KR101341813B1 - SNP Markers for identification of pig and diagnosing method using the same - Google Patents

SNP Markers for identification of pig and diagnosing method using the same Download PDF

Info

Publication number
KR101341813B1
KR101341813B1 KR1020110145779A KR20110145779A KR101341813B1 KR 101341813 B1 KR101341813 B1 KR 101341813B1 KR 1020110145779 A KR1020110145779 A KR 1020110145779A KR 20110145779 A KR20110145779 A KR 20110145779A KR 101341813 B1 KR101341813 B1 KR 101341813B1
Authority
KR
South Korea
Prior art keywords
polymorphism
polynucleotide
add
single nucleotide
minutes
Prior art date
Application number
KR1020110145779A
Other languages
Korean (ko)
Other versions
KR20130077198A (en
Inventor
장길원
윤두학
연성흠
박미림
이승수
김범수
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020110145779A priority Critical patent/KR101341813B1/en
Publication of KR20130077198A publication Critical patent/KR20130077198A/en
Application granted granted Critical
Publication of KR101341813B1 publication Critical patent/KR101341813B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/124Animal traits, i.e. production traits, including athletic performance or the like
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 돼지의 개체식별 및 이력추적을 위한 단일염기다형 유전자 마커 및 진단방법에 관한 것이다. 본 발명에 따른 표지인자를 활용하면 표현형가에 의한 선발효과보다 더 정확한 유전능측정이 가능하다. 또한 돼지고기 이력관리를 위한 유전자분석기법으로 활용이 가능하며, RFID 등의 기능성 개체식별 도구와 유전자 분석기법의 병행이 가능하므로 분석의 신뢰도를 높일 수 있다.The present invention relates to a monobasic polymorphic gene marker and diagnostic method for individual identification and traceability of pigs. By utilizing the marker factor according to the present invention, it is possible to measure the genetic ability more accurately than the selection effect by the phenotype. In addition, it is possible to use as a genetic analysis technique for pork history management, and it is possible to improve the reliability of the analysis because it is possible to combine the functional analysis tools such as RFID and genetic analysis method.

Description

돼지의 개체식별 및 이력관리를 위한 단일염기다형 유전자마커 및 이를 이용한 돼지의 개체식별 방법{SNP Markers for identification of pig and diagnosing method using the same}SNP Markers for identification of pig and diagnosing method using the same}

본 발명은 돼지의 개체식별 및 이력관리를 위한 단일염기다형 유전자마커 및 이를 이용한 돼지의 개체식별 방법에 관한 것이다.The present invention relates to a single nucleotide polymorphism gene marker for pig identification and history management and pig identification method using the same.

종축을 선발하는데 있어 기존에는 단지 표현형가에 근거하여 만들어진 선발지수식에 의하여 선발하였다. 최근에는 분자 표지인자를 활용한 변이체의 선발 또는 도태가 단일유전자에 의하여 조절되는 형질뿐만 아니라 양적형질유전좌위 (Quantitative Trait Loci: QTL)에 의해 조절되는 형질에서도 표지인자 도움선발(Marker-Assisted Selection: MAS)이 효과적으로 활용될 수 있다는 것이 시뮬레이션을 통하여 확인되고 있다. 일반적으로 분자표지를 이용할 경우 표현형가에 의한 선발효과보다 25~35% 더 정확한 유전능력 측정이 가능하여 종돈의 유전능력 개량량을 획기적으로 늘릴 수 있다. 돼지 비육돈 및 자돈을 선발하는 경우 표현형가에 근거한 기존의 방법에 DNA 표지인자를 도입할 경우 선발의 정확성을 제고할 수 있어 유전능력 개량을 극대화할 수 있다.In selecting the vertical axis, the selection was based on the selection index formula based on the phenotype. Recently, the selection or selection of variants using molecular markers is not only a trait controlled by a single gene, but also a marker-assisted selection of traits controlled by Quantitative Trait Loci (QTL). Simulations show that MAS can be effectively used. In general, molecular markers can be used to measure genetic capacity 25-35% more accurately than the selection effect by phenotypic value, which can dramatically increase heritability. In the case of pig hog and piglet selection, the introduction of DNA markers in the existing method based on phenotypic value can improve the accuracy of selection, thereby maximizing genetic improvement.

현재 양돈산업에서 활용되는 유전자 또는 표지인자는 HAL(육질), ESR(산자수), PRLR(산자수), RBP4(산자수), KIT(백모색), MC1R(적색/흑모색), MC4R(성장, 비만), FUT1(부종병), RN(육질), AFABP(근내지방), HFABP(근내지방), PRKAG3(육질), IGF2(도체 조성) 등이 있다.The genes or markers currently used in the hog industry are HAL (flesh), ESR (liver number), PRLR (liver number), RBP4 (liver number), KIT (white hair color), MC1R (red / black hair color), MC4R ( Growth, obesity), FUT1 (edema disease), RN (flesh), AFABP (myopathy), HFABP (myopathy), PRKAG3 (flesh), IGF2 (conductor composition), and the like.

종돈 수입은 1,800여두로(년 1,836두)로 연간 약 40억원 정도의 수입 규모로 약 30% 대체 시(550두) 연간 약 10억원의 절감 효과가 있을 것으로 기대된다.Seed income is estimated at 1,800 heads (1,836 heads per year), which is about 4 billion won a year, and about 30% replacement (550 heads) is expected to save about 1 billion won annually.

최근 소와 닭 등에서 종축 선발 시 유전체 정보를 포함하는 것이 세계적인 추세로, 돼지 관련 단일염기다형성 유전자형은 앞으로 돼지 선발에 유전적 DNA 마커로서 매우 효과적으로 활용될 것이다.In recent years, the inclusion of genomic information in breeders in cattle and chickens is a global trend. Pig-related monobasic polymorphisms will be very effective as genetic DNA markers for pig selection.

정책적으로 계획하고 있는 돼지고기 이력제의 추진을 위하여 돼지의 생산도축유통 단계에서의 개체식별 및 이력 추적에 활용 가능한 DNA 표지인자를 개발할 필요가 있다.In order to promote the planned pork tracer system, it is necessary to develop DNA markers that can be used for individual identification and traceability in the pig production slaughter distribution stage.

이 분야의 선행기술로는 한국공개특허 2011-0067941 '돼지의 근육 내 근섬유 타입 증가 확인용 표지인자' 및 미국특허 7435543 'Genetic Markers for Pig Backfat Thickness'가 있다.Prior arts in this field include Korean Patent Publication No. 2011-0067941 'Marker Factor for Identifying Increased Muscle Fiber Type in Pigs' and US Patent 7435543 'Genetic Markers for Pig Backfat Thickness'.

이와 같은 기술적 배경 하에서, 본 발명자들은 예의 노력한 결과, 돼지의 개체식별 및 이력추적을 위한 단일염기다형 유전자 마커 및 진단방법을 개발하기에 이르렀다.Under these technical backgrounds, the present inventors have made efforts to develop a monobasic polymorphic gene marker and a diagnostic method for individual identification and traceability of pigs.

결국 본 발명의 목적은 서열번호 1 내지 38의 돼지의 개체식별 및 이력추적을 위한 폴리뉴클레오티드를 제공하는 것이다.After all, an object of the present invention is to provide a polynucleotide for the identification and traceability of pigs of SEQ ID NO: 1 to 38.

본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 단일염기다형성 검출용 마이크로어레이를 제공하는 것이다.Still another object of the present invention is to provide a microarray for detecting monobasic polymorphism comprising the polynucleotide.

본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 단일염기다형성 검출용 키트를 제공하는 것이다.Still another object of the present invention is to provide a kit for detecting monobasic polymorphism comprising the polynucleotide.

본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 이용한 돼지의 개체식별 및 이력추적을 위한 진단 방법을 제공하는 것이다.Still another object of the present invention is to provide a diagnostic method for individual identification and traceability of swine using the polynucleotide.

본 발명의 일 측면에 따르면, 서열번호 1 내지 38로 구성된 군에서 선택되는 하나 이상의 폴리뉴클레오티드의 61번째 염기서열인 단일염기다형을 확인하는 것을 포함하는 돼지의 개체식별 방법이 제공될 수 있다.According to an aspect of the present invention, a pig individual identification method may be provided including identifying a single nucleotide polymorphism, which is the 61 st nucleotide sequence of one or more polynucleotides selected from the group consisting of SEQ ID NOs: 1 to 38.

Figure 112011104930115-pat00001

Figure 112011104930115-pat00001

일 실시예에 따르면, 상기 단일염기다형을 확인하는 단계는 대립 유전자 특이적 프로브 혼성화 방법(allele-specific probe hybridization), 대립 유전자 특이적 증폭 방법(allele-specific amplification), 서열분석법(sequencing), 5' 뉴클레아제 분해법(5' nuclease digestion), 분자 비콘 어세이법(molecular beacon assay), 올리고뉴클레오티드 결합 어세이법 (oligonucleotide ligation assay), 크기 분석법(size analysis) 및 단일 가닥 배좌 다형성법(single-stranded conformation polymorphism)으로 구성된 군에서 선택되는 방법에 의해 수행될 수 있다.According to one embodiment, the step of identifying the monobasic polymorphism is allele-specific probe hybridization (allele-specific probe hybridization), allele-specific amplification (allele-specific amplification), sequencing (sequencing), 5 5 'nuclease digestion, molecular beacon assay, oligonucleotide ligation assay, size analysis and single-stranded polymorphism stranded conformation polymorphism).

본 발명의 다른 측면에 따르면, 상기 단일염기다형의 염기서열을 인지하기 위한 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 상기 폴리뉴클레오티드의 cDNA를 포함하는 단일염기다형성 검출용 마이크로어레이가 제공될 수 있다.According to another aspect of the present invention, a polynucleotide for recognizing the nucleotide sequence of the single nucleotide polymorphism, a polypeptide encoded by it, or a microarray for detecting a single nucleotide polymorphism comprising the cDNA of the polynucleotide may be provided.

본 발명의 또 다른 측면에 따르면, 상기 단일염기다형의 염기서열을 인지하기 위한 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 상기 폴리뉴클레오티드의 cDNA를 포함하는 단일염기다형성 검출용 키트가 제공될 수 있다.
According to another aspect of the present invention, a kit for detecting a single nucleotide polymorphism comprising a polynucleotide for recognizing a nucleotide sequence of the single nucleotide polymorphism, a polypeptide encoded therein or a cDNA of the polynucleotide may be provided.

본 발명에 따른 표지인자를 활용하면 표현형가에 의한 선발효과보다 더 정확한 유전능측정이 가능하다. 또한 돼지고기 이력관리를 위한 유전자분석기법으로 활용이 가능하며, RFID 등의 기능성 개체식별 도구와 유전자 분석기법의 병행이 가능하므로 분석의 신뢰도를 높일 수 있다.
By utilizing the marker factor according to the present invention, it is possible to measure the genetic ability more accurately than the selection effect by the phenotype. In addition, it is possible to use as a genetic analysis technique for pork history management, and it is possible to improve the reliability of the analysis because it is possible to combine the functional analysis tools such as RFID and genetic analysis method.

이하, 본 발명을 보다 상세하게 설명한다.
Hereinafter, the present invention will be described in more detail.

본 발명의 일 측면에 따르면, 서열번호 1 내지 38로 구성된 군에서 선택되는 하나 이상의 폴리뉴클레오티드의 61번째 염기서열인 단일염기다형을 확인하는 것을 포함하는 돼지의 개체식별 방법이 제공될 수 있다.
According to an aspect of the present invention, a pig individual identification method may be provided including identifying a single nucleotide polymorphism, which is the 61 st nucleotide sequence of one or more polynucleotides selected from the group consisting of SEQ ID NOs: 1 to 38.

서열번호SEQ ID NO: 대립인자 AAllele A 대립인자 aAllele a 1One TT CC 22 AA GG 33 TT CC 44 TT GG 55 AA GG 66 AA GG 77 TT CC 88 TT CC 99 AA GG 1010 TT CC 1111 TT GG 1212 TT CC 1313 AA GG 1414 AA GG 1515 TT CC 1616 AA GG 1717 TT GG 1818 TT CC 1919 TT CC 2020 AA GG 2121 AA GG 2222 AA GG 2323 TT CC 2424 TT CC 2525 TT GG 2626 TT CC 2727 AA GG 2828 TT CC 2929 TT CC 3030 AA GG 3131 TT CC 3232 AA GG 3333 AA CC 3434 AA GG 3535 AA GG 3636 TT CC 3737 AA CC 3838 TT CC

상기 단일염기다형의 좌위는 개체식별율을 분석하여 선정된 것이다.The locus of the monobasic polymorph is selected by analyzing the individual identification rate.

상기 단일염기다형의 염기서열을 확인하는 것으로 돼지의 개체를 식별할 수 있다.Individuals of pigs can be identified by checking the nucleotide sequence of the single nucleotide polymorphism.

총 38가지의 단일염기다형이므로, 이론상 238 개체에 대한 식별이 가능하며, 대체로 국내에서 양산되는 전체 돼지 개체가 1000만 내지 1500만 마리 정도임을 감안할 때 돼지 각각의 개체에 대한 식별 및 이력 추적에도 충분한 수치이다.Since there are a total of 38 single nucleotide polymorphisms, it is possible to identify 2 38 individuals in theory, and in terms of identification and history tracking for each individual pig, considering that there are about 10 million to 15 million pigs produced in Korea in general, That's enough.

단일염기다형은 도축 이후에도 확인할 수 있는 것이므로, 각 양돈장에서 사육중인 돼지에 대한 상기 단일염기다형에 대한 데이터베이스를 확보하게 되면, 다양한 목적으로 이력 추적에 사용할 수 있다.
Since the single base polymorphism can be confirmed even after slaughter, if a database of the single base polymorphism for the pigs being raised in each pig farm is secured, it can be used for historical tracking for various purposes.

상기 단일염기다형을 확인하는 방법에는 특별한 제한은 없으며, 통상 당업계에서 사용되고 있는 방법을 사용할 수 있다.There is no particular limitation on the method for identifying the single base polymorph, and a method generally used in the art may be used.

일 실시예에 따르면, 상기 단일염기다형을 확인하는 단계는 대립 유전자 특이적 프로브 혼성화 방법(allele-specific probe hybridization), 대립 유전자 특이적 증폭 방법(allele-specific amplification), 서열분석법(sequencing), 5' 뉴클레아제 분해법(5' nuclease digestion), 분자 비콘 어세이법(molecular beacon assay), 올리고뉴클레오티드 결합 어세이법 (oligonucleotide ligation assay), 크기 분석법(size analysis) 및 단일 가닥 배좌 다형성법(single-stranded conformation polymorphism)으로 구성된 군에서 선택되는 방법에 의해 수행될 수 있다.According to one embodiment, the step of identifying the monobasic polymorphism is allele-specific probe hybridization (allele-specific probe hybridization), allele-specific amplification (allele-specific amplification), sequencing (sequencing), 5 5 'nuclease digestion, molecular beacon assay, oligonucleotide ligation assay, size analysis and single-stranded polymorphism stranded conformation polymorphism).

본 발명의 다른 측면에 따르면, 상기 단일염기다형의 염기서열을 인지하기 위한 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 상기 폴리뉴클레오티드의 cDNA를 포함하는 단일염기다형성 검출용 마이크로어레이가 제공될 수 있다.According to another aspect of the present invention, a polynucleotide for recognizing the nucleotide sequence of the single nucleotide polymorphism, a polypeptide encoded by it, or a microarray for detecting a single nucleotide polymorphism comprising the cDNA of the polynucleotide may be provided.

본 발명의 또 다른 측면에 따르면, 상기 단일염기다형의 염기서열을 인지하기 위한 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 상기 폴리뉴클레오티드의 cDNA를 포함하는 단일염기다형성 검출용 키트가 제공될 수 있다.
According to another aspect of the present invention, a kit for detecting a single nucleotide polymorphism comprising a polynucleotide for recognizing a nucleotide sequence of the single nucleotide polymorphism, a polypeptide encoded therein or a cDNA of the polynucleotide may be provided.

이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It should be understood, however, that these examples are for illustrative purposes only and are not to be construed as limiting the scope of the present invention.

실시예Example 1. One. 돼지 5개 품종에 대한 For five pig breeds SNPSNP 마커Marker 선발 및 빈도 분석 Selection and frequency analysis

재래돼지 25, 듀록 51, 버크셔 28, 랜드레이스 47, 요크셔 49두 등 총 200두에 대한 Porcine 60K SNP chip 실험결과를 이용하여 유전자 빈도가 0.450.55 사이에 있는 SNP 205개를 우선 선정하였다.Using Porcine 60K SNP chip test results for 200 pigs, including 25 conventional pigs, Duroc 51, Berkshire 28, Landrace 47, and 49 Yorkshire, 205 SNPs with a gene frequency of 0.450.55 were selected first.

1차로 선정된 205의 SNP들 중 분석율이 저조한 랜드레이스 2두를 제외한 198두에 대하여 SNP 좌위의 염색체 상의 위치, 유전자형 결정율을 고려하고 cervus 프로그램을 이용하여 좌위 조합별 개체식별율을 분석하여 38개의 SNP를 선정하였다.
Of the 205 SNPs selected as the first, except for two land races with low analysis rate, 198 dogs were considered on the chromosome and genotyping rate of the SNP locus, and the individual identification rate of each locus combination was analyzed using the cervus program. 38 SNPs were selected.

실시예Example 2.  2. PorcinePorcine 60K  60K SNPSNP chipchip 을 이용한 대량 Mass using SNPSNP 분석 analysis

육색 등 생산형질의 자료를 가지고 있는 돼지 551두의 혈액으로부터 Wizard Genomic DNA Purification Kit(Promega, Madison, WI, USA)를 이용하여 DNA를 추출하였으며, 전체 62,163개의 SNP 정보로 구성되어있는 iSelect Infinium Porcine ArrayChips(Illumina, San Diego, CA, USA)를 이용하여 SNP 유전자형 분석을 실시하였다.
DNA was extracted from the blood of 551 pigs containing meat-like data using Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA). SNP genotyping was performed using (Illumina, San Diego, CA, USA).

<1일째 - <Day 1- AmplificationAmplification >>

실험방법Experimental Method

1. MSA3 바코드를 붙인 MIDI plate (앞으로 MSA3 plate 로 표기)에 20ul의 MA1을 분주한다.1. Dispense 20ul of MA1 onto a MIDI plate (labeled MSA3 plate forward) with the MSA3 barcode.

2. 4ul의 DNA를 MSA3 plate에 넣는다.2. Insert 4ul of DNA into MSA3 plate.

3. Lab tracking form 에 DNA ID 와 옮긴 MSA3 plate 의 위치를 적어둔다.3. Write the DNA ID and location of the MSA3 plate on the Lab tracking form.

4. 4ul의 0.1N NaOH를 MA1 과 DNA 가 들어있는 MSA3 plate 각 well 에 넣는다.4. Add 4ul of 0.1N NaOH to each well of MSA3 plate containing MA1 and DNA.

5. 96well cap mat을 이용하여 MSA3 plate를 덮고, 1600rpm에서 1분동안 vortex 한다.5. Cover the MSA3 plate using a 96well cap mat and vortex for 1 minute at 1600 rpm.

6. 280g에서 1분간 원심분리 한다.6. Centrifuge at 280g for 1 minute.

7. 실온에서 10분간 반응시킨다.7. React at room temperature for 10 minutes.

8. 34ul 의 MA2를 샘플이 들어있는 MSA3 plate 각 well 에 넣는다.8. Add 34 ul of MA2 to each well of the MSA3 plate containing the sample.

9. 38ul 의 MSM를 샘플이 들어있는 MSA3 plate 각 well 에 넣는다.9. Add 38 ul of MSM to each well of the MSA3 plate containing the sample.

10. Cap mat를 덮고 280g에서 1분간 원심분리 한다.10. Cover the cap mat and centrifuge at 280g for 1 minute.

11. 37의 Illumina Hybridization 오븐에서 20-24 시간동안 반응시킨다. (Amplification)
11. React in 37 Illumina Hybridization ovens for 20-24 hours. (Amplification)

<실험 2일째 - <Day 2 of experiment- FragmentFragment >>

실험방법Experimental Method

1. 오븐에서 plate를 꺼내어 50g에서 1분 원심 분리한다.1. Remove the plate from the oven and centrifuge for 1 minute at 50 g.

2. 25ul 의 FMS를 샘플이 들어있는 각 well 에 넣는다.2. Add 25 ul of FMS to each well containing the sample.

3. cap mat 으로 MSA3 plate를 덮고 1600 rpm 1분 vortex 한다.3. Cover the MSA3 plate with a cap mat and vortex at 1600 rpm for 1 minute.

4. plate를 꺼내어 50g에서 1분 원심 분리한다.4. Remove the plate and centrifuge at 50g for 1 minute.

5. 37 heat block에서 1시간 동안 반응시킨다.
5. React in 37 heat block for 1 hour.

<2일째 - <Day 2- PrecipitationPrecipitation >>

실험방법Experimental Method

1. Cap mat을 벗기고 25ul 의 PM1을 샘플이 들어있는 각 well 에 넣는다.1. Remove the cap mat and add 25ul of PM1 to each well containing the sample.

2. Cap mat을 덮고 1600rpm에서 1분간 원심분리 한다.2. Cover the cap mat and centrifuge for 1 minute at 1600rpm.

3. 37℃에서 5분간 반응시킨다.3. The reaction is carried out at 37 ° C. for 5 minutes.

4. plate를 꺼내어 50g에서 1분 원심 분리한다.4. Remove the plate and centrifuge at 50g for 1 minute.

5. Cap mat을 벗기고 155ul 의 2-propanol 을 샘플이 들어있는 각 well 에 넣는다.5. Remove the cap mat and add 155ul of 2-propanol to each well containing the sample.

6. 새로운 cap mat을 이용하여 plate를 덮고 10번 뒤집어서 혼합한 뒤 4에서 30분 동안 보관한다.6. Cover the plate with the new cap mat, invert 10 times, mix and store for 4 to 30 minutes.

7. 4℃, 3,000rpm에서 20분 동안 원심분리 후 즉시 원심분리기에서 MSA3 plate를 꺼낸다.7. Remove the MSA3 plate from the centrifuge immediately after centrifugation at 4 ° C and 3000 rpm for 20 minutes.

8. Cap mat을 즉시 제거하고 빠르게 뒤집어 상층액을 버린다.8. Remove the cap mat immediately and turn it over quickly to discard the supernatant.

9. 흡수성 패드(키친타올, 킴타올 등) 에 10회 정도 가볍게 두드린다.9. Tap on absorbent pads (kitchen towel, kim towel, etc.) about 10 times.

10. 뒤집혀진 플래이트 그대로를 튜브렉에 올려놓고 1시간 동안 자연 건조시킨다.10. Place the inverted plate on the tube rack and let it dry for 1 hour.

<2일째 - <Day 2- ResuspendResuspend >>

실험방법Experimental Method

1. 23ul 의 RA1을 DNA pellet이 들어있는 각 well 에 넣고, 남은 RA1은 XStain HD Bead Chip 용으로 보관한다(냉동보관).1. Add 23 ul of RA1 to each well containing DNA pellet and store the remaining RA1 for XStain HD Bead Chips (frozen storage).

2. MSA3 plate 에 foil seal을 올리고 heat-sealer block을 5초 동안 눌러 sealing 한다.2. Place the foil seal on the MSA3 plate and seal it by pressing the heat-sealer block for 5 seconds.

3. 48℃의 Illumina Hybridization 오븐에서 1 시간 동안 반응 시킨다3. React for 1 hour in the Illumina Hybridization oven at 48 ℃.

4. 1800rpm에서 1분간 vortexing 한다.4. Vortex for 1 minute at 1800 rpm.

5. 280g, 1분 원심분리 한다.
5. Centrifuge at 280g for 1 minute.

<2일째 - <Day 2- HybridizationHybridization >>

실험방법Experimental Method

1. MSA3 plate 는 95℃ heat block에서 20분간 denature 시킨다.1.Denature MSA3 plate for 20 minutes in a 95 ℃ heat block.

2. 20분 후 MSA3 plate를 heat block에서 꺼낸 후 실온에 30분 동안 두고 식힌다.2. After 20 minutes, remove the MSA3 plate from the heat block and allow it to cool at room temperature for 30 minutes.

3. plate를 식히는 30분이 거의 다 되어갈 무렵 HybChamber에 HybChamber Gaskets을 끼운다.3. Insert HybChamber Gaskets into HybChamber when the plate is almost 30 minutes to cool down.

4. 400ul 의 PB2를 HybChamber에 있는 8개의 humidifying buffer reservoir에 넣고 HybChamber두껑을 닫아 실온에 둔다.4. Put 400ul of PB2 into 8 humidifying buffer reservoirs in HybChamber and close HybChamber lid at room temperature.

5. 실온에서 30분 동안 DNA를 식히고 나면 MSA3 plate를 280g, 1분 원심분리 한다. 5. After cooling the DNA at room temperature for 30 minutes, centrifuge 280g for MSA3 plate for 1 minute.

6. 보관중인 Chips을 하나씩 냉장고에서 가져와 chips 보장을 뜯고 HybChamber insert 의 바코드 모양과 chips 의 바코드부분을 맞춰서 놓은 후 멀티채널 피펫을 이용하여 샘플 당 15ul씩 따서 chips의 양쪽 부분으로 샘플을 loading 한다.6. Remove the chips from the refrigerator one by one, remove the chip guarantee, align the barcode shape of the HybChamber insert with the barcode part of the chips, and load the sample into both parts of the chips using 15 ul per sample using a multichannel pipette.

7. 각 chips 의 샘플 loading 이 끝나는 대로 HybChamber 에 넣고 다음 chips 도 같은 방법으로 반복한다.7. As soon as sample loading of each chip is finished, put into HybChamber and repeat the following chips in the same way.

8. Chamber 가 채워지면 chamber 뚜껑을 닫고 48의 Illumina Hybridization 오븐에 넣고 속도 5로 세팅하여 16-24시간 동안 반응한다.
8. Once the chamber is filled, close the chamber lid and place it in the 48 Illumina Hybridization oven to set a speed of 5 to react for 16-24 hours.

<3일째 - <Day 3- WashingWashing beadbead chipschips >>

실험방법 Experimental Method

1. Hyb chamber를 Hybridization 오븐에서 꺼낸다.1. Remove the Hyb chamber from the Hybridization oven.

2. Hyb chamber 의 잠금 장치를 열고 chamber 속의 insert 한번에 하나씩를 꺼낸다.2. Open the lock on the Hyb chamber and remove one insert at a time from the chamber.

3. 칩에 붙어 있는 Seal을 잡아당겨 칩으로부터 제거한다.3. Pull out the seal attached to the chip and remove it from the chip.

4. Seal 이 제거된 칩은 Wash Rack 에 꽂아 WB1 Wash dish 에 담근다.4. Place the chip without the seal into the Wash Rack and place it in the WB1 Wash dish.

5. 모든 칩이 WB1 에 담기게 되면 Wash Rack을 dish에서 1분 동안 뺏다 넣었다 하는 방법으로 씻어 주고 PB1 이 들어 있는 또 다른 Wash Dish 에 Wash Rack을 옮겨 1분 동안 이 과정을 반복해 준다.5. Once all chips are in WB1, wash the rack by removing it from the dish for 1 minute and move the wash rack to another wash dish containing PB1. Repeat this process for 1 minute.

6. 다시 PB1 wash dish에 담근 후 Wash Rack을 dish에서 1분 동안 뺏다 넣었다 하는 방법으로 씻어 주고 PB1 이 들어 있는 또 다른 Wash Dish 에 Wash Rack을 옮겨 1분 동안 이 과정을 반복해 준다.6. After dipping in PB1 wash dish, wash the rack by removing it from the dish for 1 minute, and then move the wash rack to another wash dish containing PB1 and repeat this process for 1 minute.

7. Washing 이 끝나고 나면 BeadChips Alignment fixture 에 back frame을 올리고 바코드 방향에 맞추어 칩을 한 장씩 올린 후 하얀색 부분과 분리한 투명한 부분의 스페이스를 Alignment fixture 의 윗부분과 아랫부분에 맞춰 끼운다.7. After the washing is finished, place the back frame on the BeadChips Alignment fixture, place the chips one by one in the direction of the barcode, and fit the white and separated transparent spaces to the top and bottom of the alignment fixture.

8. 스페이스를 올린 후 칩의 위쪽 부분(바코드가 없는 부분)에 Alignmet bar를 올리고 유리판의 끝이 bar 에 eke게 끔 유리판을 덮은 후 클립을 끼운다.8. Raise the space, raise the Alignmet bar on the top of the chip (the area without the bar code), cover the glass plate so that the end of the glass plate sticks to the bar, and then clip it.

(Flow-through chamber assembly 완성)   (Flow-through chamber assembly completed)

9. 클립을 끼우고 나면 Alignment bar를 제거하고 Flow-through chamber assembly 양끝의 스페이스 부분을 가위로 잘라준다.
9. After inserting the clip, remove the alignment bar and use scissors to cut the space at both ends of the flow-through chamber assembly.

<3일째 - <Day 3- XStainXStain BeadchipsBeadchips >>

실험방법 Experimental Method

1. 챔버렉의 온도가 44℃가 되면 Flow-through chamber assembly를 챔버렉에 끼운다.1. When the temperature of the chamber rack reaches 44 ℃, insert the flow-through chamber assembly into the chamber rack.

2. 각 chips 에 150ul의 RA1을 넣고 30초 동안 반응시킨다. 이 과정을 5번 더 반복한다. 2. Add 150ul of RA1 to each chip and react for 30 seconds. Repeat this process five more times.

3. 450ul의 XC1을 각 칩에 넣고 10분 동안 반응시킨다.3. Add 450ul of XC1 to each chip and let it react for 10 minutes.

4. 450ul의 XC2을 각 칩에 넣고 10분 동안 반응시킨다.4. Add 450ul of XC2 to each chip and let it react for 10 minutes.

5. 200ul의 TEM을 각 칩에 넣고 10분 동안 반응시킨다.5. Add 200ul of TEM to each chip and let it react for 10 minutes.

6. 450ul의 95% formamide/1mM EDTA 을 각 칩에 넣고 1분 동안 반응시킨 후 한번 더 넣어준다.6. Add 450ul of 95% formamide / 1mM EDTA to each chip and let it react for 1 minute.

7. 5분 동안 반응시킨다.7. React for 5 minutes.

8. LTM tube 의 라벨에 적혀 있는 온도를 확인하고 그 온도대로 챔버렉의 온도를 바꾸어 준다.8. Check the temperature on the label of the LTM tube and change the temperature of the chamber rack accordingly.

9. 450ul의 XC3을 각 칩에 넣고 1분 동안 반응 시킨 후 다시 한번 넣어준 후 8번의 온도에 도달할 때까지 기다린다.9. Add 450ul of XC3 to each chip, react for 1 minute, put it in again, and wait until it reaches 8 times.

10. 250ul의 LTM을 각 칩에 넣고 10분 동안 반응시킨다.10. Add 250ul of LTM to each chip and let it react for 10 minutes.

11. 450ul 의 XC3를 넣고 1분후 한 번 더 넣어준 후 5분간 반응시킨다.11. Add 450ul of XC3, add one more time and let it react for 5 minutes.

12. 250ul의 ATM을 각 칩에 넣고 10분 동안 반응시킨다.12. Add 250ul of ATM to each chip and let it react for 10 minutes.

13. 450ul 의 XC3를 넣고 1분후 한 번 더 넣어준 후 5분간 반응시킨다.13. Add 450ul of XC3, and after one minute, add one more time and let it react for 5 minutes.

14. 250ul의 LTM을 각 칩에 넣고 10분 동안 반응시킨다.14. Add 250ul of LTM to each chip and let it react for 10 minutes.

15. 450ul 의 XC3를 넣고 1분후 한 번 더 넣어준 후 5분간 반응시킨다.15. Add 450ul of XC3, add one more time and let it react for 5 minutes.

16. 250ul의 ATM을 각 칩에 넣고 10분 동안 반응시킨다.16. Add 250ul of ATM to each chip and let it react for 10 minutes.

17 450ul 의 XC3를 넣고 1분후 한 번 더 넣어준 후 5분간 반응시킨다.17 Add 450ul of XC3, add 1 minute later, and then react for 5 minutes.

18. 250ul의 LTM을 각 칩에 넣고 10분 동안 반응시킨다.18. Add 250ul of LTM to each chip and let it react for 10 minutes.

19. 450ul 의 XC3를 넣고 1분후 한 번 더 넣어준 후 5분간 반응시킨다.19. Add 450ul of XC3, add one more time and let it react for 5 minutes.

20. 이 과정이 끝나면 즉시 Flow-through chamber에서 chamber Rack을 분리하고 실온의 실험 테이블로 옮긴 후 평평하게 꺼내어 놓는다.20. At the end of this procedure, immediately remove the chamber rack from the flow-through chamber, transfer it to the room temperature test table, and remove it flat.

21. 310 ml 의 PB1을 세척용기에 넣고 염색용 rack을 용기 안에 담가 놓는다.21. Add 310 ml of PB1 to the wash container and place the dye rack into the container.

22. 기구를 이용하여 chamber rack 의 클립을 벗기고 유리 블록을 들어서 제거한 후에 chips 의 bead 부분이 건들리지 않게 양끝에 붙어 있는 스페이스를 제거한다.22. Remove the clip from the chamber rack using the instrument, lift off the glass block, and remove the spaces on both ends of the chips so that the bead portion of the chips cannot be touched.

23. 칩에 붙였던 부착물을 모두 제거 하고 나면 PB1에 담겨있는 스테이닝렉에 꽃아 PB1에 담가둔다. 같은 방법으로 모든 chips을 처리한다.23. After removing all the deposits on the chip, bloom in the staining rack contained in PB1 and soak in PB1. Treat all chips in the same way.

24. 천천히 염색용 랙을 10번 정도 위 아래로 움직여서 칩을 담금질 한 후 5분 동안 담가둔다.24. Slowly move the dyeing rack up and down 10 times to quench the chips and soak for 5 minutes.

25. 다른 세척용 용기에 XC4 310ml을 채운 후 24번과 같은 방법으로 10회 동안 담금질 한 후 5분 동안 담가둔다.25. Fill 310 ml of XC4 in another cleaning container, quench for 10 times in the same manner as in No. 24, and soak for 5 minutes.

26. 5분 후 세척용 용기에서 염색용 랙을 꺼낸 후 튜브렉에 다음 그림과 같은 방법으로 올려놓는다.26. After 5 minutes, remove the dyeing rack from the cleaning container and place it on the tube rack as shown below.

27. 집게를 이용하여 chips을 랙에서 조심스럽게 꺼내어 튜브렉 위에 올려놓는다.27. Using the forceps, carefully remove the chips from the rack and place them on the tube rack.

28. Chips을 올려놓은 튜브렉을 조심스럽게 진공 건조기에 넣고 508mmHG (0.68 bar)의 진공 상태로 55-55분 동안 말려준다.28. Carefully place the tube rack with the chips in a vacuum dryer and dry for 55-55 minutes in a vacuum of 508 mmHG (0.68 bar).

29. Chips 이 건조된 것이 확인되면 에탄올에 적신 킴와이프를 이용하여 chip 의 가장자리 부분을 잘 닫아 준다. 이때 bead 부분은 건드리지 않게 주의한다.29. If the chips are found to be dry, close the edges of the chips with a Kimwipe soaked in ethanol. Be careful not to touch the bead part.

30. Beadchips 은 실험 완료 후 72시간 이내에 Scanner를 이용하여 이미지화를 시키도록 한다.
30. Beadchips should be imaged using a scanner within 72 hours of completion of the experiment.

하기 표는 돼지의 개체식별 및 이력추적을 위한 SNP의 염기서열 정보에 관한 것이다.The table below relates to sequencing information of SNPs for swine identification and traceability.

번호number SNP 명칭SNP name 염기서열Base sequence 1One ALGA0002500ALGA0002500 AGTAAAGAGCAACCGTTTCCATGTGTGCGAAATTTTACAACACATTTTCAAGGCACACAT[T/C]GTGCACAATCTAAATGACATTAAAGCTGATTGTGCATGCGTGCGTGTGTATACAGAGGCAAGTAAAGAGCAACCGTTTCCATGTGTGCGAAATTTTACAACACATTTTCAAGGCACACAT [T / C] GTGCACAATCTAAATGACATTAAAGCTGATTGTGCATGCGTGCGTGTGTATACAGAGGCA 22 ALGA0003632ALGA0003632 GCTGCTTTTAGAATCCTTGCTTTAACTTTTGCCATTTTTATTGTAATATGTCTTGGTGTG[A/G]GTCTGTTTGGCCTCACCTTGATTGGAGCTCTCTGTGCTTGCTGTATCTTGATGTCTGTTTGCTGCTTTTAGAATCCTTGCTTTAACTTTTGCCATTTTTATTGTAATATGTCTTGGTGTG [A / G] GTCTGTTTGGCCTCACCTTGATTGGAGCTCTCTGTGCTTGCTGTATCTTGATGTCTGTTT 33 ALGA0005188ALGA0005188 ACTAGTTAAGCAAGCCTGCCTTGTTCTGAGGGCTTTCCTGAACTTCCAGTGGCCTCTCAG[T/C]ATCCCCCAGCTTTCCCTCTTTATCCGTGATCCCCTATTGGTGCTTCTACAACCACCTGTGACTAGTTAAGCAAGCCTGCCTTGTTCTGAGGGCTTTCCTGAACTTCCAGTGGCCTCTCAG [T / C] ATCCCCCAGCTTTCCCTCTTTATCCGTGATCCCCTATTGGTGCTTCTACAACCACCTGTG 44 ALGA0020170ALGA0020170 CAGAGGGGCCCCCACGCTGACGGGTGACTCCCCATTAAAAGCTGTCTGATCAGGTCATGG[T/G]CTGGGAAGGGAGGGAACGGATCTGGCTGGCACAAGGGGCTACTCAGTTGAGTCTGGCCTCCAGAGGGGCCCCCACGCTGACGGGTGACTCCCCATTAAAAGCTGTCTGATCAGGTCATGG [T / G] CTGGGAAGGGAGGGAACGGATCTGGCTGGCACAAGGGGCTACTCAGTTGAGTCTGGCCTC 55 ALGA0028052ALGA0028052 AGAAAAGCAACAAAAAATTACTCAAAATTATTTCAGACTTTTAAAAAGGCCCCTGAAGCT[A/G]GCCATGTTCTGTGCTCCTCCTTGTTCCTTTAAGTGTACACAGACAGGGAGTTCCCATCATAGAAAAGCAACAAAAAATTACTCAAAATTATTTCAGACTTTTAAAAAGGCCCCTGAAGCT [A / G] GCCATGTTCTGTGCTCCTCCTTGTTCCTTTAAGTGTACACAGACAGGGAGTTCCCATCAT 66 ALGA0033986ALGA0033986 CCTCAGAAAACAGGATGTAAGTTGGTTGGTGTCACATCTTGGTTAGGATAAGCAGCTGCT[A/G]TTGATAGCAACTGATTAGTTCTAAGGACTGGTTATATACCACACGTGAACTTCAAAAGTGCCTCAGAAAACAGGATGTAAGTTGGTTGGTGTCACATCTTGGTTAGGATAAGCAGCTGCT [A / G] TTGATAGCAACTGATTAGTTCTAAGGACTGGTTATATACCACACGTGAACTTCAAAAGTG 77 ALGA0037105ALGA0037105 TGCCGCCCCCTGTTCTCCCTCCAAGTTCAAAACACTAAGAAGAGCTGTATGAAGTCCAGT[T/C]GGCCTCTGGACCAGTTGCCAACAGGATCTTGTAAGGAAATCTGACAAAGGGTCAGATCTTTGCCGCCCCCTGTTCTCCCTCCAAGTTCAAAACACTAAGAAGAGCTGTATGAAGTCCAGT [T / C] GGCCTCTGGACCAGTTGCCAACAGGATCTTGTAAGGAAATCTGACAAAGGGTCAGATCTT 88 ALGA0043483ALGA0043483 TTAGCCACAGGGTAGGAAAAGAATCTATCTCTCAGTCTTTTCCAATAAACCATAAGCTGC[T/C]TGAAGCSAGGGATATCCTCATTCATTCTTTTGGTCTCAATTGCCCAGCATAATGCCAGGTTTAGCCACAGGGTAGGAAAAGAATCTATCTCTCAGTCTTTTCCAATAAACCATAAGCTGC [T / C] TGAAGCSAGGGATATCCTCATTCATTCTTTTGGTCTCAATTGCCCAGCATAATGCCAGGT 99 ALGA0056924ALGA0056924 ATGGCGTGGTAAGGATGTGCATCAGGAGGCCAGCTGTCCTTCTCCTTACGTCTCTGTACC[A/G]ACCTTCCTACTTCGTCCAAAGCATTCATCCAGCGTTGCAAGGGCAATTGCTCAGACTCCAATGGCGTGGTAAGGATGTGCATCAGGAGGCCAGCTGTCCTTCTCCTTACGTCTCTGTACC [A / G] ACCTTCCTACTTCGTCCAAAGCATTCATCCAGCGTTGCAAGGGCAATTGCTCAGACTCCA 1010 ALGA0064322ALGA0064322 AAGCTGAGGAAGAGCTCCCACGCTGGCCTCCTGTGGATGTCGCACCAGCTCGCGGGGCCC[T/C]CATGCCAGGACCTACCTCTAACTCCTCCTGGGTGGACACTCTGGTGGTCAGCAGAAGGAAAAGCTGAGGAAGAGCTCCCACGCTGGCCTCCTGTGGATGTCGCACCAGCTCGCGGGGCCC [T / C] CATGCCAGGACCTACCTCTAACTCCTCCTGGGTGGACACTCTGGTGGTCAGCAGAAGGAA 1111 ALGA0064392ALGA0064392 GCTGCAACCAGAGTCACAGAAGTGACAACACTGGTTCCTTATCCCGCTGAGCCATGAGAA[T/G]CTGTACTTTTAGAAGAGCTGAGTCGTCTCTTAGCTGCCTTAAACCTAGTCCTGGTCCCAAGCTGCAACCAGAGTCACAGAAGTGACAACACTGGTTCCTTATCCCGCTGAGCCATGAGAA [T / G] CTGTACTTTTAGAAGAGCTGAGTCGTCTCTTAGCTGCCTTAAACCTAGTCCTGGTCCCAA 1212 ALGA0065426ALGA0065426 CTGCCCTCCCCACTCCCTTCCTGGGCAGGTGAAGGGCAGGAAGTTAGCCTGGTCTAGCTT[T/C]CTCAGGTTAAACAGAAAGCTACAGGCTCACAGTCACCAGTACCTAGTAAAGTGGGGCAAGCTGCCCTCCCCACTCCCTTCCTGGGCAGGTGAAGGGCAGGAAGTTAGCCTGGTCTAGCTT [T / C] CTCAGGTTAAACAGAAAGCTACAGGCTCACAGTCACCAGTACCTAGTAAAGTGGGGCAAG 1313 ALGA0067483ALGA0067483 ATGTTTTCTGAACCAAAGTAAGAACATGGGATCTGACAAATGTACTTATGGGGGACCTGG[A/G]GTGTGCTGTCCTTGAGACTGGAATTGGGACTCTTAGCCAAAATCACACAAAAATTAAGTAATGTTTTCTGAACCAAAGTAAGAACATGGGATCTGACAAATGTACTTATGGGGGACCTGG [A / G] GTGTGCTGTCCTTGAGACTGGAATTGGGACTCTTAGCCAAAATCACACAAAAATTAAGTA 1414 ALGA0072858ALGA0072858 AGCTTCCCTCCTAAAATTATTATCTATTAATAGTAATAATGATAATAGCTAACACATGTA[A/G]TGCTTACTATATGATAGGCACTATCCTAAGAACTCATGAAATGATTCAATATTCTTAGTTAGCTTCCCTCCTAAAATTATTATCTATTAATAGTAATAATGATAATAGCTAACACATGTA [A / G] TGCTTACTATATGATAGGCACTATCCTAAGAACTCATGAAATGATTCAATATTCTTAGTT 1515 ALGA0079359ALGA0079359 TCAGGGAACAGAGGATTGGGGAGCCTGCAGTTTCTCTTCTGCCTCTCTGTGGCTCTTCCT[T/C]GCAGCTCAGGTCCAGGGATGATCTGGGACGGACTTTAGTGGCTATCTAGTCCAACTCTCTTCAGGGAACAGAGGATTGGGGAGCCTGCAGTTTCTCTTCTGCCTCTCTGTGGCTCTTCCT [T / C] GCAGCTCAGGTCCAGGGATGATCTGGGACGGACTTTAGTGGCTATCTAGTCCAACTCTCT 1616 ALGA0085130ALGA0085130 CTCCTCTTTTGAACTGTGAGAAATAAACTTGTCTTTTCAGTTAAGATCATCTCCTGATCT[A/G]TCAGCTTTCCTCTACCTCAAAATTTTTATTAGTACTCTGTATTTTAAGACAAGATGTTGTCTCCTCTTTTGAACTGTGAGAAATAAACTTGTCTTTTCAGTTAAGATCATCTCCTGATCT [A / G] TCAGCTTTCCTCTACCTCAAAATTTTTATTAGTACTCTGTATTTTAAGACAAGATGTTGT 1717 ALGA0089251ALGA0089251 TACGGTTTACTTATCAGTGAGATGTCCCCCCTTAGTTTAGAGAGTTTCCTTACATATCTG[T/G]TATAATATCTGGCCCCAGAAGCTATGTCTTGGGGATAATATATATATATGATCCTCTGATTACGGTTTACTTATCAGTGAGATGTCCCCCCTTAGTTTAGAGAGTTTCCTTACATATCTG [T / G] TATAATATCTGGCCCCAGAAGCTATGTCTTGGGGATAATATATATATATGATCCTCTGAT 1818 ALGA0092844ALGA0092844 CACCATTAGAGGGGATGCTCTCTAAGGCTGCTTCGTTCAAACTTCCTGATTCCAGCTGCA[T/C]GCAGGTAGGGAACAGAGCTGACCATGACCGAAGGACACTTGGAAATCCACATATTAGCACCACCATTAGAGGGGATGCTCTCTAAGGCTGCTTCGTTCAAACTTCCTGATTCCAGCTGCA [T / C] GCAGGTAGGGAACAGAGCTGACCATGACCGAAGGACACTTGGAAATCCACATATTAGCAC 1919 ALGA0097474ALGA0097474 AGATGCCAAGATTACTTATCTCTGTCAAACTAGCTGCCCCAAGATGGCAGCTGGAAGATG[T/C]TTATGCCCTGCCCGTGGCAAGGTGAGCCACGGCAGGAATTACAGCTTGTGCTTGAAAATAAGATGCCAAGATTACTTATCTCTGTCAAACTAGCTGCCCCAAGATGGCAGCTGGAAGATG [T / C] TTATGCCCTGCCCGTGGCAAGGTGAGCCACGGCAGGAATTACAGCTTGTGCTTGAAAATA 2020 ALGA0097857ALGA0097857 GGGTTGGCGAAAATCAAGGGTATCCTCAGAGAAGAGACTCAGACACAGCCCTCAAAGTGC[A/G]CACTCAGGCACTTGACGTAGCTTTAGTGCTACCTCTTCAATATCTTCGAGAGTGAGGAAAGGGTTGGCGAAAATCAAGGGTATCCTCAGAGAAGAGACTCAGACACAGCCCTCAAAGTGC [A / G] CACTCAGGCACTTGACGTAGCTTTAGTGCTACCTCTTCAATATCTTCGAGAGTGAGGAAA 2121 ALGA0103611ALGA0103611 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTTCCAT[A/G]GGCAGCAAGTGACAATTCCGAATCATTATAACAACAGCAAAGTCAACGCCTTACACTTGANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTTCCAT [A / G] GGCAGCAAGTGACAATTCCGAATCATTATAACAACAGCAAAGTCAACGCCTTACACTTGA 2222 ALGA0106326ALGA0106326 GGCGCTTTGTGAAAGAGCCCCGTGTTGGCCCTTAAGGTGGCTTTGGACCTGCCTCTAGGT[A/G]ACCCTGAACCAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGCGCTTTGTGAAAGAGCCCCGTGTTGGCCCTTAAGGTGGCTTTGGACCTGCCTCTAGGT [A / G] ACCCTGAACCAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2323 ALGA0110333ALGA0110333 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGTTTAGTCTGTGTGG[T/C]TGAGGCCAAAAGCTTGTGCTGCCTCCGAGGGGAGCATCGCATAATTGCAGGCAGAGGGGGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGTTTAGTCTGTGTGG [T / C] TGAGGCCAAAAGCTTGTGCTGCCTCCGAGGGGAGCATCGCATAATTGCAGGCAGAGGGGG 2424 ALGA0114065ALGA0114065 TCTGGAGATTCTAGGAGAATAAGAGCATCCTACTGCTTTTCTATAGAATATGGGGATGCC[T/C]ATCACCTATCATGTCCTAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTCTGGAGATTCTAGGAGAATAAGAGCATCCTACTGCTTTTCTATAGAATATGGGGATGCC [T / C] ATCACCTATCATGTCCTAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2525 ALGA0114861ALGA0114861 GTTGTTTCTGCATAAATGAGAAAATTGTGGCCAACTACAAAGTTTACATGTGTAATTTAG[T/G]TCTAATACTGGAAAAGATAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTTGTTTCTGCATAAATGAGAAAATTGTGGCCAACTACAAAGTTTACATGTGTAATTTAG [T / G] TCTAATACTGGAAAAGATAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2626 ALGA0123954ALGA0123954 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGCCGTCCAGGA[T/C]GGGTCTCAGCCTCTTACCGGCCCTCCTCTCAAGCTTCCTGGTAACTTTGTGCGAACTCGANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGCCGTCCAGGA [T / C] GGGTCTCAGCCTCTTACCGGCCCTCCTCTCAAGCTTCCTGGTAACTTTGTGCGAACTCGA 2727 ALGA0124374ALGA0124374 CGTGCTGAGGGTCAGGAGGTGCAGGTGCATGACCCCCTCCCTTTTAACTTTGGTGCCCAG[A/G]CCTGTCCCTGCTCCTCCCAGGCCCAAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCGTGCTGAGGGTCAGGAGGTGCAGGTGCATGACCCCCTCCCTTTTAACTTTGGTGCCCAG [A / G] CCTGTCCCTGCTCCTCCCAGGCCCAAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2828 ASGA0040082ASGA0040082 CCAGGAGGGAGACGTTCAAATAGGTTCCTCCAGCTACTTGCAAGTGAACTTGAAAAATGA[T/C]GGGCCACCCGCAGGACTCCTTTCTAACGTGACAGAGCGGATGCATTTGCGCATCAGCGAGCCAGGAGGGAGACGTTCAAATAGGTTCCTCCAGCTACTTGCAAGTGAACTTGAAAAATGA [T / C] GGGCCACCCGCAGGACTCCTTTCTAACGTGACAGAGGCGGATGCATTTGCGCATCAGCGAG 2929 ASGA0089719ASGA0089719 TACTGACAACAAGCCGTGAACACGAATAGAAAAGACTTGGAAACAGTTCATACTGTGTGA[T/C]CGCACTGGCTGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTACTGACAACAAGCCGTGAACACGAATAGAAAAGACTTGGAAACAGTTCATACTGTGTGA [T / C] CGCACTGGCTGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3030 ASGA0092931ASGA0092931 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGCTGTAC[A/G]CACCCAGGGTTGACTTATTTTTTTTAGGTAGACACAGTGTCTGGGCCCATGAGAATGTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGCTGTAC [A / G] CACCCAGGGTTGACTTATTTTTTTTAGGTAGACACAGTGTCTGGGCCCATGAGAATGTTT 3131 ASGA0096881ASGA0096881 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGGGAGTGACAGGACATCC[T/C]GTCTCTCTCCTGATTCTAATCTGAGAGAGTCCTACCTCCAAGGCCCTTGGTACCTGCTGCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTGGGAGTGACAGGACATCC [T / C] GTCTCTCTCCTGATTCTAATCTGAGAGAGTCCTACCTCCAAGGCCCTTGGTACCTGCTGC 3232 ASGA0102105ASGA0102105 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTCCGTGACCTG[A/G]TGGTAGCTGCCGAACCTTGCTGTCTCGGTTCCCTCTCTGTAGGACAGGGACAATGACCACNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTCCGTGACCTG [A / G] TGGTAGCTGCCGAACCTTGCTGTCTCGGTTCCCTCTCTGTAGGACAGGGACAATGACCAC 3333 H3GA0000077H3GA0000077 GGTCCTCATGAGAACCCTAGGAGTAGATCGTTTAAAAGACTGTCCTTCATTCTGCAGAAG[A/C]GGCGGCCGAGCCCTGAGAGGTTACGTGAGTTTCCCCAGCTGCACAGTGGGCCCCTGACAGGGTCCTCATGAGAACCCTAGGAGTAGATCGTTTAAAAGACTGTCCTTCATTCTGCAGAAG [A / C] GGCGGCCGAGCCCTGAGAGGTTACGTGAGTTTCCCCAGCTGCACAGTGGGCCCCTGACAG 3434 H3GA0028278H3GA0028278 GTTTTTCTGTTCTTTGATTTCTTAGATCAGGATCAGCAGACATTTTCCATCAAGGGCCAC[A/G]TAATAAATATTTTAGGCATGCAGTCTCTTTCACAGTTGCTCAGCTCTGCTTTTGTAGCCAGTTTTTCTGTTCTTTGATTTCTTAGATCAGGATCAGCAGACATTTTCCATCAAGGGCCAC [A / G] TAATAAATATTTTAGGCATGCAGTCTCTTTCACAGTTGCTCAGCTCTGCTTTTGTAGCCA 3535 H3GA0031292H3GA0031292 TTCATTCCTGGTTTGGGCAAAGACGTTGAATTGGCAGTGGGATTCCCTGTGATACTGGGT[A/G]AGGAACTCAGGGAATGGAGTGGGCCGAAGTTGAAGAAAATTGACTGTTTCCGCTTAGAAATTCATTCCTGGTTTGGGCAAAGACGTTGAATTGGCAGTGGGATTCCCTGTGATACTGGGT [A / G] AGGAACTCAGGGAATGGAGTGGGCCGAAGTTGAAGAAAATTGACTGTTTCCGCTTAGAAA 3636 M1GA0000139M1GA0000139 AAGCGGACGCCCACAGCCAGCGCGGAGCGCCCCAGGGTTCCGGGAAGCCGGTTTCTCCTC[T/C]GTGATGAGACACGGCAGCTTCAGACTCGGACGGAGTTTCACGGAACTTACATGCGGTGGAAAGCGGACGCCCACAGCCAGCGCGGAGCGCCCCAGGGTTCCGGGAAGCCGGTTTCTCCTC [T / C] GTGATGAGACACGGCAGCTTCAGACTCGGACGGAGTTTCACGGAACTTACATGCGGTGGA 3737 M1GA0001903M1GA0001903 GTTTTGCTATTTCCTGGGCTAAGACGGGGAGGCAGAGGGTCGAACCGGGAGCAGGGSATC[A/C]CTTCCCTTTTATTAAGTTTACGGTACCTGGGAAACACCTGAAGTGGAGAGACGCTAACGGGTTTTGCTATTTCCTGGGCTAAGACGGGGAGGCAGAGGGTCGAACCGGGAGCAGGGSATC [A / C] CTTCCCTTTTATTAAGTTTACGGTACCTGGGAAACACCTGAAGTGGAGAGACGCTAACGG 3838 MARC0004720MARC0004720 AAAATTGCACAAAGGACCATAGGGGAAACCCAAAGGCTGGTTAGATAGGGTCTATTTTCT[T/C]CTTAGCCTATGAGTCATTTGGGGAAAAATTACAGAGGGCATAGTGATCTTTGATTTACCAAAAATTGCACAAAGGACCATAGGGGAAACCCAAAGGCTGGTTAGATAGGGTCTATTTTCT [T / C] CTTAGCCTATGAGTCATTTGGGGAAAAATTACAGAGGGCATAGTGATCTTTGATTTACCA

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

서열목록 전자파일 첨부Attach an electronic file to a sequence list

Claims (4)

서열번호 1 내지 38의 폴리뉴클레오티드의 61번째 염기서열인 단일염기다형을 확인하는 것을 포함하는 돼지의 개체식별 방법.
Figure 112013074356597-pat00003
A pig individual identification method comprising identifying a monobasic polymorphism, which is the 61st base sequence of the polynucleotides of SEQ ID NOs: 1 to 38.
Figure 112013074356597-pat00003
제1항에 있어서, 상기 단일염기다형을 확인하는 단계는 대립 유전자 특이적 프로브 혼성화 방법(allele-specific probe hybridization), 대립 유전자 특이적 증폭 방법(allele-specific amplification), 서열분석법(sequencing), 5' 뉴클레아제 분해법(5' nuclease digestion), 분자 비콘 어세이법(molecular beacon assay), 올리고뉴클레오티드 결합 어세이법 (oligonucleotide ligation assay), 크기 분석법(size analysis) 및 단일 가닥 배좌 다형성법(single-stranded conformation polymorphism)으로 구성된 군에서 선택되는 방법에 의해 수행되는 것을 특징으로 하는 돼지의 개체식별 방법.
The method of claim 1, wherein the step of identifying a single nucleotide polymorphism comprises allele-specific probe hybridization, allele-specific amplification, sequencing, and 5. 5 'nuclease digestion, molecular beacon assay, oligonucleotide ligation assay, size analysis and single-stranded polymorphism Individual identification method of pigs, characterized in that performed by a method selected from the group consisting of stranded conformation polymorphism.
제 1항의 단일염기다형의 염기서열을 인지하기 위한 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 상기 폴리뉴클레오티드의 cDNA를 포함하는 단일염기다형성 검출용 마이크로어레이.
A microarray for detecting a single nucleotide polymorphism comprising a polynucleotide for recognizing the nucleotide sequence of the single nucleotide polymorphism of claim 1, a polypeptide encoded therein, or a cDNA of the polynucleotide.
제 1항의 단일염기다형의 염기서열을 인지하기 위한 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 상기 폴리뉴클레오티드의 cDNA를 포함하는 단일염기다형성 검출용 키트.The kit for detecting a single nucleotide polymorphism comprising a polynucleotide for recognizing the nucleotide sequence of the single nucleotide polymorphism of claim 1, a polypeptide encoded therein or a cDNA of the polynucleotide.
KR1020110145779A 2011-12-29 2011-12-29 SNP Markers for identification of pig and diagnosing method using the same KR101341813B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110145779A KR101341813B1 (en) 2011-12-29 2011-12-29 SNP Markers for identification of pig and diagnosing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110145779A KR101341813B1 (en) 2011-12-29 2011-12-29 SNP Markers for identification of pig and diagnosing method using the same

Publications (2)

Publication Number Publication Date
KR20130077198A KR20130077198A (en) 2013-07-09
KR101341813B1 true KR101341813B1 (en) 2013-12-17

Family

ID=48990497

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110145779A KR101341813B1 (en) 2011-12-29 2011-12-29 SNP Markers for identification of pig and diagnosing method using the same

Country Status (1)

Country Link
KR (1) KR101341813B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150116758A (en) 2014-04-07 2015-10-16 김진영 Apparatus for extracting DNA from livestock products
KR20160128943A (en) 2016-09-26 2016-11-08 순천대학교 산학협력단 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method
CN109517903A (en) * 2018-11-28 2019-03-26 江南大学 Strand displacement type archaeal dna polymerase induces sex taboo object in pig source in isothermal circulation amplified reaction detection halal food
WO2019113818A1 (en) * 2017-12-13 2019-06-20 中国农业大学 Whole swine genome 50k snp chip and application thereof
KR20220100413A (en) 2021-01-08 2022-07-15 한국마사회 Method for traceability and identification of racehorse using microsatellite dna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230088345A (en) 2020-10-15 2023-06-19 교라꾸 가부시끼가이샤 panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
한국동물자원과학회지, Vol. 52, No. 2, pp. 91-96 (2010)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150116758A (en) 2014-04-07 2015-10-16 김진영 Apparatus for extracting DNA from livestock products
KR20160128943A (en) 2016-09-26 2016-11-08 순천대학교 산학협력단 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method
WO2019113818A1 (en) * 2017-12-13 2019-06-20 中国农业大学 Whole swine genome 50k snp chip and application thereof
CN109517903A (en) * 2018-11-28 2019-03-26 江南大学 Strand displacement type archaeal dna polymerase induces sex taboo object in pig source in isothermal circulation amplified reaction detection halal food
KR20220100413A (en) 2021-01-08 2022-07-15 한국마사회 Method for traceability and identification of racehorse using microsatellite dna

Also Published As

Publication number Publication date
KR20130077198A (en) 2013-07-09

Similar Documents

Publication Publication Date Title
KR101341813B1 (en) SNP Markers for identification of pig and diagnosing method using the same
CN110191965B (en) Pig whole genome 50K SNP chip and application
US20050065736A1 (en) Systems and methods for improving efficiencies in livestock production
CN110029178A (en) SNP marker relevant to the more lamb characters of sheep list tire and its detection primer group, detection kit and application
CN110484636B (en) Molecular marker related to pig total papilla number characters and application thereof
CN112941199B (en) Method for evaluating pig backfat thickness and eye muscle area and application thereof
KR101353083B1 (en) SNP markers and methods for highly fetile pig
KR101295288B1 (en) Markers for porcine meat quality
KR102124652B1 (en) Composition for early predicting or diagnosing anxiety disorder in dog
KR20190034125A (en) Novle Single Nucleotide Polymorphisms Markers for Predicting Lifetime Production Ability Trait of Sow and Uses Thereof
KR102235340B1 (en) SNP marker set for predicting growth traits of Korean native chicken and uses thereof
CN105039567B (en) One group for screen and the SNP marker of/detection breeding oxen ejaculation amount and fresh essence vigor height
CN108315435B (en) SNP molecular marker related to sheep lambing number trait and application thereof
CN114107516A (en) SNP marker for evaluating pig backfat thickness and detection method thereof
KR102064559B1 (en) Novle Single Nucleotide Polymorphisms Markers for Predicting Lifetime Production Ability Trait of Sow and Uses Thereof
KR101385764B1 (en) Markers for Dog hair and diagnosing method using the same
KR20180052818A (en) SNP markers for prediction of low birth weight pigs size and methods for prediction of low birth weight pigs size using the same
KR101855666B1 (en) SNP markers for prediction of pigs total litter size and methods for prediction of pigs total litter size using the same
CN114181934A (en) Extraction method of sheep blood genome DNA (deoxyribonucleic acid), application of extraction method and genetic diversity evaluation method of sheep resource population
KR101576992B1 (en) Genetic markers for diagnosing dog tail bone and method using the same
KR101316709B1 (en) Single nucleotide polymorphism (SNP) markers associated with daily weight gain trait in pig and their methods for evaluation
KR101821552B1 (en) SNP marker for prediction of pig&#39;s nipple number and method for prediction of highly fertile pig using the same
KR101985659B1 (en) Method for identification of Baekwoo breed using single nucleotide polymorphism markers
CN112011629A (en) Jinfen white pig whole genome high-density SNP chip detection kit and application thereof
KR20110030808A (en) Microsatellite marker and methods for identification of dogs

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant