면 단일염기다형(SNP) 마커들을 이용하여 유전자형을 적은 비용으로 대량 분석하는 것이 가능하여 이를 축산물의 이력 추적 또는 원산지 식 식별에 적용하고 있다.Research using DNA markers has been actively conducted both domestically and internationally in order to provide accurate information on individual identification and ancestry in livestock. Previously, paternity identification and individual tracking were performed using a microsatellite marker, but the high cost of analysis and high error rate in the process of reading are emerging as a problem. According to the results of recent studies, it is possible to perform mass analysis of genotype at low cost using single base polymorphism (SNP) markers, and this is applied to trace the history of livestock products or to identify the knowledge of origin.

국내등록특허공보 제10-1341813호(돼지의 개체식별 및 이력관리를 위한 단일염기다형 유전자마커 및 이를 이용한 돼지의 개체식별방법)가 등록되었으며, 상기 선행기술은 표지인자를 활용하여 정확한 유전능측정과 돼지고기 이력관리를 위한 유전자분석기법으로 활용하고, RFID 등의 기능성 개체 시별 도구와 유전자 분석기법의 변행을 가능하게 함으로써 분석의 신뢰도를 높인 방법에 대한 것이다.Korean Patent Publication No. 10-1341813 (a single-base polymorphic gene marker for individual identification and history management of pigs and a method for individual identification of pigs using the same) has been registered, and the prior art uses a marker to accurately measure heritability. It is about a method that enhances the reliability of analysis by utilizing it as a genetic analysis technique for history management of meat and pork, and enabling a change of functional individual time-specific tools such as RFID and genetic analysis methods.

국내등록특허공보 제10-0721232호(대한민국내 주요 돼지 품종의 순종 식별을 위한 품종특이 DNA marker의 활용)가 등록되었으며, 상기 선행기술은 우리나라에 사육되고 있는 돼지 5품종의 구별을 가능하게 하기 위한 것이다.Korean Patent Publication No. 10-0721232 (use of breed-specific DNA markers for obedience identification of major pig breeds in Korea) was registered, and the above prior art was used to distinguish five pig breeds in Korea. will be.

국내공개특허공보 제10-2011-0041668호(돼지의 단일뉴클레오타이드다형성 마커 및 이를 이용한 국내산 돈육의 원산지 판별방법)이 공개되었으며, 상기 선행기술은 국내산 돈육의 원산지 판별에 유용하게 이용될 수 있는 단일뉴클레오타이드다형성 마커를 이용하여 국내산 돈육의 원산지 판별 방법 및 이 방법에 사용되는 키트에 관한 것이다.Korean Patent Publication No. 10-2011-0041668 (a single nucleotide polymorphism marker in pigs and a method for determining the origin of domestic pork using the same) has been disclosed, and the prior art is a single nucleotide that can be usefully used to determine the origin of domestic pork. It relates to a method for determining the origin of domestic pork by using a polymorphic marker and a kit used in this method.

국내공개특허공보 제10-2011-0011443호(한국재래돼지 품종 특이적 부자표지인자 개발 및 이를 이용한 한국재래돼지 판별 방법)이 공개되었으며, 상기 선행기술은 분자유전공학적 분석기법인 PCR-RELP 기술을 이용하여 KIT 유전자에 대한 한국재래돼지 특이적인 DNA marker를 검출하여, 한국재래돼지와 기타 개량종 돼지와의 정확한 품종 판별 기술을 제공하는 것이다.Korean Patent Publication No. 10-2011-0011443 (development of a parental labeling factor specific to Korean native pig breeds and a method for discriminating Korean native pigs using the same) has been disclosed, and the prior art uses PCR-RELP technology, a molecular genetic analysis method. Thus, by detecting a DNA marker specific to Korean native pigs for the KIT gene, it provides accurate breed identification technology between Korean native pigs and other improved breed pigs.

상기 선행기술들은 개체의 식별 방법에 관한 것으로 돼지의 생산 및 이력을 추적하기 위한 단일염기다형성 마커가 선정되지 않아 돼지의 생산 및 이력을 추적하는데 용이하지 못하다는 문제점이 있다.The prior art relates to a method of identifying an individual and has a problem in that it is not easy to track the production and history of pigs because a single polymorphism marker for tracking the production and history of pigs is not selected.

KR 10-1341813 B1 (2013.12.10)KR 10-1341813 B1 (2013.12.10) KR 10-0721232 B1 (2007.05.16)KR 10-0721232 B1 (2007.05.16) KR 10-2011-0041668 A (2011.04.22)KR 10-2011-0041668 A (2011.04.22) KR 10-2011-0011443 A (2011.02.08)KR 10-2011-0011443 A (2011.02.08)

본 발명은 상기의 문제점을 해결하기 위해 공시 동물인 제주재래돼지, 랜드레이스, 요크셔, 바크셔, 듀록으로 구성되어지는 5 품종의 돼지에서 조직을 채취한 후 유전자를 분석하여 돼지 이력제로 사용할 수 있는 단일염기다형성 마커를 선정하는 것에 그 목적이 있다.In order to solve the above problems, the present invention can be used as a pig tracer by analyzing genes after collecting tissues from five breeds of pigs consisting of publicly announced animals such as Jeju native pig, Landrace, Yorkshire, Barkshire, and Duroc. The purpose is to select a monobasic polymorphism marker.

또한, 상기 선정된 단일염기다형성 마커로 돼지의 생산과 유통과정에 필수적인 요소인 식품의 안전성과 소비자들의 신뢰향상에 그 목적이 있다.In addition, the selected single nucleotide polymorphism marker has the purpose of improving the safety of food and consumer confidence, which is an essential element in the production and distribution process of pigs.

본 발명은 상기의 목적을 달성하기 위하여 본 발명에 따른 돼지 생산 및 이력 추적 시스템의 도입을 위한 단일염기다형성 마커 선정방법은 제주재래돼지, 랜드레이스, 요크셔, 바크셔, 듀록의 조직을 채취하여 상기 5품종의 돼지에 공동으로 속하는 단일염기다형성 마커를 선별한 다음, 분석기기를 통해 돼지 이력제로 사용할 수 있는 96개의 단일염기다형성 마커를 선정하는 것을 특징으로 한다.The present invention is a method for selecting a single nucleotide polymorphism marker for the introduction of a pig production and traceability system according to the present invention in order to achieve the above object. Characterized in that, after selecting single nucleotide polymorphism markers that belong to five varieties of pigs, 96 single nucleotide polymorphism markers that can be used as pig history are selected through an analyzer.

또한, 상기 96개의 단일염기다형성 마커는 개체 식별 및 이력추적을 위한 염기서열을 갖는 것을 특징으로 한다.In addition, the 96 single nucleotide polymorphism markers are characterized by having a nucleotide sequence for individual identification and traceability.

또한, 상기 단일염기다형성 마커 선정을 위해 돼지의 혈액을 채취한 지역은 강원, 경기, 경상대, 광주, 대구, 대전, 서울, 전북, 제주, 충북, 부산인 것을 특징으로 한다.In addition, regions where pig blood was collected for the selection of the monobasic polymorphism marker are Gangwon, Gyeonggi, Gyeongsangdae, Gwangju, Daegu, Daejeon, Seoul, Jeonbuk, Jeju, Chungbuk, and Busan.

본 발명에 따른 돼지 생산 및 이력 추적을 위한 돼지의 단일염기다형성 마커 선정을 통해 공시 동물인 제주재래돼지, 랜드레이스, 요크셔, 바크셔, 듀록으로 구성되어지는 5 품종의 돼지에서 조직을 채취한 후 유전 형질을 분석하여 돼지 이력제로 사용할 수 있는 단일염기다형성 마커를 선정하여 돼지의 생산과 유통과정에 필수적인 요소인 식품의 안전성과 소비자들의 신뢰향상에 효과가 있다.After tissue is collected from 5 breeds of pigs consisting of the publicly announced animals Jeju native pigs, Landrace, Yorkshire, Barkshire, and Duroc through the selection of a single nucleotide polymorphism marker for pig production and traceability in pigs according to the present invention. By analyzing genetic traits and selecting a single nucleotide polymorphism marker that can be used as a pig history, it is effective in improving the safety of food and consumer confidence, an essential element in the production and distribution of pigs.

도 1은 본 발명에 따른 그룹별 선별 대립유전자 빈도 분석 결과를 나타낸 표
도 2는 본 발명에 따른 기기별 사용 단일염기다형성 마커와 샘플별 PIC 결과를 나타낸 표
도 3은 본 발명에 따른 기기별 사용 단일염기다형성 마커와 샘플별 NE-I 결과를 나타낸 표
도 4는 본 발명에 따른 기기별 사용 단일염기다형성 마커와 샘플별 NE-SI 결과를 나타낸 표
도 5a 내지 도 5d는 본 발명에 따른 선정된 단일염기다형성 마커의 수는 96개의 염기서열을 나타낸 표
1 is a table showing the results of analyzing the frequency of selection alleles for each group according to the present invention
Figure 2 is a table showing the PIC results for each sample and single nucleotide polymorphism markers used for each device according to the present invention
3 is a table showing the single nucleotide polymorphism markers used for each device and NE-I results for each sample according to the present invention.
Figure 4 is a table showing the single nucleotide polymorphism markers used for each device and NE-SI results for each sample according to the present invention
5A to 5D are tables showing 96 nucleotide sequences in which the number of selected single nucleotide polymorphism markers according to the present invention

본 발명은 돼지 생산 및 이력 추적을 위한 돼지의 단일염기다형성 마커 선정 방법에 관한 것이다.The present invention relates to a method for selecting a single nucleotide polymorphism marker in pigs for pig production and traceability.

본 발명에 사용한 돼지는 국내에서 사육하고 있는 제주재래흑돼지, 랜드레이스, 요크셔, 버크셔, 듀록의 5품종을 선정하였으며, 상기 돼지의 조직을 채취하여 genomic DNA를 추출 한 다음 돼지의 단일염기다형성 마커를 선정하는 것이 바람직 하다.Pigs used in the present invention were selected from five varieties of Jeju native black pigs, Landrace, Yorkshire, Berkshire, and Duroc raised in Korea, and the tissues of the pigs were extracted to extract genomic DNA, and then the single nucleotide polymorphism markers of the pigs were selected. It is desirable to select.

상기 본 발명에 사용한 제주재래흑돼지(Korean native pig)는 우리나라에 살고 있는 재래돼지의 일종으로 제주도 지역에만 서식한다. 전국에 분포하는 재래돼지는 고구려 시대의 중국 북부지역에서 사육되던 돼지들 중 몸집이 작은 재래종에서 유래된 것으로 보이는데, 이와 비슷한 시기에 제주도까지 전해져서 토착종으로 자라난 것으로 보인다. 다른 재래돼지와 마찬가지로 몸 전체가 빛이 나는 검은 색의 털로 덮여 있으며 얼굴이 좁고 주둥이가 길다. 귀는 작으며 접혀있지 않고 위로 솟아 있다. 다른 외국 종에 비해 몸집이 작고 배 부분이 좁으며, 가슴은 상대적으로 넓고, 엉덩이가 작고 살집이 없는 편으로, 다리는 짧고 균형이 잡혀있다. 암컷은 보통 10~12개의 젖꼭지가 있고, 5~8마리의 새끼를 낳는다. 새끼는 외국의 개량종들에 비해 상대적으로 성장속도가 느려서 3주 정도 후에 3.5㎏, 100일 정도 후에는 25㎏ 정도가 된다. 질병에 대한 저항력이 강하며 환경변화에 대한 적응능력이 좋다. 고기의 질이 우수하고 맛이 좋아 주로 식용으로 사육된다.The Jeju native black pig (Korean native pig) used in the present invention is a kind of native pig living in Korea and lives only in Jeju Island. Native pigs distributed throughout the country appear to have originated from a small-sized native species among pigs raised in northern China during the Goguryeo period, and it seems that they were transmitted to Jeju Island at a similar time and grew as an indigenous species. Like other conventional pigs, the entire body is covered with shiny black hair, and the face is narrow and the snout is long. The ears are small, not folded, but raised above. Compared to other foreign species, the body is smaller and the abdomen is narrow, the chest is relatively wide, the hips are small and fleshless, and the legs are short and well-balanced. Females usually have 10 to 12 nipples and give birth to 5 to 8 offspring. Cubs grow relatively slower than those of foreign breeds, so they reach 3.5 kg after 3 weeks and 25 kg after 100 days. It has strong resistance to disease and good adaptability to environmental changes. The quality of the meat is excellent and the taste is good, so it is mainly bred for food.

또한, 랜드레이스(Landrace)는 덴마크의 재래종에 영국의 라지화이트종을 교잡시켜서 개량한 것으로 가공용의 대형 돼지이다. 덴마크 랜드레이스종의 최초 혈통 등록은 1906년이며, 한국에서는 1960년도 중반에 수입하여 현재 많이 사육하고 있다. 개량한 나라의 명칭을 붙여 미국랜드레이스종·스웨덴랜드레이스종·영국랜드레이스종 등으로 부르기도 한다. 빛깔이 흰색이고 몸이 길며 등은 아치형으로 구부러져 있고, 귀는 크고 앞으로 늘어져 있으며 목이 가늘고 가죽이 얇은 편이다. 또한 몸무게는 성숙시 암컷이 250㎏, 수컷이 300~350㎏ 정도이며, 1회에 평균 11.7마리 정도를 낳는 다산성이며, 다른 품종에 비해 다리가 튼튼하지 못한 결점이 있다.In addition, Landrace is a large-sized pig for processing, which is a hybrid of a native Danish breed and a large white breed from England. The first lineage registration of the Danish Landrace species was in 1906, and it was imported in the mid-1960s in Korea and is currently being raised. It is also called the American Land Race, the Swedish Land Race, and the British Land Race, given the name of the improved country. The color is white, the body is long, the back is curved in an arched shape, the ears are large and stretched forward, the neck is thin, and the leather is thin. In addition, the weight is about 250 kg for females and 300 to 350 kg for males at maturity, and it is fertile, giving birth to an average of 11.7 at a time, and has a defect in that the legs are not strong compared to other breeds.

또한, 요크셔(Yorkshire)는 1860년경 영국 요크셔주에서 흰색 재래종에 버크셔종·에스파냐종·중국종·네오폴리탄종 등을 교배하여 만든 품종이다. 털의 빛깔은 흰색이고, 대요크셔종과 소요크셔종의 2종류가 있으며, 이 두 품종을 교배하여 중요크셔종을 만들었다. 한국에는 중요크셔종이 도입되었으나, 근래에는 대요크셔종이 많이 번식되고 있다. 미국은 대요크셔종과 중요크셔종의 구별없이 중요크셔종을 대요크셔종에 포함시키고 있다. 대요크셔종은 몸무게 300~330㎏, 도체율 75~80%, 한배에 11 ~ 14 마리의 새끼를 낳는다.In addition, Yorkshire is a breed made by crossing Berkshire, España, Chinese, and Neopolitan species with white native species in Yorkshire, England around 1860. The color of the fur is white, and there are two types, the Great Yorkshire species and the Soyokshire species, and these two varieties were crossed to make the important Kshire species. Important Kshire species were introduced to Korea, but in recent years, large Yorkshire species have been multiplied. The United States includes the Great Yorkshire species as the Great Yorkshire species without distinction between the Great Yorkshire species and the Great Yorkshire species. The Great Yorkshire species weighs 300 to 330 kg, has a carcass rate of 75 to 80%, and gives birth to 11 to 14 offspring.

또한, 버크셔(Berkshire)는 영국의 버크셔 원산으로, 목과 다리가 짧으며, 주둥이가 짧고 위로 많이 휘어있다. 귀는 바로 서 있으며, 턱이 지나치게 두껍다. 털빛깔은 검은색이고, 얼굴과 꼬리, 네 다리에 흰색 반점이 있어 육백을 나타낸다. 체질이 강건하고 기호·풍토에 잘 적응하여 사육하기가 쉽다. 거친 사료를 잘 소화하며 조숙성이고, 모성애가 강하여 새끼를 낳고 기르는 능력이 뛰어난 품종이다. 도체율이 80~90%로 높고, 육질이 우수하여 햄이나 생육용으로 적당하나, 지방이 많은 결점이 있다.In addition, Berkshire is native to Berkshire, England, and has a short neck and legs, a short snout, and a lot of curvature in the stomach. The ears are standing upright, and the chin is too thick. The color of the fur is black, and there are white spots on the face, tail, and four legs, indicating six hundred. It has a strong constitution and is easy to breed as it adapts well to preferences and climate. It digests coarse feed well, is premature, and has strong maternal love. It has a high carcass rate of 80-90% and is suitable for ham or growth because of its excellent meat quality, but it has a lot of fat.

*또한, 듀록(Duroc)은 미국 동부지방 원으로 체구가 크며 몸이 깊고 두꺼우며 등이 다소 아치형으로 굽어 있고 균형이 잡혀있다. 머리는 체구에 비하여 작은편이며 귀는 앞으로 처져 있고 피모는 적색부터 암적색까지 여러 층이 있다. 체질이 강건하여 더위에 잘 견디고 기후풍토에 대한 적응성이 강하다. 몸무게는 280~400㎏, 수퇘지가 340~500㎏이며 도체율은 73~78%로 육질이 좋고 조숙성 품종이다. 한번에 10마리 내외의 새끼를 낳는데, 성질이 온순하고 새끼를 잘 기른다. 한국에서도 많이 사육되고 있으며, 3원교잡종(三原交雜種) 생산시 수컷으로 많이 이용된다.*In addition, Duroc is a native of the eastern United States, has a large body, a deep and thick body, and has a slightly arched back and a well-balanced back. The head is small compared to the body size, the ears are drooping forward, and the coat has several layers from red to dark red. With a strong constitution, it withstands heat well and has strong adaptability to climate conditions. The weight is 280~400kg, the boar is 340~500kg, and the carcass rate is 73~78%, which has good meat quality and is a premature breed. It gives birth to about 10 offspring at a time, and it is gentle and raises offspring well. It is also raised a lot in Korea, and it is widely used as a male when producing a three-way hybrid (三原交雜種).

또한, 본 발명에서 사용한 공시 축은 각 지역별 상업돈 95두씩, 총 11개의 다른 지역에서 1,045두에서 시료를 채취하여 이용하였으며 각각 근육 조직으로부터 DNA를 추출하여 단일염기다형성 마커 개발을 위하여 유전형질 분석을 하였다.In addition, the sample axis used in the present invention was sampled from 95 commercial pigs for each region, 1,045 pigs from a total of 11 different regions, and DNA was extracted from each muscle tissue and genotyping was performed to develop a single nucleotide polymorphism marker. .

또한, 본 발명에서 공수받은 돼지는 강원, 경기, 경상대, 광주, 대구, 대전, 서울, 전북, 제주, 충북, 부산으로 11개의 지역을 선정하여 상기 지역에 대한 단일염기다형성 마커를 선정하였다.In addition, as for the pigs airborne in the present invention, 11 regions were selected: Gangwon, Gyeonggi, Gyeongsang National University, Gwangju, Daegu, Daejeon, Seoul, Jeonbuk, Jeju, Chungbuk, and Busan, and single nucleotide polymorphism markers for the regions were selected.

이하에서 실시예 및 실험예를 통하여 본 발명을 보다 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명을 구체적으로 예시하기 위한 것일 뿐, 본 발명의 권리범위를 제한하는 것이 아님은 당업자에게 있어서 명백한 사실이다. 즉, 본 발명의 단순한 변형 내지 변경은 당업자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Hereinafter, the present invention will be described in more detail through Examples and Experimental Examples. However, it is obvious to those skilled in the art that the following examples are for illustrative purposes only and do not limit the scope of the present invention. That is, simple modifications or changes of the present invention can be easily implemented by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

또한, 도 1은 본 발명에 따른 그룹별 선별 대립유전자 빈도 분석 결과를 나타낸 표이며, 도 2는 본 발명에 따른 기기별 사용 단일염기다형성 마커와 샘플별 PIC 결과를 나타낸 표이며, 도 3은 본 발명에 따른 기기별 사용 단일염기다형성 마커와 샘플별 NE-I 결과를 나타낸 표이며, 도 4는 본 발명에 따른 기기별 사용 단일염기다형성 마커와 샘플별 NE-SI 결과를 나타낸 표이며, 도 5a 내지 도 5d는 본 발명에 따른 선정된 단일염기다형성 마커의 수는 96개의 염기서열을 나타낸 표이다.In addition, FIG. 1 is a table showing the results of analyzing the frequency of selection alleles for each group according to the present invention, and FIG. 2 is a table showing the results of PIC for each sample and single nucleotide polymorphism markers used for each device according to the present invention. A table showing the single nucleotide polymorphism marker used for each device and the NE-I results for each sample according to the present invention, FIG. 4 is a table showing the single nucleotide polymorphism marker used for each device and the NE-SI result for each sample according to the present invention, and FIG. 5A To FIG. 5D is a table showing 96 nucleotide sequences for the number of selected single nucleotide polymorphism markers according to the present invention.

실시예 1.Example 1.

개체 식별을 위한 단일염기다형성 마커(Single Nucleotide Polymorphism; SNP)를 선정하기 위하여 제주재래돼지(KNP) 19두, 랜드레이스(Landrace) 17두, 요크셔(Yorkshire) 168두, 버크셔(Berkshire) 84두, 듀록(Duroc) 96두를 이용하여 상기 돼지의 혈액에서 genomic DNA를 추출하였다. 상기 genomic DNA 추출 방법은 혈액 300㎕를 red cell lysis solution(0.8% ammonium chloride, 10mM Tris-HCl) 900㎕로 처리하여 적혈구를 용혈한 다음 회수한 백혈구 세포들을 Miller et al.(1998)이 제안한 방법을 일부 변형하여 추출하였고, RNase(iNtRON, USA)를 처리하여 RNA를 제거하였다. 상기 RNA를 제거한 것을 Ethanol 침전법을 사용하여 회수한 DNA는 TE buffer에 용해하여 보관하고, NanoDrop ND-1000 spectrophotometer(Thermo, USA)로 흡광도를 측정하였고, A260/A280 1.8 이상인 DNA를 50 ng/㎕로 희석하여 PCR 증폭을 위한 주형으로 사용하였다.To select Single Nucleotide Polymorphism (SNP) for individual identification, Jeju native pigs (KNP) 19 heads, Landrace 17 heads, Yorkshire 168 heads, Berkshire 84 heads, Genomic DNA was extracted from the pig's blood using 96 duoc (Duroc) heads. For the genomic DNA extraction method, 300 µl of blood was treated with 900 µl of red cell lysis solution (0.8% ammonium chloride, 10 mM Tris-HCl) to hemolyze red blood cells, and then the recovered leukocytes were collected by Miller et al. (1998). Was partially modified and extracted, and RNA was removed by treatment with RNase (iNtRON, USA). The DNA recovered from the removal of the RNA using the Ethanol precipitation method was dissolved in TE buffer and stored, and the absorbance was measured with a NanoDrop ND-1000 spectrophotometer (Thermo, USA), and DNA with A260/A280 1.8 or higher was 50 ng/µl. And used as a template for PCR amplification.

상기 고순도의 정량된 DNA(200 ng/㎕)와 Porcine SNP60 DNA analysis Kits(Illnmina, USA)를 이용하여 대립유전자형을 분석하였으며, 분석 방법은 DNA를 amplification 한 다음 fregment시켜 porcine SNP60 BeadChip에 주입하여 hybridzation을 끝낸 후 X-stain과정을 거치고, flourophore labeling을 하였다. Scanning 된 결과는 Bead Studio version 3.1.3.0(Illumina, USA)을 통해 단일염기다형성 마커별 대립유전자형을 분류하였다.The allele was analyzed using the high-purity quantified DNA (200 ng/µl) and Porcine SNP60 DNA analysis Kits (Illnmina, USA), and the analysis method was performed by amplification of DNA, followed by fregmentation, and injection into porcine SNP60 BeadChip to perform hybridzation After completion, an X-stain process was performed, followed by flourophore labeling. The scanned results classified alleles for each single nucleotide polymorphism marker through Bead Studio version 3.1.3.0 (Illumina, USA).

상기 5 품종의 순종에 대한 단일염기다형성 마커 대립유전자형을 Plink(Shaun et al., 2007)를 이용하여 마이너 대립유전자 빈도(minor alelle frequency ; MAF) 5% 이하, 유전형질 분석 오류(genotyping error) 10% 이상, 하디-웨인버그 평형(Hardy-Weinberg equeilibrium)이 0.001 이하인 단일염기다형성 마커를 제거하여, 제주재래돼지 39,785개, 랜드레이스 42,156개, 요크셔 44,961개, 버크셔 41,408개, 듀록 39,652개를 각각 1차 선발하였고, 상기 1차 선발된 단일염기다형성 마커 중 마이너 대립유전자 빈도를 계산하여 40% 이상인 단일염기다형성 마커를 선발하여 5 품종에 공동으로 속하는 312개의 단일염기다형성 마커를 2차 선발하였다. 상기 2차 선발한 단일염기다형성 마커를 염색체 별로 연쇄불평형(linkage disequilibrium ; LD) 값을 pair wise로 분석한 후 연쇄불평형 값이 낮은 마커를 우선으로 하여 염색체 별로 4~9개씩 총 133개의 단일염기다형성 마커를 선별하였다.The minor allele frequency (MAF) 5% or less, genotyping error 10 using Plink (Shaun et al., 2007) for single nucleotide polymorphism marker alleles for obedience of the 5 varieties. By removing monobasic polymorphism markers with a Hardy-Weinberg equeilibrium equal to or less than 0.001%, 39,785 Jeju native pigs, 42,156 Landraces, 44,961 Yorkshire, 41,408 Berkshire and 39,652 Duroc were each 1 The first selection was performed, and the frequency of minor alleles was calculated among the first selected single nucleotide polymorphism markers, and 40% or more of the single nucleotide polymorphism markers were selected, and 312 single nucleotide polymorphism markers jointly belonging to the five cultivars were secondarily selected. After analyzing the linkage disequilibrium (LD) value for each chromosome pairwise for the secondly selected single nucleotide polymorphism marker, a total of 133 single nucleotide polymorphisms of 4 to 9 for each chromosome is given priority to the marker with a low chain disequilibrium value. Markers were selected.

실험예 1Experimental Example 1

상기 실시예 1를 통해 선별한 133개의 단일염기다형성 마커 중에서 Fluidigm 사의 SNPtypeTM Assay를 진행할 수 있도록 탐침디자인(probe design)이 가능한 단일염기다형성 마커 69개를 선별하고, 축산과학원에서 선행연구를 통해서 선별한 단일염기 다형성 마커 27개를 추가로 선별하여 총 96개의 단일염기다형성 마커를 돼지 이력을 위한 개체 식별용 단일염기다형성 마커로 하여 상기 Fluidigm 사의 분석기기를 사용하였다.Among the 133 single nucleotide polymorphism markers selected through Example 1 above, 69 single nucleotide polymorphism markers capable of probe design were selected so as to proceed with Fluidigm's SNPtype TM Assay, and selected through a prior study at the Institute of Livestock Science. One additional 27 single nucleotide polymorphism markers were selected, and a total of 96 single nucleotide polymorphism markers were used as single nucleotide polymorphism markers for individual identification for pig history, and the fluidigm analyzer was used.

실험예 2Experimental Example 2

상기 선정된 96개의 단일염기다형성 마커를 fluidigm 사의 분석기기를 이용하여 대립유전자 빈도(Allele frequency) 범위에 따른 PIC, NE-I, NE-SI를 조사하였다.PIC, NE-I, and NE-SI according to the allele frequency range were investigated for the selected 96 single nucleotide polymorphism markers using a fluidigm analyzer.

상기 PIC는 polymorphic information content의 줄임말로 유전자 좌위의 다형성 정보량을 말한다. 상기 PIC는 자손의 유전자좌에 있어서, 한쪽 부모로 부터 2개의 대립유전자의 어느쪽을 이어 받았는가를 결론 지을 수 있는 확률로 항상 이형접합도 보다 작은 값을 가진다. 또한, 각 마커 별로 유전적 다형성 정도를 나타내주는 값으로 값이 높을수록 다형성이 높으며 개체 식별 마커 선정시 사용한다.The PIC is short for polymorphic information content and refers to the amount of polymorphic information at a locus. The PIC always has a smaller value than the heterozygous degree as a probability of determining which of the two alleles inherited from one parent at the locus of the offspring. In addition, as a value indicating the degree of genetic polymorphism for each marker, the higher the value, the higher the polymorphism and is used when selecting an individual identification marker.

상기 NE-I는 Average non-exclusion probability for identity of two unrelated individuals로 두 개체간의 구별이 불가능한 확률이며, NE-SI는 Average non-exclusion probability for identity two siblings로 형매간의 구별이 불가능한 확률이다. 이하에서 PIC, NE-I, NE-SI 로 명시한다.The NE-I is an average non-exclusion probability for identity of two unrelated individuals, which is a probability that cannot be distinguished between two individuals, and NE-SI is an average non-exclusion probability for identity two siblings, which is a probability that discrimination between brothers and sisters is impossible. Hereinafter, it is specified as PIC, NE-I, and NE-SI.

상기 대립유전자 빈도 범위는 두 가지로 나누어 실험을 실시하였다. 상기 선정 범위 1은 대립유전자 빈도를 0.35~0.65의 범위로 지정하였으며, 상기 선정 범위 2는 대립유전자 빈도를 0.3~0.7의 범위로 조정하여 단일염기다형성 마커를 선별하였다. 상기 대립유전자 빈도 값으로 단일염기다형성 마커를 선별한 다음, NE-I, NE-SI, 이형접합성(heterozygotes), 동형접합성(homozygotes)의 분포를 고려하였다.The experiment was conducted by dividing the frequency range of the allele into two. In the selection range 1, the allele frequency was designated in the range of 0.35 to 0.65, and in the selection range 2, the single nucleotide polymorphism marker was selected by adjusting the allele frequency in the range of 0.3 to 0.7. Single nucleotide polymorphism markers were selected using the allele frequency value, and distributions of NE-I, NE-SI, heterozygotes, and homozygotes were considered.

상기 Fluidigm사의 분석기기를 사용할 수 있는 96개의 단일염기다형성 마커 중 강원, 경기, 경상대, 광주, 대구, 대전, 서울, 전북, 제주, 충북, 부산으로 구성되어지는 11개 지역에서 선정된 단일염기다형성 마커의 수는 상기 선정 범위 1의 기준에서는 34개 였으며, 상기 선정 범위 2의 기준으로는 49개가 선별되었다.Among 96 single base polymorphism markers that can be used with the Fluidigm's analyzer, single base polymorphism selected from 11 regions consisting of Gangwon, Gyeonggi, Gyeongsang National University, Gwangju, Daegu, Daejeon, Seoul, Jeonbuk, Jeju, Chungbuk, and Busan The number of markers was 34 in the criterion of the selection range 1, and 49 were selected as the criterion of the selection range 2.

실험예 3Experimental Example 3

Fluidigm 사와 AB 사의 분석기기를 사용하여 대립유전자 빈도 및 정체성 분석(identity analysis)을 분석 프로그램을 사용하여 측정하였다.Allele frequency and identity analysis were measured using an analysis program using Fluidigm and AB analyzers.

상기 두 회사의 분석기기의 대립유전자 빈도 및 동일성 분석을 위해 세 그룹으로 분류하여 실험을 실시하였다. 상기 세 그룹의 첫번째 그룹은 상기 Fluidigm 사와 AB사의 두 회사에서 동일하게 사용할 수 있는 59개의 단일염기다형성 마커 및 465개의 샘플을 사용하여 분석, 두번째 그룹은 상기 fluidigm 사와 AB 사의 두 회사에서 동일하게 사용할 수 있는 59개의 단일염기다형성 마커 및 417개의 샘플을 사용하여 분석, 세번째 그룹은 대립유전자의 빈도의 범위를 0.3~0.7로 한정하여 선발된 단일염기다형성 마커 중에서 상기 fluidigm 사와 AB 사에서 동일하게 사용할 수 있는 30개의 단일염기다형성 마커 및 417개의 샘플을 사용하여 분석하였다.In order to analyze the allele frequency and identity of the analyzers of the two companies, an experiment was conducted by classifying them into three groups. The first group of the three groups was analyzed using 59 monobasic polymorphism markers and 465 samples that can be used equally by the two companies of Fluidigm and AB, and the second group can be used equally by the two companies of Fluidigm and AB. Analysis using 59 mononucleotide polymorphism markers and 417 samples, the third group limited the frequency range of alleles to 0.3-0.7, and among the selected mononucleotide polymorphism markers, the fluidigm company and AB company can use the same. Analysis was performed using 30 monopolymorphism markers and 417 samples.

상기 사용한 샘플은 상기 선정한 지역 돼지의 근육 샘플을 사용하였으며, 상기 두번째 그룹 및 상기 세번째 그룹의 샘플은 AB사에서 제외 요청한 48개의 단일염기다형성 마커가 포함되지 않은 샘플로 분석을 실시하였다.The used sample was a muscle sample of the selected regional pig, and the second group and the third group sample were analyzed as samples that did not contain 48 monobasic polymorphism markers requested by the company AB.

상기 대립유전자 빈도를 분석한 결과는 하기 표에 나타내었다.The results of analyzing the allele frequency are shown in the table below.

<그룹별 선별 대립유전자 빈도 분석><Analysis of selection allele frequency by group> 그룹 1Group 1 그룹 2Group 2 그룹 3Group 3 분석 단일염기다형성 마커Analysis monopolymorphism marker 5959 5959 3030 대립유전자빈도
값 차이 0.05 이상
Allele frequency
Value difference 0.05 or more
1717 1414 44
minor allele 변화minor allele change 77 88 55 선정 대상 변화Change of selection target 88 88 1One

상기 대립유전자 빈도를 분석한 결과를 토대로 정체성 분석을 실시하였다.Identity analysis was performed based on the results of analyzing the frequency of the alleles.

상기 정체성 분석을 통해 상기 세가지 그룹에서 Fluidigm 사와 AB 사의 동일 샘플이 정확한 동일성을 나타내는지 조사하였다. 최소 동일성 유전좌위(matching loci)는 사용한 단일염기다형성 마커의 50%, 최대 동일성 유전좌위(matching loci)는 상기 최소 동일성 유전좌위의 반을 기준으로 동일성 분석 후 동일성(matching) 정확도를 조사하였다.Through the identity analysis, it was investigated whether the same samples of Fluidigm and AB in the three groups showed exact identity. Matching accuracy was investigated after identity analysis based on 50% of the single nucleotide polymorphism markers used for the minimum identity loci and half the minimum identity polymorphism markers for the maximum identity genetic loci.

상기의 정체성 분석 결과 상기 첫번째 그룹에서 총 465개의 샘플 중에서 391개의 정체성 분석 결과 84.1%의 비율을 나타냈으며, 두번째 그룹에서는 총 417개의 샘플 중에서 382개의 정체성 분석 결과 91.6%의 비율을 나타냈으며, 세번째 그룹에서는 총 417개의 샘플 중에서 391개의 정체성 분석 결과 93.8%의 비율을 나타내었다. 상기 첫번째 그룹 및 두번째 그룹에 비해 세번재 그룹에서 사용된 단일염기다형성 마커의 수가 적었으나 동일성 비율은 높아진 것을 확인할 수 있었다.As a result of the above identity analysis, the first group showed a ratio of 84.1% of 391 identity analysis results out of a total of 465 samples, and the second group showed a ratio of 91.6% of 382 identity analysis results among a total of 417 samples, and the third group. In 417 samples, 391 identity analysis results showed 93.8% of the total. Compared to the first group and the second group, the number of monobasic polymorphism markers used in the third group was small, but the identity ratio was increased.

실험예 4Experimental Example 4

상기 Fluidigm 사와 AB 사에서 사용한 단일염기다형성 마커 및 샘플을 여러 기준으로 분류하여 개연성(probability)을 비교하였다.The monobasic polymorphism markers and samples used by Fluidigm and AB were classified according to various criteria to compare the probability.

본 실험에 사용하는 단일염기다형성 마커의 분류는 총 5가지로 분류하였으며, 첫 번째는 각 회사에서 사용한 모든 단일염기다형성 마커에 대해 비교하였으며, 두 번째는 단일염기다형성을 선정 범위를 두 가지로 분류하여 비교하였으며, 상기 선정범위 1은 대립 유전자 값이 0.35~0.65 값의 사이이면서 PIC, NE-I(0.4이상 제거), NE-SI(0.62이상 제거), 이형접합성, 동형접합성의 분포를 고려한 값이며, 선정범위 2는 상기 선정범위 1에서 범위를 상향 조정하여 대립유전자 빈도가 0.3~0.7의 값으로 하여 비교하였다. 네 번째는 Fluidigm 사와 AB 사에서 동일하게 사용한 단일염기다형성 마커로 비교하였으며, 다섯번째는 상기 네 번째의 분류된 단일염기다형성 마커 중에서 상기 선정범위 2의 범위로 선별한 단일염기다형성 마커로 비교하였다.The single nucleotide polymorphism markers used in this experiment were classified into a total of 5 categories, the first was compared to all single nucleotide polymorphism markers used by each company, and the second was to classify the single nucleotide polymorphism into two categories. The selection range 1 is a value considering the distribution of PIC, NE-I (removing more than 0.4), NE-SI (removing more than 0.62), heterozygous, and homozygous while the allele value is between 0.35 and 0.65. In the selection range 2, the range was adjusted upward from the selection range 1, and the allele frequency was compared with a value of 0.3 to 0.7. The fourth was compared with a single nucleotide polymorphism marker used in the same manner by Fluidigm and AB, and the fifth was compared with a single nucleotide polymorphism marker selected in the range of the selection range 2 among the fourth classified monobasic polymorphism markers.

또한, 본 실험에 사용한 샘플의 수에 따라서 상기 5 가지로 분류한 단일염기다형성 마커와 함께 분석을 실시하였다. 상기 샘플은 각 샘플을 사용한 개수를 3 가지로 분류하여 본 실험을 실시하였다. 첫 번째로 상기 Fluidigm 사에서 사용한 샘플 1,045개와 AB 사에서 사용한 샘플 474개의 각각의 샘플을 단일염기다형성 마커와 함께 분석하였으며, 두 번째는 상기 Fluidigm 사와 AB에서 동일하게 사용한 465개의 샘플을 단일염기다형성 마커와 함께 분석하였으며, 세 번째는 상기 AB사에서 제외 요청을 한 48개를 제외한 샘플 417개의 샘플을 단일염기다형성 마커와 함께 분석하였으며, 비교한 내용은 PIC, NE-I, NE-SI였으며 결과는 하기 표에 나타내었다.In addition, analysis was performed with monobasic polymorphism markers classified into the above five according to the number of samples used in this experiment. This experiment was conducted by classifying the number of samples using each sample into three types. First, 1,045 samples used by Fluidigm and 474 samples used by AB were analyzed together with a monobasic polymorphism marker, and secondly, 465 samples used identically in Fluidigm and AB were monobasic polymorphism markers. In the third analysis, 417 samples were analyzed with monobasic polymorphism markers excluding 48 samples requested for exclusion from the AB company, and the comparison contents were PIC, NE-I, NE-SI, and the result was It is shown in the table below.

<기기별 사용 단일염기다형성 마커와 샘플별 PIC><Single base polymorphism markers used by device and PIC by sample> TotalTotal 선정범위1Selection range 1 선정범위2Selection range 2 동일사용Same use 동일사용 중 선정Selected during the same use 분석마커수
및 샘플수
Number of analysis markers
And number of samples
102102 2727 3737 5959 3030
AB사AB company 1. 4741.474 0.3440.344 0.37120.3712 0.36390.3639 0.34160.3416 0.35790.3579 2. 4652. 465 0.34410.3441 0.37120.3712 0.36390.3639 0.34170.3417 0.35790.3579 3. 4173. 417 0.34430.3443 0.37090.3709 0.36380.3638 0.34210.3421 0.35810.3581 분석마커수
및 샘플수
Number of analysis markers
And number of samples
9696 3434 4949 5959 3030
FluidiumFluidium 1. 10451.1045 0.36080.3608 0.37310.3731 0.37190.3719 0.35650.3565 0.3720.372 2. 4652. 465 0.36050.3605 0.3730.373 0.37170.3717 0.3560.356 0.3720.372 3. 4173. 417 0.36050.3605 0.37270.3727 0.37150.3715 0.35580.3558 0.37040.3704

<기기별 사용 단일염기다형성 마커와 샘플별 NE-I><Single nucleotide polymorphism markers used by device and NE-I by sample> TotalTotal 선정범위 1Selection range 1 선정범위 2Selection range 2 동일사용Same use 동일사용 중 선정Selected during the same use AB 사AB company 분석마커수 및 샘플 수Number of analysis markers and number of samples 102102 2727 3737 5959 3030 1. 4741.474 2.34E-402.34E-40 4.16E-124.16E-12 5.50E-165.50E-16 1.66E-231.66E-23 6.51E-136.51E-13 2. 4652. 465 2.26E-402.26E-40 4.17E-124.17E-12 5.49E-165.49E-16 1.61E-231.61E-23 6.48E-136.48E-13 3. 4173. 417 2.17E-402.17E-40 4.26E-124.26E-12 5.54E-165.54E-16 1.52E-231.52E-23 6.41E-136.41E-13 Fluidigm 사Fluidigm company 분석 마커수및 샘플 수Number of analysis markers and number of samples 9696 3434 4949 5959 3030 1. 10451.1045 5.54E-405.54E-40 3.90E-153.90E-15 2.02E-212.02E-21 1.49E-241.49E-24 2.12E-132.12E-13 2. 4652. 465 5.98E-405.98E-40 3.96E-153.96E-15 2.08E-212.08E-21 1.62E-241.62E-24 2.11E-132.11E-13 3. 4173. 417 6.02E-406.02E-40 4.07E-154.07E-15 2.15E-212.15E-21 1.68E-241.68E-24 2.43E-132.43E-13

<기기별 사용 단일염기다형성 마커와 샘플별 NE-SI><Single nucleotide polymorphism markers used by device and NE-SI by sample> TotalTotal 선정범위 1Selection range 1 선정범위 2Selection range 2 동일사용Same use 동일사용 중 선정Selected during the same use AB 사AB company 분석마커수 및 샘플 수Number of analysis markers and number of samples 102102 2727 3737 5959 3030 1. 4741.474 1.67E-211.67E-21 9.5E-079.5E-07 9.06E-099.06E-09 1.11E-121.11E-12 0.000000360.00000036 2. 4652. 465 1.63E-211.63E-21 9.5E-079.5E-07 9.06E-099.06E-09 1.11E-121.11E-12 0.000000360.00000036 3. 4173. 417 1.59E-211.59E-21 9.5E-079.5E-07 9.06E-099.06E-09 1.11E-121.11E-12 0.000000360.00000036 Fluidigm 사Fluidigm company 분석 마커수및 샘플 수Number of analysis markers and number of samples 9696 3434 4949 5959 3030 1. 10451.1045 2.20E-212.20E-21 2E-082E-08 1.10E-111.10E-11 3.06E-133.06E-13 0.000000190.00000019 2. 4652. 465 2.32E-212.32E-21 2E-082E-08 1.12E-111.12E-11 3.22E-133.22E-13 0.000000190.00000019 3. 4173. 417 2.33E-212.33E-21 2E-082E-08 1.15E-111.15E-11 3.30E-133.30E-13 0.000000210.00000021

상기 Fluidigm 사와 AB 사에서 진행한 돼지 이력제 관련 단일염기다형성 유전형질분석(SNP genotyping)의 결과를 비교 분석한 결과, Fluidigm 사와 AB 사에서 사용한 단일염기다형성 마커는 각각 96개와 102개로 이 중 동일하게 사용한 단일염기다형성 마커는 59개로 나타났으며, 상기 단일염기다형성 마커를 선정하기 위해 사용한 샘플은 각각 1,045개와 474개였다. 상기 단일염기다형성 마커는 선정범위 1과 선정범위 2로 분류하여 선별하였으며, 상기 실험 결과, 선정된 단일염기다형성 마커는 AB 사의 분석기기를 사용한 결과 선정범위 1은 27개, 선정 범위 2는 37개로 나타났으며, Fluidigm 사의 분석기기를 사용한 결과 선정범위 1은 34개 선정범위 2는 49개로 나타났다. 상기 선정범위 1 및 선정범위 2를 기준으로 선별된 단일염기다형성 마커의 수는 각각 61개와 86개로 나타났다.As a result of a comparative analysis of the results of the SNP genotyping related to pig hysteresis conducted by Fluidigm and AB, the single nucleotide polymorphism markers used by Fluidigm and AB were 96 and 102, respectively, of which the same was used. There were 59 monobasic polymorphism markers, and 1,045 and 474 samples were used to select the monobasic polymorphism marker, respectively. The single nucleotide polymorphism markers were classified into selection range 1 and selection range 2 and selected, and as a result of the above experiment, the selected single nucleotide polymorphism markers were 27 selected as a result of using an analyzer of AB company, and the selection range 2 was 37. As a result of using Fluidigm's analyzer, the selection range 1 was 34 and the selection range 2 was 49. The number of single nucleotide polymorphism markers selected based on the selection range 1 and selection range 2 was 61 and 86, respectively.

유전자형이 결정된 개체의 비율을 뜻하는 call rate는 Fluidigm 사는 96.56%, AB 사는 84.98%로 상기 Fluidigm의 유전형질분석 결과가 10% 이상 높게 나타나는 것을 확인할 수 있었다. 또한, PIC, NE-I, NE-SI 등에 대한 조사한 결과, Fluidigm 사로부터 진행한 유전자 분석은 AB 사의 유전자 분석 결과보다 PIC값이 최적값에 근접하는 것으로 나타났으며 상기 기준에서의 NE-I, NE-SI 값도 더 작은 값으로 나타났다.The call rate, which means the proportion of individuals whose genotype was determined, was 96.56% for Fluidigm and 84.98% for AB, indicating that the fluidigm genotyping result was 10% or more high. In addition, as a result of investigations on PIC, NE-I, NE-SI, etc., the genetic analysis conducted by Fluidigm showed that the PIC value was closer to the optimal value than the result of the gene analysis of AB company. The NE-SI value also appeared to be a smaller value.

상기의 실험으로 최종적인 돼지 이력제를 위한 최종 단일염기다형성 마커가 정정되었으며, 상기 선정된 단일염기다형성 마커의 수는 96개로 나타났으며, 이는 하기 표로 정리하였다.Through the above experiment, the final single nucleotide polymorphism markers for the final pig history were corrected, and the number of selected single nucleotide polymorphism markers was 96, which are summarized in the following table.

서열번호Sequence number SNP 명칭SNP name 염기서열Base sequence 1One ALGA0003632ALGA0003632 GCTGCTTTTAGAATCCTTGCTTTAACTTTTGCCATTTTTATTGTAATATGTCTTGGTGTG[A/G]GTCTGTTTGGCCTCACCTTGATTGGAGCTCTCTGTGCTTGCTGTATCTTGATGTCTGTTTGCTGCTTTTAGAATCCTTGCTTTAACTTTTGCCATTTTTATTGTAATATGTCTTGGTGTG[A/G]GTCTGTTTGGCCTCACCTTGATTGGAGCTCTCTGTGCTTGCTGTATCTTGATGTCTGTTT 22 ALGA0005188ALGA0005188 ACTAGTTAAGCAAGCCTGCCTTGTTCTGAGGGCTTTCCTGAACTTCCAGTGGCCTCTCAG[T/C]ATCCCCCAGCTTTCCCTCTTTATCCGTGATCCCCTATTGGTGCTTCTACAACCACCTGTGACTAGTTAAGCAAGCCTGCCTTGTTCTGAGGGCTTTCCTGAACTTCCAGTGGCCTCTCAG[T/C]ATCCCCCAGCTTTCCCTCTTTATCCGTGATCCCCTATTGGTGCTTCTACAACCACCTGTG 33 ALGA0010607ALGA0010607 GGTCTGTGGACCCCGGGAACGCGACAGGATTAATGACACAGACCATGACCTGAATTTCAC[A/G]GCAGCTCCACCAAACTCCTAGCTGGGGACCTTGGACTTGGGACTTCTGGGTGATTTCCAGGGTCTGTGGACCCCGGGAACGCGACAGGATTAATGACACAGACCATGACCTGAATTTCAC[A/G]GCAGCTCCACCAAACTCCTAGCTGGGGACCTTGGACTTGGGACTTCTGGGTGATTTCCAG 44 ALGA0012333ALGA0012333 TTCTGTGCCAACCCCCTGGGGCCTGCCTGATGCTCTAAGAATCACAGACTCGCCCAGCAG[A/G]GAGGGATTAGCAAGCTGCTAAAAAGCCTAACCCCTTCAGGACAGAGATGAGGAGCCCCAGTTCTGTGCCAACCCCCTGGGGCCTGCCTGATGCTCTAAGAATCACAGACTCGCCCAGCAG[A/G]GAGGGATTAGCAAGCTGCTAAAAAGCCTAACCCCTTCAGGACAGAGATGAGGAGCCCCAG 55 ALGA0028052ALGA0028052 AGAAAAGCAACAAAAAATTACTCAAAATTATTTCAGACTTTTAAAAAGGCCCCTGAAGCT[A/G]GCCATGTTCTGTGCTCCTCCTTGTTCCTTTAAGTGTACACAGACAGGGAGTTCCCATCATAGAAAAGCAACAAAAAATTACTCAAAATTATTTCAGACTTTTAAAAAGGCCCCTGAAGCT[A/G]GCCATGTTCTGTGCTCCTCCTTGTTCCTTTAAGTGTACACAGACAGGGAGTTCCCATCAT 66 ALGA0033986ALGA0033986 CCTCAGAAAACAGGATGTAAGTTGGTTGGTGTCACATCTTGGTTAGGATAAGCAGCTGCT[A/G]TTGATAGCAACTGATTAGTTCTAAGGACTGGTTATATACCACACGTGAACTTCAAAAGTGCCTCAGAAAACAGGATGTAAGTTGGTTGGTGTCACATCTTGGTTAGGATAAGCAGCTGCT[A/G]TTGATAGCAACTGATTAGTTCTAAGGACTGGTTATATACCACACGTGAACTTCAAAAGTG 77 ALGA0034886ALGA0034886 GCTATAGACTCCGTAAGATACTGAATAAAACTGAACTCATAGCTCCCCCCTATCCACTCC[A/G]CTTTTTAGGGCTGCACTTGTGGCATATGGAAGTGCCCAGGCTAGCGATCAATATCAGAGCGCTATAGACTCCGTAAGATACTGAATAAAACTGAACTCATAGCTCCCCCCTATCCACTCC[A/G]CTTTTTAGGGCTGCACTTGTGGCATATGGAAGTGCCCAGGCTAGCGATCAATATCAGAGC 88 ALGA0038635ALGA0038635 AATAGAGTTCCCCTTTGTTAAGGATGAATCAACAAAGCCTAGGAAGTTGGTGGTGATTCG[A/C]CTTCCTAGGACTCTTGGGGATGACAGCTCAGTCATCTTTGCCCCTTGGGTTTTACTGTTTAATAGAGTTCCCCTTTGTTAAGGATGAATCAACAAAGCCTAGGAAGTTGGTGGTGATTCG[A/C]CTTCCTAGGACTCTTGGGGATGACAGCTCAGTCATCTTTGCCCCTTGGGTTTTACTGTTT 99 ALGA0043483ALGA0043483 TTAGCCACAGGGTAGGAAAAGAATCTATCTCTCAGTCTTTTCCAATAAACCATAAGCTGC[T/C]TGAAGCSAGGGATATCCTCATTCATTCTTTTGGTCTCAATTGCCCAGCATAATGCCAGGTTTAGCCACAGGGTAGGAAAAGAATCTATCTCTCAGTCTTTTCCAATAAACCATAAGCTGC[T/C]TGAAGCSAGGGATATCCTCATTCATTCTTTTGGTCTCAATTGCCCAGCATAATGCCAGGT 1010 ALGA0056803ALGA0056803 CTGGGCTGCTTATCTGGAAAGCGGCGAGGATGATAGTAGTCAATGGAATACCTAACAGCT[A/G]GCGACTGCCTCTGTGGGCAGCACTTGGGCAAATATTTTACATCAATGATCGCCAAGTAAACTGGGCTGCTTATCTGGAAAGCGGCGAGGATGATAGTAGTCAATGGAATACCTAACAGCT[A/G]GCGACTGCCTCTGTGGGCAGCACTTGGGCAAATATTTTACATCAATGATCGCCAAGTAAA 1111 ALGA0059061ALGA0059061 GGCACTGCCTGTTGTCCCAGCACCCCCAGAGTGTGGGCCAGCTCCCATCACATGYACTGA[A/G]GAAAGAGCCTCTGCCAATCCAGGCCCCATGTCCCATCTGACTGCCCACAAAGGCTGTGGTGGCACTGCCTGTTGTCCCAGCACCCCCAGAGTGTGGGCCAGCTCCCATCACATGYACTGA[A/G]GAAAGAGCCTCTGCCAATCCAGGCCCCATGTCCCATCTGACTGCCCACAAAGGCTGTGGT 1212 ALGA0064392ALGA0064392 GCTGCAACCAGAGTCACAGAAGTGACAACACTGGTTCCTTATCCCGCTGAGCCATGAGAA[T/G]CTGTACTTTTAGAAGAGCTGAGTCGTCTCTTAGCTGCCTTAAACCTAGTCCTGGTCCCAAGCTGCAACCAGAGTCACAGAAGTGACAACACTGGTTCCTTATCCCGCTGAGCCATGAGAA[T/G]CTGTACTTTTAGAAGAGCTGAGTCGTCTCTTAGCTGCCTTAAACCTAGTCCTGGTCCCAA 1313 ALGA0067483ALGA0067483 ATGTTTTCTGAACCAAAGTAAGAACATGGGATCTGACAAATGTACTTATGGGGGACCTGG[A/G]GTGTGCTGTCCTTGAGACTGGAATTGGGACTCTTAGCCAAAATCACACAAAAATTAAGTAATGTTTTCTGAACCAAAGTAAGAACATGGGATCTGACAAATGTACTTATGGGGGACCTGG[A/G]GTGTGCTGTCCTTGAGACTGGAATTGGGACTCTTAGCCAAAATCACACAAAAATTAAGTA 1414 ALGA0072858ALGA0072858 AGCTTCCCTCCTAAAATTATTATCTATTAATAGTAATAATGATAATAGCTAACACATGTA[A/G]TGCTTACTATATGATAGGCACTATCCTAAGAACTCATGAAATGATTCAATATTCTTAGTTAGCTTCCCTCCTAAAATTATTATCTATTAATAGTAATAATGATAATAGCTAACACATGTA[A/G]TGCTTACTATATGATAGGCACTATCCTAAGAACTCATGAAATGATTCAATATTCTTAGTT 1515 ALGA0075911ALGA0075911 TTGGGTTGCTACTGTGATGCTGTTTGAGCCCTATCTCCAGAACTTCCACATGCTATGAGT[A/G]CAGCTAAATTTTTAAAAAGCCCCCCCCCCCCCACATCTTTCTTTGTGTAAATTTGGCCAATTGGGTTGCTACTGTGATGCTGTTTGAGCCCTATCTCCAGAACTTCCACATGCTATGAGT[A/G]CAGCTAAATTTTTAAAAAGCCCCCCCCCCCACATCTTTCTTTGTGTAAATTTGGCCAA 1616 ALGA0085130ALGA0085130 CTCCTCTTTTGAACTGTGAGAAATAAACTTGTCTTTTCAGTTAAGATCATCTCCTGATCT[A/G]TCAGCTTTCCTCTACCTCAAAATTTTTATTAGTACTCTGTATTTTAAGACAAGATGTTGTCTCCTCTTTTGAACTGTGAGAAATAAACTTGTCTTTTCAGTTAAGATCATCTCCTGATCT[A/G]TCAGCTTTCCTCTACCTCAAAATTTTTATTAGTACTCTGTATTTTAAGACAAGATGTTGT 1717 ALGA0089251ALGA0089251 TACGGTTTACTTATCAGTGAGATGTCCCCCCTTAGTTTAGAGAGTTTCCTTACATATCTG[T/G]TATAATATCTGGCCCCAGAAGCTATGTCTTGGGGATAATATATATATATGATCCTCTGATTACGGTTTACTTATCAGTGAGATGTCCCCCCTTAGTTTAGAGAGTTTCCTTACATATCTG[T/G]TATAATATCTGGCCCCAGAAGCTATGTCTTGGGGATAATATATATATATGATCCTCTGAT 1818 ALGA0092844ALGA0092844 CACCATTAGAGGGGATGCTCTCTAAGGCTGCTTCGTTCAAACTTCCTGATTCCAGCTGCA[T/C]GCAGGTAGGGAACAGAGCTGACCATGACCGAAGGACACTTGGAAATCCACATATTAGCACCACCATTAGAGGGGATGCTCTCTAAGGCTGCTTCGTTCAAACTTCCTGATTCCAGCTGCA[T/C]GCAGGTAGGGAACAGAGCTGACCATGACCGAAGGACACTTGGAAATCCACATATTAGCAC 1919 ALGA0093942ALGA0093942 AGATGCCTGGTTCTCCAGGCATGGAGACAAACCCACAAGAGCCAGGGTCTCTGAGAAGCT[A/G]TTCTGGAGGACACACACTAGGGTTGAGTATTGGAAAGAAAGTGGGAGACAAAGGAGAAGCAGATGCCTGGTTCTCCAGGCATGGAGACAAACCCACAAGAGCCAGGGTCTCTGAGAAGCT[A/G]TTCTGGAGGACACACACTAGGGTTGAGTATTGGAAAGAAAGTGGGAGACAAAGGAGAAGC 2020 ALGA0095059ALGA0095059 TGGATGGCTGACCACCACCCATGCTCCCTGCCCTCTGGCTTCTAGCTGAGTTTGACCAAT[A/G]GAAGAACCAGTGGGAAAGTCAAGGGGAAAGGAGAGTAAGGTTCTCTTGCCTGTCTTCCTATGGATGGCTGACCACCACCCATGCTCCCTGCCCTCTGGCTTCTAGCTGAGTTTGACCAAT[A/G]GAAGAACCAGTGGGAAAGTCAAGGGGAAAGGAGAGTAAGGTTCTCTTGCCTGTCTTCCTA 2121 ALGA0097857ALGA0097857 GGGTTGGCGAAAATCAAGGGTATCCTCAGAGAAGAGACTCAGACACAGCCCTCAAAGTGC[A/G]CACTCAGGCACTTGACGTAGCTTTAGTGCTACCTCTTCAATATCTTCGAGAGTGAGGAAAGGGTTGGCGAAAATCAAGGGTATCCTCAGAGAAGAGACTCAGACACAGCCCTCAAAGTGC[A/G]CACTCAGGCACTTGACGTAGCTTTAGTGCTACCTCTTCAATATCTTCGAGAGTGAGGAAA 2222 ALGA0110410ALGA0110410 TGGGGCTTCACCACCCAAATGGTGGTAGGTTGATGAGGCCAGAGATGGTGAACCCATGTC[A/G]GGAATAGGTAACTGGTAAGCCGATTGCTTGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNTGGGGCTTCACCACCCAAATGGTGGTAGGTTGATGAGGCCAGAGATGGTGAACCCATGTC[A/G]GGAATAGGTAACTGGTAAGCCGATTGCTTGAGNNNNNNNNNNNNNNNNNNNNNNNNNN 2323 ALGA0115847ALGA0115847 CTGTTGAGTCTGGGGATGCTCAGGCCTCAGAGAGGTGTTCAGGGATGCTCCTGAAAATCC[A/C]AGAATCAGGTCTCTCTGACCTGGGAACACCCAGNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGTTGAGTCTGGGGATGCTCAGGCCTCAGAGAGGTGTTCAGGGATGCTCCTGAAAATCC[A/C]AGAATCAGGTCTCTCTGACCTGGGAACACCCAGNNNNNNNNNNNNNNNNNNNNNNNNN 2424 ALGA0119982ALGA0119982 GTTTCTATGGGGCATCTCAGGAAGCAGTGGTGGGCAGTGAGGGAGGTGATACAGGTACAG[A/G]CTGTGTCACTTCGAAGTTGTCCCGTGGGCAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTTTCTATGGGGCATCTCAGGAAGCAGTGGTGGGCAGTGAGGGAGGTGATACAGGTACAG[A/G]CTGTGTCACTTCGAAGTTGTCCCGTGGGCAGNNNNNNNNNNNNNNNNNNNNNNNNNNN 2525 ASGA0006871ASGA0006871 CTTTTCCAATTCTCACTGGCACCTGGATCTTAGACCTCATCCAGATGCCTAGAATCAAGG[A/G]TTGGCATTGAGGGTGAGCCAAGTGAGAAGTGAGCTAATTGCAAGCCCAAGAATGACTTGGCTTTTCCAATTCTCACTGGCACCTGGATCTTAGACCTCATCCAGATGCCTAGAATCAAGG[A/G]TTGGCATTGAGGGTGAGCCAAGTGAGAAGTGAGCTAATTGCAAGCCCAAGAATGACTTGG 2626 ASGA0009403ASGA0009403 TTGAAGTCAGGTAATTCTAAATGTGACTTACAAGTTCCTTTTCCAGGAATAACAAGAAGC[A/G]GCAAGCRCATTATGGATTAAGCTCTTGTGGAGTGCCAGATTTGGTTCTAGGTGTTGTGTTTTGAAGTCAGGTAATTCTAAATGTGACTTACAAGTTCCTTTTCCAGGAATAACAAGAAGC[A/G]GCAAGCRCATTATGGATTAAGCTCTTGTGGAGTGCCAGATTTGGTTCTAGGTGTTGTGTT 2727 ASGA0011793ASGA0011793 AAAGCTTGACAAGCCAATGGGTGAACTAGGGAATACGCCATGGGGCTATCAAACACTTGT[A/G]CGAGCAGCTCATCAGTAAGCAGCCAAGTGGCAAATTGGGATTGACTGGGAATGCTGAGCAAAAGCTTGACAAGCCAATGGGTGAACTAGGGAATACGCCATGGGGCTATCAAACACTTGT[A/G]CGAGCAGCTCATCAGTAAGCAGCCAAGTGGCAAATTGGGATTGACTGGGAATGCTGAGCA 2828 ASGA0017082ASGA0017082 TAAACAAAACCAAATGTGCATATTAAACACGAAACTTGGTGATCAATAAATTCCAAAGGC[A/G]GAGCAGGTTAAGTTGCAAGAGGCGATCCAGCTCAGCTGGGTTCCCTCACAGCTGGAACACTAAACAAAACCAAATGTGCATATTAAACACGAAACTTGGTGATCAATAAATTCCAAAGGC[A/G]GAGCAGGTTAAGTTGCAAGAGGCGATCCAGCTCAGCTGGGTTCCCTCACAGCTGGAACAC 2929 ASGA0018449ASGA0018449 AATGACTTACACAAAGCCATTCACCAGTCAACAGGAGAGTTCAAGATGCACAGTTCTCCC[A/G]TGTTCCACCATTCTGTCTCTTGAGCTGTATGTTTCCCTTGAGAGCTGATGCAGGTCTCAAAATGACTTACACAAAGCCATTCACCAGTCAACAGGAGAGTTCAAGATGCACAGTTCTCCC[A/G]TGTTCCACCATTCTGTCTCTTGAGCTGTATGTTTCCCTTGAGAGCTGATGCAGGTCTCAA 3030 ASGA0031089ASGA0031089 AAGTGGACCAGAGAAGTGGCACATCGCCTCCCTTTAAGCAGACTTCCCAGAAGTCATTCA[A/G]ATATTTCAGCTTACAGCTCAAGTCAAAGCTTGATAGTGGGGCCACACCTATTCTCAGAGGAAGTGGACCAGAGAAGTGGCACATCGCCTCCCTTTAAGCAGACTTCCCAGAAGTCATTCA[A/G]ATATTTCAGCTTACAGCTCAAGTCAAAGCTTGATAGTGGGGCCACACCTATTCTCAGAGG 3131 ASGA0035601ASGA0035601 TCAGGCTTCAAGCCACTTCCCCAAAGAGCTTCACTCTCCTCCTCAAAAGATAAAATGAGA[A/G]TGATGATGCCCACCTCAGATGCAAAGTGGGCTAAGGTACCCTGGGTTAGGGCTAACTGCCTCAGGCTTCAAGCCACTTCCCCAAAGAGCTTCACTCTCCTCCTCAAAAGATAAAATGAGA[A/G]TGATGATGCCCACCTCAGATGCAAAGTGGGCTAAGGTACCCTGGGTTAGGGCTAACTGCC 3232 ASGA0040082ASGA0040082 CCAGGAGGGAGACGTTCAAATAGGTTCCTCCAGCTACTTGCAAGTGAACTTGAAAAATGA[T/C]GGGCCACCCGCAGGACTCCTTTCTAACGTGACAGAGCGGATGCATTTGCGCATCAGCGAGCCAGGAGGGAGACGTTCAAATAGGTTCCTCCAGCTACTTGCAAGTGAACTTGAAAAATGA[T/C]GGGCCACCCGCAGGACTCCTTTCTAACGTGACAGAGCGGATGCATTTGCGCATCAGCGAG 3333 ASGA0041336ASGA0041336 AGTATGTCTGAAACATTCATGCGACCCAGAGGAGCAAATTCTGCATGTGGATTCTAATGG[A/G]TTTGTCTTTCTCCCTGACTAGCTCAAGGTTCCCCCAAATCCAACTCCCACTTCACTCTGTAGTATGTCTGAAACATTCATGCGACCCAGAGGAGCAAATTCTGCATGTGGATTCTAATGG[A/G]TTTGTCTTTCTCCCTGACTAGCTCAAGGTTCCCCCAAATCCAACTCCCACTTCACTCTGT 3434 ASGA0042099ASGA0042099 ATTCATAACACTCAACCTGATCCCCTTGGCCTTTTTCAGTATTGAACATGGAATAACCTA[C/G]AGCTTAGTCTGTTGGTCCATTCATGAATGTCATGTGGTGTGAGTCATCTATGCACATGACATTCATAACACTCAACCTGATCCCCTTGGCCTTTTTCAGTATTGAACATGGAATAACCTA[C/G]AGCTTAGTCTGTTGGTCCATTCATGAATGTCATGTGGTGTGAGTCATCTATGCACATGAC 3535 ASGA0060257ASGA0060257 GAGAGAACCCCGCCCCGCCTTTGGGATAGAAAAGCTCCGCCGTGTCCCAAGAACAAGTAY[A/G]TGGTTTGGCCCTTGAGATGATGTGCAGACACAGGGACCCAGGGATTCACAATCCACTGGAGAGAGAACCCCGCCCCGCCTTTGGGATAGAAAAGCTCCGCCGTGTCCCAAGAACAAGTAY[A/G]TGGTTTGGCCCTTGAGATGATGTGCAGACACAGGGACCCAGGGATTCACAATCCACTGGA 3636 ASGA0060872ASGA0060872 AGACTACGCTTTATCTTCCCACTGGAGCCAAGTAGGGAACGTGAAATGGGGCAAAGGAGG[A/G]AGACAAAGCAGAGGACAGAGCCCAGGAGCTGGATCGAGAACCTGCCAGCCTCTGGGGCCTAGACTACGCTTTATCTTCCCACTGGAGCCAAGTAGGGAACGTGAAATGGGGCAAAGGAGG[A/G]AGACAAAGCAGAGGACAGAGCCCAGGAGCTGGATCGAGAACCTGCCAGCCTCTGGGGCCT 3737 ASGA0094977ASGA0094977 GTGATATTATGTTGCTTCCAAGACAAGGTCAAGTGTAATTTCTGCCTCTTGCTGTCTCTC[A/G]GATGGCTTGCTCTGGGTGAAGCAAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTGATATTATGTTGCTTCCAAGACAAGGTCAAGTGTAATTTCTGCCTCTTGCTGTCTCTC[A/G]GATGGCTTGCTCTGGGTGAAGCAAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3838 ASGA0096881ASGA0096881 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGGGAGTGACAGGACATCC[T/C]GTCTCTCTCCTGATTCTAATCTGAGAGAGTCCTACCTCCAAGGCCCTTGGTACCTGCTGCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGGGAGTGACAGGACATCC[T/C]GTCTCTCTCCTGATTCTAATCTGAGAGTCCTACCTCCAAGGCCCTTGGTACCTGCTGC 3939 H3GA0000077H3GA0000077 GGTCCTCATGAGAACCCTAGGAGTAGATCGTTTAAAAGACTGTCCTTCATTCTGCAGAAG[A/C]GGCGGCCGAGCCCTGAGAGGTTACGTGAGTTTCCCCAGCTGCACAGTGGGCCCCTGACAGGGTCCTCATGAGAACCCTAGGAGTAGATCGTTTAAAAGACTGTCCTTCATTCTGCAGAAG[A/C]GGCGGCCGAGCCCTGAGAGGTTACGTGAGTTTCCCCAGCTGCACAGTGGGCCCCTGACAG 4040 H3GA0009291H3GA0009291 TCGACCTGTCCTGCACGTTGTGATAAATGGTCCAAAGGAAAGGAGAAGAGGCCACAGGAA[A/G]TGGAGGAGGAGGATTCAGAGGTGAAGGGAACTCCCTCTGGGGAGGTGACACTGAGGCTGATCGACCTGTCCTGCACGTTGTGATAAATGGTCCAAAGGAAAGGAGAAGAGGCCACAGGAA[A/G]TGGAGGAGGAGGATTCAGAGGTGAAGGGAACTCCCTCTGGGGAGGTGACACTGAGGCTGA 4141 H3GA0012015H3GA0012015 GTGGAAGTGAATGAGGTCAGAGCATTGGGAGGAGAAGAGCTAAGACAGGAAAGTCCAGAT[A/G]GAATTTTGATGCTGGCCGAAATCCATCATATGGCTAAAGCGCATCTTCCTACATTCTACTGTGGAAGTGAATGAGGTCAGAGCATTGGGAGGAGAAGAGCTAAGACAGGAAAGTCCAGAT[A/G]GAATTTTGATGCTGGCCGAAATCCATCATATGGCTAAAGCGCATCTTCCTACATTCTACT 4242 H3GA0027004H3GA0027004 TCTCAGCTAAGAAGGAAAACAAGAAATGTCACTTGCTACTTTCTTTTTCCTAAATCAGGA[A/G]ACAACCAATGAGATGGCCCCTCTGCAATGAAATGAGCTAGTAAAGAATGTGTGACATCACTCTCAGCTAAGAAGGAAAACAAGAAATGTCACTTGCTACTTTCTTTTTCCTAAATCAGGA[A/G]ACAACCAATGAGATGGCCCCTCTGCAATGAAATGAGCTAGTAAAGAATGTGTGACATCAC 4343 H3GA0031439H3GA0031439 ACTCCACAGTGATTATCTCTTTGTGAGTCTCTTGGTGAAGGGACTGGGGGCTCCAGGAAA[A/G]YAAGGACTAAAAATTGGCCCTTGAACTTGGAAACACTGAGGCCACTGAGACTTTGATGAAACTCCACAGTGATTATCTCTTTGTGAGTCTCTTGGTGAAGGGACTGGGGGCTCCAGGAAA[A/G]YAAGGACTAAAAATTGGCCCTTGAACTTGGAAACACTGAGGCCACTGAGACTTTGATGAA 4444 H3GA0046698H3GA0046698 TCACCCGCACGGCTAGGATACCTGCAGGGAGCCTGGGTCTGGAGGTGGCAATTGGTTTYC[A/G]GAAACAAAATTTCATTTTCTAGGGGCCAGGTAAGGGCGAGCCTAGTCTGGGTGCAGGGCATCACCCGCACGGCTAGGATACCTGCAGGGAGCCTGGGTCTGGAGGTGGCAATTGGTTTYC[A/G]GAAACAAAATTTCATTTTCTAGGGGCCAGGTAAGGGCGAGCCTAGTCTGGGTGCAGGGCA 4545 H3GA0048952H3GA0048952 TCCGCAGTGCAACTATACTTAACTTTGTCAGTTATAACTCTACCTTTAAGTACTTCTTGG[A/C]GCCTGGCCTTCCCCTGTGCTTGTTACCTCAAACTGATGAAAATAGGAAAATAGTAAAACATCCGCAGTGCAACTATACTTAACTTTGTCAGTTATAACTCTACCTTTAAGTACTTCTTGG[A/C]GCCTGGCCTTCCCCTGTGCTTGTTACCTCAAACTGATGAAAATAGGAAAATAGTAAAACA 4646 M1GA0008026M1GA0008026 CAAGTTTTGCTTTTTGGAACTGTATGGAAATATTGGGGGGAGGTAATACTTTTGTTCCAC[A/G]TCGGTTGAGTTTCCGGATGTGGAATCTGCAGATACAGAGACTGACTGTGTAACACAATCACAAGTTTTGCTTTTTGGAACTGTATGGAAATATTGGGGGGAGGTAATACTTTTGTTCCAC[A/G]TCGGTTGAGTTTCCGGATGTGGAATCTGCAGATACAGAGACTGACTGTGTAACACAATCA 4747 M1GA0011894M1GA0011894 CAGATTCCAGTTGGAACAGAAGATGCTAAGTGAATAGCTTCCACCTTTGAGCCAAATCCA[A/G]TGTTGTAACAACCCGGCTACGTATATGCTCAAGATGCTAAGCTCCTACAGAGAGAGATCTCAGATTCCAGTTGGAACAGAAGATGCTAAGTGAATAGCTTCCACCTTTGAGCCAAATCCA[A/G]TGTTGTAACAACCCGGCTACGTATATGCTCAAGATGCTAAGCTCCTACAGAGAGAGATCT 4848 MARC0004720MARC0004720 AAAATTGCACAAAGGACCATAGGGGAAACCCAAAGGCTGGTTAGATAGGGTCTATTTTCT[T/C]CTTAGCCTATGAGTCATTTGGGGAAAAATTACAGAGGGCATAGTGATCTTTGATTTACCAAAAATTGCACAAAGGACCATAGGGGAAACCCAAAGGCTGGTTAGATAGGGTCTATTTTCT[T/C]CTTAGCCTATGAGTCATTTGGGGAAAAATTACAGAGGGCATAGTGATCTTTGATTTACCA 4949 MARC0008528MARC0008528 TAATTTATACTGCATGTACTCTTGGGGTCATGAGACCGTCTGGACCTCTGCTTACAGCCC[A/G]GGGAACTTTAGTCACTTGTGATGGAGCACGATGGCAGACAATGTGAGAAGAAGAATGTGTTAATTTATACTGCATGTACTCTTGGGGTCATGAGACCGTCTGGACCTCTGCTTACAGCCC[A/G]GGGAACTTTAGTCACTTGTGATGGAGCACGATGGCAGACAATGTGAGAAGAAGAATGTGT 5050 MARC0055696MARC0055696 TACAGATTTCAGCCAAAGCCACAATTGCCACGTCTCATCACCTGGAATTAAACAGCAAAC[A/G]GGGCTGACTGGTACCGCTGAGGAAACACAAAGATGTGTTGGCAACTCCCGGGAGCGGAGTTACAGATTTCAGCCAAAGCCACAATTGCCACGTCTCATCACCTGGAATTAAACAGCAAAC[A/G]GGGCTGACTGGTACCGCTGAGGAAACACAAAGATGTGTTGGCAACTCCCGGGAGCGGAGT 5151 MARC0065987MARC0065987 CCGTTCCAATGGTTTGATCTTCTCGTTTTCTTCTGTTAGCAACTGTC[A/G]AGTGGGCAGCATTGTCACAATGTTAAATGGACCTTTCTCGGCTGATTCGCAACGGGGTCTCCGTTCCAATGGTTTGATCTTCTCGTTTTCTTCTGTTAGCAACTGTC[A/G]AGTGGGCAGCATTGTCACAATGTTAAATGGACCTTTCTCGGCTGATTCGCAACGGGGTCT 5252 MARC0076283MARC0076283 CCTAAGCCTGGCTGCCATGGGGGAAGTACCTAAGAGCTTGCTTGAGGAGACCAAACTACG[A/G]TTCTTAAATCATCAGACCTGGGTTCAGTCAACCTAGCATAGCCTGGCGCATAATGAAAAGCCTAAGCCTGGCTGCCATGGGGGAAGTACCTAAGAGCTTGCTTGAGGAGACCAAACTACG[A/G]TTCTTAAATCATCAGACCTGGGTTCAGTCAACCTAGCATAGCCTGGCGCATAATGAAAAG 5353 gn-SNP01gn-SNP01 CCGTGTAAGTGGGGGGGGGGTGGACCTGGGCAGCTCTAAGCACCCCTCCCCGCAAACCTG[A/G]CATCAGGGATTGCAGATCTGGGGTGGCAGGGAGAGTGCCCAGTTTAATAACTGATGAATTCCGTGTAAGTGGGGGGGGGGTGGACCTGGGCAGCTCTAAGCACCCCTCCCCGCAAACCTG[A/G]CATCAGGGATTGCAGATCTGGGGTGGCAGGGAGAGTGCCCAGTTTAATAACTGATGAATT 5454 gn-SNP02gn-SNP02 ACCAGATACAGACATGGTGAGTATATTCATGGCTTGGCTGAAAGGGGTTTTTTTTAAACC[A/G]AAGTATTGTTGATTTACAATACTGTCAATATTGTACCAGTTTCTGCTGTACAGTAGAGTCACCAGATACAGACATGGTGAGTATATTCATGGCTTGGCTGAAAGGGGTTTTTTTTAAACC[A/G]AAGTATTGTTGATTTACAATACTGTCAATATTGTACCAGTTTCTGCTGTACAGTAGAGTC 5555 gn-SNP04gn-SNP04 TTGAACCCGCAACCTCACGGTTCCTGGTCGGATTCGTTAACCACTGAGCCACAACAGTAA[T/C]TCCTCAATATTAGACTTTTCATCCTCTGTATAGCTTGTAAAAACTAATAATCAGTTAATGTTGAACCCGCAACCTCACGGTTCCTGGTCGGATTCGTTAACCACTGAGCCACAACAGTAA[T/C]TCCTCAATATTAGACTTTTCATCCTCTGTATAGCTTGTAAAAACTAATAATCAGTTAATG 5656 gn-SNP06gn-SNP06 TCTTATGCTAAATGACAAGAGCTATGCTTTTACTTCTTTTTTTCTTAGAGCTCAGGACAA[C/T]AGAAGTTGAAACAGCCCAAGAAATAAAGAAATGTTGAAAGATGATACATTTTGAAACCTGTCTTATGCTAAATGACAAGAGCTATGCTTTTACTTCTTTTTTTCTTAGAGCTCAGGACAA[C/T]AGAAGTTGAAACAGCCCAAGAAATAAAGAAATGTTGAAAGATGATACATTTTGAAACCTG 5757 gn-SNP14gn-SNP14 ACAATTTTAGTATAGGTCTACCTGCTTCAAACACTGTATAAAGCATTACACTAACAAATC[C/T]GACTGCACCCTTATCTACTAGTGCAGCTGAGGAATGAACAGGTATTTCTGTGAAGTTTCAACAATTTTAGTATAGGTCTACCTGCTTCAAACACTGTATAAAGCATTACACTAACAAATC[C/T]GACTGCACCCTTATCTACTAGTGCAGCTGAGGAATGAACAGGTATTTCTGTGAAGTTTCA 5858 gn-SNP19gn-SNP19 TTGAATTTTCTGCTTAGGGTTGGAACCAGTTTCTTTTGTTCTGAGGATTTATATTTTTCT[T/G]TTAAATTTAGAAAACAGCTGGTCCTTATTTCTTCAAAAAATCTTCCCCCAATTTCTCTCTTTGAATTTTCTGCTTAGGGTTGGAACCAGTTTCTTTTGTTCTGAGGATTTATATTTTTCT[T/G]TTAAATTTAGAAAACAGCTGGTCCTTATTTCTTCAAAAAATCTTCCCCCAATTTCTCTCT 5959 gn-SNP22gn-SNP22 GCGCCCATTTTCCAAATCTTTCTCAAGTTCTTCATTTAAACTCTAACCCGGAGCTACTTA[A/G]GAAATGAGATTCAGGGACGTGCAGTTCACAGCCTTAGCCAAGTCGAAACAGCACTGTCTGGCGCCCATTTTCCAAATCTTTCTCAAGTTCTTCATTTAAACTCTAACCCGGAGCTACTTA[A/G]GAAATGAGATTCAGGGACGTGCAGTTCACAGCCTTAGCCAAGTCGAAACAGCACTGTCTG 6060 gn-SNP25gn-SNP25 CTTACGGACTTTTCAGACGTACATATTGCCCGCCCCCCTTTTTTTTAAATCATCAAGCTT[A/G]GGTTAAATTACTGTTTCCTATGCTAAAAACATGTCAGTTTTGTAACATCGCATGTACAAACTTACGGACTTTTCAGACGTACATATTGCCCGCCCCCCTTTTTTTTAAATCATCAAGCTT[A/G]GGTTAAATTACTGTTTCCTATGCTAAAAACATGTCAGTTTTGTAACATCGCATGTACAAA 6161 gn-SNP30gn-SNP30 TGTGCCGCCCACGGTCCTCCCGACCATGATGCCCATGGATGCTACCGGCAGGGATGGGAG[G/T]CTGCGTGGACTCAGTGTGGGACACGGAGAAAAGCAAAGGGCCGTTTCAGGGACAGAGGAGTGTGCCGCCCACGGTCCTCCCGACCATGATGCCCATGGATGCTACCGGCAGGGATGGGAG[G/T]CTGCGTGGACTCAGTGTGGGACACGGAGAAAAGCAAAGGGCCGTTTCAGGGACAGAGGAG 6262 gn-SNP31gn-SNP31 GAACATATTAACTATTGACTAGAGAATGTTTCGCTATCTGAAAGGAGCCAGAAAAGTCAC[A/G]AGATATGCCCTAAATTTCATCCATTGACAAGGGAGAAGTGGTCTCAAAGGACACATTTAAGAACATATTAACTATTGACTAGAGAATGTTTCGCTATCTGAAAGGAGCCAGAAAAGTCAC[A/G]AGATATGCCCTAAATTTCATCCATTGACAAGGGAGAAGTGGTCTCAAAGGACACATTTAA 6363 gn-SNP32gn-SNP32 AAAAGACCATAAAAGAGAAGAAGATAGCAAGTCTGGAAGTCCTGGTGGGAAGCCCCGGCT[A/G]AAGCAGACTCCACAAGGAGAGGGCAGGGTGGGGGCCTGGCATCTTGTTCGGGCTTGTGTGAAAAGACCATAAAAGAGAAGAAGATAGCAAGTCTGGAAGTCCTGGTGGGAAGCCCCGGCT[A/G]AAGCAGACTCCACAAGGAGAGGGCAGGGTGGGGGCCTGGCATCTTGTTCGGGCTTGTGTG 6464 gn-SNP34gn-SNP34 TACATTTCTCAGAAACCATAATCAACAGCTATCAATATAAGCAAGTGATGTCTTATTCAA[A/G]TTATTTGTTTGGTGGCACCTTAGGGATTGTTTCTTTCATAGGGCAATGCAGAAACTACAATACATTTCTCAGAAACCATAATCAACAGCTATCAATATAAGCAAGTGATGTCTTATTCAA[A/G]TTATTTGTTTGGTGGCACCTTAGGGATTGTTTCTTTCATAGGGCAATGCAGAAACTACAA 6565 gn-SNP35gn-SNP35 CACTAATGGAAGTAGTTGACAATAACTGACAAAAAAGCAGGGTTTAATGCAGAATATAAA[T/C]GGTAAATATAAAGTCTGCATAGAAATATCAGACGTTTACAGCAAACAAACAAAAAGCCCTCACTAATGGAAGTAGTTGACAATAACTGACAAAAAAGCAGGGTTTAATGCAGAATATAAA[T/C]GGTAAATATAAAGTCTGCATAGAAATATCAGACGTTTACAGCAAACAAACAAAAAGCCCT 6666 gn-SNP40gn-SNP40 TATGTTATGATTTTGAATATTAACTCTATTGCATATCCTTGTGCCCCAAATCTACACAGT[T/C]GCATGTGCCATAATAACTGTAAGTTTATTCTTATATAATAGTTTACAGAGTATACTCTATTATGTTATGATTTTGAATATTAACTCTATTGCATATCCTTGTGCCCCAAATCTACACAGT[T/C]GCATGTGCCATAATAACTGTAAGTTTATTCTTATATAATAATAGTTTACAGAGTATACTCTAT 6767 gn-SNP41gn-SNP41 AAATCTATCTACATCCTCTTTAGATTCCACGAGTTGCTCCTCTCCGAGGATTTCTCCTTC[A/G]GCACGTGTCGAGCTCTCAGTGTCACGGTCATTTTTTTATCCTTTTCCCTTCCATTGATTCAAATCTATCTACATCCTCTTTAGATTCCACGAGTTGCTCCTCTCCGAGGATTTCTCCTTC[A/G]GCACGTGTCGAGCTCTCAGTGTCACGGTCATTTTTTTATCCTTTTCCCTTCCATTGATTC 6868 gn-SNP50gn-SNP50 GTGTGTGTGTGTGTGTGCGCGCGCGTGTGTGTGCCTTGTCCCTTCCTGGGGTCCGGGTGC[C/T]AGTGTGGTCTGTGGATCTGTGGGTCACTGCGTAGCTTCCCAAGTCTGTGCATGCTGAATGGTGTGTGTGTGTGTGTGCGCGCGCGTGTGTGTGCCTTGTCCCTTCCTGGGGTCCGGGTGC[C/T]AGTGTGGTCTGTGGATCTGTGGGTCACTGCGTAGCTTCCCAAGTCTGTGCATGCTGAATG 6969 gn-SNP51gn-SNP51 AAGACAGATTTCAGGACTGTGCTGACAATGAATTTCTATAGTTATCAATTATGCCCTCAT[T/C]AAAATGTTCCAACTTGGCAAAAATTTAAACAATGTAACTTATAAACATAACATCCTTTTTAAGACAGATTTCAGGACTGTGCTGACAATGAATTTCTATAGTTATCAATTATGCCCTCAT[T/C]AAAATGTTCCAACTTGGCAAAAATTTAAACAATGTAACTTATAAACATAACATCCTTTTT 7070 gn-SNP55gn-SNP55 CCAAAATGGAGTTACTTAGGCTAAGCCCCACATCACCAAATTCACCTCGATTTGACTTAA[T/C]TTATTTACAGTTTTGGCTCTCCTAGAAATGGNGTCTTNAAGCCNGTCNANNNRGNANTNNCCAAAATGGAGTTACTTAGGCTAAGCCCCACATCACCAAATTCACCTCGATTTGACTTAA[T/C]TTATTTACAGTTTTGGCTCTCCTAGAAATGGNGTCTTNAAGCCNGTCNANNNRGNANTNN 7171 gn-SNP61gn-SNP61 CACCAACTGATTCAATTAAAGATCTCCTAACCATGATCTTGTGTTTTCTTTTTAAGTTAC[T/C]GCCTCCAAAATGTTGTTTGGAATTATTTTTTTCCCCAAATGTTACAAAAATGCAAACATTCACCAACTGATTCAATTAAAGATCTCCTAACCATGATCTTGTGTTTTCTTTTTAAGTTAC[T/C]GCCTCCAAAATGTTGTTTGGAATTATTTTTTTCCCCAAATGTTACAAAAATGCAAACATT 7272 gn-SNP64gn-SNP64 GACTATTCCATAACATGTAAGAATTCCACGAAATTTGAGTTTTACCGCCCATAACGGTTT[C/T]ACTGGCGCTCAGCACCCACTCCTTTAGGCCTGGCCCGCAGCTGCTTCTGCGCTCCTCCGGGACTATTCCATAACATGTAAGAATTCCACGAAATTTGAGTTTTACCGCCCATAACGGTTT[C/T]ACTGGCGCTCAGCACCCACTCCTTTAGGCCTGGCCCGCAGCTGCTTCTGCGCTCCTCCGG 7373 gn-SNP67gn-SNP67 AGGAGGGTCACTGGCTTTGGTTTTCTAGGCCCTGGAAGGGCAGCCAGAACCCACAAGCTG[A/G]AGAAACTGGGGCAAAGACCAAACGCTCACTGCACTGGATCATAAGCTTCCTTGGTCCCCCAGGAGGGTCACTGGCTTTGGTTTTCTAGGCCCTGGAAGGGCAGCCAGAACCCACAAGCTG[A/G]AGAAACTGGGGCAAAGACCAAACGCTCACTGCACTGGATCATAAGCTTCCTTGGTCCCCC 7474 gn-SNP72gn-SNP72 ACTAGCAAAACAAAATACCAGAATGATGTAAAGCTTAAAAAAAGAAGTCTCTATTGGAAG[A/C]AATTCTGTAGTTCAAANATCCAGTATTTTGTGACTCTCTTTGAAAACCCTTTTCTGCCATACTAGCAAAACAAAATACCAGAATGATGTAAAGCTTAAAAAAAGAAGTCTCTATTGGAAG[A/C]AATTCTGTAGTTCAAANATCCAGTATTTTGTGACTCTCTTTGAAAACCCTTTTCTGCCAT 7575 gn-SNP79gn-SNP79 CACCAGGATGCCTTGTACTCTGACTCTGGACATCCATAGAGCTGTTAAGTACTGAACTCT[C/T]GGATTTTGCTAATACCTCTAAAAAATTAAAAAGTCCATGTGACTGCTTGCCAAGAAAAATCACCAGGATGCCTTGTACTCTGACTCTGGACATCCATAGAGCTGTTAAGTACTGAACTCT[C/T]GGATTTTGCTAATACCTCTAAAAAATTAAAAAGTCCATGTGACTGCTTGCCAAGAAAAAT 7676 gn-SNP81gn-SNP81 AATAATACAGTTTTGCCTATCACTCATGGCTAAAACTCACTGGCATGGAATATAAAAGAT[A/G]CTGTTGGGGAGGAAAAGATTTTCCTCTGTCCTTTTAAGTTCTGGCTGGTCTAAGAATTAAAATAATACAGTTTTGCCTATCACTCATGGCTAAAACTCACTGGCATGGAATATAAAAGAT[A/G]CTGTTGGGGAGGAAAAGATTTTCCTCTGTCCTTTTAAGTTCTGGCTGGTCTAAGAATTAA 7777 gn-SNP83gn-SNP83 NNNNNNNNNNNNNNNNNNNNNNCTGTTCCAGTGATTGGGAAAGGCAAAGCTTGTACATTC[A/G]TTTTATAAGGCTGATCTTGCCTCAAAACAAAACAGGGAAAATAGGAGAAATAAAAAATTANNNNNNNNNNNNNNNNNNNNNNCTGTTCCAGTGATTGGGAAAGGCAAAGCTTGTACATTC[A/G]TTTTATAAGGCTGATCTTGCCTCAAAACAAAACAGGGAAAATAGGAGAAATAAAAAATTA 7878 gn-SNP87gn-SNP87 ACTGCAGTGAACAAAACAGGAAAAAATTTGTCTCTGCATCATAAAGCTCACATTCCATCA[A/G]AAGACACGGTAGAAAGTGTGTTTGCATTGTGTGTGTGTGTGTGTGTGTGTGTGTGATCTCACTGCAGTGAACAAAACAGGAAAAAATTTGTCTCTGCATCATAAAGCTCACATTCCATCA[A/G]AAGACACGGTAGAAAGTGTGTTTGCATTGTGTGTGTGTGTGTGTGTGTGTGTGTGATCTC 7979 gn-SNP90gn-SNP90 AAACACAAAAAACCCTTCCGTGGACGAGACAAAGCTGAGAAAATATTTTTGAATGATCTG[A/C]TAAAAATGTTGGCCTTGGAAGTTCCTGTTGTGGCTCAGTGGTAACGAACCCAACTAGTATAAACACAAAAAACCCTTCCGTGGACGAGACAAAGCTGAGAAAATATTTTTGAATGATCTG[A/C]TAAAAATGTTGGCCTTGGAAGTTCCTGTTGTGGCTCAGTGGTAACGAACCCAACTAGTAT 8080 gn-SNP91gn-SNP91 GGATGGGATTAGTGCCCTTATAAAAGAGACCCCAGAGCAATCTCTCACCCCCTTCCGTCA[C/T]GTGGGGACACAGAGAGAAGCTGGCCCTCTCTGAACAGGAAGAGGGTGCTCCCCAGACACCGGATGGGATTAGTGCCCTTATAAAAGAGACCCCAGAGCAATCTCTCACCCCCTTCCGTCA[C/T]GTGGGGACACAGAGAGAAGCTGGCCCTCTCTGAACAGGAAGAGGGTGCTCCCCAGACACC 8181 gn-SNP96gn-SNP96 TAGTGTAAAGAAGAAGGGAAGTTACTGGGTGGATTAAGATGCAGAGGAGGAACACGATCT[G/T]ATTTCATATTTCAAAGATAGCTCTTGTACATACAGTGGATTGTTATTCTCCCATAAAAAGTAGTGTAAAGAAGAAGGGAAGTTACTGGGTGGATTAAGATGCAGAGGAGGAACACGATCT[G/T]ATTTCATATTTCAAAGATAGCTCTTGTACATACAGTGGATTGTTATTCTCCCATAAAAAG 8282 rs55618764rs55618764 ACTGAGTTATTTGTAATGAATTATTTAGACAGTTCTCAGCCCTGCCTTCTGAGCGTTAGC[A/G]ATTTTAAAAGAGAACTTTTGTGCAATTCAAAATGAAGTTTTTATAAGTAATTGAAAGTGAACTGAGTTATTTGTAATGAATTATTTAGACAGTTCTCAGCCCTGCCTTCTGAGCGTTAGC[A/G]ATTTTAAAAGAGAACTTTTGTGCAATTCAAAATGAAGTTTTTATAAGTAATTGAAAGTGA 8383 rs80867926rs80867926 TAGGGGGAATTGAGGTCAGGTAGGCTGATCAGTTACCAGGGAAACTAGCACCTCCCCCTT[A/G]ATAAGCTATCATAGTGAAGATGTTCTGATCTAAAGATTAGAACAGTCACTAGCTGAGTCCTAGGGGGAATTGAGGTCAGGTAGGCTGATCAGTTACCAGGGAAACTAGCACCTCCCCCTT[A/G]ATAAGCTATCATAGTGAAGATGTTCTGATCTAAAGATTAGAACAGTCACTAGCTGAGTCC 8484 rs80914418rs80914418 CTGGGCTCAGTCCCTGGCCTGGGAACTTCCACAGGCCCCAGCTGCAGCCAGAAAAATAAT[A/G]ATAATGTCAAGTACTAGATTTTATTTTATTCTCTTGGCCCCAGAAAAGACCCCAGTTGCTCTGGGCTCAGTCCCTGGCCTGGGAACTTCCACAGGCCCCAGCTGCAGCCAGAAAAATAAT[A/G]ATAATGTCAAGTACTAGATTTTATTTTATTCTCTTGGCCCCAGAAAAGACCCCAGTTGCT 8585 rs80931369rs80931369 GATCTATAATTATTTCAGATAAAAAGTAAAGTTTAGGGGGGAAAAAGGTCATGGAGGGCA[T/G]AGCAGCCAGAAAACTAGCTTCGTCTCAATATTTGTGATTCTCCTAGACCATGAATACAAAGATCTATAATTATTTCAGATAAAAAGTAAAGTTTAGGGGGGAAAAAGGTCATGGAGGGCA[T/G]AGCAGCCAGAAAACTAGCTTCGTCTCAATATTTGTGATTCTCCTAGACCATGAATACAAA 8686 rs80955728rs80955728 CACCATTTATCTGACCAGGTAAATGTAGAGAGAGAGGTGACCTGTGAATGTATCCAGGGG[A/C]GGAGCTGGATAAGACTGTTTCCATTTCAGTTGGGTAGGTAGGAGCTTAGACATTTGTTCACACCATTTATCTGACCAGGTAAATGTAGAGAGAGAGGTGACCTGTGAATGTATCCAGGGG[A/C]GGAGCTGGATAAGACTGTTTCCATTTCAGTTGGGTAGGTAGGAGCTTAGACATTTGTTCA 8787 rs80964179rs80964179 CATAATTTTTCTTTTATTCCTCTTGGCATACATGAAGAGCCCAAAGCTGACAAGGATCAC[A/G]ACCAGGTAAACGTTGGTGGCTTCATTCCAGGCCTCGTGAACACTGTAATCCATGGAACCACATAATTTTTCTTTTATTCCTCTTGGCATACATGAAGAGCCCAAAGCTGACAAGGATCAC[A/G]ACCAGGTAAACGTTGGTGGCTTCATTCCAGGCCTCGTGAACACTGTAATCCATGGAACCA 8888 rs81263429rs81263429 TATTTATAACCCATATTCCCTCTGACTTACCTTCCACCACAGGCAGAACACAGACCTCTC[A/G]GTATCACCCACATGCTTTTGCCAAAAGCTTTTGYTATATGTTCAGGGATGTGATCCTAGGTATTTATAACCCATATTCCCTCTGACTTACCTTCCACCACAGGCAGAACACAGACCTCTC[A/G]GTATCACCCACATGCTTTTGCCAAAAGCTTTTGYTATATGTTCAGGGATGTGATCCTAGG 8989 rs81288768rs81288768 TCCATTCAAAATCAAGAATACAGGAGGAAATAGGTATGTTTAGTTTATATAAAATGAGAC[A/G]TACGATCATAAGCAGCTTTAGTAATTGCTCTTGCTGCATTCTTCTGAATATCAGGAATTGTCCATTCAAAATCAAGAATACAGGAGGAAATAGGTATGTTTAGTTTATATAAAATGAGAC[A/G]TACGATCATAAGCAGCTTTAGTAATTGCTCTTGCTGCATTCTTCTGAATATCAGGAATTG 9090 rs81289903rs81289903 GGCTAAATAAGAGTACTGCTAGCATGAAATTAATTTAACAGTGGAACTTTCTGGAGTCCA[G/A]TTGTAGGGGGAAAAGCTGGGGGAAAAAGAGTAGAGTTATTTCATGGAAGGGGAGAGAGGGGGCTAAATAAGAGTACTGCTAGCATGAAATTAATTTAACAGTGGAACTTTCTGGAGTCCA[G/A]TTGTAGGGGGAAAAGCTGGGGGAAAAAGAGTAGAGTTATTTCATGGAAGGGGAGAGAGGG 9191 rs81360129rs81360129 GTATAATGTCACCTTTCTTCTAGTTTCTTTCACCTTTCCCCCAAATTCCTGTGTAAGCTA[T/C]GCATAAAAATGCAATTTTTCAAGGTCCAATATCTTATTGACCCACAAGGCCAAAACAGGTGTATAATGTCACCTTTCTTCTAGTTTCTTTCACCTTTCCCCCAAATTCCTGTGTAAGCTA[T/C]GCATAAAAATGCAATTTTTCAAGGTCCAATATCTTATTGACCCACAAGGCCAAAACAGGT 9292 rs81360419rs81360419 GTGACTGGTGACAGTCACTAAATGCACCAGTAGATACGTAACTGGCTTTGGAACTGGACT[A/G]ATGCCTCATTTTTCTGTGCAGCTAAGATGAAAGTTCACCCATCAGGAAGCAAAACTACATGTGACTGGTGACAGTCACTAAATGCACCAGTAGATACGTAACTGGCTTTGGAACTGGACT[A/G]ATGCCTCATTTTTCTGTGCAGCTAAGATGAAAGTTCACCCATCAGGAAGCAAAACTACAT 9393 rs81425559rs81425559 GCGGGAGGTAAAAGCAGGACCTCTGGCTGGGCAGTTTGAGTCCTAGGGTTTGCCCCAGCT[T/C]TCCCCAAAGGCCCTTGAGTCTCAGTCTCTTCATTTATAAAGTGAGGAGGTTAGAGAAATGGCGGGAGGTAAAAGCAGGACCTCTGGCTGGGCAGTTTGAGTCCTAGGGTTTGCCCCAGCT[T/C]TCCCCAAAGGCCCTTGAGTCTCAGTCTCTTCATTTATAAAGTGAGGAGGTTAGAGAAATG 9494 rs81467772rs81467772 TTACCATGCTATTAAGTTTAGATTTGATGTTGGTGGCCTATAGAGAGGTATTTGAGGATG[T/C]TGTAGAAGCAAGTGACAAGGTCAGATTTTTGCAATTAGGAAAGTTGCACTTCAGTTCAATTTACCATGCTATTAAGTTTAGATTTGATGTTGGTGGCCTATAGAGAGGTATTTGAGGATG[T/C]TGTAGAAGCAAGTGACAAGGTCAGATTTTTGCAATTAGGAAAGTTGCACTTCAGTTCAAT 9595 rs336655803rs336655803 TACTGTCGCGAACAGAGGGCCTATTCATCTCAGTTTTACTGTTATTTCACCTGTGACTTA[A/G]TTTCAGATTAAGGCAGATTAACATGTTTGACCTATAAAGAATTAGGGCATGCCAATATGATACTGTCGCGAACAGAGGGCCTATTCATCTCAGTTTTACTGTTATTTCACCTGTGACTTA[A/G]TTTCAGATTAAGGCAGATTAACATGTTTGACCTATAAAGAATTAGGGCATGCCAATATGA 9696 rs81219818rs81219818 TGGACGGGTTCCTAAAACTAAAGCCTTGGCACAGCCCTGGTTGATTTCCCTGTGCTTCTT[C/T]CTCTTTGCCTGCAGGCAATCCCAGGGTCCACCAACGCCACCCACCACCCCCAAAACCGACTGGACGGGTTCCTAAAACTAAAGCCTTGGCACAGCCCTGGTTGATTTCCCTGTGCTTCTT[C/T]CTCTTTGCCTGCAGGCAATCCCAGGGTCCACCAACGCCACCCACCACCCCCAAAACCGAC

<110> sunchon natinal university industry academic cooperation foundation <120> Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method <130> p-10-0504 <140> 10-2014-0143905 <141> 2014-10-23 <160> 96 <170> KoPatentIn 3.0 <210> 1 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 1 <400> 1 gctgctttta gaatccttgc tttaactttt gccattttta ttgtaatatg tcttggtgtg 60 agtctgtttg gcctcacctt gattggagct ctctgtgctt gctgtatctt gatgtctgtt 120 t 121 <210> 2 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 2 <400> 2 actagttaag caagcctgcc ttgttctgag ggctttcctg aacttccagt ggcctctcag 60 tatcccccag ctttccctct ttatccgtga tcccctattg gtgcttctac aaccacctgt 120 g 121 <210> 3 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 3 <400> 3 ggtctgtgga ccccgggaac gcgacaggat taatgacaca gaccatgacc tgaatttcac 60 agcagctcca ccaaactcct agctggggac cttggacttg ggacttctgg gtgatttcca 120 g 121 <210> 4 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 4 <400> 4 ttctgtgcca accccctggg gcctgcctga tgctctaaga atcacagact cgcccagcag 60 agagggatta gcaagctgct aaaaagccta accccttcag gacagagatg aggagcccca 120 g 121 <210> 5 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 5 <400> 5 agaaaagcaa caaaaaatta ctcaaaatta tttcagactt ttaaaaaggc ccctgaagct 60 agccatgttc tgtgctcctc cttgttcctt taagtgtaca cagacaggga gttcccatca 120 t 121 <210> 6 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 6 <400> 6 cctcagaaaa caggatgtaa gttggttggt gtcacatctt ggttaggata agcagctgct 60 attgatagca actgattagt tctaaggact ggttatatac cacacgtgaa cttcaaaagt 120 g 121 <210> 7 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 7 <400> 7 gctatagact ccgtaagata ctgaataaaa ctgaactcat agctcccccc tatccactcc 60 actttttagg gctgcacttg tggcatatgg aagtgcccag gctagcgatc aatatcagag 120 c 121 <210> 8 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 8 <400> 8 aatagagttc ccctttgtta aggatgaatc aacaaagcct aggaagttgg tggtgattcg 60 acttcctagg actcttgggg atgacagctc agtcatcttt gccccttggg ttttactgtt 120 t 121 <210> 9 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 9 <400> 9 ttagccacag ggtaggaaaa gaatctatct ctcagtcttt tccaataaac cataagctgc 60 ttgaagcsag ggatatcctc attcattctt ttggtctcaa ttgcccagca taatgccagg 120 t 121 <210> 10 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 10 <400> 10 ctgggctgct tatctggaaa gcggcgagga tgatagtagt caatggaata cctaacagct 60 agcgactgcc tctgtgggca gcacttgggc aaatatttta catcaatgat cgccaagtaa 120 a 121 <210> 11 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 11 <400> 11 ggcactgcct gttgtcccag cacccccaga gtgtgggcca gctcccatca catgyactga 60 agaaagagcc tctgccaatc caggccccat gtcccatctg actgcccaca aaggctgtgg 120 t 121 <210> 12 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 12 <400> 12 gctgcaacca gagtcacaga agtgacaaca ctggttcctt atcccgctga gccatgagaa 60 tctgtacttt tagaagagct gagtcgtctc ttagctgcct taaacctagt cctggtccca 120 a 121 <210> 13 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 13 <400> 13 atgttttctg aaccaaagta agaacatggg atctgacaaa tgtacttatg ggggacctgg 60 agtgtgctgt ccttgagact ggaattggga ctcttagcca aaatcacaca aaaattaagt 120 a 121 <210> 14 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 14 <400> 14 agcttccctc ctaaaattat tatctattaa tagtaataat gataatagct aacacatgta 60 atgcttacta tatgataggc actatcctaa gaactcatga aatgattcaa tattcttagt 120 t 121 <210> 15 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 15 <400> 15 ttgggttgct actgtgatgc tgtttgagcc ctatctccag aacttccaca tgctatgagt 60 acagctaaat ttttaaaaag cccccccccc cccacatctt tctttgtgta aatttggcca 120 a 121 <210> 16 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 16 <400> 16 ctcctctttt gaactgtgag aaataaactt gtcttttcag ttaagatcat ctcctgatct 60 atcagctttc ctctacctca aaatttttat tagtactctg tattttaaga caagatgttg 120 t 121 <210> 17 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 17 <400> 17 tacggtttac ttatcagtga gatgtccccc cttagtttag agagtttcct tacatatctg 60 ttataatatc tggccccaga agctatgtct tggggataat atatatatat gatcctctga 120 t 121 <210> 18 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 18 <400> 18 caccattaga ggggatgctc tctaaggctg cttcgttcaa acttcctgat tccagctgca 60 tgcaggtagg gaacagagct gaccatgacc gaaggacact tggaaatcca catattagca 120 c 121 <210> 19 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 19 <400> 19 agatgcctgg ttctccaggc atggagacaa acccacaaga gccagggtct ctgagaagct 60 attctggagg acacacacta gggttgagta ttggaaagaa agtgggagac aaaggagaag 120 c 121 <210> 20 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 20 <400> 20 tggatggctg accaccaccc atgctccctg ccctctggct tctagctgag tttgaccaat 60 agaagaacca gtgggaaagt caaggggaaa ggagagtaag gttctcttgc ctgtcttcct 120 a 121 <210> 21 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 21 <400> 21 gggttggcga aaatcaaggg tatcctcaga gaagagactc agacacagcc ctcaaagtgc 60 acactcaggc acttgacgta gctttagtgc tacctcttca atatcttcga gagtgaggaa 120 a 121 <210> 22 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 22 <400> 22 tggggcttca ccacccaaat ggtggtaggt tgatgaggcc agagatggtg aacccatgtc 60 aggaataggt aactggtaag ccgattgctt gagnnnnnnn nnnnnnnnnn nnnnnnnnnn 120 n 121 <210> 23 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 23 <400> 23 ctgttgagtc tggggatgct caggcctcag agaggtgttc agggatgctc ctgaaaatcc 60 aagaatcagg tctctctgac ctgggaacac ccagnnnnnn nnnnnnnnnn nnnnnnnnnn 120 n 121 <210> 24 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 24 <400> 24 gtttctatgg ggcatctcag gaagcagtgg tgggcagtga gggaggtgat acaggtacag 60 actgtgtcac ttcgaagttg tcccgtgggc agnnnnnnnn nnnnnnnnnn nnnnnnnnnn 120 n 121 <210> 25 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 25 <400> 25 cttttccaat tctcactggc acctggatct tagacctcat ccagatgcct agaatcaagg 60 attggcattg agggtgagcc aagtgagaag tgagctaatt gcaagcccaa gaatgacttg 120 g 121 <210> 26 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 26 <400> 26 ttgaagtcag gtaattctaa atgtgactta caagttcctt ttccaggaat aacaagaagc 60 agcaagcrca ttatggatta agctcttgtg gagtgccaga tttggttcta ggtgttgtgt 120 t 121 <210> 27 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 27 <400> 27 aaagcttgac aagccaatgg gtgaactagg gaatacgcca tggggctatc aaacacttgt 60 acgagcagct catcagtaag cagccaagtg gcaaattggg attgactggg aatgctgagc 120 a 121 <210> 28 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 28 <400> 28 taaacaaaac caaatgtgca tattaaacac gaaacttggt gatcaataaa ttccaaaggc 60 agagcaggtt aagttgcaag aggcgatcca gctcagctgg gttccctcac agctggaaca 120 c 121 <210> 29 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 29 <400> 29 aatgacttac acaaagccat tcaccagtca acaggagagt tcaagatgca cagttctccc 60 atgttccacc attctgtctc ttgagctgta tgtttccctt gagagctgat gcaggtctca 120 a 121 <210> 30 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 30 <400> 30 aagtggacca gagaagtggc acatcgcctc cctttaagca gacttcccag aagtcattca 60 aatatttcag cttacagctc aagtcaaagc ttgatagtgg ggccacacct attctcagag 120 g 121 <210> 31 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 31 <400> 31 tcaggcttca agccacttcc ccaaagagct tcactctcct cctcaaaaga taaaatgaga 60 atgatgatgc ccacctcaga tgcaaagtgg gctaaggtac cctgggttag ggctaactgc 120 c 121 <210> 32 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 32 <400> 32 ccaggaggga gacgttcaaa taggttcctc cagctacttg caagtgaact tgaaaaatga 60 tgggccaccc gcaggactcc tttctaacgt gacagagcgg atgcatttgc gcatcagcga 120 g 121 <210> 33 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 33 <400> 33 agtatgtctg aaacattcat gcgacccaga ggagcaaatt ctgcatgtgg attctaatgg 60 atttgtcttt ctccctgact agctcaaggt tcccccaaat ccaactccca cttcactctg 120 t 121 <210> 34 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 34 <400> 34 attcataaca ctcaacctga tccccttggc ctttttcagt attgaacatg gaataaccta 60 cagcttagtc tgttggtcca ttcatgaatg tcatgtggtg tgagtcatct atgcacatga 120 c 121 <210> 35 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 35 <400> 35 gagagaaccc cgccccgcct ttgggataga aaagctccgc cgtgtcccaa gaacaagtay 60 atggtttggc ccttgagatg atgtgcagac acagggaccc agggattcac aatccactgg 120 a 121 <210> 36 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 36 <400> 36 agactacgct ttatcttccc actggagcca agtagggaac gtgaaatggg gcaaaggagg 60 aagacaaagc agaggacaga gcccaggagc tggatcgaga acctgccagc ctctggggcc 120 t 121 <210> 37 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 37 <400> 37 gtgatattat gttgcttcca agacaaggtc aagtgtaatt tctgcctctt gctgtctctc 60 agatggcttg ctctgggtga agcaagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 120 n 121 <210> 38 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 38 <400> 38 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn ctgggagtga caggacatcc 60 tgtctctctc ctgattctaa tctgagagag tcctacctcc aaggcccttg gtacctgctg 120 c 121 <210> 39 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 39 <400> 39 ggtcctcatg agaaccctag gagtagatcg tttaaaagac tgtccttcat tctgcagaag 60 aggcggccga gccctgagag gttacgtgag tttccccagc tgcacagtgg gcccctgaca 120 g 121 <210> 40 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 40 <400> 40 tcgacctgtc ctgcacgttg tgataaatgg tccaaaggaa aggagaagag gccacaggaa 60 atggaggagg aggattcaga ggtgaaggga actccctctg gggaggtgac actgaggctg 120 a 121 <210> 41 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 41 <400> 41 gtggaagtga atgaggtcag agcattggga ggagaagagc taagacagga aagtccagat 60 agaattttga tgctggccga aatccatcat atggctaaag cgcatcttcc tacattctac 120 t 121 <210> 42 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 42 <400> 42 tctcagctaa gaaggaaaac aagaaatgtc acttgctact ttctttttcc taaatcagga 60 aacaaccaat gagatggccc ctctgcaatg aaatgagcta gtaaagaatg tgtgacatca 120 c 121 <210> 43 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 43 <400> 43 actccacagt gattatctct ttgtgagtct cttggtgaag ggactggggg ctccaggaaa 60 ayaaggacta aaaattggcc cttgaacttg gaaacactga ggccactgag actttgatga 120 a 121 <210> 44 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 44 <400> 44 tcacccgcac ggctaggata cctgcaggga gcctgggtct ggaggtggca attggtttyc 60 agaaacaaaa tttcattttc taggggccag gtaagggcga gcctagtctg ggtgcagggc 120 a 121 <210> 45 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 45 <400> 45 tccgcagtgc aactatactt aactttgtca gttataactc tacctttaag tacttcttgg 60 agcctggcct tcccctgtgc ttgttacctc aaactgatga aaataggaaa atagtaaaac 120 a 121 <210> 46 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 46 <400> 46 caagttttgc tttttggaac tgtatggaaa tattgggggg aggtaatact tttgttccac 60 atcggttgag tttccggatg tggaatctgc agatacagag actgactgtg taacacaatc 120 a 121 <210> 47 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 47 <400> 47 cagattccag ttggaacaga agatgctaag tgaatagctt ccacctttga gccaaatcca 60 atgttgtaac aacccggcta cgtatatgct caagatgcta agctcctaca gagagagatc 120 t 121 <210> 48 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 48 <400> 48 aaaattgcac aaaggaccat aggggaaacc caaaggctgg ttagataggg tctattttct 60 tcttagccta tgagtcattt ggggaaaaat tacagagggc atagtgatct ttgatttacc 120 a 121 <210> 49 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 49 <400> 49 taatttatac tgcatgtact cttggggtca tgagaccgtc tggacctctg cttacagccc 60 agggaacttt agtcacttgt gatggagcac gatggcagac aatgtgagaa gaagaatgtg 120 t 121 <210> 50 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 50 <400> 50 tacagatttc agccaaagcc acaattgcca cgtctcatca cctggaatta aacagcaaac 60 agggctgact ggtaccgctg aggaaacaca aagatgtgtt ggcaactccc gggagcggag 120 t 121 <210> 51 <211> 108 <212> DNA <213> Artificial Sequence <220> <223> 51 <400> 51 ccgttccaat ggtttgatct tctcgttttc ttctgttagc aactgtcaag tgggcagcat 60 tgtcacaatg ttaaatggac ctttctcggc tgattcgcaa cggggtct 108 <210> 52 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 52 <400> 52 cctaagcctg gctgccatgg gggaagtacc taagagcttg cttgaggaga ccaaactacg 60 attcttaaat catcagacct gggttcagtc aacctagcat agcctggcgc ataatgaaaa 120 g 121 <210> 53 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 53 <400> 53 ccgtgtaagt gggggggggg tggacctggg cagctctaag cacccctccc cgcaaacctg 60 acatcaggga ttgcagatct ggggtggcag ggagagtgcc cagtttaata actgatgaat 120 t 121 <210> 54 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 54 <400> 54 accagataca gacatggtga gtatattcat ggcttggctg aaaggggttt tttttaaacc 60 aaagtattgt tgatttacaa tactgtcaat attgtaccag tttctgctgt acagtagagt 120 c 121 <210> 55 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 55 <400> 55 ttgaacccgc aacctcacgg ttcctggtcg gattcgttaa ccactgagcc acaacagtaa 60 ttcctcaata ttagactttt catcctctgt atagcttgta aaaactaata atcagttaat 120 g 121 <210> 56 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 56 <400> 56 tcttatgcta aatgacaaga gctatgcttt tacttctttt tttcttagag ctcaggacaa 60 cagaagttga aacagcccaa gaaataaaga aatgttgaaa gatgatacat tttgaaacct 120 g 121 <210> 57 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 57 <400> 57 acaattttag tataggtcta cctgcttcaa acactgtata aagcattaca ctaacaaatc 60 cgactgcacc cttatctact agtgcagctg aggaatgaac aggtatttct gtgaagtttc 120 a 121 <210> 58 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 58 <400> 58 ttgaattttc tgcttagggt tggaaccagt ttcttttgtt ctgaggattt atatttttct 60 tttaaattta gaaaacagct ggtccttatt tcttcaaaaa atcttccccc aatttctctc 120 t 121 <210> 59 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 59 <400> 59 gcgcccattt tccaaatctt tctcaagttc ttcatttaaa ctctaacccg gagctactta 60 agaaatgaga ttcagggacg tgcagttcac agccttagcc aagtcgaaac agcactgtct 120 g 121 <210> 60 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 60 <400> 60 cttacggact tttcagacgt acatattgcc cgcccccctt ttttttaaat catcaagctt 60 aggttaaatt actgtttcct atgctaaaaa catgtcagtt ttgtaacatc gcatgtacaa 120 a 121 <210> 61 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 61 <400> 61 tgtgccgccc acggtcctcc cgaccatgat gcccatggat gctaccggca gggatgggag 60 gctgcgtgga ctcagtgtgg gacacggaga aaagcaaagg gccgtttcag ggacagagga 120 g 121 <210> 62 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 62 <400> 62 gaacatatta actattgact agagaatgtt tcgctatctg aaaggagcca gaaaagtcac 60 aagatatgcc ctaaatttca tccattgaca agggagaagt ggtctcaaag gacacattta 120 a 121 <210> 63 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 63 <400> 63 aaaagaccat aaaagagaag aagatagcaa gtctggaagt cctggtggga agccccggct 60 aaagcagact ccacaaggag agggcagggt gggggcctgg catcttgttc gggcttgtgt 120 g 121 <210> 64 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 64 <400> 64 tacatttctc agaaaccata atcaacagct atcaatataa gcaagtgatg tcttattcaa 60 attatttgtt tggtggcacc ttagggattg tttctttcat agggcaatgc agaaactaca 120 a 121 <210> 65 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 65 <400> 65 cactaatgga agtagttgac aataactgac aaaaaagcag ggtttaatgc agaatataaa 60 tggtaaatat aaagtctgca tagaaatatc agacgtttac agcaaacaaa caaaaagccc 120 t 121 <210> 66 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 66 <400> 66 tatgttatga ttttgaatat taactctatt gcatatcctt gtgccccaaa tctacacagt 60 tgcatgtgcc ataataactg taagtttatt cttatataat agtttacaga gtatactcta 120 t 121 <210> 67 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 67 <400> 67 aaatctatct acatcctctt tagattccac gagttgctcc tctccgagga tttctccttc 60 agcacgtgtc gagctctcag tgtcacggtc atttttttat ccttttccct tccattgatt 120 c 121 <210> 68 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 68 <400> 68 gtgtgtgtgt gtgtgtgcgc gcgcgtgtgt gtgccttgtc ccttcctggg gtccgggtgc 60 cagtgtggtc tgtggatctg tgggtcactg cgtagcttcc caagtctgtg catgctgaat 120 g 121 <210> 69 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 69 <400> 69 aagacagatt tcaggactgt gctgacaatg aatttctata gttatcaatt atgccctcat 60 taaaatgttc caacttggca aaaatttaaa caatgtaact tataaacata acatcctttt 120 t 121 <210> 70 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 70 <400> 70 ccaaaatgga gttacttagg ctaagcccca catcaccaaa ttcacctcga tttgacttaa 60 tttatttaca gttttggctc tcctagaaat ggngtcttna agccngtcna nnnrgnantn 120 n 121 <210> 71 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 71 <400> 71 caccaactga ttcaattaaa gatctcctaa ccatgatctt gtgttttctt tttaagttac 60 tgcctccaaa atgttgtttg gaattatttt tttccccaaa tgttacaaaa atgcaaacat 120 t 121 <210> 72 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 72 <400> 72 gactattcca taacatgtaa gaattccacg aaatttgagt tttaccgccc ataacggttt 60 cactggcgct cagcacccac tcctttaggc ctggcccgca gctgcttctg cgctcctccg 120 g 121 <210> 73 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 73 <400> 73 aggagggtca ctggctttgg ttttctaggc cctggaaggg cagccagaac ccacaagctg 60 aagaaactgg ggcaaagacc aaacgctcac tgcactggat cataagcttc cttggtcccc 120 c 121 <210> 74 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 74 <400> 74 actagcaaaa caaaatacca gaatgatgta aagcttaaaa aaagaagtct ctattggaag 60 aaattctgta gttcaaanat ccagtatttt gtgactctct ttgaaaaccc ttttctgcca 120 t 121 <210> 75 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 75 <400> 75 caccaggatg ccttgtactc tgactctgga catccataga gctgttaagt actgaactct 60 cggattttgc taatacctct aaaaaattaa aaagtccatg tgactgcttg ccaagaaaaa 120 t 121 <210> 76 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 76 <400> 76 aataatacag ttttgcctat cactcatggc taaaactcac tggcatggaa tataaaagat 60 actgttgggg aggaaaagat tttcctctgt ccttttaagt tctggctggt ctaagaatta 120 a 121 <210> 77 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 77 <400> 77 nnnnnnnnnn nnnnnnnnnn nnctgttcca gtgattggga aaggcaaagc ttgtacattc 60 attttataag gctgatcttg cctcaaaaca aaacagggaa aataggagaa ataaaaaatt 120 a 121 <210> 78 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 78 <400> 78 actgcagtga acaaaacagg aaaaaatttg tctctgcatc ataaagctca cattccatca 60 aaagacacgg tagaaagtgt gtttgcattg tgtgtgtgtg tgtgtgtgtg tgtgtgatct 120 c 121 <210> 79 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 79 <400> 79 aaacacaaaa aacccttccg tggacgagac aaagctgaga aaatattttt gaatgatctg 60 ataaaaatgt tggccttgga agttcctgtt gtggctcagt ggtaacgaac ccaactagta 120 t 121 <210> 80 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 80 <400> 80 ggatgggatt agtgccctta taaaagagac cccagagcaa tctctcaccc ccttccgtca 60 cgtggggaca cagagagaag ctggccctct ctgaacagga agagggtgct ccccagacac 120 c 121 <210> 81 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 81 <400> 81 tagtgtaaag aagaagggaa gttactgggt ggattaagat gcagaggagg aacacgatct 60 gatttcatat ttcaaagata gctcttgtac atacagtgga ttgttattct cccataaaaa 120 g 121 <210> 82 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 82 <400> 82 actgagttat ttgtaatgaa ttatttagac agttctcagc cctgccttct gagcgttagc 60 aattttaaaa gagaactttt gtgcaattca aaatgaagtt tttataagta attgaaagtg 120 a 121 <210> 83 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 83 <400> 83 tagggggaat tgaggtcagg taggctgatc agttaccagg gaaactagca cctccccctt 60 aataagctat catagtgaag atgttctgat ctaaagatta gaacagtcac tagctgagtc 120 c 121 <210> 84 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 84 <400> 84 ctgggctcag tccctggcct gggaacttcc acaggcccca gctgcagcca gaaaaataat 60 aataatgtca agtactagat tttattttat tctcttggcc ccagaaaaga ccccagttgc 120 t 121 <210> 85 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 85 <400> 85 gatctataat tatttcagat aaaaagtaaa gtttaggggg gaaaaaggtc atggagggca 60 tagcagccag aaaactagct tcgtctcaat atttgtgatt ctcctagacc atgaatacaa 120 a 121 <210> 86 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 86 <400> 86 caccatttat ctgaccaggt aaatgtagag agagaggtga cctgtgaatg tatccagggg 60 aggagctgga taagactgtt tccatttcag ttgggtaggt aggagcttag acatttgttc 120 a 121 <210> 87 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 87 <400> 87 cataattttt cttttattcc tcttggcata catgaagagc ccaaagctga caaggatcac 60 aaccaggtaa acgttggtgg cttcattcca ggcctcgtga acactgtaat ccatggaacc 120 a 121 <210> 88 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 88 <400> 88 tatttataac ccatattccc tctgacttac cttccaccac aggcagaaca cagacctctc 60 agtatcaccc acatgctttt gccaaaagct tttgytatat gttcagggat gtgatcctag 120 g 121 <210> 89 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 89 <400> 89 tccattcaaa atcaagaata caggaggaaa taggtatgtt tagtttatat aaaatgagac 60 atacgatcat aagcagcttt agtaattgct cttgctgcat tcttctgaat atcaggaatt 120 g 121 <210> 90 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 90 <400> 90 ggctaaataa gagtactgct agcatgaaat taatttaaca gtggaacttt ctggagtcca 60 gttgtagggg gaaaagctgg gggaaaaaga gtagagttat ttcatggaag gggagagagg 120 g 121 <210> 91 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 91 <400> 91 gtataatgtc acctttcttc tagtttcttt cacctttccc ccaaattcct gtgtaagcta 60 tgcataaaaa tgcaattttt caaggtccaa tatcttattg acccacaagg ccaaaacagg 120 t 121 <210> 92 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 92 <400> 92 gtgactggtg acagtcacta aatgcaccag tagatacgta actggctttg gaactggact 60 aatgcctcat ttttctgtgc agctaagatg aaagttcacc catcaggaag caaaactaca 120 t 121 <210> 93 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 93 <400> 93 gcgggaggta aaagcaggac ctctggctgg gcagtttgag tcctagggtt tgccccagct 60 ttccccaaag gcccttgagt ctcagtctct tcatttataa agtgaggagg ttagagaaat 120 g 121 <210> 94 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 94 <400> 94 ttaccatgct attaagttta gatttgatgt tggtggccta tagagaggta tttgaggatg 60 ttgtagaagc aagtgacaag gtcagatttt tgcaattagg aaagttgcac ttcagttcaa 120 t 121 <210> 95 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 95 <400> 95 tactgtcgcg aacagagggc ctattcatct cagttttact gttatttcac ctgtgactta 60 atttcagatt aaggcagatt aacatgtttg acctataaag aattagggca tgccaatatg 120 a 121 <210> 96 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 96 <400> 96 tggacgggtt cctaaaacta aagccttggc acagccctgg ttgatttccc tgtgcttctt 60 cctctttgcc tgcaggcaat cccagggtcc accaacgcca cccaccaccc ccaaaaccga 120 c 121 <110> sunchon natinal university industry academic cooperation foundation <120> Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method <130> p-10-0504 <140> 10-2014-0143905 <141> 2014-10-23 <160> 96 <170> KoPatentIn 3.0 <210> 1 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 1 <400> 1 gctgctttta gaatccttgc tttaactttt gccattttta ttgtaatatg tcttggtgtg 60 agtctgtttg gcctcacctt gattggagct ctctgtgctt gctgtatctt gatgtctgtt 120 t 121 <210> 2 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 2 <400> 2 actagttaag caagcctgcc ttgttctgag ggctttcctg aacttccagt ggcctctcag 60 tatcccccag ctttccctct ttatccgtga tcccctattg gtgcttctac aaccacctgt 120 g 121 <210> 3 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 3 <400> 3 ggtctgtgga ccccgggaac gcgacaggat taatgacaca gaccatgacc tgaatttcac 60 agcagctcca ccaaactcct agctggggac cttggacttg ggacttctgg gtgatttcca 120 g 121 <210> 4 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 4 <400> 4 ttctgtgcca accccctggg gcctgcctga tgctctaaga atcacagact cgcccagcag 60 agagggatta gcaagctgct aaaaagccta accccttcag gacagagatg aggagcccca 120 g 121 <210> 5 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 5 <400> 5 agaaaagcaa caaaaaatta ctcaaaatta tttcagactt ttaaaaaggc ccctgaagct 60 agccatgttc tgtgctcctc cttgttcctt taagtgtaca cagacaggga gttcccatca 120 t 121 <210> 6 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 6 <400> 6 cctcagaaaa caggatgtaa gttggttggt gtcacatctt ggttaggata agcagctgct 60 attgatagca actgattagt tctaaggact ggttatatac cacacgtgaa cttcaaaagt 120 g 121 <210> 7 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 7 <400> 7 gctatagact ccgtaagata ctgaataaaa ctgaactcat agctcccccc tatccactcc 60 actttttagg gctgcacttg tggcatatgg aagtgcccag gctagcgatc aatatcagag 120 c 121 <210> 8 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 8 <400> 8 aatagagttc ccctttgtta aggatgaatc aacaaagcct aggaagttgg tggtgattcg 60 acttcctagg actcttgggg atgacagctc agtcatcttt gccccttggg ttttactgtt 120 t 121 <210> 9 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 9 <400> 9 ttagccacag ggtaggaaaa gaatctatct ctcagtcttt tccaataaac cataagctgc 60 ttgaagcsag ggatatcctc attcattctt ttggtctcaa ttgcccagca taatgccagg 120 t 121 <210> 10 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 10 <400> 10 ctgggctgct tatctggaaa gcggcgagga tgatagtagt caatggaata cctaacagct 60 agcgactgcc tctgtgggca gcacttgggc aaatatttta catcaatgat cgccaagtaa 120 a 121 <210> 11 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 11 <400> 11 ggcactgcct gttgtcccag cacccccaga gtgtgggcca gctcccatca catgyactga 60 agaaagagcc tctgccaatc caggccccat gtcccatctg actgcccaca aaggctgtgg 120 t 121 <210> 12 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 12 <400> 12 gctgcaacca gagtcacaga agtgacaaca ctggttcctt atcccgctga gccatgagaa 60 tctgtacttt tagaagagct gagtcgtctc ttagctgcct taaacctagt cctggtccca 120 a 121 <210> 13 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 13 <400> 13 atgttttctg aaccaaagta agaacatggg atctgacaaa tgtacttatg ggggacctgg 60 agtgtgctgt ccttgagact ggaattggga ctcttagcca aaatcacaca aaaattaagt 120 a 121 <210> 14 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 14 <400> 14 agcttccctc ctaaaattat tatctattaa tagtaataat gataatagct aacacatgta 60 atgcttacta tatgataggc actatcctaa gaactcatga aatgattcaa tattcttagt 120 t 121 <210> 15 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 15 <400> 15 ttgggttgct actgtgatgc tgtttgagcc ctatctccag aacttccaca tgctatgagt 60 acagctaaat ttttaaaaag cccccccccc cccacatctt tctttgtgta aatttggcca 120 a 121 <210> 16 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 16 <400> 16 ctcctctttt gaactgtgag aaataaactt gtcttttcag ttaagatcat ctcctgatct 60 atcagctttc ctctacctca aaatttttat tagtactctg tattttaaga caagatgttg 120 t 121 <210> 17 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 17 <400> 17 tacggtttac ttatcagtga gatgtccccc cttagtttag agagtttcct tacatatctg 60 ttataatatc tggccccaga agctatgtct tggggataat atatatatat gatcctctga 120 t 121 <210> 18 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 18 <400> 18 caccattaga ggggatgctc tctaaggctg cttcgttcaa acttcctgat tccagctgca 60 tgcaggtagg gaacagagct gaccatgacc gaaggacact tggaaatcca catattagca 120 c 121 <210> 19 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 19 <400> 19 agatgcctgg ttctccaggc atggagacaa acccacaaga gccagggtct ctgagaagct 60 attctggagg acacacacta gggttgagta ttggaaagaa agtgggagac aaaggagaag 120 c 121 <210> 20 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 20 <400> 20 tggatggctg accaccaccc atgctccctg ccctctggct tctagctgag tttgaccaat 60 agaagaacca gtgggaaagt caaggggaaa ggagagtaag gttctcttgc ctgtcttcct 120 a 121 <210> 21 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 21 <400> 21 gggttggcga aaatcaaggg tatcctcaga gaagagactc agacacagcc ctcaaagtgc 60 acactcaggc acttgacgta gctttagtgc tacctcttca atatcttcga gagtgaggaa 120 a 121 <210> 22 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 22 <400> 22 tggggcttca ccacccaaat ggtggtaggt tgatgaggcc agagatggtg aacccatgtc 60 aggaataggt aactggtaag ccgattgctt gagnnnnnnn nnnnnnnnnn nnnnnnnnnn 120 n 121 <210> 23 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 23 <400> 23 ctgttgagtc tggggatgct caggcctcag agaggtgttc agggatgctc ctgaaaatcc 60 aagaatcagg tctctctgac ctgggaacac ccagnnnnnn nnnnnnnnnn nnnnnnnnnn 120 n 121 <210> 24 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 24 <400> 24 gtttctatgg ggcatctcag gaagcagtgg tgggcagtga gggaggtgat acaggtacag 60 actgtgtcac ttcgaagttg tcccgtgggc agnnnnnnnn nnnnnnnnnn nnnnnnnnnn 120 n 121 <210> 25 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 25 <400> 25 cttttccaat tctcactggc acctggatct tagacctcat ccagatgcct agaatcaagg 60 attggcattg agggtgagcc aagtgagaag tgagctaatt gcaagcccaa gaatgacttg 120 g 121 <210> 26 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 26 <400> 26 ttgaagtcag gtaattctaa atgtgactta caagttcctt ttccaggaat aacaagaagc 60 agcaagcrca ttatggatta agctcttgtg gagtgccaga tttggttcta ggtgttgtgt 120 t 121 <210> 27 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 27 <400> 27 aaagcttgac aagccaatgg gtgaactagg gaatacgcca tggggctatc aaacacttgt 60 acgagcagct catcagtaag cagccaagtg gcaaattggg attgactggg aatgctgagc 120 a 121 <210> 28 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 28 <400> 28 taaacaaaac caaatgtgca tattaaacac gaaacttggt gatcaataaa ttccaaaggc 60 agagcaggtt aagttgcaag aggcgatcca gctcagctgg gttccctcac agctggaaca 120 c 121 <210> 29 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 29 <400> 29 aatgacttac acaaagccat tcaccagtca acaggagagt tcaagatgca cagttctccc 60 atgttccacc attctgtctc ttgagctgta tgtttccctt gagagctgat gcaggtctca 120 a 121 <210> 30 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 30 <400> 30 aagtggacca gagaagtggc acatcgcctc cctttaagca gacttcccag aagtcattca 60 aatatttcag cttacagctc aagtcaaagc ttgatagtgg ggccacacct attctcagag 120 g 121 <210> 31 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 31 <400> 31 tcaggcttca agccacttcc ccaaagagct tcactctcct cctcaaaaga taaaatgaga 60 atgatgatgc ccacctcaga tgcaaagtgg gctaaggtac cctgggttag ggctaactgc 120 c 121 <210> 32 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 32 <400> 32 ccaggaggga gacgttcaaa taggttcctc cagctacttg caagtgaact tgaaaaatga 60 tgggccaccc gcaggactcc tttctaacgt gacagagcgg atgcatttgc gcatcagcga 120 g 121 <210> 33 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 33 <400> 33 agtatgtctg aaacattcat gcgacccaga ggagcaaatt ctgcatgtgg attctaatgg 60 atttgtcttt ctccctgact agctcaaggt tcccccaaat ccaactccca cttcactctg 120 t 121 <210> 34 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 34 <400> 34 attcataaca ctcaacctga tccccttggc ctttttcagt attgaacatg gaataaccta 60 cagcttagtc tgttggtcca ttcatgaatg tcatgtggtg tgagtcatct atgcacatga 120 c 121 <210> 35 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 35 <400> 35 gagagaaccc cgccccgcct ttgggataga aaagctccgc cgtgtcccaa gaacaagtay 60 atggtttggc ccttgagatg atgtgcagac acagggaccc agggattcac aatccactgg 120 a 121 <210> 36 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 36 <400> 36 agactacgct ttatcttccc actggagcca agtagggaac gtgaaatggg gcaaaggagg 60 aagacaaagc agaggacaga gcccaggagc tggatcgaga acctgccagc ctctggggcc 120 t 121 <210> 37 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 37 <400> 37 gtgatattat gttgcttcca agacaaggtc aagtgtaatt tctgcctctt gctgtctctc 60 agatggcttg ctctgggtga agcaagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 120 n 121 <210> 38 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 38 <400> 38 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn ctgggagtga caggacatcc 60 tgtctctctc ctgattctaa tctgagagag tcctacctcc aaggcccttg gtacctgctg 120 c 121 <210> 39 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 39 <400> 39 ggtcctcatg agaaccctag gagtagatcg tttaaaagac tgtccttcat tctgcagaag 60 aggcggccga gccctgagag gttacgtgag tttccccagc tgcacagtgg gcccctgaca 120 g 121 <210> 40 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 40 <400> 40 tcgacctgtc ctgcacgttg tgataaatgg tccaaaggaa aggagaagag gccacaggaa 60 atggaggagg aggattcaga ggtgaaggga actccctctg gggaggtgac actgaggctg 120 a 121 <210> 41 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 41 <400> 41 gtggaagtga atgaggtcag agcattggga ggagaagagc taagacagga aagtccagat 60 agaattttga tgctggccga aatccatcat atggctaaag cgcatcttcc tacattctac 120 t 121 <210> 42 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 42 <400> 42 tctcagctaa gaaggaaaac aagaaatgtc acttgctact ttctttttcc taaatcagga 60 aacaaccaat gagatggccc ctctgcaatg aaatgagcta gtaaagaatg tgtgacatca 120 c 121 <210> 43 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 43 <400> 43 actccacagt gattatctct ttgtgagtct cttggtgaag ggactggggg ctccaggaaa 60 ayaaggacta aaaattggcc cttgaacttg gaaacactga ggccactgag actttgatga 120 a 121 <210> 44 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 44 <400> 44 tcacccgcac ggctaggata cctgcaggga gcctgggtct ggaggtggca attggtttyc 60 agaaacaaaa tttcattttc taggggccag gtaagggcga gcctagtctg ggtgcagggc 120 a 121 <210> 45 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 45 <400> 45 tccgcagtgc aactatactt aactttgtca gttataactc tacctttaag tacttcttgg 60 agcctggcct tcccctgtgc ttgttacctc aaactgatga aaataggaaa atagtaaaac 120 a 121 <210> 46 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 46 <400> 46 caagttttgc tttttggaac tgtatggaaa tattgggggg aggtaatact tttgttccac 60 atcggttgag tttccggatg tggaatctgc agatacagag actgactgtg taacacaatc 120 a 121 <210> 47 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 47 <400> 47 cagattccag ttggaacaga agatgctaag tgaatagctt ccacctttga gccaaatcca 60 atgttgtaac aacccggcta cgtatatgct caagatgcta agctcctaca gagagagatc 120 t 121 <210> 48 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 48 <400> 48 aaaattgcac aaaggaccat aggggaaacc caaaggctgg ttagataggg tctattttct 60 tcttagccta tgagtcattt ggggaaaaat tacagagggc atagtgatct ttgatttacc 120 a 121 <210> 49 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 49 <400> 49 taatttatac tgcatgtact cttggggtca tgagaccgtc tggacctctg cttacagccc 60 agggaacttt agtcacttgt gatggagcac gatggcagac aatgtgagaa gaagaatgtg 120 t 121 <210> 50 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 50 <400> 50 tacagatttc agccaaagcc acaattgcca cgtctcatca cctggaatta aacagcaaac 60 agggctgact ggtaccgctg aggaaacaca aagatgtgtt ggcaactccc gggagcggag 120 t 121 <210> 51 <211> 108 <212> DNA <213> Artificial Sequence <220> <223> 51 <400> 51 ccgttccaat ggtttgatct tctcgttttc ttctgttagc aactgtcaag tgggcagcat 60 tgtcacaatg ttaaatggac ctttctcggc tgattcgcaa cggggtct 108 <210> 52 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 52 <400> 52 cctaagcctg gctgccatgg gggaagtacc taagagcttg cttgaggaga ccaaactacg 60 attcttaaat catcagacct gggttcagtc aacctagcat agcctggcgc ataatgaaaa 120 g 121 <210> 53 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 53 <400> 53 ccgtgtaagt gggggggggg tggacctggg cagctctaag cacccctccc cgcaaacctg 60 acatcaggga ttgcagatct ggggtggcag ggagagtgcc cagtttaata actgatgaat 120 t 121 <210> 54 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 54 <400> 54 accagataca gacatggtga gtatattcat ggcttggctg aaaggggttt tttttaaacc 60 aaagtattgt tgatttacaa tactgtcaat attgtaccag tttctgctgt acagtagagt 120 c 121 <210> 55 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 55 <400> 55 ttgaacccgc aacctcacgg ttcctggtcg gattcgttaa ccactgagcc acaacagtaa 60 ttcctcaata ttagactttt catcctctgt atagcttgta aaaactaata atcagttaat 120 g 121 <210> 56 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 56 <400> 56 tcttatgcta aatgacaaga gctatgcttt tacttctttt tttcttagag ctcaggacaa 60 cagaagttga aacagcccaa gaaataaaga aatgttgaaa gatgatacat tttgaaacct 120 g 121 <210> 57 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 57 <400> 57 acaattttag tataggtcta cctgcttcaa acactgtata aagcattaca ctaacaaatc 60 cgactgcacc cttatctact agtgcagctg aggaatgaac aggtatttct gtgaagtttc 120 a 121 <210> 58 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 58 <400> 58 ttgaattttc tgcttagggt tggaaccagt ttcttttgtt ctgaggattt atatttttct 60 tttaaattta gaaaacagct ggtccttatt tcttcaaaaa atcttccccc aatttctctc 120 t 121 <210> 59 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 59 <400> 59 gcgcccattt tccaaatctt tctcaagttc ttcatttaaa ctctaacccg gagctactta 60 agaaatgaga ttcagggacg tgcagttcac agccttagcc aagtcgaaac agcactgtct 120 g 121 <210> 60 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 60 <400> 60 cttacggact tttcagacgt acatattgcc cgcccccctt ttttttaaat catcaagctt 60 aggttaaatt actgtttcct atgctaaaaa catgtcagtt ttgtaacatc gcatgtacaa 120 a 121 <210> 61 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 61 <400> 61 tgtgccgccc acggtcctcc cgaccatgat gcccatggat gctaccggca gggatgggag 60 gctgcgtgga ctcagtgtgg gacacggaga aaagcaaagg gccgtttcag ggacagagga 120 g 121 <210> 62 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 62 <400> 62 gaacatatta actattgact agagaatgtt tcgctatctg aaaggagcca gaaaagtcac 60 aagatatgcc ctaaatttca tccattgaca agggagaagt ggtctcaaag gacacattta 120 a 121 <210> 63 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 63 <400> 63 aaaagaccat aaaagagaag aagatagcaa gtctggaagt cctggtggga agccccggct 60 aaagcagact ccacaaggag agggcagggt gggggcctgg catcttgttc gggcttgtgt 120 g 121 <210> 64 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 64 <400> 64 tacatttctc agaaaccata atcaacagct atcaatataa gcaagtgatg tcttattcaa 60 attatttgtt tggtggcacc ttagggattg tttctttcat agggcaatgc agaaactaca 120 a 121 <210> 65 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 65 <400> 65 cactaatgga agtagttgac aataactgac aaaaaagcag ggtttaatgc agaatataaa 60 tggtaaatat aaagtctgca tagaaatatc agacgtttac agcaaacaaa caaaaagccc 120 t 121 <210> 66 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 66 <400> 66 tatgttatga ttttgaatat taactctatt gcatatcctt gtgccccaaa tctacacagt 60 tgcatgtgcc ataataactg taagtttatt cttatataat agtttacaga gtatactcta 120 t 121 <210> 67 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 67 <400> 67 aaatctatct acatcctctt tagattccac gagttgctcc tctccgagga tttctccttc 60 agcacgtgtc gagctctcag tgtcacggtc atttttttat ccttttccct tccattgatt 120 c 121 <210> 68 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 68 <400> 68 gtgtgtgtgt gtgtgtgcgc gcgcgtgtgt gtgccttgtc ccttcctggg gtccgggtgc 60 cagtgtggtc tgtggatctg tgggtcactg cgtagcttcc caagtctgtg catgctgaat 120 g 121 <210> 69 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 69 <400> 69 aagacagatt tcaggactgt gctgacaatg aatttctata gttatcaatt atgccctcat 60 taaaatgttc caacttggca aaaatttaaa caatgtaact tataaacata acatcctttt 120 t 121 <210> 70 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 70 <400> 70 ccaaaatgga gttacttagg ctaagcccca catcaccaaa ttcacctcga tttgacttaa 60 tttatttaca gttttggctc tcctagaaat ggngtcttna agccngtcna nnnrgnantn 120 n 121 <210> 71 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 71 <400> 71 caccaactga ttcaattaaa gatctcctaa ccatgatctt gtgttttctt tttaagttac 60 tgcctccaaa atgttgtttg gaattatttt tttccccaaa tgttacaaaa atgcaaacat 120 t 121 <210> 72 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 72 <400> 72 gactattcca taacatgtaa gaattccacg aaatttgagt tttaccgccc ataacggttt 60 cactggcgct cagcacccac tcctttaggc ctggcccgca gctgcttctg cgctcctccg 120 g 121 <210> 73 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 73 <400> 73 aggagggtca ctggctttgg ttttctaggc cctggaaggg cagccagaac ccacaagctg 60 aagaaactgg ggcaaagacc aaacgctcac tgcactggat cataagcttc cttggtcccc 120 c 121 <210> 74 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 74 <400> 74 actagcaaaa caaaatacca gaatgatgta aagcttaaaa aaagaagtct ctattggaag 60 aaattctgta gttcaaanat ccagtatttt gtgactctct ttgaaaaccc ttttctgcca 120 t 121 <210> 75 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 75 <400> 75 caccaggatg ccttgtactc tgactctgga catccataga gctgttaagt actgaactct 60 cggattttgc taatacctct aaaaaattaa aaagtccatg tgactgcttg ccaagaaaaa 120 t 121 <210> 76 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 76 <400> 76 aataatacag ttttgcctat cactcatggc taaaactcac tggcatggaa tataaaagat 60 actgttgggg aggaaaagat tttcctctgt ccttttaagt tctggctggt ctaagaatta 120 a 121 <210> 77 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 77 <400> 77 nnnnnnnnnn nnnnnnnnnn nnctgttcca gtgattggga aaggcaaagc ttgtacattc 60 attttataag gctgatcttg cctcaaaaca aaacagggaa aataggagaa ataaaaaatt 120 a 121 <210> 78 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 78 <400> 78 actgcagtga acaaaacagg aaaaaatttg tctctgcatc ataaagctca cattccatca 60 aaagacacgg tagaaagtgt gtttgcattg tgtgtgtgtg tgtgtgtgtg tgtgtgatct 120 c 121 <210> 79 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 79 <400> 79 aaacacaaaa aacccttccg tggacgagac aaagctgaga aaatattttt gaatgatctg 60 ataaaaatgt tggccttgga agttcctgtt gtggctcagt ggtaacgaac ccaactagta 120 t 121 <210> 80 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 80 <400> 80 ggatgggatt agtgccctta taaaagagac cccagagcaa tctctcaccc ccttccgtca 60 cgtggggaca cagagagaag ctggccctct ctgaacagga agagggtgct ccccagacac 120 c 121 <210> 81 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 81 <400> 81 tagtgtaaag aagaagggaa gttactgggt ggattaagat gcagaggagg aacacgatct 60 gatttcatat ttcaaagata gctcttgtac atacagtgga ttgttattct cccataaaaa 120 g 121 <210> 82 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 82 <400> 82 actgagttat ttgtaatgaa ttatttagac agttctcagc cctgccttct gagcgttagc 60 aattttaaaa gagaactttt gtgcaattca aaatgaagtt tttataagta attgaaagtg 120 a 121 <210> 83 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 83 <400> 83 tagggggaat tgaggtcagg taggctgatc agttaccagg gaaactagca cctccccctt 60 aataagctat catagtgaag atgttctgat ctaaagatta gaacagtcac tagctgagtc 120 c 121 <210> 84 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 84 <400> 84 ctgggctcag tccctggcct gggaacttcc acaggcccca gctgcagcca gaaaaataat 60 aataatgtca agtactagat tttattttat tctcttggcc ccagaaaaga ccccagttgc 120 t 121 <210> 85 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 85 <400> 85 gatctataat tatttcagat aaaaagtaaa gtttaggggg gaaaaaggtc atggagggca 60 tagcagccag aaaactagct tcgtctcaat atttgtgatt ctcctagacc atgaatacaa 120 a 121 <210> 86 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 86 <400> 86 caccatttat ctgaccaggt aaatgtagag agagaggtga cctgtgaatg tatccagggg 60 aggagctgga taagactgtt tccatttcag ttgggtaggt aggagcttag acatttgttc 120 a 121 <210> 87 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 87 <400> 87 cataattttt cttttattcc tcttggcata catgaagagc ccaaagctga caaggatcac 60 aaccaggtaa acgttggtgg cttcattcca ggcctcgtga acactgtaat ccatggaacc 120 a 121 <210> 88 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 88 <400> 88 tatttataac ccatattccc tctgacttac cttccaccac aggcagaaca cagacctctc 60 agtatcaccc acatgctttt gccaaaagct tttgytatat gttcagggat gtgatcctag 120 g 121 <210> 89 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 89 <400> 89 tccattcaaa atcaagaata caggaggaaa taggtatgtt tagtttatat aaaatgagac 60 atacgatcat aagcagcttt agtaattgct cttgctgcat tcttctgaat atcaggaatt 120 g 121 <210> 90 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 90 <400> 90 ggctaaataa gagtactgct agcatgaaat taatttaaca gtggaacttt ctggagtcca 60 gttgtagggg gaaaagctgg gggaaaaaga gtagagttat ttcatggaag gggagagagg 120 g 121 <210> 91 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 91 <400> 91 gtataatgtc acctttcttc tagtttcttt cacctttccc ccaaattcct gtgtaagcta 60 tgcataaaaa tgcaattttt caaggtccaa tatcttattg acccacaagg ccaaaacagg 120 t 121 <210> 92 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 92 <400> 92 gtgactggtg acagtcacta aatgcaccag tagatacgta actggctttg gaactggact 60 aatgcctcat ttttctgtgc agctaagatg aaagttcacc catcaggaag caaaactaca 120 t 121 <210> 93 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 93 <400> 93 gcgggaggta aaagcaggac ctctggctgg gcagtttgag tcctagggtt tgccccagct 60 ttccccaaag gcccttgagt ctcagtctct tcatttataa agtgaggagg ttagagaaat 120 g 121 <210> 94 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 94 <400> 94 ttaccatgct attaagttta gatttgatgt tggtggccta tagagaggta tttgaggatg 60 ttgtagaagc aagtgacaag gtcagatttt tgcaattagg aaagttgcac ttcagttcaa 120 t 121 <210> 95 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 95 <400> 95 tactgtcgcg aacagagggc ctattcatct cagttttact gttatttcac ctgtgactta 60 atttcagatt aaggcagatt aacatgtttg acctataaag aattagggca tgccaatatg 120 a 121 <210> 96 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> 96 <400> 96 tggacgggtt cctaaaacta aagccttggc acagccctgg ttgatttccc tgtgcttctt 60 cctctttgcc tgcaggcaat cccagggtcc accaacgcca cccaccaccc ccaaaaccga 120 c 121

Claims (1)

돼지 생산 및 이력 추적 시스템의 도입을 위한 단일염기다형성 마커 선정방법에 있어서,
상기 단일염기다형성 마커(Single Nucleotide Polymorphism; SNP)를 선정하기 위하여 제주재래돼지(KNP) 19두, 랜드레이스(Landrace) 17두, 요크셔(Yorkshire) 168두, 버크셔(Berkshire) 84두, 듀록(Duroc) 96두의 각 돼지 혈액에서 적혈구를 용혈한 다음 회수한 백혈구 세포들을 추출하고,
RNase(iNtRON, USA)를 처리하여 RNA를 제거한 것을 Ethanol 침전법을 사용하여 회수한 DNA의 대립유전자형을 분석하되, 상기 분석 방법은 DNA를 amplification 한 다음 fregment시켜 porcine SNP60 BeadChip에 주입하여 hybridzation을 끝낸 후 X-stain과정을 거친다음, Scanning 된 결과는 단일염기다형성 마커별 대립유전자형을 분류하였으며,
상기 5 품종의 순종에 대한 단일염기다형성 마커 대립유전자형을 마이너 대립유전자 빈도(MAF) 5%, 유전형질 분석오류(genotyping error) 10%, 하디-웨인버그 평형(Hardy-Weinberg equeilibrium)이 0.001인 단일염기다형성 마커를 제거하여, 제주재래돼지 39,785개, 랜드레이스 42,156개, 요크셔 44,961개, 버크셔 41,408개, 듀록 39,652개를 각각 1차 선발한 후,
상기 1차 선발된 단일염기다형성 마커 중 마이너 대립유전자 빈도를 계산하여 40%인 단일염기다형성 마커를 선발하여 5 품종에 공동으로 속하는 312개의 단일염기다형성 마커를 2차 선발하고,
상기 2차 선발한 단일염기다형성 마커를 염색체 별로 연쇄불평형(LD) 값을 pair wise로 분석한 후 연쇄불평형 값이 낮은 마커를 우선으로 하여 염색체 별로 4~9개씩 총 133개의 단일염기다형성 마커를 선별하여 제주재래돼지, 랜드레이스, 요크셔, 바크셔 및 듀록의 조직을 채취하여 상기 5품종의 돼지에 공동으로 속하는 단일염기다형성 마커를 선별한 다음, 분석기기를 통해 돼지 이력제로 사용할 수 있는 단일염기다형성 마커를 선정하는 것을 특징으로 하는 돼지 생산 및 이력 추적 시스템의 도입을 위한 단일염기다형성 마커 선정방법.
A method for selecting a single nucleotide polymorphic marker for introduction of a pig production and tracing system,
To select the single nucleotide polymorphism (SNP), 19 Korean KNP, 17 Landrace, 168 Yorkshire, 84 Berkshire, and Duroc ) After hemolysis of red blood cells in each of 96 pigs blood, the collected white blood cells were extracted,
RNase (iNtRON, USA) was used to remove the RNA, and the alleles of the recovered DNA were analyzed using the ethanol precipitation method. The analysis was performed by amplifying the DNA, fre- quently injecting it into porcine SNP60 BeadChip After the X-stain procedure, the alleles of the single nucleotide polymorphism markers were classified into the scaled results,
The single nucleotide polymorphic marker allele genotype for the 5 varieties of purebreds was determined to be 5% for minor allele frequency (MAF), 10% for genotyping error, and 0.001 for Hardy-Weinberg equilibrium After removing the polymorphism marker, 39,785 Korean native pigs, 42,156 land races, 44,961 Yorkshire, 41,408 Berkshire, and 39,652 Duroc were selected first,
The minor allele frequency of the first selected single nucleotide polymorphism marker was calculated to select 40% single nucleotide polymorphism markers, and 312 single nucleotide polymorphic markers belonging to five cultivars were secondly selected,
The second selected single nucleotide polymorphism marker was analyzed by pairwise analysis of the chromosomal chain unbalance (LD) values, and a total of 133 single nucleotide polymorphic markers were selected for each chromosome , And a single base polymorphism markers belonging to the five kinds of pigs were collected from the tissues of Jeju native pig, land race, Yorkshire, Baccher and Duroc, and then single base polymorphism markers Selecting a marker for a single nucleotide polymorphic marker for introduction of a pig production and hysteresis tracking system.
KR1020160123360A 2016-09-26 2016-09-26 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method KR101770075B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160123360A KR101770075B1 (en) 2016-09-26 2016-09-26 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160123360A KR101770075B1 (en) 2016-09-26 2016-09-26 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140143905A Division KR20160047700A (en) 2014-10-23 2014-10-23 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method

Publications (2)

Publication Number Publication Date
KR20160128943A true KR20160128943A (en) 2016-11-08
KR101770075B1 KR101770075B1 (en) 2017-08-22

Family

ID=57528228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160123360A KR101770075B1 (en) 2016-09-26 2016-09-26 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method

Country Status (1)

Country Link
KR (1) KR101770075B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070662A (en) * 2016-11-15 2018-05-25 大韩民国(农村振兴厅长) Genetic marker for determining quality character of pork and application thereof
CN108330199A (en) * 2018-03-30 2018-07-27 上杭傲农槐猪产业发展有限公司 Government's bank spends pig SNP site, SNP chip to be combined with its detection primer, detection kit and its application and germplasm identification method
CN108866211A (en) * 2018-08-31 2018-11-23 华中农业大学 A kind of SNP marker influencing swine erythrocyte number
CN108866210A (en) * 2018-08-31 2018-11-23 华中农业大学 Molecular labeling relevant to 20 age in days piglet mean constant of red blood cell and its application
CN108950021A (en) * 2018-08-31 2018-12-07 华中农业大学 Molecular labeling of area's mononucleotide polymorphic as swine erythrocyte number character between No. 9 chromosomal genes of pig
CN108998543A (en) * 2018-08-31 2018-12-14 华中农业大学 A kind of SNP marker relevant to swine erythrocyte number character

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721232B1 (en) 2004-08-13 2007-05-22 전진태 DNA marker Application of breed-specific DNA markers for the use of identifying major pure pig breeds maintaining in Korea
KR20110011443A (en) 2009-07-28 2011-02-08 상지대학교산학협력단 Development of korean native pigs specific molecular marker and method for detecting korean native pigs using the marker
KR20110041668A (en) 2009-10-16 2011-04-22 충북대학교 산학협력단 Single nucleotide polymorphism markers in swine and method for determination of domestic pork origin by using the same
KR101341813B1 (en) 2011-12-29 2013-12-17 대한민국 SNP Markers for identification of pig and diagnosing method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721232B1 (en) 2004-08-13 2007-05-22 전진태 DNA marker Application of breed-specific DNA markers for the use of identifying major pure pig breeds maintaining in Korea
KR20110011443A (en) 2009-07-28 2011-02-08 상지대학교산학협력단 Development of korean native pigs specific molecular marker and method for detecting korean native pigs using the marker
KR20110041668A (en) 2009-10-16 2011-04-22 충북대학교 산학협력단 Single nucleotide polymorphism markers in swine and method for determination of domestic pork origin by using the same
KR101341813B1 (en) 2011-12-29 2013-12-17 대한민국 SNP Markers for identification of pig and diagnosing method using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070662A (en) * 2016-11-15 2018-05-25 大韩民国(农村振兴厅长) Genetic marker for determining quality character of pork and application thereof
CN108070662B (en) * 2016-11-15 2022-02-25 大韩民国(农村振兴厅长) Genetic marker for determining pork quality traits and application thereof
CN108330199A (en) * 2018-03-30 2018-07-27 上杭傲农槐猪产业发展有限公司 Government's bank spends pig SNP site, SNP chip to be combined with its detection primer, detection kit and its application and germplasm identification method
CN108330199B (en) * 2018-03-30 2021-06-18 上杭傲农槐猪产业发展有限公司 Hmong pig SNP locus, SNP chip, detection primer combination, detection kit, application of detection kit and germplasm identification method
CN108866211A (en) * 2018-08-31 2018-11-23 华中农业大学 A kind of SNP marker influencing swine erythrocyte number
CN108866210A (en) * 2018-08-31 2018-11-23 华中农业大学 Molecular labeling relevant to 20 age in days piglet mean constant of red blood cell and its application
CN108950021A (en) * 2018-08-31 2018-12-07 华中农业大学 Molecular labeling of area's mononucleotide polymorphic as swine erythrocyte number character between No. 9 chromosomal genes of pig
CN108998543A (en) * 2018-08-31 2018-12-14 华中农业大学 A kind of SNP marker relevant to swine erythrocyte number character
CN108866211B (en) * 2018-08-31 2021-02-02 华中农业大学 SNP molecular marker influencing number of pig red blood cells
CN108950021B (en) * 2018-08-31 2021-03-16 华中农业大学 Single nucleotide polymorphism of pig 9 # chromosome intergenic region as molecular marker of pig red blood cell number character
CN108866210B (en) * 2018-08-31 2021-03-16 华中农业大学 Molecular marker related to red blood cell number of 20-day-old piglet and application thereof
CN108998543B (en) * 2018-08-31 2021-03-16 华中农业大学 SNP molecular marker related to pig red blood cell number character

Also Published As

Publication number Publication date
KR101770075B1 (en) 2017-08-22

Similar Documents

Publication Publication Date Title
KR101770075B1 (en) Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method
CN103898107B (en) Major SNP (single nucleotide polymorphism) marker influencing growth traits of pigs and application thereof in genetic improvement of productivity of breeding pigs
Taylor et al. Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle
CN107619857B (en) Method for detecting CNV (CNV) marker of beef cattle KLF8 gene and application of CNV marker
CN112609009B (en) SNP molecular marker combination related to weight and body size of Guangxi three-yellow chicken based on whole genome sequencing screening and application
CN108676897A (en) It is a kind of influence daily gain in pigs character SNP marker and its application
Bigi et al. Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers
CN111926085B (en) Molecular marker influencing chicken muscle brightness and application thereof
CN106906303A (en) One SNP marker for influenceing quality character of pork and its application
CN111926086A (en) Molecular marker influencing oblique growth of chicken body and application thereof
US10626459B2 (en) Methods and kits for the identification of animals having a greater potential for desirable characteristics, and for the early identification of fat deposits in bovines
CN113564264B (en) SNP molecular marker located on No. 14 chromosome of pig and related to number of stillbirth and litter size of sow and application thereof
CN107267631A (en) A kind of SNP marker for influenceing daily gain in pigs character and its application
CN107858440B (en) One kind SNP marker relevant to pig birth weight character and application thereof
CN112176073B (en) PROS1 gene molecular marker related to chicken carcass traits and application
CN109735633A (en) The detection method and its application of FSHR gene specific SNP marker, the black sheep litter size character in Turfan
CN107779517A (en) A kind of molecular labeling for influenceing Duroc kind pig lean meat percentage character and its application
Guðmundsdóttir Genome-wide association study of muscle traits in Icelandic sheep
CN111304335B (en) Pig GATB gene as molecular marker related to piglet mortality and application thereof
KR20190045960A (en) Single nucleotide polymorphism markers associated with total number of born trait in pig and use thereof
CN109811061B (en) COIL gene specific SNP marker, detection method of Tian Qiaoda lambing number character of red sheep and application of detection method
Jiusheng et al. Histological characteristics of musculus longissimus dorsi and their correlation with restriction fragment length polymorphism of the myogenin gene in Jinghua× Pietrain F2 crossbred pigs
CN111455063A (en) Method for detecting duck colored feather character genotype, primer pair and kit
CN112831569B (en) SNP molecular marker combination related to weight and body size of black-bone chicken in east orchid based on whole genome sequencing screening and application
CN109811062A (en) The detection method and its application of FSHR gene specific SNP marker and the red sheep litter size character of Tian Qiaoda

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right