KR20110041668A - Single nucleotide polymorphism markers in swine and method for determination of domestic pork origin by using the same - Google Patents

Single nucleotide polymorphism markers in swine and method for determination of domestic pork origin by using the same Download PDF

Info

Publication number
KR20110041668A
KR20110041668A KR1020090098607A KR20090098607A KR20110041668A KR 20110041668 A KR20110041668 A KR 20110041668A KR 1020090098607 A KR1020090098607 A KR 1020090098607A KR 20090098607 A KR20090098607 A KR 20090098607A KR 20110041668 A KR20110041668 A KR 20110041668A
Authority
KR
South Korea
Prior art keywords
seq
nucleotides
sequence
nucleotide
dna
Prior art date
Application number
KR1020090098607A
Other languages
Korean (ko)
Other versions
KR101520502B1 (en
Inventor
김관석
김상욱
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020090098607A priority Critical patent/KR101520502B1/en
Publication of KR20110041668A publication Critical patent/KR20110041668A/en
Application granted granted Critical
Publication of KR101520502B1 publication Critical patent/KR101520502B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: A SNP marker which is used for determining the place of origin of domestic pork is provided to trace pork history. CONSTITUTION: A polynucleotide for determining the place of origin of domestic pork or a complementary polynucleotide thereof is novel 51 SNP markers selected from a pig group. The polynucleotide is obtained from muscle, skin, blood, bone, or other organs. A method for determining the origin of domestic pig comprises: a step of isolating nucleic acid from pork; a step of confirming base type of a marker of SNP at a nucleotide of sequence numbers 1-51 and storing the database; and a step of analyzing the place of origin of the pork using a parental marker which is already stored.

Description

돼지의 단일뉴클레오타이드다형성 마커 및 이를 이용한 국내산 돈육의 원산지 판별방법{Single Nucleotide Polymorphism Markers in Swine and Method for Determination of Domestic Pork Origin by Using the Same} Single Nucleotide Polymorphism Markers in Swine and Method for Determination of Domestic Pork Origin by Using the Same}

본 발명은 돼지의 단일뉴클레오타이드다형성 마커 및 이를 이용한 국내산 돈육의 원산지 판별방법에 관한 것이다. The present invention relates to a single nucleotide polymorphism marker of pigs and a method of determining the origin of domestic pork using the same.

가축에 있어서 개체의 확인이나 혈통관계의 정확한 정보를 제공하기 위해서 DNA 마커를 이용하는 연구가 국내외적으로 이루어지고 있다. 기존에는 초위성체 (Microsatellite) 마커를 이용하여 친자감별 및 개체추적이 이루어 졌으나 고가의 분석가격과 판독하는 과정에서 높은 에러율이 문제점으로 부각이 되고 있다. Domestic and international studies using DNA markers to provide accurate information on individual identification and lineage in livestock are being done. In the past, paternity discrimination and individual tracking were performed using microsatellite markers, but high analytical prices and high error rates in the reading process have been highlighted as problems.

하지만 최근 연구 결과에 따르면 단일염기다형(SNP) 마커들을 이용하여 유전자형을 적은 비용으로 대량 분석하는 것이 가능하여 이를 축산물의 이력추적이나 원산지 식별에 적용하고 있다 (Anderson and Garza, 2006; Rohrer er al., 2007; Baruch and Weller, 2008). 또한 2009년 Takeshi Honda 는 소에서 모의실험을 수행 하였는데 유용한 단일염기다형마커들 50개를 선발 (MAF:q, 0.25≤q≤0.35) 하여 양방향교배의 소 집단에서 98 ~ 99% 의 친자감별 추정가를 제시하였다. However, recent research has shown that genotypes can be analyzed at low cost using single nucleotide polymorphism (SNP) markers and applied to livestock traceability or origin identification (Anderson and Garza, 2006; Rohrer et al. , 2007; Baruch and Weller, 2008). In 2009, Takeshi Honda conducted a simulation in cattle, selecting 50 useful single-base polymorphic markers (MAF: q, 0.25≤q≤0.35) to estimate 98-99% paternity estimators in a small cohort. Presented.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 돼지집단에서 51 개의 신규 단일뉴클레오타이드다형성 마커를 발견하고 이를 이용하여 개체식별을 위한 효율성 검증을 수행하였으며, 돈육의 원산지 식별을 위해 상기 51개의 마커를 적용한 결과 혈통관계를 정확하게 예측할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다. The present inventors found 51 new mononucleotide polymorphism markers in swine population and performed efficiency verification for individual identification using them, and it is possible to accurately predict the lineage relationship as a result of applying the 51 markers to identify the origin of pork. The present invention was completed by experimentally confirming.

따라서, 본 발명의 목적은 돼지의 단일뉴클레오타이드다형성 마커를 제공하는 것에 있다. Accordingly, it is an object of the present invention to provide a mononucleotide polymorphism marker of swine.

본 발명의 다른 목적은 상기 마커를 이용한 국내산 돈육의 원산지 판별방법을 제공하는 것에 있다. Another object of the present invention is to provide a method for determining the origin of domestic pork using the marker.

본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면 에 의해 보다 명확하게 된다. The objects and advantages of the invention will become apparent from the following detailed description, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 서열목록 제 1 서열의 264번째 뉴클레오타이드, 서열목록 제 2 서열의 287번째 뉴클레오타이드, 서열목록 제 3 서열의 496번째 뉴클레오타이드, 서열목록 제 4 서열의 219번째 뉴클레오타이드, 서열목록 제 5 서열의 256번째 뉴클레오타이드, 서열목록 제 6 서열의 290번째 뉴클레오타이드, 서열목록 제 7 서열의 267번째 뉴클레오타이드, 서열목록 제 8 서열의 256번째 뉴클레오타이드, 서열목록 제 9 서열의 370번째 뉴클레오타이드, 서열목록 제 10 서열의 117번째 뉴클레오타이드, 서열목록 제 11 서열의 171번째 뉴클레오타이드, 서열목록 제 12 서열의 143번째 뉴클레오타이드, 서열목록 제 13 서열의 196번째 뉴클레오타이드, 서열목록 제 14 서열의 295번째 뉴클레오타이드, 서열목록 제 15 서열의 228번째 뉴클레오타이드, 서열목록 제 16 서열의 143번째 뉴클레오타이드, 서열목록 제 17 서열의 131번째 뉴클레오타이드, 서열목록 제 18 서열의 423번째 뉴클레오타이드, 서열목록 제 19 서열의 256번째 뉴클레오타이드, 서열목록 제 20 서열의 230번째 뉴클레오타이드, 서열목록 제 21 서열의 247번째 뉴클레오타이드, 서열목록 제 22 서열의 225번째 뉴클레오타이드, 서열목록 제 23 서열의 384번째 뉴클레오타이드, 서열목록 제 24 서열의 431번째 뉴클레오타이드, 서열목록 제 25 서열의 272번째 뉴클레오타이드, 서열목록 제 26 서열의 306번째 뉴클레오타이드, 서열목록 제 27 서열의 327번째 뉴클레오타이드, 서열목록 제 28 서열의 344번째 뉴클레오타이드, 서열목록 제 29 서열의 109번째 뉴클레오타이드, 서열목록 제 30 서열의 349번째 뉴클레오타이드, 서열목록 제 31 서열의 115번째 뉴클레오타이드, 서열목록 제 32 서열의 256번째 뉴클레오타이드, 서열목록 제 33 서열의 411번째 뉴클레오타이드, 서열목록 제 34 서열의 198번째 뉴클레오타이드, 서열목록 제 35 서열의 171번째 뉴클레오타이드, 서열목록 제 36 서열의 378번째 뉴클레오타이드, 서열목록 제 37 서열의 237번째 뉴클레오타이드, 서열목록 제 38 서열의 239번째 뉴클레오타이드, 서열목록 제 39 서열의 61번째 뉴클레오타이드, 서열목록 제 40 서열의 251번째 뉴클레오타이드, 서열목록 제 41 서열의 256번째 뉴클레오타이드, 서열목록 제 42 서열의 215번째 뉴클레오타이드, 서열목록 제 43 서열의 269번째 뉴클레오타이드, 서열목록 제 44 서열의 290번째 뉴클레오타이드, 서열목록 제 45 서열의 256번째 뉴클레오타이드, 서열목록 제 46 서열의 58번째 뉴클레오타이드, 서열목록 제 47 서열의 263번째 뉴클레오타이드, 서열목록 제 48 서열의 184번째 뉴클레오타이드, 서열목록 제 49 서열의 171번째 뉴클레오타이드, 서열목록 제 50 서열의 287번째 뉴클레오타이드, 또는 서열목록 제 51 서열의 175번째 뉴클레오타이드를 포함하는 8-100 개의 연속 뉴클레오타이드로 구성되며 돈육의 원산지 판별에 유용한 폴리뉴클레오타이드 또는 이의 상보적인 폴리뉴클레오타이드를 제공한다. According to an aspect of the present invention, the present invention provides a 264th nucleotide of SEQ ID NO: 1, 287 nucleotides of SEQ ID NO: 2, 496 nucleotides of SEQ ID NO: 3, 219 nucleotides of SEQ ID NO: 4 , 256th nucleotide of SEQ ID NO: 5 sequence, 290th nucleotide of SEQ ID NO: 6 sequence, 267th nucleotide of SEQ ID NO: 7 sequence, 256 nucleotides of SEQ ID NO: 8 sequence, 370th nucleotide of SEQ ID NO: 9 sequence 117th nucleotide of SEQ ID NO: 10, 171 nucleotides of SEQ ID NO: 11, 143 nucleotides of SEQ ID NO: 12, 196 nucleotides of SEQ ID NO: 13, 295 nucleotides of SEQ ID NO: 14 , 228th nucleotide of SEQ ID NO: 15 Sequence, SEQ ID NO: 143 nucleotides of SEQ ID NO: 16, 131 nucleotides of SEQ ID NO: 17, SEQ ID NO: 423 nucleotides of SEQ ID NO: 18, 256 nucleotides of SEQ ID NO: 19, 230 nucleotides of SEQ ID NO: 20, SEQ ID NO: 247th nucleotide of the 21st sequence, 225th nucleotide of the 22nd sequence, 384th nucleotide of the 23rd sequence, 431th nucleotide of the 24th sequence, 272th nucleotide of the 25th sequence, 306th nucleotide of SEQ ID NO: 26, 327 nucleotide of SEQ ID NO: 27, 344 nucleotide of SEQ ID NO: 28, 109 nucleotide of SEQ ID NO: 29, 349 nucleotide of SEQ ID NO: 30, SEQ ID NO: 115th nucleotide of the 31st sequence, 256 nucleotides of SEQ ID NO: 32, 411 nucleotides of SEQ ID NO: 33, 198 nucleotides of SEQ ID NO: 34, 171 nucleotides of SEQ ID NO: 35, 378 nucleotides of SEQ ID NO: 36, 237th nucleotide of SEQ ID NO: 37, 239 nucleotide of SEQ ID NO: 38, 61 nucleotide of SEQ ID NO: 39, 251 nucleotide of SEQ ID NO: 40, 256 nucleotide of SEQ ID NO: 41, 215 nucleotides of SEQ ID NO: 42, 269 nucleotides of SEQ ID NO: 43, 290 nucleotides of SEQ ID NO: 44, 256 nucleotides of SEQ ID NO: 45, 58 nucleotides of SEQ ID NO: 46, 263 th nucleotide of the 47 th sequence , 8-100 consecutive nucleotides comprising the 184th nucleotide of SEQ ID NO: 48 sequence, the 171th nucleotide of SEQ ID NO: 49 sequence, the 287th nucleotide of SEQ ID NO: 50 sequence, or the 175th nucleotide of SEQ ID NO: 51 sequence And polynucleotides or complementary polynucleotides thereof useful for determining the origin of pork.

본 발명자들은 돼지집단에서 51 개의 신규 단일뉴클레오타이드다형성 마커를 발견하고 이를 이용하여 개체식별을 위한 효율성 검증을 수행하였으며, 돈육의 원산지식별을 위해 상기 51개의 마커를 적용한 결과 혈통관계를 정확하게 예측할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다. The present inventors discovered 51 novel mononucleotide polymorphism markers in swine population and performed efficiency verification for individual identification using them, and it is possible to accurately predict the lineage relationship as a result of applying the 51 markers for identifying the origin of pork. The present invention was completed by experimentally confirming.

본 발명의 SNP 마커는 돼지(swine)에 적용되며, 가장 바람직하게는 국내산 돼지에 적용된다. The SNP marker of the present invention is applied to swine, most preferably to domestic pigs.

본 명세서에서 용어, "뉴클레오타이드"는 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오타이드 또는 리보뉴클레오타이드이며, 다르게 특별하게 언급되어 있지 않은 한 자연의 뉴클레오타이드의 유사체를 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)). As used herein, the term “nucleotide” is a deoxyribonucleotide or ribonucleotide that exists in single- or double-stranded form and includes analogs of natural nucleotides unless otherwise specified (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990).

본 명세서에서 용어 "핵산분자"는 DNA (gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다 (Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, ChemicalReviews, 90:543-584(1990)) As used herein, the term "nucleic acid molecule" has the meaning of comprehensively including DNA (gDNA and cDNA) and RNA molecules, and the nucleotides, which are the basic structural units in nucleic acid molecules, are naturally modified nucleotides, as well as modified sugar or base sites. Analogs (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990))

본 발명의 다른 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 돈육의 원산지를 판별하는 방법을 제공한다: (a) 원산지를 추적하고자 하는 돈육에서 핵산분자를 분리하는 단계; (b) 상기 제 1 항에 기재된 서열목록 제 1 서열 내지 제 51 서열의 상기 지정된 위치의 뉴클레오타이드에 해당하는 단일뉴클레오타이드다형성(SNP, Single Nucleotide Polymorphism)의 마커의 염기타입을 확인하여 데이터 베이스에 저장하는 단계; 및 (c) 이미 저장되어 있는 부모의 마커를 이용하여 돈육의 원산지를 분석하는 단계. According to another aspect of the present invention, the present invention provides a method for determining the origin of pork, comprising the steps of: (a) separating nucleic acid molecules from pork to be traced to origin; (b) identifying the base type of the marker of Single Nucleotide Polymorphism (SNP) corresponding to the nucleotide of the designated position of SEQ ID NO: 1 to 51 of the sequence described in claim 1 and storing it in the database step; And (c) analyzing the origin of the pork using the markers of the parents already stored.

본 발명의 방법에 있어서, 상기 핵산분자는 돈육의 다양한 소스로부터 얻을 수 있으며, 예컨대, 근육, 표피, 혈액, 뼈, 장기로부터 얻을 수 있고, 가장 바람직하게는 근육 또는 혈액으로부터 얻는다. In the method of the present invention, the nucleic acid molecule can be obtained from various sources of pork, for example from muscle, epidermis, blood, bone, organ, and most preferably from muscle or blood.

본 발명의 방법에서 출발물질이 gDNA인 경우, gDNA의 분리는 당업계에 공지된 통상의 방법에 따라 실시될 수 있다 (참조: Rogers & Bendich (1994)). 출발물질이 mRNA인 경우에는, 당업계에 공지된 통상의 방법에 총 RNA를 분리하여 실시된다 (참조: Sambrook, J. et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001); Ausubel, F.M. et al., Current Protocols in Molecular Biology, John Willey & Sons(1987); 및 Chomczynski, P. et al., Anal. Biochem. 162:156(1987)). 분리된 총 RNA는 역전사효소를 이용하여 cDNA로 합성된다. 상기 총 RNA는 동물세포로부터 분리된 것이기 때문에, mRNA의 말단에는 폴리-A 테일을 갖고 있으며, 이러한 서열 특성을 이용한 올리고 dT 프라이머 및 역전사 효소를 이용하여 cDNA을 용이하게 합성할 수 있다 (참조: PNAS USA, 85:8998(1988); Libert F, et al., Science, 244:569(1989); 및 Sambrook, J. et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)). If the starting material in the process of the invention is gDNA, isolation of gDNA can be carried out according to conventional methods known in the art (Rogers & Bendich (1994)). If the starting material is mRNA, total RNA is isolated and carried out by conventional methods known in the art. See Sambrook, J. et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press ( Ausubel, FM et al., Current Protocols in Molecular Biology, John Willey & Sons (1987); and Chomczynski, P. et al., Anal. Biochem. 162: 156 (1987)). The isolated total RNA is synthesized into cDNA using reverse transcriptase. Since the total RNA is isolated from animal cells, it has a poly-A tail at the end of the mRNA, and cDNA can be easily synthesized using oligo dT primer and reverse transcriptase using this sequence characteristic (see PNAS). USA, 85: 8998 (1988); Libert F, et al., Science, 244: 569 (1989); and Sambrook, J. et al., Molecular Cloning.A Laboratory Manual, 3rd ed.Cold Spring Harbor Press (2001) )).

본 발명의 방법에 있어서, 상기 단계 (b)는 특정 서열을 규명하는 데 이용되는 당업계에 공지된 다양한 방법을 응용하여 실시될 수 있다. 예를 들어, 본 발명에 응용될 수 있는 기술은, 형광 인 시투 혼성화 (FISH), 직접적 DNA 서열결정, PFGE 분석, 서던 블롯 분석, 단일-가닥 컨퍼메이션 분석 (SSCA, Orita et al., PNAS, USA 86:2776(1989)), RNase 보호 분석 (Finkelstein et al., Genomics, 7:167(1990)), 닷트 블롯 분석, 변성 구배 젤 전기영동 (DGGE, Wartell et al., Nucl.Acids Res., 18:2699(1990)), 뉴클레오타이드 미스매치를 인식하는 단백질 (예: E. coli의 mutS 단백질)을 이용하는 방법 (Modrich, Ann. Rev. Genet., 25:229-253(1991)), 및 대립형-특이 PCR을 포함하나, 이에 한정되는 것은 아니다. In the method of the present invention, step (b) may be carried out by applying various methods known in the art used to identify specific sequences. For example, techniques applicable to the present invention include fluorescence phosphorylation hybridization (FISH), direct DNA sequencing, PFGE analysis, Southern blot analysis, single-strand conformation analysis (SSCA, Orita et al., PNAS, USA 86: 2776 (1989)), RNase protection assay (Finkelstein et al., Genomics, 7: 167 (1990)), dot blot analysis, denaturation gradient gel electrophoresis (DGGE, Wartell et al., Nucl. Acids Res. 18: 2699 (1990)), methods using proteins that recognize nucleotide mismatches (e.g., mutS protein of E. coli) (Modrich, Ann. Rev. Genet., 25: 229-253 (1991)), and Allele-specific PCR, including but not limited to.

서열변화가 단일-가닥 분자내 염기 결합의 차이를 초래하여, 이동성이 다른 밴드를 출현하게 하는 데, SSCA는 이 밴드를 검출한다. DGGE 분석은 변성 구배 젤을 이용하여, 야생형 서열과 다른 이동성을 나타내는 서열을 검출한다. 다른 기술들은 일반적으로 본 발명의 SNP를 포함하는 서열에 상보적인 프로브 또는 프라이머를 이용한다. 예를 들어, RNase 보호 분석에서, 본 발명의 SNP를 포함하는 서열에 상보적인 리보프로브가 이용된다. 상기 리보프로브와 식물체로부터 분리한 DNA 또는 mRNA를 혼성화시키고, 이어 미스매치를 검출할 수 있는 RNase A 효소로 절단한다. 만일, 미스매치가 있어 RNase A가 인식을 한 경우에는, 보다 작은 밴드가 관찰된다. Sequence changes result in differences in base bonds within single-stranded molecules, resulting in different bands of mobility, which SSCA detects. DGGE analysis uses denaturation gradient gels to detect sequences that exhibit mobility different from wild-type sequences. Other techniques generally employ probes or primers that are complementary to sequences comprising the SNPs of the invention. For example, in RNase protection assays riboprobes complementary to the sequences comprising the SNPs of the invention are used. DNA or mRNA isolated from the riboprobe and the plant are hybridized and then cleaved with an RNase A enzyme capable of detecting mismatches. If there is a mismatch and RNase A recognizes, a smaller band is observed.

혼성화 시그널(hybridization signal)을 이용하는 분석에서, 본 발명의 SNP를 포함하는 서열에 상보적인 프로브가 이용된다. 이러한 기술에서, 프로브와 타깃 서열의 혼성화 시그널을 검출하여 직접적으로 SNP 변이체 여부를 결정한다. In assays using hybridization signals, probes complementary to the sequences comprising the SNPs of the invention are used. In this technique, hybridization signals of probes and target sequences are detected to directly determine whether SNP variants are present.

본 명세서에서, 용어 "프로브"는 특정 뉴클레오타이드 서열에 혼성화될 수 있는 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하는 자연 또는 변형되는 모노머 또는 결합을 갖는 선형의 올리고머를 의미한다. 바람직하게는, 프로브 는 혼성화에서의 최대 효율을 위하여 단일가닥이다. 프로브는 바람직하게는 디옥시리보뉴클레오타이드이다. As used herein, the term “probe” refers to a linear oligomer having naturally occurring or modified monomers or bonds, including deoxyribonucleotides and ribonucleotides that can hybridize to a particular nucleotide sequence. Preferably, the probe is single stranded for maximum efficiency in hybridization. The probe is preferably deoxyribonucleotide.

본 발명에 이용되는 프로브로서, 상기 SNP를 포함하는 서열에 완전하게 (perfectly) 상보적인 서열이 이용될 수 있으나, 특이적 혼성화를 방해하지 않는 범위 내에서 실질적으로 (substantially) 상보적인 서열이 이용될 수도 있다. As the probe used in the present invention, a sequence perfectly complementary to the sequence including the SNP may be used, but a sequence complementarily complementary to a range that does not prevent specific hybridization may be used. It may be.

바람직하게는, 본 발명에 이용되는 프로브는 본 발명의 서열목록 제 1 서열 내지 제 51 서열 중 어느 하나의 서열의 SNP 뉴클레오타이드를 포함하는 8-100 개의 연속 뉴클레오타이드를 포함하는 서열에 혼성화될 수 있는 서열을 포함한다. 보다 바람직하게는, 상기 프로브의 3'-말단 또는 5'-말단은 상기 SNP 염기에 상보적인 염기를 갖는다. 일반적으로, 혼성화에 의해 형성되는 듀플렉스 (duplex)의 안정성은 말단의 서열의 일치에 의해 결정되는 경향이 있기 때문에, 3'-말단 또는 5'-말단에 SNP 염기에 상보적인 염기를 갖는 프로브에서 말단 부분이 혼성화되지 않으면, 이러한 듀플렉스는 엄격한 조건에서 해체될 수 있다. 혼성화에 적합한 조건은 Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.(2001) 및 Haymes, B. D., et al., Nucleic Acid Hybridization, A Practical Approach , IRL Press, Washington, D.C. (1985)에 개시된 사항을 참조하여 결정할 수 있다. 혼성화에 이용되는 엄격한 조건 (stringent condition)은 온도, 이온세기 (완충액 농도) 및 유기 용매와 같은 화합물의 존재 등을 조절하여 결정될 수 있다. 이러한 엄격한 조건은 혼성화되는 서열에 의존하여 다르게 결정될 수 있다. Preferably, the probe used in the present invention is a sequence capable of hybridizing to a sequence comprising 8-100 consecutive nucleotides including SNP nucleotides of any one of SEQ ID NOs: 1 to 51 It includes. More preferably, the 3'-end or 5'-end of the probe has a base complementary to the SNP base. In general, since the stability of duplexes formed by hybridization tends to be determined by the consensus of the sequences of the ends, the ends in probes having bases complementary to the SNP base at the 3'- or 5'-ends If the parts are not hybridized, these duplexes can be dismantled under stringent conditions. Conditions suitable for hybridization include Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001) and Haymes, BD, et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC Decisions may be made with reference to those disclosed in (1985). Stringent conditions used for hybridization can be determined by adjusting the temperature, ionic strength (buffer concentration), the presence of compounds such as organic solvents, and the like. Such stringent conditions can be determined differently depending on the sequence being hybridized.

본 발명의 바람직한 구현예에 따르면, 이러한 유전자 증폭은 본 발명의 SNP 뉴클레오타이드를 포함하는 폴리뉴클레오타이드를 증폭할 수 있도록 제작된 프라이머쌍(primer pair)을 기본적으로 이용한다. According to a preferred embodiment of the present invention, such gene amplification basically uses a primer pair designed to amplify polynucleotides including the SNP nucleotides of the present invention.

본 발명의 명세서에서 "프라이머(primer)"는 단일가닥의 올리고뉴클레오타이드로서, 적합한 조건 (4 가지의 상이한 뉴클레오사이드 트리포스페이트 및 DNA 또는 RNA 폴리머라아제와 같은 중합효소의 존재), 적합한 온도 및 적합한 버퍼하에서 주형-지시적 DNA 합성을 개시할 수 있는 개시점으로서 작용하는 것을 의미한다.A "primer" in the context of the present invention is a single strand of oligonucleotide, suitable conditions (the presence of four different nucleoside triphosphates and polymerases such as DNA or RNA polymerase), suitable temperatures and suitable It is meant to act as an initiation point that can initiate template-directed DNA synthesis under a buffer.

프라이머의 적합한 길이는 사용하고자하는 프라이머의 특성에 의해 결정하지만, 통상적으로 15 내지 30bp의 길이로서 사용한다. 프라이머는 주형의 서열과 정확하게 상보적일 필요는 없지만 주형과 혼성복합체(hybrid-complex)를 형성할 수 있을 정도로 상보적이어야만 한다. The suitable length of the primer is determined by the nature of the primer to be used, but is usually used as a length of 15 to 30 bp. The primers need not be exactly complementary to the sequence of the template but must be complementary enough to form a hybrid-complex with the template.

본 발명의 방법에 이용될 수 있는 증폭 기술은 PCR 증폭 (참조: Miller, H. I. (WO 89/06700) 및 Davey, C. et al. (EP 329,822)), 리가아제 체인 반응 (LCR, Wu, D.Y. et al., Genomics 4:560 (1989)), 중합효소 리가아제 체인 반응 (Barany, PCR Methods and Applic., 1:5-16(1991)), Gap-LCR (WO 90/01069), 리페어 체인 반응 (EP 439,182), 3SR (Kwoh et al., PNAS, USA, 86:1173(1989)) 및 NASBA (U.S. Pat. No. 5,130,238)을 포함하나, 이에 한정되는 것은 아니다. 가장 바람직하게는 PCR 증폭 단계에 따라 증폭한다. 증폭기술이 적용되는 경우에, 본 발명의 SNP 염기를 확인하기 위해 적합한 프라이머를 디자인하는 것이 중요하다. PCR에 의한 증폭 반응의 조건 및 사용되는 시약과 효소는 당업계에서 통상적으로 공지된 것을 사 용할 수 있다. Amplification techniques that can be used in the methods of the invention include PCR amplification (Miller, HI (WO 89/06700) and Davey, C. et al. (EP 329,822)), ligase chain reactions (LCR, Wu, DY) et al., Genomics 4: 560 (1989)), polymerase ligase chain reaction (Barany, PCR Methods and Applic., 1: 5-16 (1991)), Gap-LCR (WO 90/01069), repair chain Reactions (EP 439,182), 3SR (Kwoh et al., PNAS, USA, 86: 1173 (1989)) and NASBA (US Pat. No. 5,130,238). Most preferably according to the PCR amplification step. Where amplification is applied, it is important to design suitable primers to identify the SNP bases of the present invention. The conditions of the amplification reaction by PCR and the reagents and enzymes used may be those commonly known in the art.

이상에서 상세히 설명된 바와 같이, 본 발명은 국내산 돈육의 원산지 판별에 유용하게 이용될 수 있는 단일뉴클레오타이드다형성(SNP, Single Nucleotide Polymorphism) 마커, 이를 이용한 국내산 돈육의 원산지 판별 방법 및 이 방법에 사용되는 키트에 관한 것이다. 본 발명에서 제공되는 단일뉴클레오타이드 변이에 의한 SNP 마커를 사용하면 돈육 제품의 원산지를 추적할 수 있도록 개별 돼지의 고유한 DNA 지문 정보를 생성할 수 있을 뿐만 아니라 이를 통해 모돈과 웅돈을 식별하여 농장원산지를 확인할 수 있고, 돼지의 생산으로부터 돈육제품으로의 소비까지 이력 추적이 가능한 효과가 있다. As described in detail above, the present invention provides a single nucleotide polymorphism (SNP) marker that can be usefully used for determining the origin of domestic pork, a method for determining the origin of domestic pork using the same, and a kit used in the method. It is about. Using the SNP marker by the single nucleotide variation provided in the present invention, not only can generate unique DNA fingerprint information of individual pigs to track the origin of the pork product, but also identify the sows and sows through the farm origin. It is possible to confirm and trace the history from pig production to consumption of pork products.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예 Example

실시예Example 1. 돼지의 개체식별과 혈통추정에 이용할  1.Identification and pedigree estimation of pigs DNADNA 마커Marker contentscontents 의 효율성 분석 Efficiency analysis

가축의 개체식별과 혈통추정을 이용할 효육적인 DNA 마커 선택은 마커들간의 독립성과 Hardy-Weinberg 평형을 전제 조건으로 한다. 이 두가지 조건을 만족시켜야만이 친자 감별의 모의 실험과 실제 자료의 친자 감별 분석 결과를 통계량으로 나타내는 최우도 값 또는 LOD값이 의미가 있다. 하지만 많은 마커를 수행해야 할 경우 어떤 마커들간에는 동일 염색체에 가까운 거리에 위치하여 독립적이지 못하며, 자료수가 작을 경우 또는 해당 마커 특성에 따라 Hardy-Weinberg를 만족시키지 못하는 경우가 있다. 이러한 경우 친자 감별 분석 수행에 앞서, 미리 Hardy-Weinberg 평형 조건을 만족시키거나 서로 독립적인 마커를 선별해야만 돼지의 친자감별에 이용할 수 DNA 마커 Contents 를 구축 할 수 있을 것이다. Selection of efficient DNA markers using livestock identification and lineage estimation is based on the independence between the markers and the Hardy-Weinberg equilibrium. Only when these two conditions are satisfied, the maximum likelihood value or LOD value, which represents the result of paternity discrimination and paternity analysis of real data, is meaningful. However, when a large number of markers are to be performed, some markers are not independent because they are located close to the same chromosome, and the number of data is small or the Hardy-Weinberg may not be satisfied depending on the characteristics of the markers. In this case, the DNA marker contents that can be used for the paternity of pigs can be constructed only if the markers satisfying the Hardy-Weinberg equilibrium conditions or independent markers are selected before performing paternity analysis.

실시예 2. 가축의 친자추정에 이용할 효육적인 DNA 마커 선택은 마커들간의 다형성 정보 분석을 위해 Likelihood method 적용(Barrett JC et al., 2005). Example 2 Efficacy of DNA Marker Selection for Parental Estimation of Livestock is Likelihood Method for Analyzing Polymorphism Information between Markers (Barrett JC et al., 2005).

2-1. 하디-와인버그 평형 (2-1. Hardy-Wineburg Equilibrium ( HWEHWE ) 검증 ) Verification

하디-와인버그 평형검사 목적은 실험에 사용된 시료의 선별이 잘 이루어 져있는지 또는 집단의 유전자형 또는 유전자형의 빈도가 일정하게 유지되고 있는지를 검사하기 위해 수행한다. 또한 무작위적으로 교배를 하는 큰 집단에서는 유전자형 빈도를 변화시키는 요소가 없으면, 집단의 유전형 빈도 및 유전자형 빈도는 세대가 바뀌어도 변하지 않고 일정하게 유지된다는 법칙으로 유전자형 빈도를 이용하여 유전자형 빈도를 설명 할 수 있다. The purpose of the Hardy-Wineberg equilibrium test is to check whether the sample used in the experiment is well screened or whether the genotype or genotype frequency of the population remains constant. In addition, genotype frequency can be explained using genotype frequency by the law that genotype frequency and genotype frequency remain unchanged even after generation changes, unless there is an element that changes genotype frequency in a large group that crosses randomly. .

하디와인버그 평형상태의 기대값 HardyWineberg Equilibrium Expectations

MM = p2 x N; MN = 2pq x N; NN = q2 x N MM = p 2 x N; MN = 2 pq x N; NN = q 2 x N

MM, MN, NN: 각각에 해당하는 유전자형MM, MN, NN: genotypes corresponding to each

실제로 관측된 값과 하디와인버그 평형상태에 있을 때의 기댓값과의 차이는 χ2 검증방법을 이용하여 평가한다. In practice, the difference between the observed value and the expected value at Hardywinberg equilibrium is evaluated using the χ 2 test method.

χ2 = ∑((관측값 - 기댓값)2/기대값χ 2 = ∑ ((observed-expected) 2 / expected

이 값은 χ2 분포표에서 자유도가 1일 때 유의수준 1%에 해당하는 F-value값이 3.84 (P-value <0.01) 보다 작으면 유의적이지 않음을 알수 있으며, 즉, 관측값과 기댓값 사이에는 유의적인 차이가 없므로 집단의 하디와인버그 평형을 평가 할 수 있다. This value is not significant when the F-value corresponding to the significance level of 1% is less than 3.84 (P-value <0.01) when the degree of freedom is 1 in the χ 2 distribution table, that is, between the observed value and the expected value. There is no significant difference, so we can assess the Hardywinberg equilibrium of the population.

2-2. 이형접합성 (heterozygosity) 검증 2-2. Heterozygosity Verification

특정한 좌위에서 유전변이의 정도를 알아보는 가장 간단한 방법은 이형접합성(heterozygosity) 정도를 측정하는것이다. Hetrozygosity 는 특정 좌위에 대해 무작위적으로 선정된 사람의 유전자형이 이형접합(hterozygous)일 확률로 하디와인버그 평형 상태를 가정했을때 heterozygosity, H는 다음과 같이 구할 수 있다. The simplest way to determine the degree of genetic variation at a particular locus is to measure the degree of heterozygosity. Hetrozygosity is a heterozygosity given by the probability that the genotype of a randomly selected person is heterozygous for a particular locus.

H = 1 - p2 -q2 = 2p(1-p)H = 1-p 2 -q 2 = 2p (1-p)

위 식은 SNP 와 같은 bi-allele 마커의 경우 변환된 식으로 SNP 마커의 유전자형 빈도를 각각 p, q (q=1-q) 라고 한다. In the above expression, in the case of bi-allele markers such as SNP, the genotype frequency of the SNP marker is called p and q (q = 1-q), respectively.

일반적으로 heterozygosity가 높은 마커일수록 정보력이 높은 (informative) 마커라고 할 수 있다. 하기 [표 1]에서 나타난 것처럼 본 특허에서 개발한 SNP 마커는 유전자형이 집단에 높은 다형성정보지수를 관찰할 수 있었다. In general, the higher the heterozygosity marker, the more informative marker. As shown in Table 1, the SNP marker developed in the present patent was able to observe a high polymorphic information index in the genotype population.

[표 1] 돼지에서 개체식별 및 백분율 테스트에 사용한 마커들 Table 1 Markers Used for Individual Identification and Percentage Testing in Pigs

Figure 112009063431684-PAT00001
Figure 112009063431684-PAT00001

Figure 112009063431684-PAT00002
Figure 112009063431684-PAT00002

Figure 112009063431684-PAT00003
Figure 112009063431684-PAT00003

Figure 112009063431684-PAT00004
Figure 112009063431684-PAT00004

실시예 3. 가축의 친자추정을 이용할 효육적인 DNA 마커 선택은 마커들간의 독립성 분석을 위해 Stephens method 적용 (Stephens er al., 2001). Example 3 Efficacy of DNA Marker Selection Using the Parental Estimation of Livestock The Stephens Method for Independence Analysis between Markers (Stephens er al., 2001).

마커들 간의 독립성을 측정하는 방법으로는 가장 많이 쓰이는 2가지 방법인 D' 과 r2 값을 사용하는 것이다. 두 가지 측정치 모두 0 (no linkage)에서 1(complete linkage) 사이의 값을 갖게 된다. The two most commonly used methods for measuring independence between markers are D 'and r 2 Is to use a value. Both measurements have values between 0 (no linkage) and 1 (complete linkage).

1)〔D'〕- D prime 1) [D ']-D prime

A1B1 = p1 x q1 A 1 B 1 = p 1 xq 1

A1B2 = p1 x q2 A 1 B 2 = p 1 xq 2

A2B1 = p2 x q1 A 2 B 1 = p 2 xq 1

A2B2 = p2 x q2 A 2 B 2 = p 2 xq 2

A, B: 각각의 유전자A, B: each gene

p1, q1, p2, q2; 각각의 대립유전자p 1, q 1, p 2, q 2 ; Each allele

D 값을 구하는 공식은 다음과 같다. The formula for calculating the D value is as follows.

D = P11P22 - P12P21 D = P 11 P 22 -P 12 P 21

만약 두 마커가 완벽한 연관된 형태라면 D 값은 0 을 취한다. 하지만 연관된 정도는 그 외의 값을 취하며 일반적으로 D 보다 더 많이 사용하는 측정치에는 D' 이 있는 데 그 식은 아래와 같다. If the two markers are perfectly related, the value of D takes 0. However, the degree of association takes other values, and D 'is a measure that is generally used more than D.

D' = D/Dmax,D '= D / D max ,

Dmax = min(p1q2,p2q1), if D>0D max = min (p 1 q 2 , p 2 q 1 ), if D> 0

max(-p1,q1,-p2q2), if D<0 max (-p 1 , q 1 , -p 2 q 2 ), if D <0

Dmax; D의 최대값을 나타낸다. D max ; The maximum value of D is shown.

2)r2 - r-square2) r 2 -r-square

마커간의 연관성 및 독립성 검증으로 측정할 수 있는 다른 방법은 r2 (상관관계)를 이용한 방법이 있는데 두 마커간의 통계적인 상관성(correlation)이 얼마나 있느냐를 나타내는 척도로서 다음과 같이 구할 수 있다. Another method that can be measured by verifying association and independence between markers is r 2. There is a method using (correlation), which is a measure of how statistical correlation is between two markers.

r2 =

Figure 112009063431684-PAT00005
r 2 =
Figure 112009063431684-PAT00005

p1q2,p2q1; 각각의 대립유전자를 의미한다. p 1 q 2 , p 2 q 1 ; Each allele.

표 2에서 나타난 것처럼 각각의 마커간의 연관성이 있는 마커는 하나도 발견할 수 없었다(r2 > 0.3). As shown in Table 2, none of the markers associated with each marker could be found (r2> 0.3).

[표 2] 돼지 51개의 SNP 마커간의 상관관계 TABLE 2 Correlation between 51 SNP Markers in Swine

Figure 112009063431684-PAT00006
Figure 112009063431684-PAT00006

Figure 112009063431684-PAT00007
Figure 112009063431684-PAT00007

Figure 112009063431684-PAT00008
Figure 112009063431684-PAT00008

Figure 112009063431684-PAT00009
Figure 112009063431684-PAT00009

Figure 112009063431684-PAT00010
Figure 112009063431684-PAT00010

Figure 112009063431684-PAT00011
Figure 112009063431684-PAT00011

Figure 112009063431684-PAT00012
Figure 112009063431684-PAT00012

Figure 112009063431684-PAT00013
Figure 112009063431684-PAT00013

Figure 112009063431684-PAT00014
Figure 112009063431684-PAT00014

Figure 112009063431684-PAT00015
Figure 112009063431684-PAT00015

Figure 112009063431684-PAT00016
Figure 112009063431684-PAT00016

Figure 112009063431684-PAT00017
Figure 112009063431684-PAT00017

Figure 112009063431684-PAT00018
Figure 112009063431684-PAT00018

Figure 112009063431684-PAT00019
Figure 112009063431684-PAT00019

Figure 112009063431684-PAT00020
Figure 112009063431684-PAT00020

Figure 112009063431684-PAT00021
Figure 112009063431684-PAT00021

Figure 112009063431684-PAT00022
Figure 112009063431684-PAT00022

Figure 112009063431684-PAT00023
Figure 112009063431684-PAT00023

Figure 112009063431684-PAT00024
Figure 112009063431684-PAT00024

Figure 112009063431684-PAT00025
Figure 112009063431684-PAT00025

Figure 112009063431684-PAT00026
Figure 112009063431684-PAT00026

Figure 112009063431684-PAT00027
Figure 112009063431684-PAT00027

실시예 4. 51개의 SNP 마커들을 적용하여 돼지집단에서 친자감별추정 (1세대와 2세대). Example 4. Estimation of paternity in pig populations using 51 SNP markers (1st and 2nd generation).

4-1. 친자 추정 유전자형 분석 4-1. Paternity presumption genotyping

1세대 자손과 2세대의 친자를 추정하기 위해 유전자형을 분석을 하였으며 DNA 마커를 이용한 친자감별 프로그램으로서, 현재 널리 사용하고 있는 CERVUS 3.0 프로그램은() 를 이용하여 분석을 하였다. Genotypes were analyzed to estimate first-generation progeny and second-generation paternity, and the CERVUS 3.0 program, currently widely used, was analyzed using ().

Figure 112009063431684-PAT00028
Figure 112009063431684-PAT00028

Figure 112009063431684-PAT00029
Figure 112009063431684-PAT00029

Figure 112009063431684-PAT00030
Figure 112009063431684-PAT00030

Figure 112009063431684-PAT00031
Figure 112009063431684-PAT00031

4-2. 생물학적 통계분석 4-2. Biological Statistical Analysis

Botstein method를 이용하여 각 마커의 PIC 값을 다음과 같이 계산하였다. The PIC value of each marker was calculated using the Botstein method as follows.

PIC =1-∑ni=1pi2-2∑n-1i=∑nj=I+1pi+2pj2 PIC = 1-∑ni = 1pi2-2∑n-1i = ∑nj = I + 1pi + 2pj2

pi, pj 는 각각 "1" 와 "2" 의 대립유전자가 나타나는 확률이며 n은 대립유전자의 개수이다. pi and pj are the probability that alleles of "1" and "2" appear, and n is the number of alleles.

친자감별시 확률적인 표현을 위해서 Aickin method 를 이용하여 paternity index (PI) 및 probability of paternity (PP) 를 사용하였으며 계산방법은 다음과 같다. The paternity index (PI) and probability of paternity (PP) were used for the probabilistic expression of paternity using the Aickin method.

1) Statistical frequency (SF): ∂1) Statistical frequency (SF): ∂

2) Paternity Index (PI) or Likelyhood Ratio (LR): β/∂2) Paternity Index (PI) or Likelyhood Ratio (LR): β / ∂

3) Probability of Paternity (PP): [β/(β+∂)] x 100(%) 3) Probability of Paternity (PP): [β / (β + ∂)] x 100 (%)

이 경우 SF는 전체 집단에서 무작위로 개체를 선택했을 때 부계가 될 수 있는 확률(∂) 이다. PI 혹은 LR 은 무작위로 선택한 개체가 부계일 확률(β)에 대하여 생물학적 부계로 추정되고 있는 개체가 친부일 확률(β)의 비이다(β/∂). PP 는 PI 를 백분율로 표현한 것이다. In this case, SF is the probability (∂) of being a paternity when randomly selecting individuals from the entire population. PI or LR is the ratio (β / ∂) of the probability that the randomly selected individual is paternal (β) to the probability that the individual is paternal (β). PP is a percentage of PI.

<통계요약> Statistical Summary

Figure 112009063431684-PAT00032
Figure 112009063431684-PAT00032

위의 통계적 결과로 나타나는 신뢰구간 95% ~ 100%를 유의 구간으로 두었고 1세대 자손 총 62두의 유전자형들은 분석을 통해 찾은 아비정보와 어미정보의 유전자형 일치도는 100%를 나타내었다. 원래의 귀표에 의해 사전에 알고 있는 1세대와 2세대의 혈통관계를 51 개의 단일염기다형의 통계적 분석을 통해 추정한 혈통관계를 비교한 결과 모두 일치하는 것을 관찰할 수 있었다. Confidence intervals of 95% to 100% were shown as significant intervals, and the genotypes of 62 genotypes of the first generation showed 100% of genotype agreements between father and mother information. By comparing the presumed lineage relationship between the first generation and the second generation, which were previously identified by the original tag, through the statistical analysis of 51 single-base polymorphisms, it was observed that all of them matched.

Figure 112009063431684-PAT00033
Figure 112009063431684-PAT00033

Figure 112009063431684-PAT00034
Figure 112009063431684-PAT00034

실시예Example 5. 51개의  5. 51 SNPSNP 마커들을Markers 적용하여 돼지집단에서 친자감별추정 (2세대와 3세대).  Estimation of paternity in pig populations (2nd and 3rd generation).

5-1. 2세대 자손과 3세대의 친자를 추정하기 위한 유전자형 분석 5-1. Genotyping for Estimating 2nd Generation Progeny and 3rd Generation Parents

2세대 자손과 3세대의 친자를 추정하기 위해 유전자형을 분석을 하였으며 DNA 마커를 이용한 친자감별 프로그램으로서, 현재 널리 사용하고 있는 CERVUS 3.0 프로그램은 () 를 이용하여 분석을 하였다. Genotypes were analyzed to estimate the second generation progeny and the third generation of paternity. As a paternity discrimination program using DNA markers, CERVUS 3.0, which is widely used, was analyzed using ().

Figure 112009063431684-PAT00035
Figure 112009063431684-PAT00035

<Intact pedigree output file> <Intact pedigree output file>

Offspring ID; 자손의 개체 ID Offspring ID; Entity ID of the descendant

Typed loci: 대상 개체에서 유전자형 값이 기록된 마커 수 Typed loci: The number of markers in which genotype values were recorded in the target object.

Figure 112009063431684-PAT00036
Figure 112009063431684-PAT00036

5-2. 생물학적 통계분석 5-2. Biological Statistical Analysis

Botstein method를 이용하여 각 마커의 PIC 값을 다음과 같이 계산하였다. The PIC value of each marker was calculated using the Botstein method as follows.

PIC =1-∑ni=1pi2-2∑n-1i=∑nj=I+1pi+2pj2 PIC = 1-∑ni = 1pi2-2∑n-1i = ∑nj = I + 1pi + 2pj2

pi, pj 는 각각 "1" 와 "2" 의 대립유전자가 나타나는 확률이며 n은 대립유 전자의 개수이다. pi and pj are the probability that alleles of "1" and "2" appear, and n is the number of alleles.

친자감별시 확률적인 표현을 위해서 Aickin method를 이용하여 paternity index(PI) 및 probability of paternity(PP) 를 사용하였으며 계산방법은 다음과 같다. The paternity index (PI) and the probability of paternity (PP) were used for the probabilistic expression of paternity by using the Aickin method.

(1) Statistical frequency (SF): ∂ (1) Statistical frequency (SF): ∂

(2) Paternity Index (PI) or Likelyhood Ratio (LR): β/∂ (2) Paternity Index (PI) or Likelyhood Ratio (LR): β / ∂

(3) Probability of Paternity (PP): [β/(β+∂)] x 100(%) (3) Probability of Paternity (PP): [β / (β + ∂)] x 100 (%)

이 경우 SF는 전체 집단에서 무작위로 개체를 선택했을 때 부견이 될 수 있는 확률(∂) 이다. PI 혹은 LR은 무작위로 선택한 개체가 부견일 확률(β)에 대하여 생물학적 부경으로 추정되고 있는 개체가 친부일 확률(β)의 비이다(β/∂). PP 는 PI 를 백분율로 표현한 것이다. In this case, SF is the probability (∂) that can be a bias when randomly selecting individuals from the entire population. PI or LR is the ratio (β / ∂) of the probability that the randomly selected subject is the father (β) to the probability of the father being the father (β). PP is a percentage of PI.

<통계 요약> <Statistic summary>

Figure 112009063431684-PAT00037
Figure 112009063431684-PAT00037

위의 통계적 결과로 나타나는 신뢰구간 95% - 100%를 유의구간으로 두었고 2 세대 자손들 총 346두의 유전자형들은 분석을 통해 찾은 아비정보와 어미정보의 유전자형 일치도는 100% 일때 314두로 나타내었고, 95% 이상 일치할 때는 아비정보 어미정보 모두 346두로 친자를 추정함을 보였다. 통계적 분석을 통하여 51개의 단일염기 다형마커들을 이용하여 혈연관계를 추정할 수 있는 능력은 98.121~ 에서 98.463%의 친자를 식별률을 나타내었다. Confidence intervals of 95%-100% resulted from the statistical results above, and 346 genotypes of 2nd generation progeny showed 314 heads of 100% genotypes of father and mother information. When the percentage matched more than%, both father and mother information estimated 346 parents. From the statistical analysis, 51 single base polymorphic markers were used for estimating kinship relations, and the identification rate was 98.463% to 98.463%.

<통계 요약> <Statistic summary>

Figure 112009063431684-PAT00038
Figure 112009063431684-PAT00038

위의 통계적 분석결과 51개의 마커를 이용하여 아비정보와 어미정보를 모르는 자손들의 부모를 추정 할 수 있는 능력은 거의 100% 에 흡사하게 나왔으며 이결과는 기존에 보고된 결과 보다 높은 추정력을 보였다. As a result of the above statistical analysis, 51 markers were used to estimate the parent of fathers and mothers who did not know the mother information, which was almost 100%. The result showed higher estimation power than previously reported results.

실시예 6. PCR 프라이머(primer) Example 6 PCR Primers

본 발명의 SNP 분석에 사용된 PCR 프라이머의 뉴클레오타이드 서열에 대한 정보는 다음과 같다. Information on the nucleotide sequence of the PCR primer used in the SNP analysis of the present invention is as follows.

Figure 112009063431684-PAT00039
Figure 112009063431684-PAT00039

Figure 112009063431684-PAT00040
Figure 112009063431684-PAT00040

Figure 112009063431684-PAT00041
Figure 112009063431684-PAT00041

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

<110> Chungbuk National University Industry Academic Cooperation Foundation <120> Single Nucleotide Polymorphism Markers in Swine and Method for Determination of Demestic Pork Origin by Using the Same <160> 51 <170> KopatentIn 1.71 <210> 1 <211> 358 <212> DNA <213> Pig <400> 1 ttcacaggcg atgcctatgt catcctgaag acggtgcagc tgaggaacgg gaacctgcag 60 tatgacctcc actactggct gggtgaggct ggcccccacc ccrgtccctc cacctccacc 120 ccagcccctc tgctgcagag cacagacctt tgagtcatgg tctccaggaa gcgcccatga 180 gaattacggg actgttgagc atcaagtgtg tgccaggccc ttggttatgt gttcccaaga 240 ctctagagcc acctgcccaa gttyagactt cagctctgcc ctttggcaag atatccagtg 300 tctctgtgaa gtggacatga tgatcgcacc agaccacctc ataggactgt tgtgaggg 358 <210> 2 <211> 470 <212> DNA <213> Pig <400> 2 gagaaagtcc agactcggct ggaggagacc caggcgctgc tgcggaagaa ggagaagtca 60 ggcaccttcc cgggcccctg ctycctgcac ccccctcatr ccagcagctc cctgcctcct 120 agcccaggcc cttctgtagt aagactctcc ccagggggac agacttcctt ccccattgat 180 ggccccctgg tctcattgca rtyggagcct cttctgcccc tggctcctca ccagcagggc 240 tactccaagg acctgtcagg actgagaatt aggggcagag ccacggkgaa gggacactgc 300 ccaagcccgg gttctcttcc gcagagagtt tgaggagacg atggatgcac ttcaggctga 360 cattgaccag ctggaggcag agaaggcaga gttaaagcaa cggctgaaca gccagtccaa 420 gcgcacaatc gaggggatcc ggggaccccc tccctcgggt attgctaccc 470 <210> 3 <211> 551 <212> DNA <213> Pig <400> 3 gtgaggtaat cctttatttt cttacattca cttttgaagt attgacttcc tttttttagt 60 ctkttgtgat atatgcagat atcacccaaa gtaaaatgtr ttgagaaaat rgcagagctt 120 taacatctgc tgaacttctg aaattattaa ttttaatttt agattgtact gtgctctttt 180 gtttccacta ctgttgagca aasgaaaaca ccgatgtaga aaaaaagtag ctttgctcta 240 ttgtgcacta cagaatagta gagacacatt tttattagca gctgtggaaa aaaaatgttt 300 ctttttgtag gaggggcatt acagcagctt ttgtgccatc cctaatccat tttaaaattt 360 atttctaggg aaacagtgct cttaaaacat tggaaatgaa tccttgtacc ccaaataatg 420 ttgaggttct ggaaactcga tcagcagttc ctaaaataga agatacagaa ataatctctc 480 cagtagctga gcgtcyggaa gagagctctg atgcagaacc cgaaaaccat gtggttgtat 540 cctattgtcc a 551 <210> 4 <211> 474 <212> DNA <213> Pig <400> 4 gggggccggt gctctgacaa ccccgaggga gggtacacct gccgctgccc tgggggcttc 60 tctggcttta actgtgagaa gaagatggat tcctgcactt cctcaccctg ttccaatggt 120 aagggggcca cctgacccac ttgagacttg gtcagctggt cgacactgac gaggacgtgg 180 caggagcaca ggaccttagt tttatgctga gctcatcayt ttgtgagcta ccttgcattt 240 caggagctct tttgtctgag cagtgagaaa cttcctagca agtctttcct ggagtctggg 300 aacacccagg gagtgagaaa ggcaggcagg tgtgttcctt ctctgtgagg atgcctcagg 360 cagagagatg cagtgatttc tcctggtgcc tcaggtgcgg gagaccccag ggatccgcga 420 gtcagcgcca gtgccagccc agcctctctg ctttaggagg gaagcgcagc tgta 474 <210> 5 <211> 511 <212> DNA <213> Pig <400> 5 tgccatgaat ggtgatgaag gttgcagatg tggctcatat cccacattam wgtggctgtg 60 actgtggccg gcagctgcag ctcatatttg acccctagcc tgggaatctc catatgctgc 120 aggtgcaacc ctaaaaagca aaaaacaaaa aacaaaaaac aaaaccccaa aaaacaagat 180 caacttagac tttcattcta taaggacaga gagactacag tgaaaggaca gtaagcacat 240 gtatccagtg cttatratgt gctaggttct ctttttaagt gatgtactaa ctcatttaat 300 ccctaagaca atcctgtgag gttagggaac ttgcccatag tcagaacatt tttctggggg 360 cagttatccc ttgtcaaggt tcctgcaggg gaggatccct ggccgtggta gcagctgctg 420 cttttctaat gtggggactt ggtatcctgc ctagctaagc ctgagggtga aggctttgaa 480 gcggcaggtg gatgaagcag aagaggaaat t 511 <210> 6 <211> 358 <212> DNA <213> pig <400> 6 ttcacaggcg atgcctatgt catcctgaag acggtgcagc tgaggaacgg gaacctgcag 60 tatgacctcc actactggct gggtgaggct ggcccccacc ccrgtccctc cacctccacc 120 ccagcccctc tgctgcagag cacagacctt tgagtcatgg tctccaggaa gcgcccatga 180 gaattacggg actgttgagc atcaagtgtg tgccaggccc ttggttatgt gttcccaaga 240 ctctagagcc acctgcccaa gttcagactt cagctctgcc ctttggcaar atatccagtg 300 tctctgtgaa gtggacatga tgatcgcacc agaccacctc ataggactgt tgtgaggg 358 <210> 7 <211> 469 <212> DNA <213> pig <400> 7 aggyactact gctactcccg ctattgagag gaggaaactg aggctcaggc taagagaact 60 ggccaaggtc cagggctgac aaaaggcaga ggtggggtcc aagccaggct ttttccaacc 120 gcccacctgg cccttcttgc ttcctctgtg tgttgtccty atttatagga caggttgggg 180 cagagccgga gagaaaccca gacacctggt gctagctagt gggaaggcag gcccaagccc 240 ccagcacctc ccagcygctg cggaagsggt tttctggatg accgatgcca cagaatctgg 300 tttgggaatc ccatyrgcac ccccyycatc tccaaactgc cctgagtcta ggcacccaca 360 gggctctggg gtaygtaggg ggaccatacc tggggtgggg tcacataatc agacacgtcc 420 atgactcggt tggcatagcg tccaaagccc ttcaccttgg tcaccaccg 469 <210> 8 <211> 563 <212> DNA <213> pig <400> 8 atcttctctc ggctggcatt gagccacagc atgtaggcag acatgggcct cttgggggca 60 ttgggatctt tgcccttctt cacctgcaga ggaacccaaa tggcttcagc catctatttc 120 ccacaaaccc ttgcattctc ccaaataaat tatttggatc gcctgcttaa ggggataaaa 180 tggaaaaaag cctaaacagc accaagccag actgagagct tcccaagggc aaagaccatg 240 cccttctccc ctctayaccc cactgtcatg ctccttaggg gcccctttcc ttgggctccc 300 aggacagagg aagcctgctc ctacttccga tctcccagaa gctaattatc ycaaggactt 360 tcaaagatgc tcctcaaggc catcatcact ggctacaaaa acccacctag aggaccrrtc 420 agcaggccct atggtggggg acagaagaag gtggcttccc ttccccaamg gccgcccccc 480 gcccccttag aggaggccgc acctctgtgg gcttcttgcg gctcttgcga tccttggcca 540 tcttggcctt tttaagctgc ttc 563 <210> 9 <211> 550 <212> DNA <213> pig <400> 9 gtggcagaac ctggggggca gtgcggagca cagggagtca gagcccaggc actctgccct 60 cttccagtac ctgctgtggg cctactgtgt gacaggtact aggaaaagag cagaaagctg 120 gacagaccca ctgcccagcc tcctgcagcc ctggagtttg gggagggcac ccacccgcct 180 gccctagcag gttatccaay aacagctcag cctcccacca tggaggaayg gctttcccat 240 ccatggaggg atggctgagg ctgcctggtc cacagcccga ggccgggtga ggacaggttc 300 cttggcgttc ccctgrtttc cctctccaga ggtcctgaga tgctgtggtc caactggaca 360 gagaggggty ggtgggactc acggttgccg tagcccacga gcagcacagc atggtcgatg 420 agccaagtgg tcgatgagct caggcggcct ngggctgtgg accaggcagc ctcagccatc 480 cctccatgga tgggaaagcc attcctccat ggtgggaggc tgagctgttg ttggataacc 540 tgctagggca 550 <210> 10 <211> 372 <212> DNA <213> pig <400> 10 aacgaggagt gtccccggct cagtggggca ggggcctgaa ccgaagccct ggtggcaagg 60 gaagcctgtc cagcactcag aggggggcca yttatactga tctcagccag ggacacrctc 120 tcctccttcc aggatcttct cccatccgaa cgtgctcccg gtgctgggtg cctgtcagtc 180 gccacctgct cctcacccga ccctcatcac acactggatg ccatacggat ccctgtacaa 240 cgtgctacac gagggcacca gtgagtcggg gaggccagcc ctcgccgagg gagcgggagg 300 ggaggcgtgt gcgcctcgcc agacggtctg actcttggct cccctctcag attttgtcgt 360 ggaccagagc ca 372 <210> 11 <211> 521 <212> DNA <213> pig <400> 11 gtaaggagac gctggacacc atgctggatg ggctgggccg catccgagac cagctttctg 60 ccgtggccaa caagtgagcc actgcccggt tgctcctggg cacccacctc ccagcacrtg 120 gtagccaccg ccacaggcac cagtggggac aaaggaggct gccacccaga mggcacagtc 180 ggaccagagg cagccaggcc cctacatgga tgttctcrct ttttccccct cttcccgaag 240 ttggtgagca taagcygctc tcctcmcagg gccctgtgtg gtacctgact cccagcatgg 300 cggggagarg gaccttgctt ggtcagctgc ctctgsctgg ctgattggaa aattcaggcc 360 caaattgtgg agctcgtttc cagctctgaa gacctctggg gagtcaggtg gctgatgcca 420 gcctgcttct ctatcagcga agccaggcag atcccgcagg gcagggccac tcaaacttac 480 ctgctgcagc gtgccygtcc caccctggtc cccagccttc r 521 <210> 12 <211> 489 <212> DNA <213> pig <400> 12 ctacgttccc aacatgctcg ggatcatccc ctatgctggg atagacctcg ccgtctacga 60 ggtgagccct ggaggactcc agccccttga gcagcacaag agactcagag cccccctccc 120 agccgtgggt cagacacccc gcygggtaga ccccctgggg accagcraga tcagaggctg 180 gtctcctcgc cggctctyct gtctgttgca agggtcyccc gtcacacygc ctgrcccccg 240 cacccccagg ttctgtaccc ccgagggctg ggcgggcaga ctccggagca caggagtcgg 300 gctccctggg gagggaaagg ggggtgctgt ctctgccccc tccccgctcc ccaccttatg 360 caggaatccc tagtgacagc aaaagcaaag ggcaggcggg ccaggagctc agcaagctcc 420 aggccaaccc aggccaagcg aattgggtta cagtggcctc ccgcagatyc catgtgatgg 480 ggaaacgcc 489 <210> 13 <211> 451 <212> DNA <213> pig <400> 13 agacccaagg cggggaatgg aactgttgac atttccggct tacccgatgt gagatactct 60 gcactgctcc aggaagactt tgcctattca gggtttgagt gttgggtaga aaatgaggat 120 cagattcagg agctacatag ctgtcatgct tcggaargcc ctggtaaccg acccaggaga 180 tgccgtggct gtgcarcttt gcgggttgca gattctgact atgaagctat ttgtaaggtg 240 cctcgaaagg tggccaaaag tatctcatgt ggcccttcta ccaggtggtc caccagcatt 300 tgcactgaag aaccagcttt gtctgaagtt gggccaccgg atttatcaat ttctaaggtt 360 cccccagatg gagaaagcat ggaggaagag acaccgggat cctctgtgga gtctttggat 420 gcaagtgtcc acgctagtcc tccacaacaa a 451 <210> 14 <211> 454 <212> DNA <213> Pig <400> 14 taccgcgtgc agggccgggc ggtgctgccc atccggtgga tggcctggga gtgtatcctc 60 atggtgagag gccctgccac aggcaggcag ggaggggagg ttaggggaac actkgctgcc 120 actcaaagct ctgggatctc attcagtcac ttgccttccc tggactgcat ttcctcatct 180 ctaaagtgaa ggtttggayc aatgctctat acgggagctc aagggactgg agaaagcagg 240 gaggtatggt gtgatgggaa agggtcttac aagagcgagt gtgagagatg gagtsagggc 300 agcagagagc aagagagata aggaggctag aaacagaagg caatgagttg ggagtcagga 360 ccagaaaatg ggggaaggat gggtagaaac gggaagcggt gaggactaga gccagagaag 420 agcagcaggc ttagtgggag agggccagct aagg 454 <210> 15 <211> 608 <212> DNA <213> pig <400> 15 ctgattccct ctctttctcc tataaactac tccgacctga aagttttcaa gagatgggac 60 atgggacatt gctctgctct cattaaggtg agacatatgg cagtctttct ctctgtcctt 120 ctttctgttc cacccagact tttttgatat gtcactcacg tatagcaaca tctcatcatt 180 cccagctata gctacatgtc agctcatggg ttcctctatc acaaaacyta agatctggaa 240 ggaactgatg gaaggaattg aaggtacatg atgacctctc tggttcttcc atcactttct 300 gctatgctgt atgtattttc cactcctatg ttccagaatc ttccattttg gaagctagac 360 agagtctttc tgttatgtgc atattaaagg ttaattttct gataataaat atagcaatag 420 ccaccttaat tgacacaatc cctgtacayg ttctayattt gtagccactt atctgtatac 480 ccctgtgcca ttccctgtga ttctgcctat aggttcttcc tggatttgag aacatctttt 540 ttgctcactc aagctggtac acatatgcag ccatgctcag gatatataaa cactgggact 600 tcaacatc 608 <210> 16 <211> 468 <212> DNA <213> pig <400> 16 ccacacaact acctgagctg aatggctgcc ccaaacaggt cttggtgagt tgtccttgtt 60 ttcttggagt ggaggcygcg gggggtgggg cagacccctt gggagtcagg gagacccagc 120 cttaaygagc ctgtcataaa gcktcctggg tgaagcactg ccttcagctc tyggcccacr 180 gaacatgctg ctgacggctg aatgcatgtg ggncagtgaa acagcaaaca ygccacttcc 240 taagagtcct ctcctttgga gagaagcatt ctagcctkta aggcaactcc tctgcttcct 300 atttgctctt ctaccatcaa atagccttct gcctctgttt tcctaggatt catgggggag 360 tcagcagaaa agtyccgagc atgacagaca acargatgcc cgcttcactc ccccattttc 420 tctaactgtt gtttttcttt ctcatctctc tcccctgaac aaagaaat 468 <210> 17 <211> 393 <212> DNA <213> pig <400> 17 atgtagtcgg gggtgtagcc cattccaaag agggagctgg tgggatgcag gtggcarggc 60 atacctgtcc ggatattcac atactcccca attccctagg gaagagaccc agcaggtgac 120 cgcatcagca maacaccsca cacctggcca gctaccccat cccttcatac tgttttgaca 180 ccggcttttg ggggagcccc agggttgcag gctgtacaat gagaaaggaa gaactctgcc 240 ctggtacaaa gcatcaggcc aggaaggggc tcaccttgag cttggctgcc tggtgaaaat 300 argcagcaca gatacacttc ctgacaatgt cccagtcggt gccacacgag gccaggctca 360 tccgctgctg caccatgatg tccttgagct gaa 393 <210> 18 <211> 508 <212> DNA <213> pig <400> 18 gctggcggct gtgtggcatc gtgagctggg gcaccggctg tgccctggcc caaaagccag 60 gcgtctacac caaagtcagt gacttccggg agtggatctt ccaggccata aaggtgaaay 120 ttgagtccag atgggagcca gagggcagga gggtttggga caccaarcaa gaaagggggg 180 agttcccact gtggctcagt gggttaagaa cccaactaat agccatgaag atggatayta 240 gtttgatccc yggtctcact cagtgggtta aggatccaaa gttgcttcca cctgtggtgt 300 aggcyggcag ytgcagctcc aattcaaccc ctagcctggg agcttccata tgccacragt 360 gtagccctaa aataaatcaa taagggagaa agggaggcag ggttttctgg aaacctatgc 420 tcyggcttga aagacaggtg catttcagag ggctcctggg aaggggaggt cagccatggg 480 cctttagggg ggaagcctgt cagaccca 508 <210> 19 <211> 402 <212> DNA <213> pig <400> 19 gtttcgccca gaacattcca ggcctggatc ttgctggccc tgagatagaa gtctaggggt 60 gagcggccag ctgccccatc gatggcagga cctctaagga gggagaggag aggagacagg 120 gcgaggggag gggagcccac cttcacagat gtcccaggca caccaggggt gttctgcaga 180 ggggtcctca gcctctgggt ggcgcaggtg gagcagggcc tgcacaggga ttcgggaggc 240 caggtagccc acggcrgtgt agggctcctg gatttgggca atggggtaga tccccgccag 300 gacctggggg aaacaaggac actcagcacc ttcctccatc tcctgcctcc tcccgcccgg 360 ccccctccrc cctcatacct gcagctgcct gggcagaagc ga 402 <210> 20 <211> 440 <212> DNA <213> pig <400> 20 ttgtccctgg cttgtagaat accaccgcca ggatgtcact agcaccccct gctggattga 60 gatccatctg cacggccccc tccagtggct ggataaagtt cttactcaaa tgggttcacc 120 tcacaatcct atttcgtctg tgtcttaagc ggcctgggct tctgcctctt gaaaactatt 180 gagccttgca tgtacttgaa ggatggatga gtcagacacc atctgaacts acaaaggagc 240 cttgataata cttgacctct gtgaccaact gatggattca gaaatttgaa aaccttggta 300 acatactgtt gatattgaga acctgtttag tttacatggt aacattctat ggtaaaatca 360 actaaaatgc atacttttag caggacttcg tgtatagtta aagaagagat ggccaagcca 420 gggacaaaat atctacatcc 440 <210> 21 <211> 431 <212> DNA <213> pig <400> 21 agagctgctg ggaggccctg gtcagccccc tggtgcagaa cgtcacctcc cccggtaact 60 gccccgcccc gcactagcct ctcgcgtggc cctgctcacc ggccccttct tgctctactc 120 tagagccacc tgggaaatgc tcttggcctt tttggtaccc acgttcgttt ggtatccatg 180 tgttcccctt ctcacagccc aggggcygcc tcctttcccc tgtcttccac gtgccagctg 240 ccaccayaag gtcaargggg tccttgcaac cttccttacc gtatggttct gtcccgttgc 300 cctttctctg cactcctgtc cagcccagct tccctgctgg cctgcagacg cgctctgcct 360 tggcttgttt tcccccrccc ccagatgagg atggcatcag ccccatgggc tggctgctgg 420 accagtacct g 431 <210> 22 <211> 413 <212> DNA <213> pig <400> 22 caagtgttag ttttaacaat gaggtttggg atcccgggca gctgagctct gaccgcagat 60 ccagtgaggg ccctgcttct gggcccctgg acccagggga gccccgcags ctccaggtga 120 caggagcgaa gggggtggcc ttcagccrtg aggatgagcg ggaacctctg ccrgcaccgg 180 aggasggagk tgggaragca ggcgtggacg gggacgctcc caccyrcccg aggccgcctt 240 gtgcccgagg ttagctgaac acggtgttgt gctgctgggt cacccggatg aaggtcgccc 300 tccggctgag ctctttgagy ttggcggccc ctacgtaggt gcaggtagac ctcagtcccc 360 cgagaatatc cagaatcgtg ttctccacgt cccctttgta aggtacttcc acg 413 <210> 23 <211> 568 <212> DNA <213> pig <400> 23 catacaagac cattacacgc tgctggaacg tcagatcatc atcgaggtta gactcctccg 60 tagtctctct gctttctgct tcagtgccag tgttcygtgc cattcagcat ctaggaggct 120 tctgcccaca ttttgcacac tttcatttcc taagagcctt tcattttctc tctctctgcr 180 tggyagtctt ccctccattg tcctcacgca tccgtttcct ctcacttgct gttgacctgg 240 aagtatyccc tcgtcatcct cgaactgcgc ttcagcgctg ctgctccggt cctcctccat 300 ccaactggac ctgtcatcct ggtgtgggct ttaagctccc ctgggcaacc ctaggcactg 360 ccttcttctc ttcctcccct cctkcctagc gtaggaaccc agtgcggtag tattaaagac 420 ttccctcckg cctctcctcc atgagcattg ggcttcctcc accacaggca aatgatcgtc 480 atctggagtc agcaggrcag acggagatct tccggaagca cccccgcaaa gcgtccatcc 540 tcaacatgcc gttagtgacg acgctctt 568 <210> 24 <211> 611 <212> DNA <213> pig <400> 24 cattgcaggc atcgccctgg tgcagcayca gcagggcctc gccaacccag gtgctgcccc 60 aggacccttc actctcactt cagaagtggg ttattcccag cgctgcccca gacctcttcc 120 tacactggcc cccagcgttt tcacctcctg cccagggttc tctgtgaaga tgtattrtaa 180 ttcccatcac ccccatttta gagtcgagga aactggrtct ctcacccagg agtccctycc 240 cagatggtgg tggacctggg actagcacca gtctgatctt tgccctttcc tgctcacccc 300 cagccccagc acttagcacc ctgaccccac ccacctgcct tctacttgtc atcccttgca 360 gcctctccag gcccaccacg cayccctcag catccagctt cctgtgggcc tggtctgtgt 420 tctgcatctt ycctgcttca gggctggctt cctttaaatg cccacggtgc acagctccgg 480 attcttctgt tctgcccact cctccccaca cgcctcccag catccacgcc tcccctagcg 540 ctggtgttcc cctcgcccag gtctggtggg cctgtcgcta tcctacgccc tgtccctgac 600 gggcctgtct c 611 <210> 25 <211> 353 <212> DNA <213> pig <400> 25 ttcggaaaaa tactgctatt tgcagaacga gaaatttgga ttgtttcaga actggaaaat 60 atcaatggcg tgaccgatgg ttacttaaat aggtaaayag tcgccgtgac cttagacgtt 120 tggcttttct caagcttcct tttgccagac ttcatttcct ttatgtgctg gcgttgcctg 180 tggtttgtct tttccttaga ggctcactct cattctcttg ggcttctgag ggagggtcct 240 gcagcctcga tcgtgcccat cctwctgttc craaagccac tgtctcttcc agccaaggca 300 gcctctcaag gscagaactt cgaatgccar cagtcatgca gctcggggcc tgg 353 <210> 26 <211> 387 <212> DNA <213> pig <400> 26 tctttggaaa ttatagaatc caacataaaa attaaaaaaa aaacccttcc ttctttgtta 60 ctataagtaa ctcatttaat cctagtttac agttgggaat aaacctaaca gagtagacgt 120 tgtatgatgt acacagtcat ataagctatt attaattata ttgcttattt caactaaaga 180 ttgaaaaatt acataaataa ttctgtatta tagagcagct gaagtctgaa aggagtcacc 240 ctttgttagc accagytgat tttggataga agtagtcact tagattctga cacaacattt 300 gatgcrgatt gtctaaagtg tatatttgtt tttcagctgt aagaaatgtg atcttacaga 360 agtggagctg gataatcaaa tcgttac 387 <210> 27 <211> 462 <212> DNA <213> pig <400> 27 tttccccttc ccctgaggtt tcaccctcct ccccaatttc tccgcacagt kcctggggac 60 ttgcgtctct tccatctagg atagaccttg ccctcaggta acctgggtat tggggccagr 120 tctgtgccta taccccgccc ttcccccagc tagaccaggg agtgaagtgg cccctagtgt 180 ctccacgtgt cctcccctct ctcccagctc tgcacttcca ctctctttca gatctctagc 240 tcctacacaa ccaccmctac catcacagca ccttcctcca gggtcctgca gaatggaggg 300 ggcaagttgg agaagactcc ccaataygtg gaagaagaca tccgccctga aatgaaagat 360 gacatctatg acccaaccta ccaggataag gagggcccaa ggcccaagct tgaatatgtt 420 tggagaaaca tcatcctcat gagtctgcta cacttgggag cc 462 <210> 28 <211> 520 <212> DNA <213> pig <400> 28 cctgctcccg ttgctccatg cagccctcac ttcctccttt tgcttytcca gatcccgcac 60 caggtctcgg aaattctgct ccargacggc cttctcattg gtggtgaagc tctgygtcca 120 gmgtaaatta gagagaggaa ggaggctttc agtaatgaac aaaacctccc tagtaggtgc 180 atctttaggt tcccaacaca gagtcagggc atttctatgc wctcacaccg caagcctgtt 240 caaccaagaa tctcattcaa aggcwacacc gaggcatgcc atctattggt ggagatgggc 300 aggctttttt acagtccacc ttttgttgtc tatctgcagc tcayccccct tggtgggttg 360 acatgaaccc tcaytccatc cttgggcaac tccatgggcc caaaagtttc cagatgagtc 420 aarttctgtt cattgaaacc tcaaccagaa tcraacatca gtcakaaagt aaatggaggg 480 ggtgtttctg tagccagggt caaggggcac tgatctcagg 520 <210> 29 <211> 498 <212> DNA <213> pig <400> 29 ttccagcact tcaatgagtg catcttccac ttcaacagct acgagaagca tgaaaagtac 60 aacagatttc cccagtcgga gaggtcagtg ctgcaggggg tgctgggarg gtggctcagg 120 tacagtgctg tggtgagatg gtccaattct gccctagaga aaagcggcta ttttcgctga 180 aggggaagac aaataaggag aaacggatga aaatctacag tttcctcctg gaacacttca 240 cagatgagca gcggttcaac atcacctcca aaatctgcct cagcacactg ggtaggactg 300 gttggagtgt agggatgaac taggtgagca agcaaactgc tgcctgtctc atggcccagc 360 cactctgcag caaagagggc ccctctgtcc ttggccctca gctggctgtk cgttcccctc 420 aggcagcaat tctcagaagc ccatctctgc ttcctccagc ttgctttgcc gatggcatcc 480 tgcccctgga catggaag 498 <210> 30 <211> 462 <212> DNA <213> pig <400> 30 gacaacatgg gcttagtctt accgcctcgt gtagcctgtg tccaggtaag gaaaatgctt 60 ctgattatca ttgcttttat aaaaatagaa gccattgtga gtaaagaaaa tttcaaagtt 120 taacttactg aatgtcattc aggtagattt tgctgataca gaaacaatat agaatagagt 180 ctagacctca gtattatgta actactrttt gtgtgactgt tttttactct taattttttt 240 acccatttta taaagctttt agaaattatt ttttgaagca gtgtataata aatgaacaaa 300 aatgcattca ttatgracaa acactacgcc gctagttgcc aggtattcwg ygtgggttag 360 aaatcacaca ggttgatttg tgtgarggtt tgtagtcact ggtatttgga ctyctggatg 420 cttaygtggt gatgtgactg cattacttct ctgggctgct tc 462 <210> 31 <211> 472 <212> DNA <213> pig <400> 31 tgatgtggga agcgttttcc tatggacaga agccrtatcg ggtgagctcc cggcgcttcg 60 ctycctaatt acgcagccrt cagaacagat gggcagcgga tgatctttgc aggaycctga 120 caatcakcaa atccggacac tctttctggg tctttatctt ttgaaagtgg acagtaaata 180 taatctcagt ttattctaaa tggaaagaaa catttgmagc tgtctggaca gtatgtgttt 240 ttcattgatg cccacatata aatgggcata aaatatatac ccrcatcaac attaattaga 300 gtggaaatag aaataatggc tatttccatt atcaagtgtg tggctcggtt acttttttca 360 tcaaaatata tatactgaaa aatgcacaga tcctaggata cagcttgatg aattttcaca 420 attgggggac catgaaacca gcccccaaat gaagaaacag aacagaaccc ca 472 <210> 32 <211> 361 <212> DNA <213> pig <400> 32 acaagcaggt gagaccatcc tctcttgaaa gcacaccccc caacccacac ccacacccac 60 ccattccagc ccagagcatc cagaatgctg ccggagccct aactcccctt ctctttccac 120 aagctgacct ggattgcact caaggtatta ggcatgagac ctgggcgtga gcttgtctgt 180 gatgattcag cyttcccgtg tggattagag agagacttgc aacaactgaa cttgggggtg 240 accctcaggg gcttgsatct ctgtccctcc atttcagccc cttcccctcc tccccacccc 300 tgcagtttgc actctataag aagatgaccc aggctgccat cctgatccag agcaagttcg 360 a 361 <210> 33 <211> 485 <212> DNA <213> pig <400> 33 cctgcatcct gagactggcc ctcagactga aggagcccct tctgcggggc ytcccactca 60 caggcgggcg tccccgtacc tacacrtaca gtgacgggga ctggccagca gagggcgccg 120 aaagctcact gtgggacccg cctttgcttt tcaggatggt gagttttttt gttttttcgt 180 tgtgtgtttt tttggtttgc tttttgtttt taacttttat tgaagtatag tcgatttaaa 240 atgtgataat caggayggcg ctttattgtg acttacggag ctgggtggct ttaagcaaat 300 cctttccttt cctgagcctg agmctgacct cggtcccttc catctcagaa wtgtcttcct 360 cccagcaggt tcctccccag gagccacacc tcccgcagca ccaccgcccc scacctggtg 420 ccrggggacc acgtacccgg ctggaggtga agtctcgggt ctttgcgcga agcttattga 480 cctga 485 <210> 34 <211> 568 <212> DNA <213> pig <400> 34 catcatccct ccattcctgg cctatggcga gaaaggctat ggtgagggca ggcagggacy 60 tggggattct ctggaagtgg gctgcacaca gttgttcagg ttgtgtactg cacaaggaca 120 tctagccaag gaggcaagta gggacgaaat ctagcccttg gtgatgactt ccctaagaag 180 aggtgcttta tcctgatkca cacaaaggct cagtatgggc tggtggtggc tcccgggaaa 240 aactcagctt aggtctcgca agggaagaac caacyggggc tgctgatgag caggaaagcg 300 ctctggaaac cagggttggc gcctttttgy gtgatgctca cttacgcctc cctgagagcc 360 ctgttttgct ctccacttgt atggttcaag cctatccctt ccccagggac tgtgatcccc 420 ccgcaggcct ccctcgtctt ccatgtccta ctgattgacg tccacaaccc caaggacact 480 gtccagctgg agacgctgga gctgccacct ggctgcgttc ggagggccgt ggctggggac 540 ttcatgcgtt accactacaa cggctccc 568 <210> 35 <211> 426 <212> DNA <213> pig <400> 35 acattattta gaaagtgaag cctgaaattc ggctgctgat cgagaaatgc aacacggtga 60 ggcaggggct gatgacctag gggctgaccc caaatagcct ggcttgagct atgcaagaca 120 atggatgtgg ggccagaggc gtggaggtga tgttggagtt ggcagactaa wtatcttgac 180 tcctgtgctc ctggcatctg gccccagcag catgagttgt atatgtcttg gcttaagtag 240 aaaaggctaa gatcctcata tgcatatttt ggtcccctca cccttcaggt caaaatgtgg 300 gtacaactcc tgattcctag gatagaagat gggaacaact ttggggtgtc cattcaggta 360 atgtgcttgc attggaaatg ggagaggaag gtttgggagg taatctcatc tcccctgctt 420 ttgtgt 426 <210> 36 <211> 532 <212> DNA <213> pig <400> 36 ctgctggctg gagaacggac tcctccaact ataaccccgt ggagatgtgg aactctggct 60 gccagattgg tacgggctgg cygagacggg gaggaggcct gggtgayggt ttctgcctgg 120 agggccaggg gccaggagcc tctggggacc tgggcagagc cagatacagg gatttgtggg 180 ctcaggatct ggcagtctgt ttggaaatat cccccagcag cacatggcag catmtgaaat 240 ctgtcatcct ttgaatcctg gcaccagaaa tgcatgggyg ttggtgtggt gggtcaggga 300 gggtggcagg tgggtatcag gcatcagagt gatcctggac cctgcttttg cttaggactc 360 tgtaccccca gtatttcwwa gggcaaccca cagcctctga ttgctctgtc ctgcccttag 420 tggccctgaa cttccagaca cctgggccag agatggacgt gtaccagggc ckcttccagg 480 acaacggggc ctgtgggtat gtgctgaagc ctgccttcct gcgagacccc aa 532 <210> 37 <211> 429 <212> DNA <213> pig <400> 37 cagtcgtggc agagtgagcg ggagatcttc agcacgcccg gcatgaagca cgagaacctg 60 ctacagttca ttgccgctga gaagcgaggc tccaacctgg aggtggagct gtggctcatc 120 acggccttcc acgacaaggt gagccatgct tgtggctccc gctcccacgt aggtgaacag 180 gccctcctgt ggctttccat ggctgtggat gtgaaggtgt gcagtcaraa accctamccc 240 tgggatcact tcttaggaat agtaatgact tcatgatcac caccccctac agcgcctttc 300 caaccccttg tggcctcatc kcttccagcc tatagcccac agagacagcc ctcctgggct 360 gggctgggct gggttctgtc ctgtgcccag agcctgtgct gtctcctcta gggctccctc 420 acagattac 429 <210> 38 <211> 272 <212> DNA <213> pig <400> 38 ctccaaccaa caagctcctc tatgccaagg agattcctga gtaccggaaa atcgtgcagc 60 gctactacaa acagatccat gacatgaccc cactcagtga gcaggagatg aatgcgcacc 120 tggctgagga gtcgagggtg cggccggctc tgaggggacc ttgcctggtg ggggatcccg 180 aggaccagtg gtggcagcga ggggctgtgt ctaaggagca gccatggctg ggctggccrg 240 gtgctgaccg tggagttaac ccccttccca gc 272 <210> 39 <211> 390 <212> DNA <213> pig <400> 39 cgaggcggct ctcgcccgcg ccgagctcga aaagcgcatt gacagtctga tggacgaaat 60 ygcctttctg aagaaagtgc acgaagagga gatcgccgag ctgcaggckc agatccagta 120 cgcgcagatc tccgtggaga tggatgtgtc ctccaagccc gacctctccg ccgcgctcaa 180 ggacatccgc gcccagtatg agaagctggc cgccaagaac atgcagaacg ccgaagagtg 240 gttcaagagc cgcttyacgg tgctgaccga gagcgccgcc aagaacaccg atgcggtgcg 300 cgcagccaag gacgaggtgt ccgagagccg ccgactgctc aaggccaaga ccctggagat 360 cgaagcctgc cggggcatga acgaagcgct 390 <210> 40 <211> 506 <212> DNA <213> pig <400> 40 gtgcagagct gattgagcag ccgctccgca tcagcctcgg ggacgcccag ctctatgcgc 60 ccaatgcccc gctcagcggg ccggtgctgg ccctcatcct caacatcctc aaaggtgagc 120 gccctccgca gccctgcaga gcagtgatct gggtgtggct gctcttcaag gtctgggtgc 180 cacagtgttg gccagagttc actgctgagt ggcctggtcc agagggcaca tctgggaaac 240 ctcagtgstc mtccgagagc atgtggacca gaagccctgt ggctggacct gtgaggccca 300 tggcttcctt ccagccatca gtgcttccaa agcagctgct gccgttgggg attaaaaggt 360 ccccatctca aggtagccaa gtggcccagg gaggggtcaa ccacaccccc agggcactca 420 gctgtctggt caagctggga catccagggc caccaacctg cctggctctg tcaatcaggg 480 tacaacttct cccgggcaag tgtgga 506 <210> 41 <211> 511 <212> DNA <213> pig <400> 41 tttaccttat caaagtacat caagttcctc ctccatgaac ccattgtcaa caagttccgg 60 gaatacaagg taaggcctcg ctctacggtc tacatgagtt ccttggcagc tctctgtata 120 cctgctaatg cttaccttgg gcatattgat ctctctgaga caaggactac aaagggtgag 180 gcaattctgc ctcagaattg tggcggcggt ggggtggagg attgacaaag atctcaggta 240 tggaaatcat ttatayagaa cctggccagt gattaatgtt ttacctgtca ttcttttccc 300 ctggttcttt tggaaaagag gaaaattact gcctctgaag caaagattgt ggtctttcag 360 ggatgctctg gtgtgttttc tgcccaaaga aattgcttcc attagcgttc tttctggaat 420 tgctcccaag agataaggct ttccatccca caaatagaaa ctgttaaatg cttaaatacc 480 acagggaaag taaaaaccta aatatagcca a 511 <210> 42 <211> 470 <212> DNA <213> pig <400> 42 gaattcagaa aagaactttc caatggacat gcctgatgat tatgagactc agcagtggcc 60 agaaaggaag ctcaagcaca tgcgtttccc tcctatgtat gaagagaatt ccagagacaa 120 cccctttaaa cgcacaaatg aaatcgtgga ggaacagtat actcctcaaa gtcttgctac 180 attggaatct gtcttccaag agctggggaa actgrcagga cccaacaacc agaagcgtga 240 gagggttgat gaggagcaaa aactttacac agatgatgaa gatgatatyt acaaggccaa 300 taacattgcc tatgaagatg tggttggggg agaagattgg aacccagtag aggaaaaaat 360 agagagtcaa acccaggaag aggtaagaga cagcaaggag aatatagaaa aaaatgaaca 420 aatcaatgat gaaatgaagc gttcagggca gatgggtctc caagatgaag 470 <210> 43 <211> 439 <212> DNA <213> pig <400> 43 gacagccaga gattcaatcc ttagacacaa gattctgggt aatgagagcg aagaggaatt 60 tctaactgga atagagaatt tggaaatcag agaaacagaa accattaatc cccttgatgt 120 cctgtgtgcc tctatgctgt gttcagacag ctctttgcaa cgcgaagtca tgtcaaacat 180 gtatcaatgc cagtttgctc ttcccctgct actgccagat gcagaaaaca acaagagcat 240 tttaatgctg ggtgcyatga aggacattrt gaaggagcag tcaacacagc cttcaggagg 300 tcctacagag ggtacggaaa agcttctgac tctcatgaag atgcccgtca tctcttttgt 360 gcgtctagga tactgtagct tctccaagtc cagaatcctc aacacactgc tcagccctgc 420 ccacctgaaa tcacacaaa 439 <210> 44 <211> 449 <212> DNA <213> pig <400> 44 gttcaccaag aaggagctgc agtccctcta caggggcttc aagaatgtga gtgctcccca 60 ttcccctggg agaggacttt gttccccagg ccctcttgtc cttggmccca ggagggaggg 120 actctgatgc aggaggacct tctkgaaatt ttccatggca tggtagatat cccagggcct 180 ttatggggct cacrttttgt gagagttcat gttctagggg gtgggctgcc ccagaatcag 240 tgttctgaag gccccgtgct ccctgctgtg tgtgggagga acacgcagtk ggatccagct 300 tcccgccagg cccaccyggg gctggtagag cccagtggtg cctcagccag caggcgtccc 360 ccacggggag gagagaggcc agccctgtgg ctcggggtgc ggggcggggt ggctggggtc 420 actgagaggg agaccttcct gctgcagga 449 <210> 45 <211> 481 <212> DNA <213> pig <400> 45 gtcycccgtc acacygcctg rcccccgcac ccccaggttc tgtacccccg agggctgggc 60 gggcagactc cggagcacag gagtcgggct ccctggggag ggaaaggggg gtgctgtctc 120 tgccccctcc ccgctcccca ccttatgcag gaatccctag tgacagcaaa agcaaagggc 180 aggcgggcca ggagctcagc aagctccagg ccaacccagg ccaagcgaat tgggttacag 240 tggcctcccg cagatyccat gtgatgggga aacgcctcct gtggggatcc aataactgtc 300 ccccagctcc cccgcccaga cgctcactgc ctcgcaagcr cttccaytct ggggtctgca 360 ggcrctgtgc tcaccccctc cccctygccc cttccagaca ctcaagaacg cctggctgca 420 gcgctacgca gtgaacagcg cagaccccgg cgtgtttgtg ctcctggcct gtggcaccat 480 g 481 <210> 46 <211> 313 <212> DNA <213> pig <400> 46 tattcccatc atcaaactgg aatggcattc cccatgggct gtcatccctg tcttcctygc 60 aatgttgggc atcatcgcca ctatatttgt catggccact ttcatccgct acaatgacac 120 tcccatcgtc cgggcatctg ggagggaact gagctatgtt ctgttaactg gcatctttct 180 ctgctacatc atcactttct tgatgatagc caaacctgat gtggcagtgt gttctttccg 240 gagagttttc ttgggcttgg gaatgtgcat cagttatgca gccctcttga caaaaaccaa 300 tcggatttat cgc 313 <210> 47 <211> 385 <212> DNA <213> pig <400> 47 ggccttcaat gtgagcgccc gggggacgcg cgggcggggc gggccgcagc cgggccagcc 60 cttcccacag cctgtgtctc ccgcagatgt ttgtgcgtct ctttgtggat gataacttgg 120 accgcatggk gcccatctcc aagcagccca aggagaagat ccaggccatc attgagtcgt 180 gcagccggca gttccccgag ttccaggagc gggcccgcaa gcgcatccgc acgtacctca 240 agtcctgccg gcgcatgaag aaraatggca tggagatggt gagccccgag tcctggcccg 300 ctgcccctgt tccactctgt gctctgctcc ggggctcccc gacatcctcc cagcgggggc 360 gcttcgccca cagccctcct agtcc 385 <210> 48 <211> 608 <212> DNA <213> pig <400> 48 cggcctgtac cccagggatc cccctgccta gccstttgta ggggatggtg tcgggccctc 60 cctccccatc tggtgctcct gtggcttctg gaagggccac tttttcttcc cccggagggc 120 aggctcagcc tmccgcaggc ctggccctca caccaggtcg aggagcctct ggcatctcgg 180 gctyggccct gcctttgggt tcccctctgg gggtgaccag ggttccatag gtgtggctgg 240 cctcagaggt gcctttgggc ctggcctgtc tttccagtgc tcctcctgcg cccagcagtt 300 catgcagaag aaggacttgc agagccatat gatcaagctg cacggagccc ccaagcccca 360 cgctgtaagt gccaggccgg gctgagcatc ggggccggcg tgttcccagc aagagtgagg 420 cggctgtgrc tgcgtctaca atgggtgggc tgtgaggttg ccaccaggtg gcaggggcgg 480 ccrggggggt tcccgggggc cctctggggc cctagggaca gcccttcctg ccctttactc 540 tggccctgct ccctctgccc cttagtgtcc cacttgtgcc aagtgcttct gtcccgaacg 600 gaactgca 608 <210> 49 <211> 465 <212> DNA <213> pig <400> 49 ccgctggcgc ccgacgggat cctggtgttc agcggaggcc agagtgggcc tgtggaggac 60 tttgtgtccc tggcgatggt tggcggccat ctggagttcc gttacgagtt gggatcaggt 120 gagcactgcc rccaaatgca gatgggcata ggcactaagc cctgtgcccc raggaggcgc 180 gaaggagtga attctgaagt cagaccaact ggagtccccg ttcttcgttg cttctctctg 240 tgtgactgga agcaagtccc tggatctctc aggttcctct gggacascct agacaggaag 300 gaagttcccc atctgctcaa gttccaggag ggggtgggac agggcagtga ccatccctgt 360 gccaaccctg ccgggcatcc tccccagggc tggccattct gcggagctcc gagccactgg 420 ccctgggccg ctggcaccac gtgtccgcag agcgtttcaa caaga 465 <210> 50 <211> 376 <212> DNA <213> pig <400> 50 gctggcacgc ggctctcacg tggacgtcct gtgggccccg ctttcaatga cgggtttctt 60 tcccagggat ggtgaagcac attacaggca gttacaaggt tacctaccay ccagatggcc 120 cagagggtca agcctatgag attgacttca cgcccccgtt ccggaaaatc agcatggtgg 180 aagagcttga gaaagccctg ggaatgaagc tgccggacac taacctcttt gaaacggaag 240 gtaaagtgat gcgygygctt ctctgctgta gggcctgcct tcctttkcag ctctgagtta 300 gatgaggtcg ggactagaat gtcccctgct cttctctttg tgtacttttt aaggggtggt 360 atgatgtctt ctgtcc 376 <210> 51 <211> 484 <212> DNA <213> pig <400> 51 cctcttcctc atcacaggcg gctccctcag ggagcacccg gtgttgggag gccaggaagt 60 tgaacatgtc aaaggtgcac ttcctgcagg ggaaggaagg aaaggaggga gggtcagagc 120 cattctttta agaagatgct ccccctccat tctttggcct gggcctgccr ctggyggcgt 180 aagaagaata ctgcttctac tgaagacaca gcaaaagggg aacagatggg attcattctt 240 gtaacgtgaa ctctagaaat aatttctgga gcagtcgagt gtcttctccc tagacctccg 300 tttcctttaa ttcccaccct gagccaggca ccacacccca gacctctcac cggagataga 360 cctcagcgcg ggctgcmcca tggggattca ggggtggttc ctcttggccc tctccctgct 420 ggtggtagcg gaacttatag tgctggcagc gctgggctcc aggcagctgc tctgccagga 480 agat 484 <110> Chungbuk National University Industry Academic Cooperation Foundation <120> Single Nucleotide Polymorphism Markers in Swine and Method for          Determination of Demestic Pork Origin by Using the Same <160> 51 <170> KopatentIn 1.71 <210> 1 <211> 358 <212> DNA <213> Pig <400> 1 ttcacaggcg atgcctatgt catcctgaag acggtgcagc tgaggaacgg gaacctgcag 60 tatgacctcc actactggct gggtgaggct ggcccccacc ccrgtccctc cacctccacc 120 ccagcccctc tgctgcagag cacagacctt tgagtcatgg tctccaggaa gcgcccatga 180 gaattacggg actgttgagc atcaagtgtg tgccaggccc ttggttatgt gttcccaaga 240 ctctagagcc acctgcccaa gttyagactt cagctctgcc ctttggcaag atatccagtg 300 tctctgtgaa gtggacatga tgatcgcacc agaccacctc ataggactgt tgtgaggg 358 <210> 2 <211> 470 <212> DNA <213> Pig <400> 2 gagaaagtcc agactcggct ggaggagacc caggcgctgc tgcggaagaa ggagaagtca 60 ggcaccttcc cgggcccctg ctycctgcac ccccctcatr ccagcagctc cctgcctcct 120 agcccaggcc cttctgtagt aagactctcc ccagggggac agacttcctt ccccattgat 180 ggccccctgg tctcattgca rtyggagcct cttctgcccc tggctcctca ccagcagggc 240 tactccaagg acctgtcagg actgagaatt aggggcagag ccacggkgaa gggacactgc 300 ccaagcccgg gttctcttcc gcagagagtt tgaggagacg atggatgcac ttcaggctga 360 cattgaccag ctggaggcag agaaggcaga gttaaagcaa cggctgaaca gccagtccaa 420 gcgcacaatc gaggggatcc ggggaccccc tccctcgggt attgctaccc 470 <210> 3 <211> 551 <212> DNA <213> Pig <400> 3 gtgaggtaat cctttatttt cttacattca cttttgaagt attgacttcc tttttttagt 60 ctkttgtgat atatgcagat atcacccaaa gtaaaatgtr ttgagaaaat rgcagagctt 120 taacatctgc tgaacttctg aaattattaa ttttaatttt agattgtact gtgctctttt 180 gtttccacta ctgttgagca aasgaaaaca ccgatgtaga aaaaaagtag ctttgctcta 240 ttgtgcacta cagaatagta gagacacatt tttattagca gctgtggaaa aaaaatgttt 300 ctttttgtag gaggggcatt acagcagctt ttgtgccatc cctaatccat tttaaaattt 360 atttctaggg aaacagtgct cttaaaacat tggaaatgaa tccttgtacc ccaaataatg 420 ttgaggttct ggaaactcga tcagcagttc ctaaaataga agatacagaa ataatctctc 480 cagtagctga gcgtcyggaa gagagctctg atgcagaacc cgaaaaccat gtggttgtat 540 cctattgtcc a 551 <210> 4 <211> 474 <212> DNA <213> Pig <400> 4 gggggccggt gctctgacaa ccccgaggga gggtacacct gccgctgccc tgggggcttc 60 tctggcttta actgtgagaa gaagatggat tcctgcactt cctcaccctg ttccaatggt 120 aagggggcca cctgacccac ttgagacttg gtcagctggt cgacactgac gaggacgtgg 180 caggagcaca ggaccttagt tttatgctga gctcatcayt ttgtgagcta ccttgcattt 240 caggagctct tttgtctgag cagtgagaaa cttcctagca agtctttcct ggagtctggg 300 aacacccagg gagtgagaaa ggcaggcagg tgtgttcctt ctctgtgagg atgcctcagg 360 cagagagatg cagtgatttc tcctggtgcc tcaggtgcgg gagaccccag ggatccgcga 420 gtcagcgcca gtgccagccc agcctctctg ctttaggagg gaagcgcagc tgta 474 <210> 5 <211> 511 <212> DNA <213> Pig <400> 5 tgccatgaat ggtgatgaag gttgcagatg tggctcatat cccacattam wgtggctgtg 60 actgtggccg gcagctgcag ctcatatttg acccctagcc tgggaatctc catatgctgc 120 aggtgcaacc ctaaaaagca aaaaacaaaa aacaaaaaac aaaaccccaa aaaacaagat 180 caacttagac tttcattcta taaggacaga gagactacag tgaaaggaca gtaagcacat 240 gtatccagtg cttatratgt gctaggttct ctttttaagt gatgtactaa ctcatttaat 300 ccctaagaca atcctgtgag gttagggaac ttgcccatag tcagaacatt tttctggggg 360 cagttatccc ttgtcaaggt tcctgcaggg gaggatccct ggccgtggta gcagctgctg 420 cttttctaat gtggggactt ggtatcctgc ctagctaagc ctgagggtga aggctttgaa 480 gcggcaggtg gatgaagcag aagaggaaat t 511 <210> 6 <211> 358 <212> DNA <213> pig <400> 6 ttcacaggcg atgcctatgt catcctgaag acggtgcagc tgaggaacgg gaacctgcag 60 tatgacctcc actactggct gggtgaggct ggcccccacc ccrgtccctc cacctccacc 120 ccagcccctc tgctgcagag cacagacctt tgagtcatgg tctccaggaa gcgcccatga 180 gaattacggg actgttgagc atcaagtgtg tgccaggccc ttggttatgt gttcccaaga 240 ctctagagcc acctgcccaa gttcagactt cagctctgcc ctttggcaar atatccagtg 300 tctctgtgaa gtggacatga tgatcgcacc agaccacctc ataggactgt tgtgaggg 358 <210> 7 <211> 469 <212> DNA <213> pig <400> 7 aggyactact gctactcccg ctattgagag gaggaaactg aggctcaggc taagagaact 60 ggccaaggtc cagggctgac aaaaggcaga ggtggggtcc aagccaggct ttttccaacc 120 gcccacctgg cccttcttgc ttcctctgtg tgttgtccty atttatagga caggttgggg 180 cagagccgga gagaaaccca gacacctggt gctagctagt gggaaggcag gcccaagccc 240 ccagcacctc ccagcygctg cggaagsggt tttctggatg accgatgcca cagaatctgg 300 tttgggaatc ccatyrgcac ccccyycatc tccaaactgc cctgagtcta ggcacccaca 360 gggctctggg gtaygtaggg ggaccatacc tggggtgggg tcacataatc agacacgtcc 420 atgactcggt tggcatagcg tccaaagccc ttcaccttgg tcaccaccg 469 <210> 8 <211> 563 <212> DNA <213> pig <400> 8 atcttctctc ggctggcatt gagccacagc atgtaggcag acatgggcct cttgggggca 60 ttgggatctt tgcccttctt cacctgcaga ggaacccaaa tggcttcagc catctatttc 120 ccacaaaccc ttgcattctc ccaaataaat tatttggatc gcctgcttaa ggggataaaa 180 tggaaaaaag cctaaacagc accaagccag actgagagct tcccaagggc aaagaccatg 240 cccttctccc ctctayaccc cactgtcatg ctccttaggg gcccctttcc ttgggctccc 300 aggacagagg aagcctgctc ctacttccga tctcccagaa gctaattatc ycaaggactt 360 tcaaagatgc tcctcaaggc catcatcact ggctacaaaa acccacctag aggaccrrtc 420 agcaggccct atggtggggg acagaagaag gtggcttccc ttccccaamg gccgcccccc 480 gcccccttag aggaggccgc acctctgtgg gcttcttgcg gctcttgcga tccttggcca 540 tcttggcctt tttaagctgc ttc 563 <210> 9 <211> 550 <212> DNA <213> pig <400> 9 gtggcagaac ctggggggca gtgcggagca cagggagtca gagcccaggc actctgccct 60 cttccagtac ctgctgtggg cctactgtgt gacaggtact aggaaaagag cagaaagctg 120 gacagaccca ctgcccagcc tcctgcagcc ctggagtttg gggagggcac ccacccgcct 180 gccctagcag gttatccaay aacagctcag cctcccacca tggaggaayg gctttcccat 240 ccatggaggg atggctgagg ctgcctggtc cacagcccga ggccgggtga ggacaggttc 300 cttggcgttc ccctgrtttc cctctccaga ggtcctgaga tgctgtggtc caactggaca 360 gagaggggty ggtgggactc acggttgccg tagcccacga gcagcacagc atggtcgatg 420 agccaagtgg tcgatgagct caggcggcct ngggctgtgg accaggcagc ctcagccatc 480 cctccatgga tgggaaagcc attcctccat ggtgggaggc tgagctgttg ttggataacc 540 tgctagggca 550 <210> 10 <211> 372 <212> DNA <213> pig <400> 10 aacgaggagt gtccccggct cagtggggca ggggcctgaa ccgaagccct ggtggcaagg 60 gaagcctgtc cagcactcag aggggggcca yttatactga tctcagccag ggacacrctc 120 tcctccttcc aggatcttct cccatccgaa cgtgctcccg gtgctgggtg cctgtcagtc 180 gccacctgct cctcacccga ccctcatcac acactggatg ccatacggat ccctgtacaa 240 cgtgctacac gagggcacca gtgagtcggg gaggccagcc ctcgccgagg gagcgggagg 300 ggaggcgtgt gcgcctcgcc agacggtctg actcttggct cccctctcag attttgtcgt 360 ggaccagagc ca 372 <210> 11 <211> 521 <212> DNA <213> pig <400> 11 gtaaggagac gctggacacc atgctggatg ggctgggccg catccgagac cagctttctg 60 ccgtggccaa caagtgagcc actgcccggt tgctcctggg cacccacctc ccagcacrtg 120 gtagccaccg ccacaggcac cagtggggac aaaggaggct gccacccaga mggcacagtc 180 ggaccagagg cagccaggcc cctacatgga tgttctcrct ttttccccct cttcccgaag 240 ttggtgagca taagcygctc tcctcmcagg gccctgtgtg gtacctgact cccagcatgg 300 cggggagarg gaccttgctt ggtcagctgc ctctgsctgg ctgattggaa aattcaggcc 360 caaattgtgg agctcgtttc cagctctgaa gacctctggg gagtcaggtg gctgatgcca 420 gcctgcttct ctatcagcga agccaggcag atcccgcagg gcagggccac tcaaacttac 480 ctgctgcagc gtgccygtcc caccctggtc cccagccttc r 521 <210> 12 <211> 489 <212> DNA <213> pig <400> 12 ctacgttccc aacatgctcg ggatcatccc ctatgctggg atagacctcg ccgtctacga 60 ggtgagccct ggaggactcc agccccttga gcagcacaag agactcagag cccccctccc 120 agccgtgggt cagacacccc gcygggtaga ccccctgggg accagcraga tcagaggctg 180 gtctcctcgc cggctctyct gtctgttgca agggtcyccc gtcacacygc ctgrcccccg 240 cacccccagg ttctgtaccc ccgagggctg ggcgggcaga ctccggagca caggagtcgg 300 gctccctggg gagggaaagg ggggtgctgt ctctgccccc tccccgctcc ccaccttatg 360 caggaatccc tagtgacagc aaaagcaaag ggcaggcggg ccaggagctc agcaagctcc 420 aggccaaccc aggccaagcg aattgggtta cagtggcctc ccgcagatyc catgtgatgg 480 ggaaacgcc 489 <210> 13 <211> 451 <212> DNA <213> pig <400> 13 agacccaagg cggggaatgg aactgttgac atttccggct tacccgatgt gagatactct 60 gcactgctcc aggaagactt tgcctattca gggtttgagt gttgggtaga aaatgaggat 120 cagattcagg agctacatag ctgtcatgct tcggaargcc ctggtaaccg acccaggaga 180 tgccgtggct gtgcarcttt gcgggttgca gattctgact atgaagctat ttgtaaggtg 240 cctcgaaagg tggccaaaag tatctcatgt ggcccttcta ccaggtggtc caccagcatt 300 tgcactgaag aaccagcttt gtctgaagtt gggccaccgg atttatcaat ttctaaggtt 360 cccccagatg gagaaagcat ggaggaagag acaccgggat cctctgtgga gtctttggat 420 gcaagtgtcc acgctagtcc tccacaacaa a 451 <210> 14 <211> 454 <212> DNA <213> Pig <400> 14 taccgcgtgc agggccgggc ggtgctgccc atccggtgga tggcctggga gtgtatcctc 60 atggtgagag gccctgccac aggcaggcag ggaggggagg ttaggggaac actkgctgcc 120 actcaaagct ctgggatctc attcagtcac ttgccttccc tggactgcat ttcctcatct 180 ctaaagtgaa ggtttggayc aatgctctat acgggagctc aagggactgg agaaagcagg 240 gaggtatggt gtgatgggaa agggtcttac aagagcgagt gtgagagatg gagtsagggc 300 agcagagagc aagagagata aggaggctag aaacagaagg caatgagttg ggagtcagga 360 ccagaaaatg ggggaaggat gggtagaaac gggaagcggt gaggactaga gccagagaag 420 agcagcaggc ttagtgggag agggccagct aagg 454 <210> 15 <211> 608 <212> DNA <213> pig <400> 15 ctgattccct ctctttctcc tataaactac tccgacctga aagttttcaa gagatgggac 60 atgggacatt gctctgctct cattaaggtg agacatatgg cagtctttct ctctgtcctt 120 ctttctgttc cacccagact tttttgatat gtcactcacg tatagcaaca tctcatcatt 180 cccagctata gctacatgtc agctcatggg ttcctctatc acaaaacyta agatctggaa 240 ggaactgatg gaaggaattg aaggtacatg atgacctctc tggttcttcc atcactttct 300 gctatgctgt atgtattttc cactcctatg ttccagaatc ttccattttg gaagctagac 360 agagtctttc tgttatgtgc atattaaagg ttaattttct gataataaat atagcaatag 420 ccaccttaat tgacacaatc cctgtacayg ttctayattt gtagccactt atctgtatac 480 ccctgtgcca ttccctgtga ttctgcctat aggttcttcc tggatttgag aacatctttt 540 ttgctcactc aagctggtac acatatgcag ccatgctcag gatatataaa cactgggact 600 tcaacatc 608 <210> 16 <211> 468 <212> DNA <213> pig <400> 16 ccacacaact acctgagctg aatggctgcc ccaaacaggt cttggtgagt tgtccttgtt 60 ttcttggagt ggaggcygcg gggggtgggg cagacccctt gggagtcagg gagacccagc 120 cttaaygagc ctgtcataaa gcktcctggg tgaagcactg ccttcagctc tyggcccacr 180 gaacatgctg ctgacggctg aatgcatgtg ggncagtgaa acagcaaaca ygccacttcc 240 taagagtcct ctcctttgga gagaagcatt ctagcctkta aggcaactcc tctgcttcct 300 atttgctctt ctaccatcaa atagccttct gcctctgttt tcctaggatt catgggggag 360 tcagcagaaa agtyccgagc atgacagaca acargatgcc cgcttcactc ccccattttc 420 tctaactgtt gtttttcttt ctcatctctc tcccctgaac aaagaaat 468 <210> 17 <211> 393 <212> DNA <213> pig <400> 17 atgtagtcgg gggtgtagcc cattccaaag agggagctgg tgggatgcag gtggcarggc 60 atacctgtcc ggatattcac atactcccca attccctagg gaagagaccc agcaggtgac 120 cgcatcagca maacaccsca cacctggcca gctaccccat cccttcatac tgttttgaca 180 ccggcttttg ggggagcccc agggttgcag gctgtacaat gagaaaggaa gaactctgcc 240 ctggtacaaa gcatcaggcc aggaaggggc tcaccttgag cttggctgcc tggtgaaaat 300 argcagcaca gatacacttc ctgacaatgt cccagtcggt gccacacgag gccaggctca 360 tccgctgctg caccatgatg tccttgagct gaa 393 <210> 18 <211> 508 <212> DNA <213> pig <400> 18 gctggcggct gtgtggcatc gtgagctggg gcaccggctg tgccctggcc caaaagccag 60 gcgtctacac caaagtcagt gacttccggg agtggatctt ccaggccata aaggtgaaay 120 ttgagtccag atgggagcca gagggcagga gggtttggga caccaarcaa gaaagggggg 180 agttcccact gtggctcagt gggttaagaa cccaactaat agccatgaag atggatayta 240 gtttgatccc yggtctcact cagtgggtta aggatccaaa gttgcttcca cctgtggtgt 300 aggcyggcag ytgcagctcc aattcaaccc ctagcctggg agcttccata tgccacragt 360 gtagccctaa aataaatcaa taagggagaa agggaggcag ggttttctgg aaacctatgc 420 tcyggcttga aagacaggtg catttcagag ggctcctggg aaggggaggt cagccatggg 480 cctttagggg ggaagcctgt cagaccca 508 <210> 19 <211> 402 <212> DNA <213> pig <400> 19 gtttcgccca gaacattcca ggcctggatc ttgctggccc tgagatagaa gtctaggggt 60 gagcggccag ctgccccatc gatggcagga cctctaagga gggagaggag aggagacagg 120 gcgaggggag gggagcccac cttcacagat gtcccaggca caccaggggt gttctgcaga 180 ggggtcctca gcctctgggt ggcgcaggtg gagcagggcc tgcacaggga ttcgggaggc 240 caggtagccc acggcrgtgt agggctcctg gatttgggca atggggtaga tccccgccag 300 gacctggggg aaacaaggac actcagcacc ttcctccatc tcctgcctcc tcccgcccgg 360 ccccctccrc cctcatacct gcagctgcct gggcagaagc ga 402 <210> 20 <211> 440 <212> DNA <213> pig <400> 20 ttgtccctgg cttgtagaat accaccgcca ggatgtcact agcaccccct gctggattga 60 gatccatctg cacggccccc tccagtggct ggataaagtt cttactcaaa tgggttcacc 120 tcacaatcct atttcgtctg tgtcttaagc ggcctgggct tctgcctctt gaaaactatt 180 gagccttgca tgtacttgaa ggatggatga gtcagacacc atctgaacts acaaaggagc 240 cttgataata cttgacctct gtgaccaact gatggattca gaaatttgaa aaccttggta 300 acatactgtt gatattgaga acctgtttag tttacatggt aacattctat ggtaaaatca 360 actaaaatgc atacttttag caggacttcg tgtatagtta aagaagagat ggccaagcca 420 gggacaaaat atctacatcc 440 <210> 21 <211> 431 <212> DNA <213> pig <400> 21 agagctgctg ggaggccctg gtcagccccc tggtgcagaa cgtcacctcc cccggtaact 60 gccccgcccc gcactagcct ctcgcgtggc cctgctcacc ggccccttct tgctctactc 120 tagagccacc tgggaaatgc tcttggcctt tttggtaccc acgttcgttt ggtatccatg 180 tgttcccctt ctcacagccc aggggcygcc tcctttcccc tgtcttccac gtgccagctg 240 ccaccayaag gtcaargggg tccttgcaac cttccttacc gtatggttct gtcccgttgc 300 cctttctctg cactcctgtc cagcccagct tccctgctgg cctgcagacg cgctctgcct 360 tggcttgttt tcccccrccc ccagatgagg atggcatcag ccccatgggc tggctgctgg 420 accagtacct g 431 <210> 22 <211> 413 <212> DNA <213> pig <400> 22 caagtgttag ttttaacaat gaggtttggg atcccgggca gctgagctct gaccgcagat 60 ccagtgaggg ccctgcttct gggcccctgg acccagggga gccccgcags ctccaggtga 120 caggagcgaa gggggtggcc ttcagccrtg aggatgagcg ggaacctctg ccrgcaccgg 180 aggasggagk tgggaragca ggcgtggacg gggacgctcc caccyrcccg aggccgcctt 240 gtgcccgagg ttagctgaac acggtgttgt gctgctgggt cacccggatg aaggtcgccc 300 tccggctgag ctctttgagy ttggcggccc ctacgtaggt gcaggtagac ctcagtcccc 360 cgagaatatc cagaatcgtg ttctccacgt cccctttgta aggtacttcc acg 413 <210> 23 <211> 568 <212> DNA <213> pig <400> 23 catacaagac cattacacgc tgctggaacg tcagatcatc atcgaggtta gactcctccg 60 tagtctctct gctttctgct tcagtgccag tgttcygtgc cattcagcat ctaggaggct 120 tctgcccaca ttttgcacac tttcatttcc taagagcctt tcattttctc tctctctgcr 180 tggyagtctt ccctccattg tcctcacgca tccgtttcct ctcacttgct gttgacctgg 240 aagtatyccc tcgtcatcct cgaactgcgc ttcagcgctg ctgctccggt cctcctccat 300 ccaactggac ctgtcatcct ggtgtgggct ttaagctccc ctgggcaacc ctaggcactg 360 ccttcttctc ttcctcccct cctkcctagc gtaggaaccc agtgcggtag tattaaagac 420 ttccctcckg cctctcctcc atgagcattg ggcttcctcc accacaggca aatgatcgtc 480 atctggagtc agcaggrcag acggagatct tccggaagca cccccgcaaa gcgtccatcc 540 tcaacatgcc gttagtgacg acgctctt 568 <210> 24 <211> 611 <212> DNA <213> pig <400> 24 cattgcaggc atcgccctgg tgcagcayca gcagggcctc gccaacccag gtgctgcccc 60 aggacccttc actctcactt cagaagtggg ttattcccag cgctgcccca gacctcttcc 120 tacactggcc cccagcgttt tcacctcctg cccagggttc tctgtgaaga tgtattrtaa 180 ttcccatcac ccccatttta gagtcgagga aactggrtct ctcacccagg agtccctycc 240 cagatggtgg tggacctggg actagcacca gtctgatctt tgccctttcc tgctcacccc 300 cagccccagc acttagcacc ctgaccccac ccacctgcct tctacttgtc atcccttgca 360 gcctctccag gcccaccacg cayccctcag catccagctt cctgtgggcc tggtctgtgt 420 tctgcatctt ycctgcttca gggctggctt cctttaaatg cccacggtgc acagctccgg 480 attcttctgt tctgcccact cctccccaca cgcctcccag catccacgcc tcccctagcg 540 ctggtgttcc cctcgcccag gtctggtggg cctgtcgcta tcctacgccc tgtccctgac 600 gggcctgtct c 611 <210> 25 <211> 353 <212> DNA <213> pig <400> 25 ttcggaaaaa tactgctatt tgcagaacga gaaatttgga ttgtttcaga actggaaaat 60 atcaatggcg tgaccgatgg ttacttaaat aggtaaayag tcgccgtgac cttagacgtt 120 tggcttttct caagcttcct tttgccagac ttcatttcct ttatgtgctg gcgttgcctg 180 tggtttgtct tttccttaga ggctcactct cattctcttg ggcttctgag ggagggtcct 240 gcagcctcga tcgtgcccat cctwctgttc craaagccac tgtctcttcc agccaaggca 300 gcctctcaag gscagaactt cgaatgccar cagtcatgca gctcggggcc tgg 353 <210> 26 <211> 387 <212> DNA <213> pig <400> 26 tctttggaaa ttatagaatc caacataaaa attaaaaaaa aaacccttcc ttctttgtta 60 ctataagtaa ctcatttaat cctagtttac agttgggaat aaacctaaca gagtagacgt 120 tgtatgatgt acacagtcat ataagctatt attaattata ttgcttattt caactaaaga 180 ttgaaaaatt acataaataa ttctgtatta tagagcagct gaagtctgaa aggagtcacc 240 ctttgttagc accagytgat tttggataga agtagtcact tagattctga cacaacattt 300 gatgcrgatt gtctaaagtg tatatttgtt tttcagctgt aagaaatgtg atcttacaga 360 agtggagctg gataatcaaa tcgttac 387 <210> 27 <211> 462 <212> DNA <213> pig <400> 27 tttccccttc ccctgaggtt tcaccctcct ccccaatttc tccgcacagt kcctggggac 60 ttgcgtctct tccatctagg atagaccttg ccctcaggta acctgggtat tggggccagr 120 tctgtgccta taccccgccc ttcccccagc tagaccaggg agtgaagtgg cccctagtgt 180 ctccacgtgt cctcccctct ctcccagctc tgcacttcca ctctctttca gatctctagc 240 tcctacacaa ccaccmctac catcacagca ccttcctcca gggtcctgca gaatggaggg 300 ggcaagttgg agaagactcc ccaataygtg gaagaagaca tccgccctga aatgaaagat 360 gacatctatg acccaaccta ccaggataag gagggcccaa ggcccaagct tgaatatgtt 420 tggagaaaca tcatcctcat gagtctgcta cacttgggag cc 462 <210> 28 <211> 520 <212> DNA <213> pig <400> 28 cctgctcccg ttgctccatg cagccctcac ttcctccttt tgcttytcca gatcccgcac 60 caggtctcgg aaattctgct ccargacggc cttctcattg gtggtgaagc tctgygtcca 120 gmgtaaatta gagagaggaa ggaggctttc agtaatgaac aaaacctccc tagtaggtgc 180 atctttaggt tcccaacaca gagtcagggc atttctatgc wctcacaccg caagcctgtt 240 caaccaagaa tctcattcaa aggcwacacc gaggcatgcc atctattggt ggagatgggc 300 aggctttttt acagtccacc ttttgttgtc tatctgcagc tcayccccct tggtgggttg 360 acatgaaccc tcaytccatc cttgggcaac tccatgggcc caaaagtttc cagatgagtc 420 aarttctgtt cattgaaacc tcaaccagaa tcraacatca gtcakaaagt aaatggaggg 480 ggtgtttctg tagccagggt caaggggcac tgatctcagg 520 <210> 29 <211> 498 <212> DNA <213> pig <400> 29 ttccagcact tcaatgagtg catcttccac ttcaacagct acgagaagca tgaaaagtac 60 aacagatttc cccagtcgga gaggtcagtg ctgcaggggg tgctgggarg gtggctcagg 120 tacagtgctg tggtgagatg gtccaattct gccctagaga aaagcggcta ttttcgctga 180 aggggaagac aaataaggag aaacggatga aaatctacag tttcctcctg gaacacttca 240 cagatgagca gcggttcaac atcacctcca aaatctgcct cagcacactg ggtaggactg 300 gttggagtgt agggatgaac taggtgagca agcaaactgc tgcctgtctc atggcccagc 360 cactctgcag caaagagggc ccctctgtcc ttggccctca gctggctgtk cgttcccctc 420 aggcagcaat tctcagaagc ccatctctgc ttcctccagc ttgctttgcc gatggcatcc 480 tgcccctgga catggaag 498 <210> 30 <211> 462 <212> DNA <213> pig <400> 30 gacaacatgg gcttagtctt accgcctcgt gtagcctgtg tccaggtaag gaaaatgctt 60 ctgattatca ttgcttttat aaaaatagaa gccattgtga gtaaagaaaa tttcaaagtt 120 taacttactg aatgtcattc aggtagattt tgctgataca gaaacaatat agaatagagt 180 ctagacctca gtattatgta actactrttt gtgtgactgt tttttactct taattttttt 240 acccatttta taaagctttt agaaattatt ttttgaagca gtgtataata aatgaacaaa 300 aatgcattca ttatgracaa acactacgcc gctagttgcc aggtattcwg ygtgggttag 360 aaatcacaca ggttgatttg tgtgarggtt tgtagtcact ggtatttgga ctyctggatg 420 cttaygtggt gatgtgactg cattacttct ctgggctgct tc 462 <210> 31 <211> 472 <212> DNA <213> pig <400> 31 tgatgtggga agcgttttcc tatggacaga agccrtatcg ggtgagctcc cggcgcttcg 60 ctycctaatt acgcagccrt cagaacagat gggcagcgga tgatctttgc aggaycctga 120 caatcakcaa atccggacac tctttctggg tctttatctt ttgaaagtgg acagtaaata 180 taatctcagt ttattctaaa tggaaagaaa catttgmagc tgtctggaca gtatgtgttt 240 ttcattgatg cccacatata aatgggcata aaatatatac ccrcatcaac attaattaga 300 gtggaaatag aaataatggc tatttccatt atcaagtgtg tggctcggtt acttttttca 360 tcaaaatata tatactgaaa aatgcacaga tcctaggata cagcttgatg aattttcaca 420 attgggggac catgaaacca gcccccaaat gaagaaacag aacagaaccc ca 472 <210> 32 <211> 361 <212> DNA <213> pig <400> 32 acaagcaggt gagaccatcc tctcttgaaa gcacaccccc caacccacac ccacacccac 60 ccattccagc ccagagcatc cagaatgctg ccggagccct aactcccctt ctctttccac 120 aagctgacct ggattgcact caaggtatta ggcatgagac ctgggcgtga gcttgtctgt 180 gatgattcag cyttcccgtg tggattagag agagacttgc aacaactgaa cttgggggtg 240 accctcaggg gcttgsatct ctgtccctcc atttcagccc cttcccctcc tccccacccc 300 tgcagtttgc actctataag aagatgaccc aggctgccat cctgatccag agcaagttcg 360 a 361 <210> 33 <211> 485 <212> DNA <213> pig <400> 33 cctgcatcct gagactggcc ctcagactga aggagcccct tctgcggggc ytcccactca 60 caggcgggcg tccccgtacc tacacrtaca gtgacgggga ctggccagca gagggcgccg 120 aaagctcact gtgggacccg cctttgcttt tcaggatggt gagttttttt gttttttcgt 180 tgtgtgtttt tttggtttgc tttttgtttt taacttttat tgaagtatag tcgatttaaa 240 atgtgataat caggayggcg ctttattgtg acttacggag ctgggtggct ttaagcaaat 300 cctttccttt cctgagcctg agmctgacct cggtcccttc catctcagaa wtgtcttcct 360 cccagcaggt tcctccccag gagccacacc tcccgcagca ccaccgcccc scacctggtg 420 ccrggggacc acgtacccgg ctggaggtga agtctcgggt ctttgcgcga agcttattga 480 cctga 485 <210> 34 <211> 568 <212> DNA <213> pig <400> 34 catcatccct ccattcctgg cctatggcga gaaaggctat ggtgagggca ggcagggacy 60 tggggattct ctggaagtgg gctgcacaca gttgttcagg ttgtgtactg cacaaggaca 120 tctagccaag gaggcaagta gggacgaaat ctagcccttg gtgatgactt ccctaagaag 180 aggtgcttta tcctgatkca cacaaaggct cagtatgggc tggtggtggc tcccgggaaa 240 aactcagctt aggtctcgca agggaagaac caacyggggc tgctgatgag caggaaagcg 300 ctctggaaac cagggttggc gcctttttgy gtgatgctca cttacgcctc cctgagagcc 360 ctgttttgct ctccacttgt atggttcaag cctatccctt ccccagggac tgtgatcccc 420 ccgcaggcct ccctcgtctt ccatgtccta ctgattgacg tccacaaccc caaggacact 480 gtccagctgg agacgctgga gctgccacct ggctgcgttc ggagggccgt ggctggggac 540 ttcatgcgtt accactacaa cggctccc 568 <210> 35 <211> 426 <212> DNA <213> pig <400> 35 acattattta gaaagtgaag cctgaaattc ggctgctgat cgagaaatgc aacacggtga 60 ggcaggggct gatgacctag gggctgaccc caaatagcct ggcttgagct atgcaagaca 120 atggatgtgg ggccagaggc gtggaggtga tgttggagtt ggcagactaa wtatcttgac 180 tcctgtgctc ctggcatctg gccccagcag catgagttgt atatgtcttg gcttaagtag 240 aaaaggctaa gatcctcata tgcatatttt ggtcccctca cccttcaggt caaaatgtgg 300 gtacaactcc tgattcctag gatagaagat gggaacaact ttggggtgtc cattcaggta 360 atgtgcttgc attggaaatg ggagaggaag gtttgggagg taatctcatc tcccctgctt 420 ttgtgt 426 <210> 36 <211> 532 <212> DNA <213> pig <400> 36 ctgctggctg gagaacggac tcctccaact ataaccccgt ggagatgtgg aactctggct 60 gccagattgg tacgggctgg cygagacggg gaggaggcct gggtgayggt ttctgcctgg 120 agggccaggg gccaggagcc tctggggacc tgggcagagc cagatacagg gatttgtggg 180 ctcaggatct ggcagtctgt ttggaaatat cccccagcag cacatggcag catmtgaaat 240 ctgtcatcct ttgaatcctg gcaccagaaa tgcatgggyg ttggtgtggt gggtcaggga 300 gggtggcagg tgggtatcag gcatcagagt gatcctggac cctgcttttg cttaggactc 360 tgtaccccca gtatttcwwa gggcaaccca cagcctctga ttgctctgtc ctgcccttag 420 tggccctgaa cttccagaca cctgggccag agatggacgt gtaccagggc ckcttccagg 480 acaacggggc ctgtgggtat gtgctgaagc ctgccttcct gcgagacccc aa 532 <210> 37 <211> 429 <212> DNA <213> pig <400> 37 cagtcgtggc agagtgagcg ggagatcttc agcacgcccg gcatgaagca cgagaacctg 60 ctacagttca ttgccgctga gaagcgaggc tccaacctgg aggtggagct gtggctcatc 120 acggccttcc acgacaaggt gagccatgct tgtggctccc gctcccacgt aggtgaacag 180 gccctcctgt ggctttccat ggctgtggat gtgaaggtgt gcagtcaraa accctamccc 240 tgggatcact tcttaggaat agtaatgact tcatgatcac caccccctac agcgcctttc 300 caaccccttg tggcctcatc kcttccagcc tatagcccac agagacagcc ctcctgggct 360 gggctgggct gggttctgtc ctgtgcccag agcctgtgct gtctcctcta gggctccctc 420 acagattac 429 <210> 38 <211> 272 <212> DNA <213> pig <400> 38 ctccaaccaa caagctcctc tatgccaagg agattcctga gtaccggaaa atcgtgcagc 60 gctactacaa acagatccat gacatgaccc cactcagtga gcaggagatg aatgcgcacc 120 tggctgagga gtcgagggtg cggccggctc tgaggggacc ttgcctggtg ggggatcccg 180 aggaccagtg gtggcagcga ggggctgtgt ctaaggagca gccatggctg ggctggccrg 240 gtgctgaccg tggagttaac ccccttccca gc 272 <210> 39 <211> 390 <212> DNA <213> pig <400> 39 cgaggcggct ctcgcccgcg ccgagctcga aaagcgcatt gacagtctga tggacgaaat 60 ygcctttctg aagaaagtgc acgaagagga gatcgccgag ctgcaggckc agatccagta 120 cgcgcagatc tccgtggaga tggatgtgtc ctccaagccc gacctctccg ccgcgctcaa 180 ggacatccgc gcccagtatg agaagctggc cgccaagaac atgcagaacg ccgaagagtg 240 gttcaagagc cgcttyacgg tgctgaccga gagcgccgcc aagaacaccg atgcggtgcg 300 cgcagccaag gacgaggtgt ccgagagccg ccgactgctc aaggccaaga ccctggagat 360 cgaagcctgc cggggcatga acgaagcgct 390 <210> 40 <211> 506 <212> DNA <213> pig <400> 40 gtgcagagct gattgagcag ccgctccgca tcagcctcgg ggacgcccag ctctatgcgc 60 ccaatgcccc gctcagcggg ccggtgctgg ccctcatcct caacatcctc aaaggtgagc 120 gccctccgca gccctgcaga gcagtgatct gggtgtggct gctcttcaag gtctgggtgc 180 cacagtgttg gccagagttc actgctgagt ggcctggtcc agagggcaca tctgggaaac 240 ctcagtgstc mtccgagagc atgtggacca gaagccctgt ggctggacct gtgaggccca 300 tggcttcctt ccagccatca gtgcttccaa agcagctgct gccgttgggg attaaaaggt 360 ccccatctca aggtagccaa gtggcccagg gaggggtcaa ccacaccccc agggcactca 420 gctgtctggt caagctggga catccagggc caccaacctg cctggctctg tcaatcaggg 480 tacaacttct cccgggcaag tgtgga 506 <210> 41 <211> 511 <212> DNA <213> pig <400> 41 tttaccttat caaagtacat caagttcctc ctccatgaac ccattgtcaa caagttccgg 60 gaatacaagg taaggcctcg ctctacggtc tacatgagtt ccttggcagc tctctgtata 120 cctgctaatg cttaccttgg gcatattgat ctctctgaga caaggactac aaagggtgag 180 gcaattctgc ctcagaattg tggcggcggt ggggtggagg attgacaaag atctcaggta 240 tggaaatcat ttatayagaa cctggccagt gattaatgtt ttacctgtca ttcttttccc 300 ctggttcttt tggaaaagag gaaaattact gcctctgaag caaagattgt ggtctttcag 360 ggatgctctg gtgtgttttc tgcccaaaga aattgcttcc attagcgttc tttctggaat 420 tgctcccaag agataaggct ttccatccca caaatagaaa ctgttaaatg cttaaatacc 480 acagggaaag taaaaaccta aatatagcca a 511 <210> 42 <211> 470 <212> DNA <213> pig <400> 42 gaattcagaa aagaactttc caatggacat gcctgatgat tatgagactc agcagtggcc 60 agaaaggaag ctcaagcaca tgcgtttccc tcctatgtat gaagagaatt ccagagacaa 120 cccctttaaa cgcacaaatg aaatcgtgga ggaacagtat actcctcaaa gtcttgctac 180 attggaatct gtcttccaag agctggggaa actgrcagga cccaacaacc agaagcgtga 240 gagggttgat gaggagcaaa aactttacac agatgatgaa gatgatatyt acaaggccaa 300 taacattgcc tatgaagatg tggttggggg agaagattgg aacccagtag aggaaaaaat 360 agagagtcaa acccaggaag aggtaagaga cagcaaggag aatatagaaa aaaatgaaca 420 aatcaatgat gaaatgaagc gttcagggca gatgggtctc caagatgaag 470 <210> 43 <211> 439 <212> DNA <213> pig <400> 43 gacagccaga gattcaatcc ttagacacaa gattctgggt aatgagagcg aagaggaatt 60 tctaactgga atagagaatt tggaaatcag agaaacagaa accattaatc cccttgatgt 120 cctgtgtgcc tctatgctgt gttcagacag ctctttgcaa cgcgaagtca tgtcaaacat 180 gtatcaatgc cagtttgctc ttcccctgct actgccagat gcagaaaaca acaagagcat 240 tttaatgctg ggtgcyatga aggacattrt gaaggagcag tcaacacagc cttcaggagg 300 tcctacagag ggtacggaaa agcttctgac tctcatgaag atgcccgtca tctcttttgt 360 gcgtctagga tactgtagct tctccaagtc cagaatcctc aacacactgc tcagccctgc 420 ccacctgaaa tcacacaaa 439 <210> 44 <211> 449 <212> DNA <213> pig <400> 44 gttcaccaag aaggagctgc agtccctcta caggggcttc aagaatgtga gtgctcccca 60 ttcccctggg agaggacttt gttccccagg ccctcttgtc cttggmccca ggagggaggg 120 actctgatgc aggaggacct tctkgaaatt ttccatggca tggtagatat cccagggcct 180 ttatggggct cacrttttgt gagagttcat gttctagggg gtgggctgcc ccagaatcag 240 tgttctgaag gccccgtgct ccctgctgtg tgtgggagga acacgcagtk ggatccagct 300 tcccgccagg cccaccyggg gctggtagag cccagtggtg cctcagccag caggcgtccc 360 ccacggggag gagagaggcc agccctgtgg ctcggggtgc ggggcggggt ggctggggtc 420 actgagaggg agaccttcct gctgcagga 449 <210> 45 <211> 481 <212> DNA <213> pig <400> 45 gtcycccgtc acacygcctg rcccccgcac ccccaggttc tgtacccccg agggctgggc 60 gggcagactc cggagcacag gagtcgggct ccctggggag ggaaaggggg gtgctgtctc 120 tgccccctcc ccgctcccca ccttatgcag gaatccctag tgacagcaaa agcaaagggc 180 aggcgggcca ggagctcagc aagctccagg ccaacccagg ccaagcgaat tgggttacag 240 tggcctcccg cagatyccat gtgatgggga aacgcctcct gtggggatcc aataactgtc 300 ccccagctcc cccgcccaga cgctcactgc ctcgcaagcr cttccaytct ggggtctgca 360 ggcrctgtgc tcaccccctc cccctygccc cttccagaca ctcaagaacg cctggctgca 420 gcgctacgca gtgaacagcg cagaccccgg cgtgtttgtg ctcctggcct gtggcaccat 480 g 481 <210> 46 <211> 313 <212> DNA <213> pig <400> 46 tattcccatc atcaaactgg aatggcattc cccatgggct gtcatccctg tcttcctygc 60 aatgttgggc atcatcgcca ctatatttgt catggccact ttcatccgct acaatgacac 120 tcccatcgtc cgggcatctg ggagggaact gagctatgtt ctgttaactg gcatctttct 180 ctgctacatc atcactttct tgatgatagc caaacctgat gtggcagtgt gttctttccg 240 gagagttttc ttgggcttgg gaatgtgcat cagttatgca gccctcttga caaaaaccaa 300 tcggatttat cgc 313 <210> 47 <211> 385 <212> DNA <213> pig <400> 47 ggccttcaat gtgagcgccc gggggacgcg cgggcggggc gggccgcagc cgggccagcc 60 cttcccacag cctgtgtctc ccgcagatgt ttgtgcgtct ctttgtggat gataacttgg 120 accgcatggk gcccatctcc aagcagccca aggagaagat ccaggccatc attgagtcgt 180 gcagccggca gttccccgag ttccaggagc gggcccgcaa gcgcatccgc acgtacctca 240 agtcctgccg gcgcatgaag aaraatggca tggagatggt gagccccgag tcctggcccg 300 ctgcccctgt tccactctgt gctctgctcc ggggctcccc gacatcctcc cagcgggggc 360 gcttcgccca cagccctcct agtcc 385 <210> 48 <211> 608 <212> DNA <213> pig <400> 48 cggcctgtac cccagggatc cccctgccta gccstttgta ggggatggtg tcgggccctc 60 cctccccatc tggtgctcct gtggcttctg gaagggccac tttttcttcc cccggagggc 120 aggctcagcc tmccgcaggc ctggccctca caccaggtcg aggagcctct ggcatctcgg 180 gctyggccct gcctttgggt tcccctctgg gggtgaccag ggttccatag gtgtggctgg 240 cctcagaggt gcctttgggc ctggcctgtc tttccagtgc tcctcctgcg cccagcagtt 300 catgcagaag aaggacttgc agagccatat gatcaagctg cacggagccc ccaagcccca 360 cgctgtaagt gccaggccgg gctgagcatc ggggccggcg tgttcccagc aagagtgagg 420 cggctgtgrc tgcgtctaca atgggtgggc tgtgaggttg ccaccaggtg gcaggggcgg 480 ccrggggggt tcccgggggc cctctggggc cctagggaca gcccttcctg ccctttactc 540 tggccctgct ccctctgccc cttagtgtcc cacttgtgcc aagtgcttct gtcccgaacg 600 gaactgca 608 <210> 49 <211> 465 <212> DNA <213> pig <400> 49 ccgctggcgc ccgacgggat cctggtgttc agcggaggcc agagtgggcc tgtggaggac 60 tttgtgtccc tggcgatggt tggcggccat ctggagttcc gttacgagtt gggatcaggt 120 gagcactgcc rccaaatgca gatgggcata ggcactaagc cctgtgcccc raggaggcgc 180 gaaggagtga attctgaagt cagaccaact ggagtccccg ttcttcgttg cttctctctg 240 tgtgactgga agcaagtccc tggatctctc aggttcctct gggacascct agacaggaag 300 gaagttcccc atctgctcaa gttccaggag ggggtgggac agggcagtga ccatccctgt 360 gccaaccctg ccgggcatcc tccccagggc tggccattct gcggagctcc gagccactgg 420 ccctgggccg ctggcaccac gtgtccgcag agcgtttcaa caaga 465 <210> 50 <211> 376 <212> DNA <213> pig <400> 50 gctggcacgc ggctctcacg tggacgtcct gtgggccccg ctttcaatga cgggtttctt 60 tcccagggat ggtgaagcac attacaggca gttacaaggt tacctaccay ccagatggcc 120 cagagggtca agcctatgag attgacttca cgcccccgtt ccggaaaatc agcatggtgg 180 aagagcttga gaaagccctg ggaatgaagc tgccggacac taacctcttt gaaacggaag 240 gtaaagtgat gcgygygctt ctctgctgta gggcctgcct tcctttkcag ctctgagtta 300 gatgaggtcg ggactagaat gtcccctgct cttctctttg tgtacttttt aaggggtggt 360 atgatgtctt ctgtcc 376 <210> 51 <211> 484 <212> DNA <213> pig <400> 51 cctcttcctc atcacaggcg gctccctcag ggagcacccg gtgttgggag gccaggaagt 60 tgaacatgtc aaaggtgcac ttcctgcagg ggaaggaagg aaaggaggga gggtcagagc 120 cattctttta agaagatgct ccccctccat tctttggcct gggcctgccr ctggyggcgt 180 aagaagaata ctgcttctac tgaagacaca gcaaaagggg aacagatggg attcattctt 240 gtaacgtgaa ctctagaaat aatttctgga gcagtcgagt gtcttctccc tagacctccg 300 tttcctttaa ttcccaccct gagccaggca ccacacccca gacctctcac cggagataga 360 cctcagcgcg ggctgcmcca tggggattca ggggtggttc ctcttggccc tctccctgct 420 ggtggtagcg gaacttatag tgctggcagc gctgggctcc aggcagctgc tctgccagga 480 agat 484  

Claims (2)

서열목록 제 1 서열의 264번째 뉴클레오타이드, 서열목록 제 2 서열의 287번째 뉴클레오타이드, 서열목록 제 3 서열의 496번째 뉴클레오타이드, 서열목록 제 4 서열의 219번째 뉴클레오타이드, 서열목록 제 5 서열의 256번째 뉴클레오타이드, 서열목록 제 6 서열의 290번째 뉴클레오타이드, 서열목록 제 7 서열의 267번째 뉴클레오타이드, 서열목록 제 8 서열의 256번째 뉴클레오타이드, 서열목록 제 9 서열의 370번째 뉴클레오타이드, 서열목록 제 10 서열의 117번째 뉴클레오타이드, 서열목록 제 11 서열의 171번째 뉴클레오타이드, 서열목록 제 12 서열의 143번째 뉴클레오타이드, 서열목록 제 13 서열의 196번째 뉴클레오타이드, 서열목록 제 14 서열의 295번째 뉴클레오타이드, 서열목록 제 15 서열의 228번째 뉴클레오타이드, 서열목록 제 16 서열의 143번째 뉴클레오타이드, 서열목록 제 17 서열의 131번째 뉴클레오타이드, 서열목록 제 18 서열의 423번째 뉴클레오타이드, 서열목록 제 19 서열의 256번째 뉴클레오타이드, 서열목록 제 20 서열의 230번째 뉴클레오타이드, 서열목록 제 21 서열의 247번째 뉴클레오타이드, 서열목록 제 22 서열의 225번째 뉴클레오타이드, 서열목록 제 23 서열의 384번째 뉴클레오타이드, 서열목록 제 24 서열의 431번째 뉴클레오타이드, 서열목록 제 25 서열의 272번째 뉴클레오타이드, 서열목록 제 26 서열의 306번째 뉴클레오타이드, 서열목록 제 27 서열의 327번째 뉴클레오타이드, 서열목록 제 28 서열의 344번째 뉴클레오타이드, 서열목록 제 29 서열의 109번째 뉴클레오타이드, 서열목록 제 30 서열의 349번째 뉴클레오타이드, 서열목록 제 31 서열의 115번째 뉴클레오타이드, 서열목록 제 32 서열의 256번째 뉴클레오타이드, 서열목록 제 33 서열의 411번째 뉴클레오타이드, 서열목록 제 34 서열의 198번째 뉴클레오타이드, 서열목록 제 35 서열의 171번째 뉴클레오타이드, 서열목록 제 36 서열의 378번째 뉴클레오타이드, 서열목록 제 37 서열의 237번째 뉴클레오타이드, 서열목록 제 38 서열의 239번째 뉴클레오타이드, 서열목록 제 39 서열의 61번째 뉴클레오타이드, 서열목록 제 40 서열의 251번째 뉴클레오타이드, 서열목록 제 41 서열의 256번째 뉴클레오타이드, 서열목록 제 42 서열의 215번째 뉴클레오타이드, 서열목록 제 43 서열의 269번째 뉴클레오타이드, 서열목록 제 44 서열의 290번째 뉴클레오타이드, 서열목록 제 45 서열의 256번째 뉴클레오타이드, 서열목록 제 46 서열의 58번째 뉴클레오타이드, 서열목록 제 47 서열의 263번째 뉴클레오타이드, 서열목록 제 48 서열의 184번째 뉴클레오타이드, 서열목록 제 49 서열의 171번째 뉴클레오타이드, 서열목록 제 50 서열의 287번째 뉴클레오타이드, 또는 서열목록 제 51 서열의 175번째 뉴클레오타이드를 포함하는 8-100 개의 연속 뉴클레오타이드로 구성되며 돈육의 원산지 판별에 유용한 폴리뉴클레오타이드 또는 이의 상보적인 폴리뉴클레오타이드. 264 nucleotides of SEQ ID NO: 1, 287 nucleotides of SEQ ID NO: 2, 496 nucleotides of SEQ ID NO: 3, 219 nucleotides of SEQ ID NO: 4, 256 nucleotides of SEQ ID NO: 5, 290 nucleotides of SEQ ID NO: 6, 267 nucleotides of SEQ ID NO: 7, 256 nucleotides of SEQ ID NO: 8, 370 nucleotides of SEQ ID NO: 9, 117 nucleotides of SEQ ID NO: 10, 171 nucleotides of SEQ ID NO: 11, 143 nucleotides of SEQ ID NO: 12, 196 nucleotides of SEQ ID NO: 13, 295 nucleotides of SEQ ID NO: 14, 228 nucleotides of SEQ ID NO: 15, 143 nucleotide of SEQ ID NO: 16 sequence, 131 nucleotides of SEQ ID NO: 17 sequence, 423 nucleotides of SEQ ID NO: 18 sequence, 256 nucleotides of SEQ ID NO: 19 sequence, 230 nucleotides of SEQ ID NO: 20 sequence, 247 nucleotides of SEQ ID NO: 21 sequence, 225 nucleotides of SEQ ID NO: 22, 384 nucleotides of SEQ ID NO: 23, 431 nucleotides of SEQ ID NO: 24, 272 nucleotides of SEQ ID NO: 25, 306 nucleotides of SEQ ID NO: 26, 327 nucleotides of SEQ ID NO: 27, 344 nucleotides of SEQ ID NO: 28, 109 nucleotides of SEQ ID NO: 29, 349 nucleotides of SEQ ID NO: 30, 115 nucleotides of SEQ ID NO: 31, 256th nucleo of SEQ ID NO: 32 sequence Tide, the 411th nucleotide of SEQ ID NO: 33 sequence, the 198 nucleotide of SEQ ID NO: 34 sequence, the 171th nucleotide of SEQ ID NO: 35 sequence, the 378 nucleotide of SEQ ID NO: 36 sequence, the 237th of SEQ ID NO: 37 sequence Nucleotide, 239th nucleotide of SEQ ID NO: 38 sequence, 61 nucleotide of SEQ ID NO: 39 sequence, 251 nucleotide of SEQ ID NO: 40 sequence, 256 nucleotide of SEQ ID NO: 41 sequence, 215th of SEQ ID NO: 42 sequence Nucleotide, 269 nucleotides of SEQ ID NO: 43 sequence, 290 nucleotides of SEQ ID NO: 44 sequence, 256 nucleotides of SEQ ID NO: 45 sequence, 58 nucleotides of SEQ ID NO: 46 sequence, 263th of SEQ ID NO: 47 sequence Nucleotide, the 184th nucleus of SEQ ID NO: 48 sequence Consisting of 8-100 consecutive nucleotides comprising a leotard, the 171th nucleotide of SEQ ID NO: 49 sequence, the 287 nucleotide of SEQ ID NO: 50 sequence, or the 175th nucleotide of SEQ ID NO: 51 sequence, to determine the origin of pork Useful polynucleotides or their complementary polynucleotides. 다음의 단계를 포함하는 돈육의 원산지를 판별하는 방법: How to determine the origin of pork, including the following steps: (a) 원산지를 추적하고자 하는 돈육에서 핵산분자를 분리하는 단계; (a) isolating nucleic acid molecules from pork to be traced to origin; (b) 상기 제 1 항에 기재된 서열목록 제 1 서열 내지 제 51 서열의 상기 지 정된 위치의 뉴클레오타이드에 해당하는 단일뉴클레오타이드다형성(SNP, Single Nucleotide Polymorphism)의 마커의 염기타입을 확인하여 데이터 베이스에 저장하는 단계; 및 (b) identifying the base type of the marker of Single Nucleotide Polymorphism (SNP) corresponding to the nucleotide of the designated position of SEQ ID NO: 1 to 51 sequence described in paragraph 1 above and storing it in the database Doing; And (c) 이미 저장되어 있는 부모의 마커를 이용하여 돈육의 원산지를 분석하는 단계. (c) Analyzing the origin of the pork using the markers of the parents already stored.
KR1020090098607A 2009-10-16 2009-10-16 Single Nucleotide Polymorphism Markers in Swine and Method for Determination of Domestic Pork Origin by Using the Same KR101520502B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090098607A KR101520502B1 (en) 2009-10-16 2009-10-16 Single Nucleotide Polymorphism Markers in Swine and Method for Determination of Domestic Pork Origin by Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090098607A KR101520502B1 (en) 2009-10-16 2009-10-16 Single Nucleotide Polymorphism Markers in Swine and Method for Determination of Domestic Pork Origin by Using the Same

Publications (2)

Publication Number Publication Date
KR20110041668A true KR20110041668A (en) 2011-04-22
KR101520502B1 KR101520502B1 (en) 2015-05-14

Family

ID=44047482

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090098607A KR101520502B1 (en) 2009-10-16 2009-10-16 Single Nucleotide Polymorphism Markers in Swine and Method for Determination of Domestic Pork Origin by Using the Same

Country Status (1)

Country Link
KR (1) KR101520502B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152447A (en) * 2014-08-08 2014-11-19 南京农业大学 Single nucleotide polymorphism (SNP) molecular markers and method for pork DNA tracing by high resolution melting (HRM) method
KR20160128943A (en) 2016-09-26 2016-11-08 순천대학교 산학협력단 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152447A (en) * 2014-08-08 2014-11-19 南京农业大学 Single nucleotide polymorphism (SNP) molecular markers and method for pork DNA tracing by high resolution melting (HRM) method
KR20160128943A (en) 2016-09-26 2016-11-08 순천대학교 산학협력단 Pig production and traceability systems selected as a single nucleotide polymorphism markers for the introduction of the method

Also Published As

Publication number Publication date
KR101520502B1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
KR102018122B1 (en) Biomarkers for Individual confirmation of Hanwoo Beef and uses thereof
EP1718770B1 (en) Leptin promoter polymorphisms and uses thereof
KR101213217B1 (en) SNP Markers Associated with Meat Quantity and Beef Quality in Hanwoo
JP5662293B2 (en) SNP for diagnosing attention deficit / hyperactivity disorder and microarray and kit including the same
KR101751932B1 (en) A new dna marker and a detecting method of using the same
JP2013511989A (en) Allelic ladder locus
KR20130077207A (en) Snp markers and methods for highly fetile pig
KR101890350B1 (en) SNP maker for predicting meat quality of pig and use thereof
US20220136043A1 (en) Systems and methods for separating decoded arrays
KR101520502B1 (en) Single Nucleotide Polymorphism Markers in Swine and Method for Determination of Domestic Pork Origin by Using the Same
KR20200073407A (en) SNP Markers for discriminating quality of pig semen and their uses
TW200404889A (en) Method of typing gene polymorphisms
US20090035776A1 (en) Method and Kit for Hla-B Genotyping Based on Real-Time Pcr
KR101351990B1 (en) Single Nucleotide Polymorphisms for Individual Identification of Hanwoo and Use Thereof
KR101985659B1 (en) Method for identification of Baekwoo breed using single nucleotide polymorphism markers
US20210164048A1 (en) A non-invasive prenatal test with accurate fetal fraction measurement
Devesa-Peiró et al. Molecular biology approaches utilized in preimplantation genetics: real-time PCR, microarrays, next-generation sequencing, karyomapping, and others
EP1660675B1 (en) Polymorphism of the igf2 gene and improving production characteristics of cattle
KR102438915B1 (en) Methods for detecting target nucleotide sequences Methods and kits for designing and manufacturing probes
KR100874378B1 (en) Method for identifying hanwoo meat by using single nucleotide polymorphisms
KR102336624B1 (en) Marker for predicting collagen content in pork and use thereof
KR102304998B1 (en) Snp makers of identification of whole black hair in woori black porcine and method for identifying whole black hair using the same
JP4972737B2 (en) Method for testing sensitivity to Th2 cytokine inhibitor
KR20140106188A (en) Use of DNA Markers for Identity and Quality Evaluation of Hanwoo Beef
US20100144545A1 (en) Arrays, Systems, and Methods of Using Genetic Predictors of Polycystic Diseases

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant