KR20160093740A - 발전 시스템 및 발전 시스템의 구동 방법 및 연소기 - Google Patents

발전 시스템 및 발전 시스템의 구동 방법 및 연소기 Download PDF

Info

Publication number
KR20160093740A
KR20160093740A KR1020167020727A KR20167020727A KR20160093740A KR 20160093740 A KR20160093740 A KR 20160093740A KR 1020167020727 A KR1020167020727 A KR 1020167020727A KR 20167020727 A KR20167020727 A KR 20167020727A KR 20160093740 A KR20160093740 A KR 20160093740A
Authority
KR
South Korea
Prior art keywords
fuel gas
gas
fuel
turbine
combustor
Prior art date
Application number
KR1020167020727A
Other languages
English (en)
Other versions
KR101682870B1 (ko
Inventor
소 마나베
겐타로 후지이
Original Assignee
미츠비시 히타치 파워 시스템즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012255703A external-priority patent/JP6004913B2/ja
Priority claimed from JP2013030336A external-priority patent/JP5984709B2/ja
Application filed by 미츠비시 히타치 파워 시스템즈 가부시키가이샤 filed Critical 미츠비시 히타치 파워 시스템즈 가부시키가이샤
Publication of KR20160093740A publication Critical patent/KR20160093740A/ko
Application granted granted Critical
Publication of KR101682870B1 publication Critical patent/KR101682870B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/107Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/407Combination of fuel cells with mechanical energy generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes

Abstract

종류가 상이한 연료 가스의 온도차에 의한 문제를 해소한다. SOFC(13)로부터 배출되는 배출 연료 가스(L3)를 가스 터빈(11)의 연소기의 연료로서 이용함과 아울러, 가스 터빈(11)의 압축기(20)에서 압축된 일부의 압축 공기(A2)를 SOFC(13)의 구동에 이용하는 발전 시스템(10)에 있어서, 가스 터빈(11)은, 배출 연료 가스(L3)와는 종류가 상이한 연료 가스(L1)를 연소시키는 제 1 연소기(21A)와, 제 1 연소기(21A)로부터 공급되는 연소 가스(G1)에 의해 구동되는 제 1 터빈(22A)과, 배출 연료 가스(L3)를 연소시키는 제 2 연소기(21B)와, 제 1 터빈(22A)과 축연결되어 있고 제 2 연소기(21B)로부터 공급되는 연소 가스(G2)에 의해 구동되는 제 2 터빈(22B)을 구비한다.

Description

발전 시스템 및 발전 시스템의 구동 방법 및 연소기{POWER GENERATION SYSTEM, METHOD FOR POWERING POWER GENERATION SYSTEM, AND COMBUSTOR}
본 발명은, 연료 전지와 가스 터빈과 증기 터빈을 조합한 발전 시스템 및 발전 시스템의 구동 방법 및 연소기에 관한 것이다.
연료 전지로서의 고체 산화물형 연료 전지(Solid Oxide Fuel Cell : 이하 SOFC)는, 용도가 넓은 고효율의 연료 전지로서 알려져 있다. 이 SOFC는, 이온 도전율을 높이기 위해 작동 온도가 높게 되어 있으므로, 공기극(air electrode) 쪽에 공급하는 공기(산화제)로서 가스 터빈의 압축기로부터 토출된 압축 공기를 사용할 수 있다. 또한, SOFC로부터 배기된 고온의 배출 연료 가스를 가스 터빈의 연소기의 연료로서 사용할 수 있다.
이 때문에, 예컨대, 하기 특허 문헌 1에 기재되는 바와 같이, 고효율 발전을 달성할 수 있는 발전 시스템으로서, SOFC와 가스 터빈과 증기 터빈을 조합한 것이 각종 제안되어 있다. 이 특허 문헌 1에 기재된 컴바인드 시스템에 있어서, 가스 터빈은, 공기를 압축하여 SOFC에 공급하는 압축기와, 이 SOFC로부터 배출된 배출 연료 가스와 공기로부터 연소 가스를 생성하는 연소기를 가진 것이다.
또, 예컨대, 하기 특허 문헌 2는, 연료 전지로부터 배출되는 배출 연료 가스를 연소시키는 연소기를 구비한 연료 전지 시스템에 대하여 나타내고 있다. 이 연소기는, 연료 전지로부터의 배출 연료 가스가 버너에 의해 분출되어 일차 공기를 이용하여 배출 연료 가스의 일차 연소를 행하는 일차 연소실과, 일차 연소실보다 가스 통로가 좁혀진 연락 통로를 통해서 일차 연소실에 접속되고 이차 공기를 이용하여 일차 연소실로부터의 가스의 이차 연소를 행하는 이차 연소실을 구비한다. 그리고, 버너는, 중앙부에 발화용 토치 화염을 분출하는 토치 화염 분출구를 배치하고, 토치 화염 분출구의 바깥쪽으로 배출 연료 가스를 분출하는 고리 형상의 배출 연료 분출구를 배치하고, 배출 연료 분출구의 바깥쪽으로 배출 공기를 분출하는 고리 형상의 배출 공기 분출구를 동심으로 배치하여 이루어지는 삼중의 분출구를 구비함과 아울러, 배출 공기 분출구 내에 배출 공기 분출구 내를 관통하여 보조 연료를 분출하는 복수의 보조 연료 분출구를 구비한다.
또한, 예컨대, 하기 특허 문헌 3은, 칼로리가 상이한 적어도 두 종류의 연료를 연소기에 공급하는 연소기의 연료 공급 방법이 나타나 있다. 가스 터빈의 운전 개시시에는, 연소기를 구성하는 제 1 노즐에, 고칼로리 연료를 공급하는 제 1 연료 공급 계통, 및 연소기를 구성하는 제 2 노즐에, 저칼로리 연료를 공급하는 제 2 연료 공급 계통의 쌍방을 이용하여, 연소기에 고칼로리 연료 및 저칼로리 연료를 공급한다. 그리고, 가스 터빈이 저칼로리 연료만으로 계속 운전 가능한 출력에 도달한 시점에, 연소기로의 고칼로리 연료의 공급을 차단하고, 연소기에 저칼로리 연료만을 공급한다.
(선행 기술 문헌)
(특허 문헌)
(특허 문헌 1) 일본 특허 공개 2009-205930호 공보
(특허 문헌 2) 일본 특허 공개 2008-166070호 공보
(특허 문헌 3) 일본 특허 공개 2012-41882호 공보
상술한 특허 문헌 1에 나타내는 바와 같은 발전 시스템에 있어서, 가스 터빈은, 연소기에 있어서 SOFC로부터 배출된 배출 연료 가스와 압축 공기를 연소하여 생성된 연소 가스로 구동된다. 한편, SOFC는, 공급된 연료 가스와 압축기에 있어서 압축된 압축 공기를 이용하여 발전을 하고, 발전에 이용된 배출 연료 가스와 압축 공기를 가스 터빈에 배출한다. 이 때문에, 우선, 가스 터빈을 구동시킨 후, SOFC에 압축 공기를 공급하여 SOFC를 구동시킨다.
상술한 특허 문헌 1에 나타내는 바와 같은 발전 시스템에 있어서, 가스 터빈에 연소 가스를 공급하는 연소기는, SOFC를 운전하고 있지 않은 상태에서는 배출 연료 가스가 공급되지 않기 때문에, 연료 가스가 필요하게 된다. 또한, 연소기는, SOFC로부터의 배출 연료 가스를 연료로서 이용할 때, 가스 터빈이 정격 부하에 도달하는 입열(heat input)에 대하여, 입열이 부족한 경우에는, 고칼로리의 연료 가스를 공급하여 입열을 보충할 필요가 있다. 이와 같이, SOFC와 가스 터빈과 증기 터빈을 조합한 발전 시스템의 운전에 있어서는, SOFC와 가스 터빈의 운전 상태에 따라서, 연소기에 공급되는 연료가 배출 연료 가스와 연료 가스와 같이, 종류가 상이한 연료 가스가 된다.
그런데, 일반적으로, 종류가 상이한 각 연료 가스를 연소기로 연소시키려면, 혼합기를 사용하는 것이 바람직하다. 그러나, SOFC로부터 배출되는 배출 연료 가스는 400℃ 정도에 달하고, 입열을 보충하기 위한 연료 가스는 15℃ 정도이기 때문에, 양쪽에 온도차가 있다. 이 때문에, 온도차에 의해 혼합기에 있어서 각 연료 가스가 균일하게 섞이지 않아 연소가 불안정하게 될 우려가 있거나, 온도차에 의해 혼합기나 그 주변 배관에 열팽창(thermal expansion)의 대책이 필요하게 되거나 한다.
본 발명은, 상술한 과제를 해결하는 것이고, 종류가 상이한 연료 가스의 온도차에 의한 문제를 해소할 수 있는 발전 시스템 및 발전 시스템의 구동 방법을 제공하는 것을 목적으로 한다.
본 발명은, 상술한 과제를 해결하는 것이고, 발전 시스템의 구동에 있어서, 연소기에 종류가 상이한 연료가 공급되더라도, 가스 터빈을 안정시킨 상태에서 구동시킬 수 있는 발전 시스템, 발전 시스템의 구동 방법 및 연소기를 제공하는 것을 목적으로 한다.
상기의 목적을 달성하기 위한 본 발명의 발전 시스템은, 연료 전지로부터 배출되는 배출 연료 가스를 가스 터빈의 연소기의 연료로서 이용함과 아울러, 상기 가스 터빈의 압축기에서 압축된 일부의 압축 공기를 상기 연료 전지의 구동에 이용하는 발전 시스템에 있어서, 상기 가스 터빈은, 상기 배출 연료 가스와는 종류가 상이한 연료 가스를 연소시키는 제 1 연소기와, 상기 제 1 연소기로부터 공급되는 연소 가스에 의해 구동되는 제 1 터빈과, 상기 배출 연료 가스를 연소시키는 제 2 연소기와, 상기 제 1 터빈과 축연결되어 있고(shaft-coupled) 상기 제 2 연소기로부터 공급되는 연소 가스에 의해 구동되는 제 2 터빈을 구비하는 것을 특징으로 한다.
따라서, 배출 연료 가스와 연료 가스를 각각 다른 연소기에서 독립하여 연소시킨다. 이 때문에, 배출 연료 가스와 연료 가스를 혼합기에서 혼합할 필요가 없고, 각 연료 가스가 균일하게 섞이지 않아 연소가 불안정하게 되거나, 온도차에 의해 혼합기나 그 주변 배관에 열팽창의 대책이 필요하게 되거나 하는 일이 없기 때문에, 종류가 상이한 연료 가스의 온도차에 의한 문제를 해소할 수 있다.
또한, 본 발명의 발전 시스템에서는, 상기 제 1 터빈과 상기 제 2 터빈의 축연결(shaft-coupling)을 접속 또는 절단하는 접단부(connecting/disconnecting unit)를 구비하는 것을 특징으로 한다.
따라서, 접단부를 구비하고 있지 않은 경우는, 제 1 터빈만의 구동시에, 제 2 터빈에 연소 가스가 공급되어 있지 않은 상태에서 제 2 터빈은 제 1 터빈과 함께 회전하기 때문에, 제 1 터빈에 부하가 걸리지만, 접단부를 구비하는 것에 의해, 제 1 터빈에 부하가 걸리는 사태를 막을 수 있다.
또한, 본 발명의 발전 시스템에서는, 상기 연료 가스를 상기 제 1 연소기에 공급하는 연료 가스 공급 라인과, 상기 배출 연료 가스를 상기 제 2 연소기에 공급하는 배출 연료 가스 공급 라인과, 상기 연료 가스 공급 라인에 마련되는 연료 가스 제어 밸브와, 상기 배출 연료 가스 공급 라인에 마련되는 배출 연료 가스 제어 밸브와, 상기 연료 전지가 구동되기 전에, 상기 배출 연료 가스 제어 밸브를 폐쇄하고 상기 연료 가스 제어 밸브를 개방하는 제어를 하고, 상기 연료 전지의 구동 후에, 상기 배출 연료 가스 제어 밸브를 개방하는 제어를 하는 제어부를 구비한다.
따라서, 가스 터빈을 구동하는 경우, 연료 가스를 제 1 연소기에 공급하는 것에 의해, 제 1 터빈을 구동한다. 또한, 제 1 터빈이 구동된 후는, 압축기에서 압축된 일부의 압축 공기를 연료 전지에 공급하여, 연료 전지를 구동시킨다. 그리고, 연료 전지가 구동되면, 연료 전지로부터 배출 연료 가스가 배출되기 때문에, 이 배출 연료 가스를 제 2 연소기에 공급한다. 이와 같이, 본 발명의 발전 시스템은, 배출 연료 가스와 연료 가스를 각각 다른 연소기에서 독립하여 연소시킴과 아울러, 연료 전지를 효율적으로 구동시킬 수 있다.
상기의 목적을 달성하기 위한 본 발명의 발전 시스템의 구동 방법은, 연료 전지로부터 배출되는 배출 연료 가스를 가스 터빈의 연소기의 연료로서 이용함과 아울러, 상기 가스 터빈의 압축기에서 압축된 일부의 압축 공기를 상기 연료 전지의 구동에 이용하는 발전 시스템의 구동 방법에 있어서, 상기 가스 터빈은, 상기 배출 연료 가스와는 종류가 상이한 연료 가스를 연소시키는 제 1 연소기와, 상기 제 1 연소기로부터 공급되는 연소 가스에 의해 구동되는 제 1 터빈과, 상기 배출 연료 가스를 연소시키는 제 2 연소기와, 상기 제 1 터빈과 축연결되어 있고 상기 제 2 연소기로부터 공급되는 연소 가스에 의해 구동되는 제 2 터빈을 구비하고, 상기 제 1 연소기에 상기 연료 가스를 공급하여 상기 제 1 터빈을 구동하는 공정과, 다음으로, 상기 연료 전지를 구동하는 공정과, 다음으로, 상기 제 2 연소기에 상기 배출 연료 가스를 공급하여 상기 제 2 터빈을 구동하는 공정을 갖는 것을 특징으로 한다.
따라서, 가스 터빈을 구동하는 경우, 연료 가스를 제 1 연소기에 공급하는 것에 의해, 제 1 터빈을 구동한다. 또한, 제 1 터빈이 구동된 후는, 압축기에서 압축된 일부의 압축 공기를 연료 전지에 공급하여, 연료 전지를 구동시킨다. 그리고, 연료 전지가 구동되면, 연료 전지로부터 배출 연료 가스가 배출되기 때문에, 이 배출 연료 가스를 제 2 연소기에 공급한다. 이와 같이, 본 발명의 발전 시스템의 구동 방법은, 배출 연료 가스와 연료 가스를 각각 다른 연소기에서 독립하여 연소시킨다. 이 때문에, 배출 연료 가스와 연료 가스를 혼합기에서 혼합할 필요가 없고, 각 연료 가스가 균일하게 섞이지 않아 연소가 불안정하게 되거나, 온도차에 의해 혼합기나 그 주변 배관에 열팽창의 대책이 필요하게 되거나 하는 일이 없기 때문에, 종류가 상이한 연료 가스의 온도차에 의한 문제를 해소할 수 있다. 더구나, 본 발명의 발전 시스템의 구동 방법은, 배출 연료 가스와 연료 가스를 각각 다른 연소기에서 독립하여 연소시킴과 아울러, 연료 전지를 효율적으로 구동시킬 수 있다.
또한, 본 발명의 발전 시스템의 구동 방법은, 상기 제 1 터빈과 상기 제 2 터빈의 축연결을 접속 또는 절단하는 접단부를 구비하고, 상기 접단부에 의해 상기 제 1 터빈과 상기 제 2 터빈의 축연결을 절단하는 공정과, 다음으로, 상기 제 1 연소기에 상기 연료 가스를 공급하여 상기 제 1 터빈을 구동하는 공정과, 다음으로, 상기 연료 전지를 구동하는 공정과, 다음으로, 상기 접단부에 의해 상기 제 1 터빈과 상기 제 2 터빈의 축연결을 접속하는 공정과, 다음으로, 상기 제 2 연소기에 상기 배출 연료 가스를 공급하여 상기 제 2 터빈을 구동하는 공정을 갖는 것을 특징으로 한다.
따라서, 접단부를 구비하고 있지 않은 경우는, 제 1 터빈만의 구동시에, 제 2 터빈에 연소 가스가 공급되어 있지 않은 상태에서 제 2 터빈은 제 1 터빈과 함께 회전하기 때문에, 제 1 터빈에 부하가 걸리지만, 접단부를 구비하는 것에 의해, 제 1 터빈에 부하가 걸리는 사태를 막을 수 있다.
상기의 목적을 달성하기 위한 본 발명의 발전 시스템은, 연료 전지로부터 배출되는 배출 연료 가스를 가스 터빈의 연소기의 연료로서 이용하는 발전 시스템에 있어서, 상기 연소기는, 제 1 메인 노즐과, 제 2 메인 노즐과, 상기 제 1 메인 노즐에 접속되어 상기 연료 전지로부터 배출되는 상기 배출 연료 가스를 보내는 제 1 메인 노즐 연료 라인과, 상기 제 2 메인 노즐에 접속되어 상기 배출 연료 가스와는 종류가 상이한 연료 가스를 보내는 제 2 메인 노즐 연료 라인과, 상기 제 1 메인 노즐 연료 라인에 마련되는 제 1 메인 노즐 제어 밸브와, 상기 제 2 메인 노즐 연료 라인에 마련되는 제 2 메인 노즐 제어 밸브를 구비하고, 상기 가스 터빈을 기동하는 경우에 상기 제 1 메인 노즐 제어 밸브를 폐쇄하고 상기 제 2 메인 노즐 제어 밸브를 개방하는 제어를 하고, 상기 가스 터빈의 기동 후에 상기 연료 전지가 기동되면, 상기 제 1 메인 노즐 제어 밸브를 개방하고 상기 제 2 메인 노즐 제어 밸브를 좁히는 제어를 하는 제어부를 갖는 것을 특징으로 한다.
따라서, 가스 터빈을 기동하는 경우, 연료 가스를 연소기에 공급하는 것에 의해, 가스 터빈을 기동한다. 또한, 가스 터빈이 기동된 후는, 압축기에서 압축된 일부의 압축 공기를 연료 전지에 공급하여, 연료 전지를 기동시킨다. 그리고, 연료 전지가 기동되면, 연료 전지로부터 배출 연료 가스가 배출되기 때문에, 이 배출 연료 가스를 연소기에 공급함과 아울러, 유량이 제한된 소정량의 연료 가스를 공급하여 배출 연료 가스의 입열 부족을 보완한다. 이 때문에, 발전 시스템은, 가스 터빈을 안정시킨 상태에서 구동시킬 수 있다. 더구나, 제 1 메인 노즐과 제 2 메인 노즐로부터, 고온의 배출 연료 가스와 저온의 연료 가스가 각각 독립하여 공급되어 연소되기 때문에, 이들 온도가 상이한 배출 연료 가스와 연료 가스를 혼합시켜 연소기에 공급하는 혼합기를 생략할 수 있다.
또한, 본 발명의 발전 시스템은, 상기 연소기는, 파일럿 노즐과, 상기 파일럿 노즐에 접속되어 상기 연료 가스를 보내는 파일럿 노즐 연료 라인과, 상기 파일럿 노즐 연료 라인에 마련되는 파일럿 노즐 제어 밸브를 구비하고, 상기 제어부는, 상기 가스 터빈을 기동하는 경우나 구동하는 경우에 상기 파일럿 노즐 제어 밸브를 개방하는 제어를 하는 것을 특징으로 한다.
따라서, 가스 터빈을 기동하는 경우나 구동하는 경우, 파일럿 노즐로부터 분사된 연료 가스를 연소시키는 것에 의해, 제 1 메인 노즐이나 제 2 메인 노즐로부터 분사되는 배출 연료 가스나 연료 가스와 압축 공기가 혼합된 예혼합 가스(premixed gas)의 안정 연소를 행하기 위한 보염(flame holding)을 실시할 수 있다.
상기의 목적을 달성하기 위한 본 발명의 발전 시스템의 구동 방법은, 연료 전지로부터 배출되는 배출 연료 가스를 가스 터빈의 연소기의 연료로서 이용하는 발전 시스템의 구동 방법에 있어서, 상기 연소기는, 상기 연료 전지로부터 배출되는 상기 배출 연료 가스를 분사하는 제 1 메인 노즐과, 상기 배출 연료 가스와는 종류가 상이한 연료 가스를 분사하는 제 2 메인 노즐을 구비하고, 상기 가스 터빈을 기동하는 경우에 상기 제 2 메인 노즐로부터만 연료 가스를 분사하는 공정과, 상기 가스 터빈의 기동 후에 상기 연료 전지가 기동되면, 상기 제 1 메인 노즐로부터 상기 배출 연료 가스를 분사함과 아울러, 상기 제 2 메인 노즐로부터 소정량으로 제한된 상기 연료 가스를 분사하는 공정을 갖는 것을 특징으로 한다.
따라서, 가스 터빈을 기동하는 경우, 연소기의 제 2 메인 노즐로부터 연료 가스를 분사하여 연소시키는 것에 의해, 가스 터빈을 기동한다. 또한, 가스 터빈이 기동된 후는, 압축기에서 압축된 일부의 압축 공기를 연료 전지에 공급하고, 연료 전지를 기동시킨다. 그리고, 연료 전지가 기동되면, 연료 전지로부터 배출된 배출 연료 가스가 연소기의 제 1 메인 노즐로부터 분사됨과 아울러, 이 배출 연료 가스의 입열 부족을 보완하는 소정량의 연료 가스가 제 2 메인 노즐로부터 분사된다. 이 때문에, 발전 시스템은, 가스 터빈을 안정시킨 상태에서 구동할 수 있다. 더구나, 제 1 메인 노즐과 제 2 메인 노즐로부터, 고온의 배출 연료 가스와 저온의 연료 가스가 각각 독립하여 공급되어 연소되기 때문에, 이들 온도가 상이한 배출 연료 가스와 연료 가스를 혼합시켜 연소기에 공급하는 혼합기를 생략할 수 있다.
상기의 목적을 달성하기 위한 본 발명의 연소기는, 연료 전지와 가스 터빈을 갖는 발전 시스템에 구비되고, 상기 연료 전지로부터 배출되는 배출 연료 가스를 연소시킨 연소 가스를 가스 터빈에 공급하는 연소기에 있어서, 상기 연료 전지로부터 배출되는 상기 배출 연료 가스를 분사하는 제 1 메인 노즐과, 상기 배출 연료 가스와는 종류가 상이한 연료 가스를 분사하는 제 2 메인 노즐과, 상기 제 1 메인 노즐로부터의 상기 배출 연료 가스의 분사를 제어하는 제 1 메인 노즐 제어 밸브와, 상기 제 2 메인 노즐로부터의 상기 연료 가스의 분사를 제어하는 제 2 메인 노즐 제어 밸브를 갖는 것을 특징으로 한다.
따라서, 가스 터빈을 기동하는 경우, 제 2 메인 노즐 제어 밸브를 개방하여 제 2 메인 노즐로부터 연료 가스를 분사하여 연소시키는 것에 의해, 가스 터빈을 기동한다. 또한, 가스 터빈이 기동된 후는, 가스 터빈의 압축기에서 압축된 일부의 압축 공기를 연료 전지에 공급하고, 연료 전지를 기동시킨다. 그리고, 연료 전지가 기동되면, 제 1 메인 노즐 제어 밸브를 개방하여 제 1 메인 노즐로부터, 연료 전지로부터 배기된 배출 연료 가스를 분사하여 연소시킴과 아울러, 제 2 메인 노즐 제어 밸브에 의해 유량이 제한된 소정량의 연료 가스를 분사하여, 배출 연료 가스의 입열 부족을 보완한다. 이 때문에, 발전 시스템은, 가스 터빈을 안정시킨 상태에서 구동시킬 수 있다. 더구나, 제 1 메인 노즐과 제 2 메인 노즐로부터, 고온의 배출 연료 가스와 저온의 연료 가스가 각각 독립하여 공급되어 연소되기 때문에, 이들 온도가 상이한 배출 연료 가스와 연료 가스를 혼합시켜 연소기에 공급하는 혼합기를 생략할 수 있다.
또한, 본 발명의 연소기는, 상기 연료 가스를 분사하는 파일럿 노즐과, 상기 파일럿 노즐로부터의 상기 연료 가스의 분사를 제어하는 파일럿 노즐 제어 밸브를 더 갖는 것을 특징으로 한다.
따라서, 가스 터빈을 기동하는 경우나 구동하는 경우, 파일럿 노즐 제어 밸브를 개방하여 파일럿 노즐로부터 분사된 연료 가스를 연소시키는 것에 의해, 제 1 메인 노즐이나 제 2 메인 노즐로부터 분사되는 배출 연료 가스나 연료 가스와 압축 공기가 혼합된 예혼합 가스의 안정 연소를 행하기 위한 보염을 행할 수 있다.
본 발명에 의하면, 종류가 상이한 연료 가스의 온도차에 의한 문제를 해소할 수 있다.
본 발명에 의하면, 발전 시스템의 구동에 있어서, 연소기에 종류가 상이한 연료가 공급되더라도, 가스 터빈을 안정시킨 상태에서 구동시킬 수 있다.
도 1은 본 발명의 실시예 1과 관련되는 발전 시스템을 나타내는 개략 구성도이다.
도 2는 본 실시예 1의 발전 시스템에 있어서의 구동시의 타임 차트이다.
도 3은 본 발명의 실시예 2와 관련되는 발전 시스템의 연소기를 나타내는 개략도이다.
도 4는 도 3에 있어서의 A-A 단면도이다.
도 5는 본 실시예 2의 발전 시스템에 있어서의 연소기 구동시에 있어서의 연료 공급의 플로차트이다.
도 6은 본 실시예 2의 발전 시스템을 나타내는 개략 구성도이다.
실시예 1
이하에 첨부 도면을 참조하여, 본 발명과 관련되는 발전 시스템 및 발전 시스템에 있어서의 연료 전지의 운전 방법의 적합한 실시예를 상세하게 설명한다. 또, 이 실시예에 의해 본 발명이 한정되는 것은 아니고, 또한, 실시예가 복수 있는 경우에는, 각 실시예를 조합하여 구성하는 것도 포함하는 것이다.
본 실시예 1의 발전 시스템은, 고체 산화물형 연료 전지(이하, SOFC라고 칭한다.)와 가스 터빈과 증기 터빈을 조합한 트리플 컴바인드 사이클(Triple Combined Cycle : 등록상표)이다. 이 트리플 컴바인드 사이클은, 가스 터빈 컴바인드 사이클 발전(GTCC)의 상류측에 SOFC를 설치하는 것에 의해, SOFC, 가스 터빈, 증기 터빈의 3단계로 발전할 수 있기 때문에, 매우 높은 발전 효율을 실현할 수 있다. 또, 이하의 설명에서는, 본 발명의 연료 전지로서 고체 산화물형 연료 전지를 적용하여 설명하지만, 이 형식의 연료 전지로 한정되는 것은 아니다.
도 1은 본 발명의 실시예 1과 관련되는 발전 시스템을 나타내는 개략 구성도, 도 2는 본 실시예 1의 발전 시스템에 있어서의 구동시의 타임 차트이다.
본 실시예 1에 있어서, 도 1에 나타내는 바와 같이, 발전 시스템(10)은, 가스 터빈(11) 및 발전기(12)와, SOFC(13)와, 증기 터빈(14) 및 발전기(15)를 갖고 있다. 이 발전 시스템(10)은, 가스 터빈(11)에 의한 발전과, SOFC(13)에 의한 발전과, 증기 터빈(14)에 의한 발전을 조합하는 것에 의해, 높은 발전 효율을 얻도록 구성한 것이다.
가스 터빈(11)은, 압축기(20), 제 1 연소기(21A), 제 2 연소기(21B), 제 1 터빈(22A), 제 2 터빈(22B)을 갖고 있다.
압축기(20)는, 공기 흡입 라인(24)으로부터 흡입한 공기 A를 압축한다. 압축기(20)는, 제 1 터빈(22A)과 회전축(23A)에 의해 일체적으로 회전 가능하게 축연결되어 있다.
제 1 연소기(21A)는, 제 1 압축 공기 공급 라인(25) 및 해당 제 1 압축 공기 공급 라인(25)으로부터 2개로 분기한 한쪽의 제 1 압축 공기 공급 분기 라인(25A)으로 압축기(20)에 연결되고, 압축기(20)로부터 압축 공기 A1이 공급된다. 또한, 제 1 연소기(21A)는, 제 1 연료 가스 공급 라인(26)을 통해서 연료 가스 L1이 공급된다. 제 1 연료 가스 공급 라인(연료 가스 공급 라인)(26)은, 공급하는 공기량을 조정 가능한 제 1 연료 가스 제어 밸브(연료 가스 제어 밸브)(28)가 마련되어 있다. 그리고, 제 1 연소기(21A)는, 이들 압축 공기 A1과 연료 가스 L1을 혼합하여 연소시킨다. 또, 여기서는, 제 1 연소기(21A)에 공급하는 연료 가스 L1로서, 예컨대, 액화 천연 가스(LNG)를 이용하고 있다. 제 2 연소기(21B)는, 제 1 압축 공기 공급 라인(25) 및 해당 제 1 압축 공기 공급 라인(25)으로부터 2개로 분기한 다른 쪽의 제 1 압축 공기 공급 분기 라인(25B)으로 압축기(20)에 연결되고, 압축기(20)로부터 압축 공기 A1이 공급된다. 또한, 제 2 연소기(21B)는, 후술하는 배출 연료 가스 공급 라인(45)을 통해서 배출 연료 가스 L3이 공급된다. 그리고, 제 2 연소기(21B)는, 이들 압축 공기 A1과 배출 연료 가스 L3을 혼합하여 연소시킨다. 또, 제 1 압축 공기 공급 라인(25)은, 공급하는 공기량을 조정 가능한 제 1 압축 공기 제어 밸브(29)가 마련되어 있다. 또한, 다른 쪽의 제 1 압축 공기 공급 분기 라인(25B)은, 공급하는 공기량을 조정 가능한 제 1 압축 공기 분기 제어 밸브(30)가 마련되어 있다.
제 1 터빈(22A)은, 제 1 연소기(21A)로부터 제 1 연소 가스 공급 라인(27A)을 통해서 공급된 연소 가스 G1에 의해 회전한다. 제 2 터빈(22B)은, 제 2 연소기(21B)로부터 제 2 연소 가스 공급 라인(27B)을 통해 공급된 연소 가스 G2에 의해 회전한다. 이들 제 1 터빈(22A)과 제 2 터빈(22B)은, 회전축(23A)과 동축상에 있는 회전축(23B)에 의해 일체적으로 회전 가능하게 축연결되어 있다. 또한, 제 1 터빈(22A)과 제 2 터빈(22B)의 사이의 회전축(23B)에, 제 1 터빈(22A)과 제 2 터빈(22B)의 축연결을 접속 또는 절단하는 접단부(60)가 마련되어 있다. 접단부(60)는, 클러치로서 구성할 수 있다.
발전기(12)는, 압축기(20), 제 1 터빈(22A), 제 2 터빈(22B)과 동축상에 마련되어 있고, 제 1 터빈(22A)이나 제 2 터빈(22B)이 회전하는 것에 의해 발전할 수 있다.
SOFC(13)는, 환원제로서의 고온의 연료 가스와 산화제로서의 고온의 공기(산화성 가스)가 공급되는 것에 의해, 소정의 작동 온도에서 반응하여 발전을 행하는 것이다. 이 SOFC(13)는, 압력 용기 내에 공기극과 고체 전해질과 연료극(fuel electrode)이 수용되어 구성된다. 공기극에 압축기(20)에서 압축된 압축 공기 A2가 공급되고, 연료극에 연료 가스 L2가 공급되는 것에 의해 발전을 행한다. 또, 여기서는, SOFC(13)에 공급하는 연료 가스 L2로서, 예컨대, 액화 천연 가스(LNG), 수소(H2) 및 일산화탄소(CO), 메탄(CH4) 등의 탄화수소 가스, 석탄 등 탄소질 원료의 가스화 설비에 의해 제조한 가스를 이용하고 있다. 또한, SOFC(13)에 공급되는 산화성 가스는, 산소를 대략 15%~30% 포함하는 가스이고, 대표적으로는 공기가 적합하지만, 공기 이외에도 연소 배기 가스와 공기의 혼합 가스나, 산소와 공기의 혼합 가스 등이 사용 가능하다(이하, SOFC(13)에 공급되는 산화성 가스를 공기라고 한다).
이 SOFC(13)는, 압축기(20)와 제 2 압축 공기 공급 라인(31)으로 연결되고, 압축기(20)가 압축한 일부의 압축 공기 A2를 공기극의 도입부에 공급할 수 있다. 이 제 2 압축 공기 공급 라인(31)은, 공급하는 공기량을 조정 가능한 제 2 압축 공기 제어 밸브(32)와, 압축 공기 A2를 승압 가능한 압축 공기 블로어(33)가 압축 공기 A2의 흐름 방향을 따라서 마련되어 있다. 제 2 압축 공기 제어 밸브(32)는, 제 2 압축 공기 공급 라인(31)에 있어서의 압축 공기 A2의 흐름 방향의 상류측에 마련되고, 압축 공기 블로어(33)는, 제 2 압축 공기 제어 밸브(32)의 하류측에 마련되어 있다. SOFC(13)는, 공기극에서 이용된 압축 공기 A3을 배출하는 배출 공기 라인(34)이 연결되어 있다. 이 배출 공기 라인(34)은, 공기극에서 이용된 압축 공기 A3을 외부로 배출하는 배출 라인(35)과, 제 1 압축 공기 공급 라인(25)에 있어서 각 제 1 압축 공기 공급 분기 라인(25A, 25B)이 분기하는 앞쪽에 연결되는 압축 공기 순환 라인(36)으로 분기된다. 배출 라인(35)은, 배출하는 공기량을 조정 가능한 압축 공기 배출 제어 밸브(37)가 마련되고, 압축 공기 순환 라인(36)은, 순환하는 공기량을 조정 가능한 압축 공기 순환 제어 밸브(38)가 마련되어 있다.
또한, SOFC(13)는, 연료 가스 L2를 연료극의 도입부에 공급하는 제 2 연료 가스 공급 라인(41)이 마련되어 있다. 제 2 연료 가스 공급 라인(41)은, 공급하는 연료 가스량을 조정 가능한 제 2 연료 가스 제어 밸브(42)가 마련되어 있다. SOFC(13)는, 연료극에서 이용된 배출 연료 가스 L3을 배출하는 배출 연료 라인(43)이 연결되어 있다. 이 배출 연료 라인(43)은, 외부로 배출하는 배출 라인(44)과, 제 2 연소기(21B)에 연결되는 배출 연료 가스 공급 라인(45)으로 분기된다. 배출 라인(44)은, 배출하는 연료 가스량을 조정 가능한 배출 연료 가스 배출 제어 밸브(46)가 마련되고, 배출 연료 가스 공급 라인(45)은, 공급하는 연료 가스량을 조정 가능한 배출 연료 가스 제어 밸브(47)와, 배출 연료 가스 L3을 승압 가능한 배출 연료 가스 블로어(48)가 배출 연료 가스 L3의 흐름 방향을 따라서 마련되어 있다. 배출 연료 가스 제어 밸브(47)는, 배출 연료 가스 공급 라인(45)에 있어서의 배출 연료 가스 L3의 흐름 방향의 상류측에 마련되고, 배출 연료 가스 블로어(48)는, 배출 연료 가스 제어 밸브(47)의 배출 연료 가스 L3의 흐름 방향의 하류측에 마련되어 있다.
또한, 배출 연료 라인(43)과 제 2 연료 가스 공급 라인(41)을 연결하는 연료 가스 재순환 라인(49)이 마련되어 있다. 연료 가스 재순환 라인(49)은, 배출 연료 라인(43)의 배출 연료 가스 L3을 제 2 연료 가스 공급 라인(41)에 재순환시키는 재순환 블로어(50)가 마련되어 있다.
증기 터빈(14)은, 배열 회수 보일러(HRSG)(51)에서 생성된 증기에 의해 터빈(52)이 회전하는 것이다. 증기 터빈(14)(터빈(52))은, 배열 회수 보일러(51)와의 사이에 증기 공급 라인(54)과 급수 라인(55)이 마련되어 있다. 그리고, 급수 라인(55)은, 복수기(steam condenser)(56)와 급수 펌프(57)가 마련되어 있다. 배열 회수 보일러(51)는, 가스 터빈(11)(제 1 터빈(22A) 및 제 2 터빈(22B))으로부터의 배기 가스 라인(53)이 연결되어 있고, 배기 가스 라인(53)으로부터 공급되는 고온의 배기 가스 G3과 급수 라인(55)으로부터 공급되는 물의 사이에서 열교환을 행하는 것에 의해, 증기 S를 생성한다. 발전기(15)는, 터빈(52)과 동축상에 마련되어 있고, 터빈(52)이 회전하는 것에 의해 발전할 수 있다. 또, 배열 회수 보일러(51)에서 열이 회수된 배기 가스 G3은, 유해 물질이 제거되고 나서 대기에 방출된다.
여기서, 도 1 및 도 2를 이용하여 본 실시예 1의 발전 시스템(10)의 구동 방법(구동 순서)에 대하여 설명한다. 발전 시스템(10)을 구동하는 경우, 가스 터빈(11), 증기 터빈(14), SOFC(13)의 차례로 구동한다. 이 발전 시스템(10)의 구동은, 제어 장치(제어부)(70)에 의해 통괄적으로 제어된다.
우선, 제어 장치(70)는, 제 1 연료 가스 공급 라인(26)의 제 1 연료 가스 제어 밸브(28) 및 제 1 압축 공기 공급 라인(25)의 제 1 압축 공기 제어 밸브(29)를 개방함과 아울러 접단부(60)를 절단 상태로 하고, 그 외의 제어 밸브(30, 32, 37, 38, 42, 46, 47)를 폐쇄하고, 급수 펌프(57) 및 각 블로어(33, 48, 50)를 정지시킨다. 즉, 가스 터빈(11)에서, 압축기(20)가 공기 A를 압축하고, 제 1 연소기(21A)가 압축 공기 A1과 연료 가스 L1을 혼합하여 연소하고, 제 1 터빈(22A)이 연소 가스 G1에 의해 회전한다. 그리고, 제 1 터빈(22A)이 정격 부하에 도달하고, 발전기(12)가 발전을 개시한다.
계속하여, 제어 장치(70)는, 급수 펌프(57)를 구동시킨다. 즉, 증기 터빈(14)에서, 배열 회수 보일러(51)에 의해 생성된 증기 S에 의해 터빈(52)이 회전하고, 이것에 의해 발전기(15)가 발전을 개시한다.
계속하여, 제어 장치(70)는, 배출 라인(35)의 압축 공기 배출 제어 밸브(37)와 압축 공기 순환 라인(36)의 압축 공기 순환 제어 밸브(38)를 폐쇄하고, 또한 제 2 압축 공기 공급 라인(31)의 압축 공기 블로어(33)를 정지한 상태에서, 제 2 압축 공기 공급 라인(31)의 제 2 압축 공기 제어 밸브(32)를 소정 개방도만큼 개방한다. 그러면, 압축기(20)에서 압축한 일부의 압축 공기 A2가 제 2 압축 공기 공급 라인(31)으로부터 SOFC(13)측에 공급된다. 이것에 의해, SOFC(13)의 공기극측은, 압축 공기 A2가 공급되는 것에 의해 압력이 상승한다. 즉, SOFC(13)를 구동시키기 위해, 압축기(20)로부터 압축 공기 A2를 공급하여 SOFC(13)의 가압을 개시함과 아울러 가열을 개시한다.
한편, 제어 장치(70)는, 배출 라인(44)의 배출 연료 가스 배출 제어 밸브(46)와 배출 연료 가스 공급 라인(45)의 배출 연료 가스 제어 밸브(47)를 폐쇄하고, 배출 연료 가스 블로어(48)를 정지한 상태에서, 제 2 연료 가스 공급 라인(41)의 제 2 연료 가스 제어 밸브(42)를 개방함과 아울러, 연료 가스 재순환 라인(49)의 재순환 블로어(50)를 구동한다. 그러면, 연료 가스 L2가 제 2 연료 가스 공급 라인(41)으로부터 SOFC(13)에 공급됨과 아울러, 배출 연료 가스 L3이 연료 가스 재순환 라인(49)에 의해 재순환된다. 이것에 의해, SOFC(13)측은, 연료 가스 L2가 공급되는 것에 의해 압력이 상승한다. 즉, SOFC(13)의 연료극측에서, 연료 가스 L2를 공급하여 가압을 개시한다.
그리고, 제 1 연소기(21A)의 압축 공기 A1의 입구 압력이 압축기(20)의 출구 압력이 되고, SOFC(13)의 공기극측의 압력이 압축기(20)의 출구 압력이 되어 균압화되면, 제어 장치(70)는, 제 2 압축 공기 제어 밸브(32)를 완전 개방으로 함과 아울러, 압축 공기 블로어(33)를 구동한다. 그것과 동시에 제어 장치(70)는, 압축 공기 배출 제어 밸브(37)를 개방하여 SOFC(13)로부터의 압축 공기 A3을 배출 라인(35)으로부터 배출시킨다. 그러면, 압축 공기 A2가 압축 공기 블로어(33)에 의해 SOFC(13)측에 공급된다. 그것과 동시에 제어 장치(70)는, 재순환 블로어(50)를 정지함과 아울러 배출 연료 가스 배출 제어 밸브(46)를 개방하여 SOFC(13)로부터의 배출 연료 가스 L3을 배출 라인(44)으로부터 배출시킨다. 그리고, SOFC(13)에 있어서의 공기극측의 압력과 연료극측의 압력이 목표 압력에 도달하면, SOFC(13)의 가압이 완료된다.
그 후, SOFC(13)의 반응(발전)이 안정되고, 압축 공기 A3과 배출 연료 가스 L3의 성분ㆍ온도ㆍ압력이 안정(일정화)되면, 제어 장치(70)는, 제 1 압축 공기 제어 밸브(29) 및 압축 공기 배출 제어 밸브(37)를 폐쇄하는 한편, 압축 공기 순환 제어 밸브(38)를 개방한다. 그러면, SOFC(13)로부터의 압축 공기 A3이 압축 공기 순환 라인(36)으로부터 한쪽의 제 1 압축 공기 공급 분기 라인(25A)을 통해서 SOFC(13)로부터의 압축 공기 A3이 제 1 연소기(21A)에 공급된다. 즉, SOFC(13)로부터의 압축 공기 A3을 이용하여 제 1 연소기(21A)에서 연소된 연소 가스 G1에 의해 제 1 터빈(22A)이 회전한다.
또한, 제어 장치(70)는, 접단부(60)를 접속 상태로 하고, 배출 연료 가스 배출 제어 밸브(46)를 폐쇄하는 한편, 다른 쪽의 제 1 압축 공기 공급 분기 라인(25B)의 제 1 압축 공기 분기 제어 밸브(30) 및 배출 연료 가스 제어 밸브(47)를 개방하여 배출 연료 가스 블로어(48)를 구동한다. 그러면, SOFC(13)로부터의 배출 연료 가스 L3이 배출 연료 가스 공급 라인(45)으로부터 제 2 연소기(21B)에 공급됨과 아울러, SOFC(13)로부터의 압축 공기 A3이 제 2 연소기(21B)에 공급된다. 즉, SOFC(13)로부터의 압축 공기 A3 및 SOFC(13)로부터의 배출 연료 가스 L3을 이용하여 제 2 연소기(21B)에서 연소된 연소 가스 G2에 의해 제 2 터빈(22B)이 회전한다.
그리고, 가스 터빈(11)에 있어서의 제 1 터빈(22A) 및 제 2 터빈(22B)의 구동에 의한 발전기(12)에서의 발전, SOFC(13)에서의 발전, 증기 터빈(14)의 구동에 의해 발전기(15)에서의 발전이 모두 행해지게 되어, 발전 시스템(10)이 정상 운전이 된다.
또, 접단부(60)는 마련하지 않더라도 좋다. 이 경우, 제 1 터빈(22A)과 제 2 터빈(22B)은 항상 축연결되어 있고, 제 1 터빈(22A)만의 구동시에, 제 2 터빈(22B)에 연소 가스 G2가 공급되어 있지 않은 상태에서 제 2 터빈(22B)은 제 1 터빈(22A)과 함께 회전한다.
이와 같이 본 실시예 1의 발전 시스템(10)에 있어서는, SOFC(13)로부터 배출되는 배출 연료 가스 L3을 가스 터빈(11)의 연소기의 연료로서 이용함과 아울러, 가스 터빈(11)의 압축기(20)에서 압축된 일부의 압축 공기 A2를 SOFC(13)의 구동에 이용하는 발전 시스템(10)에 있어서, 가스 터빈(11)은, 배출 연료 가스 L3과는 종류가 상이한 연료 가스 L1을 연소시키는 제 1 연소기(21A)와, 제 1 연소기(21A)로부터 공급되는 연소 가스 G1에 의해 구동되는 제 1 터빈(22A)과, 배출 연료 가스 L3을 연소시키는 제 2 연소기(21B)와, 제 1 터빈(22A)과 축연결되어 있고 제 2 연소기(21B)로부터 공급되는 연소 가스 G2에 의해 구동되는 제 2 터빈(22B)을 구비한다.
따라서, 본 실시예 1의 발전 시스템(10)은, 배출 연료 가스 L3과 연료 가스 L1을 각각 다른 연소기(21A, 21B)에서 독립하여 연소시킨다. 이 때문에, 배출 연료 가스 L3과 연료 가스 L1을 혼합기에서 혼합할 필요가 없고, 각 연료 가스 L3, L1이 균일하게 섞이지 않아 연소가 불안정하게 되거나, 온도차에 의해 혼합기나 그 주변 배관에 열팽창의 대책이 필요하게 되거나 하는 일이 없기 때문에, 종류가 상이한 연료 가스 L3, L1의 온도차에 의한 문제를 해소할 수 있다.
또한, 본 실시예 1의 발전 시스템(10)에 있어서는, 제 1 터빈(22A)과 제 2 터빈(22B)의 축연결을 접속 또는 절단하는 접단부(60)를 구비한다.
따라서, 접단부(60)를 구비하고 있지 않은 경우는, 제 1 터빈(22A)만의 구동시에, 제 2 터빈(22B)에 연소 가스 G2가 공급되어 있지 않은 상태에서 제 2 터빈(22B)은 제 1 터빈(22A)과 함께 회전하기 때문에, 제 1 터빈(22A)에 부하가 걸리지만, 접단부(60)를 구비하는 것에 의해, 제 1 터빈(22A)에 부하가 걸리는 사태를 막을 수 있다.
또한, 본 실시예 1의 발전 시스템(10)에 있어서는, 연료 가스 L1을 제 1 연소기(21A)에 공급하는 제 1 연료 가스 공급 라인(연료 가스 공급 라인)(26)과, 배출 연료 가스 L3을 제 2 연소기(21B)에 공급하는 배출 연료 가스 공급 라인(45)과, 제 1 연료 가스 공급 라인(26)에 마련되는 제 1 연료 가스 제어 밸브(연료 가스 제어 밸브)(28)와, 배출 연료 가스 공급 라인(45)에 마련되는 배출 연료 가스 제어 밸브(47)와, SOFC(13)가 구동되기 전에, 배출 연료 가스 제어 밸브(47)를 폐쇄하고 제 1 연료 가스 제어 밸브(28)를 개방하는 제어를 하고, SOFC(13)의 구동 후에, 배출 연료 가스 제어 밸브(47)를 개방하는 제어를 하는 제어 장치(제어부)(70)를 구비한다.
따라서, 가스 터빈(11)을 구동하는 경우, 연료 가스 L1을 제 1 연소기(21A)에 공급하는 것에 의해, 제 1 터빈(22A)을 구동한다. 또한, 제 1 터빈(22A)이 구동된 후는, 압축기(20)에서 압축된 일부의 압축 공기 A2를 SOFC(13)에 공급하고, SOFC(13)를 구동시킨다. 그리고, SOFC(13)가 구동되면, SOFC(13)로부터 배출 연료 가스 L3이 배출되기 때문에, 이 배출 연료 가스 L3을 제 2 연소기(21B)에 공급한다. 이와 같이, 본 실시예 1의 발전 시스템(10)은, 배출 연료 가스 L3과 연료 가스 L1을 각각 다른 연소기(21A, 21B)에서 독립하여 연소시킴과 아울러, SOFC(13)를 효율적으로 구동시킬 수 있다.
또한, 본 실시예 1의 발전 시스템(10)의 구동 방법에 있어서는, SOFC(13)로부터 배출되는 배출 연료 가스 L3을 가스 터빈(11)의 연소기의 연료로서 이용함과 아울러, 가스 터빈(11)의 압축기(20)에서 압축된 일부의 압축 공기 A2를 SOFC(13)의 구동에 이용하는 발전 시스템(10)의 구동 방법에 있어서, 가스 터빈(11)은, 배출 연료 가스 L3과는 종류가 상이한 연료 가스 L1을 연소시키는 제 1 연소기(21A)와, 제 1 연소기(21A)로부터 공급되는 연소 가스 G1에 의해 구동되는 제 1 터빈(22A)과, 배출 연료 가스 L3을 연소시키는 제 2 연소기(21B)와, 제 1 터빈(22A)과 축연결되어 있고 제 2 연소기(21B)로부터 공급되는 연소 가스 G2에 의해 구동되는 제 2 터빈(22B)을 구비하고, 제 1 연소기(21A)에 연료 가스 L1을 공급하여 제 1 터빈(22A)을 구동하는 공정과, 다음으로, SOFC(13)를 구동하는 공정과, 다음으로, 제 2 연소기(21B)에 배출 연료 가스 L3을 공급하여 제 2 터빈(22B)을 구동하는 공정을 갖는다.
따라서, 가스 터빈(11)을 구동하는 경우, 연료 가스 L1을 제 1 연소기(21A)에 공급하는 것에 의해, 제 1 터빈(22A)을 구동한다. 또한, 제 1 터빈(22A)이 구동된 후는, 압축기(20)에서 압축된 일부의 압축 공기 A2를 SOFC(13)에 공급하고, SOFC(13)를 구동시킨다. 그리고, SOFC(13)가 구동되면, SOFC(13)로부터 배출 연료 가스 L3이 배출되기 때문에, 이 배출 연료 가스 L3을 제 2 연소기(21B)에 공급한다. 이와 같이, 본 실시예 1의 발전 시스템(10)의 구동 방법은, 배출 연료 가스 L3과 연료 가스 L1을 각각 다른 연소기(21A, 21B)에서 독립하여 연소시킨다. 이 때문에, 배출 연료 가스 L3과 연료 가스 L1을 혼합기에서 혼합할 필요가 없고, 각 연료 가스 L3, L1이 균일하게 섞이지 않아 연소가 불안정하게 되거나, 온도차에 의해 혼합기나 그 주변 배관에 열팽창의 대책이 필요하게 되거나 하는 일이 없기 때문에, 종류가 상이한 연료 가스 L3, L1의 온도차에 의한 문제를 해소할 수 있다. 더구나, 본 실시예 1의 발전 시스템(10)의 구동 방법은, 배출 연료 가스 L3과 연료 가스 L1을 각각 다른 연소기(21A, 21B)에서 독립하여 연소시킴과 아울러, SOFC(13)를 효율적으로 구동시킬 수 있다.
또한, 본 실시예 1의 발전 시스템(10)의 구동 방법에 있어서는, 제 1 터빈(22A)과 제 2 터빈(22B)의 축연결을 접속 또는 절단하는 접단부(60)를 구비하고, 접단부(60)에 의해 제 1 터빈(22A)과 제 2 터빈(22B)의 축연결을 절단하는 공정과, 다음으로, 제 1 연소기(21A)에 연료 가스 L1을 공급하여 제 1 터빈(22A)을 구동하는 공정과, 다음으로, SOFC(13)를 구동하는 공정과, 다음으로, 접단부(60)에 의해 제 1 터빈(22A)과 제 2 터빈(22B)의 축연결을 접속하는 공정과, 다음으로, 제 2 연소기(21B)에 배출 연료 가스 L3을 공급하여 제 2 터빈(22B)을 구동하는 공정을 갖는다.
따라서, 접단부(60)를 구비하고 있지 않은 경우는, 제 1 터빈(22A)만의 구동시에, 제 2 터빈(22B)에 연소 가스 G2가 공급되어 있지 않은 상태에서 제 2 터빈(22B)은 제 1 터빈(22A)과 함께 회전하기 때문에, 제 1 터빈(22A)에 부하가 걸리지만, 접단부(60)를 구비하는 것에 의해, 제 1 터빈(22A)에 부하가 걸리는 사태를 막을 수 있다.
실시예 2
이하에 첨부 도면을 참조하여, 본 발명과 관련되는 발전 시스템 및 발전 시스템에 있어서의 연료 전지의 운전 방법의 적합한 실시예를 상세하게 설명한다. 또, 이 실시예에 의해 본 발명이 한정되는 것은 아니고, 또한, 실시예가 복수 있는 경우에는, 각 실시예를 조합하여 구성하는 것도 포함하는 것이다.
본 실시예 2의 발전 시스템은, 고체 산화물형 연료 전지(이하, SOFC라고 칭한다.)와 가스 터빈과 증기 터빈을 조합한 트리플 컴바인드 사이클(Triple Combined Cycle : 등록상표)이다. 이 트리플 컴바인드 사이클은, 가스 터빈 컴바인드 사이클 발전(GTCC)의 상류측에 SOFC를 설치하는 것에 의해, SOFC, 가스 터빈, 증기 터빈의 3단계로 발전할 수 있기 때문에, 매우 높은 발전 효율을 실현할 수 있다. 또, 이하의 설명에서는, 본 발명의 연료 전지로서 고체 산화물형 연료 전지를 적용하여 설명하지만, 이 형식의 연료 전지로 한정되는 것은 아니다.
도 3은 본 발명의 실시예 2와 관련되는 발전 시스템의 연소기를 나타내는 개략도, 도 4는 도 3에 있어서의 A-A 단면도, 도 5는 본 실시예 2의 발전 시스템에 있어서의 연소기 구동시에 있어서의 연료 공급의 플로차트, 도 6은 본 실시예 2의 발전 시스템을 나타내는 개략 구성도이다.
본 실시예 2에 있어서, 도 6에 나타내는 바와 같이, 발전 시스템(110)은, 가스 터빈(111) 및 발전기(112)와, SOFC(113)와, 증기 터빈(114) 및 발전기(115)를 갖고 있다. 이 발전 시스템(110)은, 가스 터빈(111)에 의한 발전과, SOFC(113)에 의한 발전과, 증기 터빈(114)에 의한 발전을 조합하는 것에 의해, 높은 발전 효율을 얻도록 구성한 것이다.
가스 터빈(111)은, 압축기(121), 연소기(122), 터빈(123)을 갖고 있고, 압축기(121)와 터빈(123)은, 회전축(124)에 의해 일체적으로 회전 가능하게 연결되어 있다. 압축기(121)는, 공기 흡입 라인(125)으로부터 흡입한 공기 A100을 압축한다. 연소기(122)는, 압축기(121)로부터 제 1 압축 공기 공급 라인(126)을 통해서 공급된 압축 공기 A101과, 제 1 연료 가스 공급 라인(127)으로부터 공급된 연료 가스 L101을 혼합하여 연소한다. 터빈(123)은, 연소기(122)로부터 연료 가스 공급 라인(128)을 통해서 공급된 연소 가스 G101에 의해 회전한다. 또, 도시하지 않지만, 터빈(123)은, 압축기(121)에서 압축된 압축 공기 A101이 하우징을 통해서 공급되고, 이 압축 공기 A101을 냉각 공기로 하여 날개 등을 냉각한다. 발전기(112)는, 터빈(123)과 동축상에 마련되어 있고, 터빈(123)이 회전하는 것에 의해 발전할 수 있다. 또, 여기서는, 연소기(122)에 공급하는 연료 가스 L101로서, 예컨대, 액화 천연 가스(LNG)를 이용하고 있다.
SOFC(113)는, 환원제로서의 고온의 연료 가스와 산화제로서의 고온의 공기(산화성 가스)가 공급되는 것에 의해, 소정의 작동 온도에서 반응하여 발전을 행하는 것이다. 이 SOFC(113)는, 압력 용기 내에 공기극과 고체 전해질과 연료극이 수용되어 구성된다. 공기극에 압축기(121)에서 압축된 압축 공기 A102가 공급되고, 연료극에 연료 가스 L102가 공급되는 것에 의해 발전을 행한다. 또, 여기서는, SOFC(113)에 공급하는 연료 가스 L102로서, 예컨대, 액화 천연 가스(LNG), 수소(H2) 및 일산화탄소(CO), 메탄(CH4) 등의 탄화수소 가스, 석탄 등 탄소질 원료의 가스화 설비에 의해 제조한 가스를 이용하고 있다. 또한, SOFC(113)에 공급되는 산화성 가스는, 산소를 대략 15%~30% 포함하는 가스이고, 대표적으로는 공기가 적합하지만, 공기 이외에도 연소 배기 가스와 공기의 혼합 가스나, 산소와 공기의 혼합 가스 등이 사용 가능하다(이하, SOFC(113)에 공급되는 산화성 가스를 공기라고 한다).
이 SOFC(113)는, 제 1 압축 공기 공급 라인(126)으로부터 분기한 제 2 압축 공기 공급 라인(131)이 연결되고, 압축기(121)가 압축한 일부의 압축 공기 A102를 공기극의 도입부에 공급할 수 있다. 이 제 2 압축 공기 공급 라인(131)은, 공급하는 공기량을 조정 가능한 제어 밸브(132)와, 압축 공기 A102를 승압 가능한 블로어(133)가 압축 공기 A102의 흐름 방향을 따라서 마련되어 있다. 제어 밸브(132)는, 제 2 압축 공기 공급 라인(131)에 있어서의 압축 공기 A102의 흐름 방향의 상류측에 마련되고, 블로어(133)는, 제어 밸브(132)의 하류측에 마련되어 있다. SOFC(113)는, 공기극에서 이용된 압축 공기 A103을 배출하는 배출 공기 라인(134)이 연결되어 있다. 이 배출 공기 라인(134)은, 공기극에서 이용된 압축 공기 A103(배출 공기)을 외부로 배출하는 배출 라인(135)과, 연소기(122)에 연결되는 압축 공기 순환 라인(136)으로 분기된다. 배출 라인(135)은, 배출하는 공기량을 조정 가능한 제어 밸브(137)가 마련되고, 압축 공기 순환 라인(136)은, 순환하는 공기량을 조정 가능한 제어 밸브(138)가 마련되어 있다.
또한, SOFC(113)는, 연료 가스 L102를 연료극의 도입부에 공급하는 제 2 연료 가스 공급 라인(141)이 마련되어 있다. 제 2 연료 가스 공급 라인(141)은, 공급하는 연료 가스량을 조정 가능한 제어 밸브(142)가 마련되어 있다. SOFC(113)는, 연료극에서 이용된 배출 연료 가스 L103을 배출하는 배출 연료 라인(143)이 연결되어 있다. 이 배출 연료 라인(143)은, 외부로 배출하는 배출 라인(144)과, 연소기(122)에 연결되는 배출 연료 가스 공급 라인(145)으로 분기된다. 배출 라인(144)은, 배출하는 연료 가스량을 조정 가능한 제어 밸브(146)가 마련되고, 배출 연료 가스 공급 라인(145)은, 공급하는 연료 가스량을 조정 가능한 제어 밸브(147)와, 배출 연료 가스 L103을 승압 가능한 블로어(148)가 배출 연료 가스 L103의 흐름 방향을 따라서 마련되어 있다. 제어 밸브(147)는, 배출 연료 가스 공급 라인(145)에 있어서의 배출 연료 가스 L103의 흐름 방향의 상류측에 마련되고, 블로어(148)는, 제어 밸브(147)의 배출 연료 가스 L103의 흐름 방향의 하류측에 마련되어 있다.
또한, SOFC(113)는, 배출 연료 라인(143)과 제 2 연료 가스 공급 라인(141)을 연결하는 연료 가스 재순환 라인(149)이 마련되어 있다. 연료 가스 재순환 라인(149)은, 배출 연료 라인(143)의 배출 연료 가스 L103을 제 2 연료 가스 공급 라인(141)에 재순환시키는 재순환 블로어(150)가 마련되어 있다.
증기 터빈(114)은, 배열 회수 보일러(HRSG)(151)에서 생성된 증기에 의해 터빈(152)이 회전하는 것이다. 증기 터빈(114)(터빈(152))은, 배열 회수 보일러(151)와의 사이에 증기 공급 라인(154)과 급수 라인(155)이 마련되어 있다. 그리고, 급수 라인(155)은, 복수기(156)와 급수 펌프(157)가 마련되어 있다. 배열 회수 보일러(151)는, 가스 터빈(111)(터빈(123))으로부터의 배기 가스 라인(153)이 연결되어 있고, 배기 가스 라인(153)으로부터 공급되는 고온의 배기 가스 G102와 급수 라인(155)으로부터 공급되는 물의 사이에서 열교환을 행하는 것에 의해, 증기 S100을 생성한다. 발전기(115)는, 터빈(152)과 동축상에 마련되어 있고, 터빈(152)이 회전하는 것에 의해 발전할 수 있다. 또, 배열 회수 보일러(151)에서 열이 회수된 배기 가스 G102는, 유해 물질이 제거되고 나서 대기에 방출된다.
여기서, 본 실시예 2의 발전 시스템(110)의 작동에 대하여 설명한다. 발전 시스템(110)을 기동하는 경우, 가스 터빈(111), 증기 터빈(114), SOFC(113)의 차례로 기동한다.
우선, 가스 터빈(111)에서, 압축기(121)가 공기 A100을 압축하고, 연소기(122)가 압축 공기 A101과 연료 가스 L101을 혼합하여 연소하고, 터빈(123)이 연소 가스 G101에 의해 회전하는 것에 의해, 발전기(112)가 발전을 개시한다. 다음으로, 증기 터빈(114)에서, 배열 회수 보일러(151)에 의해 생성된 증기 S100에 의해 터빈(152)이 회전하고, 이것에 의해 발전기(115)가 발전을 개시한다.
계속하여, SOFC(113)를 기동시키기 위해, 압축기(121)로부터 압축 공기 A102를 공급하여 SOFC(113)의 가압을 개시함과 아울러 가열을 개시한다. 배출 라인(135)의 제어 밸브(137)와 압축 공기 순환 라인(136)의 제어 밸브(138)를 폐쇄하고, 제 2 압축 공기 공급 라인(131)의 블로어(133)를 정지한 상태에서, 제어 밸브(132)를 소정 개방도만큼 개방한다. 그러면, 압축기(121)에서 압축한 일부의 압축 공기 A102가 제 2 압축 공기 공급 라인(131)으로부터 SOFC(113)측에 공급된다. 이것에 의해, SOFC(113)의 공기극측은, 압축 공기 A102가 공급되는 것에 의해 압력이 상승한다.
한편, SOFC(113)의 연료극측에서는, 연료 가스 L102를 공급하여 가압을 개시한다. 배출 라인(144)의 제어 밸브(146)와 배출 연료 가스 공급 라인(145)의 제어 밸브(147)를 폐쇄하고, 블로어(148)를 정지한 상태에서, 제 2 연료 가스 공급 라인(141)의 제어 밸브(142)를 개방함과 아울러, 연료 가스 재순환 라인(149)의 재순환 블로어(150)를 구동한다. 그러면, 연료 가스 L102가 제 2 연료 가스 공급 라인(141)으로부터 SOFC(113)에 공급됨과 아울러, 배출 연료 가스 L103이 연료 가스 재순환 라인(149)에 의해 재순환된다. 이것에 의해, SOFC(113)측은, 연료 가스 L102가 공급되는 것에 의해 압력이 상승한다.
그리고, SOFC(113)의 공기극측의 압력이 압축기(121)의 출구 압력이 되면, 제어 밸브(132)를 완전 개방으로 함과 아울러, 블로어(133)를 구동한다. 그것과 동시에 제어 밸브(137)를 개방하여 SOFC(113)로부터의 압축 공기 A103을 배출 라인(135)으로부터 배출한다. 그러면, 압축 공기 A102가 블로어(133)에 의해 SOFC(113)측에 공급된다. 그것과 동시에 제어 밸브(146)를 개방하여 SOFC(113)로부터의 배출 연료 가스 L103을 배출 라인(144)로부터 배출한다. 그리고, SOFC(113)에 있어서의 공기극측의 압력과 연료극측의 압력이 목표 압력에 도달하면, SOFC(113)의 가압이 완료된다.
그 후, SOFC(113)의 반응(발전)이 안정되고, 압축 공기 A103과 배출 연료 가스 L103의 성분이 안정되면, 제어 밸브(137)를 폐쇄하는 한편, 제어 밸브(138)를 개방한다. 그러면, SOFC(113)로부터의 압축 공기 A103이 압축 공기 순환 라인(136)으로부터 연소기(122)에 공급된다. 또한, 제어 밸브(146)를 폐쇄하는 한편, 제어 밸브(147)를 개방하여 블로어(148)를 구동한다. 그러면, SOFC(113)로부터의 배출 연료 가스 L103이 배출 연료 가스 공급 라인(145)으로부터 연소기(122)에 공급된다. 이때, 제 1 연료 가스 공급 라인(127)으로부터 연소기(122)에 공급되는 연료 가스 L101을 감량한다.
여기서, 가스 터빈(111)의 구동에 의한 발전기(112)에서의 발전, SOFC(113)에서의 발전, 증기 터빈(114)의 구동에 의해 발전기(115)에서의 발전이 모두 행해지게 되고, 발전 시스템(110)이 정상 운전이 된다.
이하, 연소기(122)에 대하여 설명한다. 연소기(122)는, 터빈(123)의 하우징(도시하지 않음)에 배치된다. 연소기(122)는, 압축기(121)에서 압축된 압축 공기 A101이나 SOFC(113)로부터 배출된 압축 공기 A103이 하우징에 공급되고, 이 압축 공기 A101이나 압축 공기 A103과 연료 가스 L101을 혼합하여 연소시켜 연소 가스 G101을 생성한다.
도 3 및 도 4에 나타내는 바와 같이, 연소기(122)는, 외부 실린더(101)의 내부에 소정 간격을 두고 공기 통로 R을 형성하도록 내부 실린더(102)가 지지되어 있다. 내부 실린더(102)는, 그 선단부에 터빈(123)에 접속되는 연결 요소(연소 가스 공급 라인(128))가 연결되어 있다.
내부 실린더(102)는, 그 내부의 중심부의 연소기 축 C상에서, 이 연소기 축 C의 연장 방향을 따라서 파일럿 노즐(103)이 배치되어 있다. 파일럿 노즐(103)은, 그 선단부의 주위에, 원통형으로 선단측이 광각으로 형성된 연소통(103b)이 장착되어 있다.
또한, 내부 실린더(102)는, 그 내부의 내주면에 둘레 방향을 따라서 파일럿 노즐(103)을 둘러싸도록 복수(본 실시예 2에서는 8개)의 메인 노즐(예혼합 노즐이라고도 한다)(104)이 연소기 축 C와 평행하게 배치되어 있다. 이 메인 노즐(104)은, 제 1 메인 노즐(104A) 및 제 2 메인 노즐(104B)을 갖는다. 본 실시예 2에 있어서, 제 1 메인 노즐(104A)과 제 2 메인 노즐(104B)은, 4개씩 마련되고, 내부 실린더(102)의 둘레 방향에서 교대로 배치되어 있다.
외부 실린더(101)는, 그 기단부에 톱햇부(top hat part)(101A)가 마련되어 있다. 톱햇부(101A)는, 외부 실린더(101)의 기단부의 내주면을 따라서 배치되고, 외부 실린더(101)와 함께 공기 통로 R의 일부를 형성하는 원통형 부재(101Aa)와, 이 원통형 부재(101Aa)의 기단측의 개구를 폐색하는 덮개 부재(101Ab)로 구성되어 있다. 덮개 부재(101Ab)는, 상술한 파일럿 노즐(103)을 지지하고, 이 파일럿 노즐(103)의 연료 포트(103a)가 바깥쪽에 배치되어 있다. 이 연료 포트(103a)는, 제 1 연료 가스 공급 라인(127)으로부터 분기한 파일럿 노즐 연료 라인(127a)이 접속되어 파일럿 노즐(103)에 연료 가스 L101이 공급된다. 또한, 덮개 부재(101Ab)는, 상술한 제 1 메인 노즐(104A) 및 제 2 메인 노즐(104B)이 지지되고, 제 1 메인 노즐(104A)의 연료 포트(104Aa) 및 제 2 메인 노즐(104B)의 연료 포트(104Ba)가 바깥쪽에 배치되어 있다. 제 1 메인 노즐(104A)의 연료 포트(104Aa)는, 제 1 메인 노즐 연료 라인으로서의 배출 연료 가스 공급 라인(145)이 접속되어 제 1 메인 노즐(104A)에 배출 연료 가스 L103이 공급된다. 또한, 제 2 메인 노즐(104B)의 연료 포트(104Ba)는, 제 1 연료 가스 공급 라인(127)으로부터 분기한 제 2 메인 노즐 연료 라인(127b)이 접속되어 제 2 메인 노즐(104B)에 연료 가스 L101이 공급된다.
또한, 파일럿 노즐 연료 라인(127a)은, 파일럿 노즐(103)로의 연료 가스 L101의 공급을 제어하는 파일럿 노즐 제어 밸브(105A)가 마련되어 있다. 또한, 배출 연료 가스 공급 라인(145)은, 제 1 메인 노즐(104A)로의 배출 연료 가스 L103의 공급을 제어하는 제 1 메인 노즐 제어 밸브(105B)가 마련되어 있다. 또한, 제 2 메인 노즐 연료 라인(127b)은, 제 2 메인 노즐(104B)로의 연료 가스 L101의 공급을 제어하는 제 2 메인 노즐 제어 밸브(105C)가 마련되어 있다.
이와 같은 연소기(122)에서는, 고온ㆍ고압의 압축 공기 A101이나 압축 공기 A103이 외부 실린더(101)의 선단측으로부터 공기 통로 R에 흘러들면, 이 압축 공기 A101이나 압축 공기 A103은, 외부 실린더(101)의 기단측의 톱햇부(101A)의 위치에서 꺾여, 내부 실린더(102) 내에 흘러든다. 내부 실린더(102) 내에서는, 메인 노즐(104)(104A, 104B)로부터 분사된 연료 가스 L101이나 배출 연료 가스 L103과, 내부 실린더(102) 내에 흘러드는 압축 공기 A101이나 압축 공기 A103이 혼합되어 예혼합 가스가 되어, 내부 실린더(102)의 선단측의 연결 요소 내에 흘러든다. 또한, 내부 실린더(102) 내에서는, 파일럿 노즐(103)로부터 분사된 연료 가스 L101과, 내부 실린더(102) 내에 흘러드는 압축 공기 A101이나 압축 공기 A103이 혼합되어, 도시하지 않는 불씨에 의해 착화되어 연소하고, 연소 가스 G101을 생성하여 연결 요소 내에 분출된다. 이때, 연소 가스 G101의 일부가 연결 요소 내에 화염과 함께 주위로 확산하도록 분출되는 것에 의해, 각 메인 노즐(104)로부터 연결 요소 내에 흘러든 예혼합 가스에 발화되어 연소한다. 생성된 연소 가스 G101은, 터빈(123)에 공급된다.
연소기(122)에 있어서, 각 제어 밸브(105A, 105B, 105C)는, 제어 장치(제어부)(106)에서 개폐 및 개방도가 제어된다. 제어 장치(106)는, 가스 터빈(111)의 기동이나 운전 상태, SOFC(113)의 운전 상태에 따라서 각 제어 밸브(105A, 105B, 105C)를 제어한다. 따라서, 제어 장치(106)는, 가스 터빈(111)이나 SOFC(113)의 운전 상태를 입력하여 상시 감시한다.
이하, 상술한 제어 장치(106)에 의한 제어로서, 본 실시예 2의 발전 시스템(110)의 구동 방법에 대하여 설명한다. 또, 여기서는, 가스 터빈(111), 증기 터빈(114), SOFC(113)의 차례로 기동하는 경우로서, 가스 터빈(111)의 구동에 대하여 설명한다.
우선, 가스 터빈(111)을 기동하기 전의 정지 상태에 있어서, 제어 장치(106)는, 파일럿 노즐 제어 밸브(105A), 제 1 메인 노즐 제어 밸브(105B) 및 제 2 메인 노즐 제어 밸브(105C)를 폐쇄한 상태로 한다.
그리고, 도 5에 나타내는 바와 같이, 가스 터빈(111)을 기동하는 지령을 받은 경우(단계 S1 : 예), 제어 장치(106)는, 파일럿 노즐 제어 밸브(105A)를 개방하고, 또한 제 2 메인 노즐 제어 밸브(105C)를 개방하는 제어를 한다(단계 S2). 연소기(122)는, 파일럿 노즐(103)로부터 연료 가스 L101을 분사시키고, 또한 제 2 메인 노즐(104B)로부터 연료 가스 L101을 분사시켜 압축 공기 A101과 혼합하여 연소 가스를 생성한다. 이것에 의해, 가스 터빈(111)은, 연료 가스 L101로부터 생성된 연소 가스 G101에 의해 기동된다.
그 후, 가스 터빈(111)의 압축기(121)가 압축한 일부의 압축 공기 A102가 SOFC(113)에 공급되게 되고, 또한 연료 가스 L102가 SOFC(113)에 공급되어 SOFC(113)가 기동된다. 이 SOFC(113)가 기동된 취지의 신호를 입력한 경우(단계 S3 : 예), 제어 장치(106)는, 파일럿 노즐 제어 밸브(105A)를 개방한 채의 상태에서, 제 1 메인 노즐 제어 밸브(105B)를 개방하고, 또한 제 2 메인 노즐 제어 밸브(105C)를 소정 개방도로 좁히는 제어를 한다(단계 S4). 그러면, 연소기(122)에 있어서, 제 1 메인 노즐(104A)로부터 배출 연료 가스 L103을 분사시켜 연소 가스 G101을 생성시킨다. 제 2 메인 노즐 제어 밸브(105C)의 소정 개방도는, 가스 터빈(111)이 정격 부하에 도달하는 입열에 대하여, 배출 연료 가스 L103만의 입열의 부족분을, 연료 가스 L101을 공급해 입열을 보충하기 위한 개방도이다. 이것에 의해, 기동 후의 SOFC(113)로부터 배출 연료 가스 L103이 배출되면, 가스 터빈(111)은, 주로 배출 연료 가스 L103에 의해 구동된다. 또, 제어 장치(106)는, 단계 S3에서 SOFC(113)가 기동된 취지의 신호를 입력할 때까지는(단계 S3 : 아니오), 단계 S2에서 파일럿 노즐 제어 밸브(105A)를 개방하고, 또한 제 2 메인 노즐 제어 밸브(105C)를 개방하고, 연소기(122)는, 파일럿 노즐(103)로부터 분사된 연료 가스 L101에 의해 연소 가스 G101을 생성한다. 다시 말해, 가스 터빈(111)은, SOFC(113)가 기동될 때까지는 연료 가스 L101에 의해 생성된 연소 가스 G101에 의해 구동된다.
이와 같이 본 실시예 2의 발전 시스템(110)에 있어서는, SOFC(113)로부터 배출되는 배출 연료 가스 L103을 가스 터빈(111)의 연소기(122)의 연료로서 이용하는 발전 시스템(110)에 있어서, 연소기(122)는, 제 1 메인 노즐(104A)과, 제 2 메인 노즐(104B)과, 제 1 메인 노즐(104A)에 접속되어 SOFC(113)로부터 배출되는 배출 연료 가스 L103을 보내는 배출 연료 가스 공급 라인(제 1 메인 노즐 연료 라인)(145)과, 제 2 메인 노즐(104B)에 접속되어 배출 연료 가스 L103과는 종류가 상이한 연료 가스 L101을 보내는 제 2 메인 노즐 연료 라인(127b)과, 배출 연료 가스 공급 라인(145)에 마련되는 제 1 메인 노즐 제어 밸브(105B)와, 제 2 메인 노즐 연료 라인(127b)에 마련되는 제 2 메인 노즐 제어 밸브(105C)를 구비하고, 가스 터빈(111)을 기동하는 경우에 제 1 메인 노즐 제어 밸브(105B)를 폐쇄하고 제 2 메인 노즐 제어 밸브(105C)를 개방하는 제어를 하고, 가스 터빈(111)의 기동 후에 SOFC(113)가 기동되면, 제 1 메인 노즐 제어 밸브(105B)를 개방하고 제 2 메인 노즐 제어 밸브(105C)를 좁히는 제어를 하는 제어 장치(106)를 갖는다.
따라서, 가스 터빈(111)을 기동하는 경우, 연료 가스 L101을 연소기(122)에 공급하는 것에 의해, 가스 터빈(111)을 기동한다. 또한, 가스 터빈(111)이 기동된 후는, 압축기(121)에서 압축된 일부의 압축 공기 A102를 SOFC(113)에 공급하고, SOFC(113)를 기동시킨다. 그리고, SOFC(113)가 기동되면, SOFC(113)로부터 배출 연료 가스 L103이 배출되기 때문에, 이 배출 연료 가스 L103을 연소기(122)에 공급함과 아울러, 유량을 제한한 소정량의 연료 가스 L101을 공급하여 배출 연료 가스 L103의 입열 부족을 보완한다. 이 때문에, 본 실시예 2의 발전 시스템(110)은, 가스 터빈(111)을 안정시킨 상태에서 구동시키는 것이 가능하게 된다. 더구나, 제 1 메인 노즐(104A)과 제 2 메인 노즐(104B)로부터, 고온(450℃ 정도)의 배출 연료 가스 L103과 저온(15℃ 정도)의 연료 가스 L101이 각각 독립하여 공급되어 연소되기 때문에, 이들 온도가 상이한 배출 연료 가스 L103과 연료 가스 L101을 혼합시켜 연소기(122)에 공급하는 혼합기를 생략하는 것이 가능하게 된다.
또한, 본 실시예 2의 발전 시스템(110)에 있어서는, 연소기(122)는, 파일럿 노즐(103)과, 파일럿 노즐(103)에 접속되어 연료 가스 L101을 보내는 파일럿 노즐 연료 라인(127a)과, 파일럿 노즐 연료 라인(127a)에 마련되는 파일럿 노즐 제어 밸브(105A)를 구비하고, 제어 장치(106)는, 가스 터빈(111)을 기동하는 경우나 구동하는 경우에 파일럿 노즐 제어 밸브(105A)를 개방하는 제어를 한다.
따라서, 가스 터빈(111)을 기동하는 경우나 구동하는 경우, 파일럿 노즐(103)로부터 분사된 연료 가스 L101을 연소시키는 것에 의해, 제 1 메인 노즐(104A)이나 제 2 메인 노즐(104B)로부터 분사되는 배출 연료 가스 L103이나 연료 가스 L101과 압축 공기가 혼합된 예혼합 가스의 안정 연소를 행하기 위한 보염을 행하는 것이 가능하게 된다.
또한, 본 실시예 2의 발전 시스템(110)의 구동 방법에 있어서는, SOFC(113)로부터 배출되는 배출 연료 가스 L103을 가스 터빈(111)의 연소기(122)의 연료로서 이용하는 발전 시스템(110)의 구동 방법에 있어서, 연소기(122)는, SOFC(113)로부터 배출되는 배출 연료 가스 L103을 분사하는 제 1 메인 노즐(104A)과, 배출 연료 가스 L103과는 종류가 상이한 연료 가스 L101을 분사하는 제 2 메인 노즐(104B)을 구비하고, 가스 터빈(111)을 기동하는 경우에 제 2 메인 노즐(104B)로부터만 연료 가스 L101을 분사하는 공정과, 가스 터빈(111)의 기동 후에 SOFC(113)가 기동되면, 제 1 메인 노즐(104A)로부터 배출 연료 가스 L103을 분사함과 아울러, 제 2 메인 노즐(104B)로부터 소정량으로 제한된 연료 가스 L101을 분사하는 공정을 갖는다.
따라서, 가스 터빈(111)을 기동하는 경우, 연소기(122)의 제 2 메인 노즐(104B)로부터 연료 가스 L101을 분사하여 연소시키는 것에 의해, 가스 터빈(111)을 기동한다. 또한, 가스 터빈(111)이 기동된 후는, 압축기(121)에서 압축된 일부의 압축 공기 A102를 SOFC(113)에 공급하고, SOFC(113)를 기동시킨다. 그리고, SOFC(113)가 기동되면, SOFC(113)로부터 배출된 배출 연료 가스 L103이 연소기(122)의 제 1 메인 노즐(104A)로부터 분사됨과 아울러, 이 배출 연료 가스 L103의 입열 부족을 보완하는 소정량의 연료 가스 L101이 제 2 메인 노즐(104B)로부터 분사된다. 이 때문에, 본 실시예 2의 발전 시스템(110)은, 가스 터빈(111)을 안정시킨 상태에서 구동하는 것이 가능하게 된다. 더구나, 제 1 메인 노즐(104A)과 제 2 메인 노즐(104B)로부터, 고온(450℃ 정도)의 배출 연료 가스 L103과 저온(15℃ 정도)의 연료 가스 L101이 각각 독립하여 공급되어 연소되기 때문에, 이들 온도가 상이한 배출 연료 가스 L103과 연료 가스 L101을 혼합시켜 연소기(122)에 공급하는 혼합기를 생략하는 것이 가능하게 된다.
또한, 본 실시예 2의 연소기(122)에 있어서는, SOFC(113)와 가스 터빈(111)을 갖는 발전 시스템(110)에 구비되고, SOFC(113)로부터 배출되는 배출 연료 가스 L103을 연소시킨 연소 가스를 가스 터빈(111)에 공급하는 연소기(122)에 있어서, SOFC(113)로부터 배출되는 배출 연료 가스 L103을 분사하는 제 1 메인 노즐(104A)과, 배출 연료 가스 L103은 종류가 상이한 연료 가스 L101을 분사하는 제 2 메인 노즐(104B)과, 제 1 메인 노즐(104A)로부터의 배출 연료 가스 L103의 분사를 제어하는 제 1 메인 노즐 제어 밸브(105B)와, 제 2 메인 노즐(104B)로부터의 연료 가스 L101의 분사를 제어하는 제 2 메인 노즐 제어 밸브(105C)를 갖는다.
따라서, 가스 터빈(111)을 기동하는 경우, 제 2 메인 노즐 제어 밸브(105C)를 개방하여 제 2 메인 노즐(104B)로부터 연료 가스 L101을 분사하여 연소시키는 것에 의해, 가스 터빈(111)을 기동한다. 또한, 가스 터빈(111)이 기동된 후는, 가스 터빈(111)의 압축기(121)에서 압축된 일부의 압축 공기 A102를 SOFC(113)에 공급하고, SOFC(113)를 기동시킨다. 그리고, SOFC(113)가 기동되면, 제 1 메인 노즐 제어 밸브(105B)를 개방하여 제 1 메인 노즐(104A)로부터, SOFC(113)로부터 배기된 배출 연료 가스 L103을 분사하여 연소시킴과 아울러, 제 2 메인 노즐 제어 밸브(105C)에 의해 유량을 제한한 소정량의 연료 가스 L101을 분사하여, 배출 연료 가스 L103의 입열 부족을 보완한다. 이 때문에, 본 실시예 2의 발전 시스템(110)은, 가스 터빈(111)을 안정시킨 상태에서 구동시키는 것이 가능하게 된다. 더구나, 제 1 메인 노즐(104A)과 제 2 메인 노즐(104B)로부터, 고온(450℃ 정도)의 배출 연료 가스 L103과 저온(15℃ 정도)의 연료 가스 L101이 각각 독립하여 공급되어 연소되기 때문에, 이들 온도가 상이한 배출 연료 가스 L103과 연료 가스 L101을 혼합시켜 연소기(122)에 공급하는 혼합기를 생략하는 것이 가능하게 된다.
또한, 본 실시예 2의 연소기(122)에 있어서는, 연료 가스 L101을 분사하는 파일럿 노즐(103)과, 파일럿 노즐(103)로부터의 연료 가스 L101의 분사를 제어하는 파일럿 노즐 제어 밸브(105A)를 더 갖는다.
따라서, 가스 터빈(111)을 기동하는 경우나 구동하는 경우, 파일럿 노즐 제어 밸브(105A)를 개방하여 파일럿 노즐(103)로부터 분사된 연료 가스 L101을 연소시키는 것에 의해, 제 1 메인 노즐(104A)이나 제 2 메인 노즐(104B)로부터 분사되는 배출 연료 가스 L103이나 연료 가스 L101과 압축 공기가 혼합된 예혼합 가스의 안정 연소를 행하기 위한 보염을 행하는 것이 가능하게 된다.
10 : 발전 시스템
11 : 가스 터빈
12 : 발전기
13 : SOFC(연료 전지)
14 : 증기 터빈
15 : 발전기
20 : 압축기
21A : 제 1 연소기
21B : 제 2 연소기
22A : 제 1 터빈
22B : 제 2 터빈
26 : 제 1 연료 가스 공급 라인(연료 가스 공급 라인)
28 : 제 1 연료 가스 제어 밸브(연료 가스 제어 밸브)
45 : 배출 연료 가스 공급 라인
47 : 배출 연료 가스 제어 밸브
60 : 접단부
70 : 제어 장치
103 : 파일럿 노즐
104A : 제 1 메인 노즐
104B : 제 2 메인 노즐
105A : 파일럿 노즐 제어 밸브
105B : 제 1 메인 노즐 제어 밸브
105C : 제 2 메인 노즐 제어 밸브
106 : 제어 장치(제어부)
110 : 발전 시스템
111 : 가스 터빈
113 : SOFC(고체 산화물형 연료 전지 : 연료 전지)
122 : 연소기
127a : 파일럿 노즐 연료 라인
127b : 제 2 메인 노즐 연료 라인
145 : 배출 연료 가스 공급 라인(제 1 메인 노즐 연료 라인)
L101 : 연료 가스
L103 : 배출 연료 가스

Claims (3)

  1. 연료 전지로부터 배출되는 배출 연료 가스를 가스 터빈의 연소기의 연료로서 이용하는 발전 시스템에 있어서,
    상기 연소기는,
    제 1 메인 노즐과,
    제 2 메인 노즐과,
    상기 제 1 메인 노즐에 접속되어 상기 연료 전지로부터 배출되는 상기 배출 연료 가스를 보내는 제 1 메인 노즐 연료 라인과,
    상기 제 2 메인 노즐에 접속되어 상기 배출 연료 가스와는 종류가 상이한 연료 가스를 보내는 제 2 메인 노즐 연료 라인과,
    상기 제 1 메인 노즐 연료 라인에 마련되는 제 1 메인 노즐 제어 밸브와,
    상기 제 2 메인 노즐 연료 라인에 마련되는 제 2 메인 노즐 제어 밸브를 갖고,
    상기 가스 터빈을 기동하는 경우에 상기 제 1 메인 노즐 제어 밸브를 폐쇄하고 상기 제 2 메인 노즐 제어 밸브를 개방하는 제어를 하고, 상기 가스 터빈의 기동 후에 상기 연료 전지가 기동되면, 상기 제 1 메인 노즐 제어 밸브를 개방하고 상기 제 2 메인 노즐 제어 밸브를 좁히는 제어를 하는 제어부를 갖고,
    상기 연소기는, 파일럿 노즐과, 상기 파일럿 노즐에 접속되어 상기 연료 가스를 보내는 파일럿 노즐 연료 라인과, 상기 파일럿 노즐 연료 라인에 마련되는 파일럿 노즐 제어 밸브를 구비하고, 상기 제어부는, 상기 가스 터빈을 기동하는 경우나 구동하는 경우에 상기 파일럿 노즐 제어 밸브를 개방하는 제어를 하는 것을 특징으로 하는 발전 시스템.
  2. 연료 전지로부터 배출되는 배출 연료 가스를 가스 터빈의 연소기의 연료로서 이용하는 발전 시스템의 구동 방법에 있어서,
    상기 연소기는,
    상기 연료 전지로부터 배출되는 상기 배출 연료 가스를 분사하는 제 1 메인 노즐과, 상기 배출 연료 가스와는 종류가 상이한 연료 가스를 분사하는 제 2 메인 노즐을 구비하고,
    상기 가스 터빈을 기동하는 경우에 상기 제 2 메인 노즐로부터만 연료 가스를 분사하는 공정과,
    상기 가스 터빈의 기동 후에 상기 연료 전지가 기동되면, 상기 제 1 메인 노즐로부터 상기 배출 연료 가스를 분사함과 아울러, 상기 제 2 메인 노즐로부터 소정량으로 제한된 상기 연료 가스를 분사하는 공정
    을 갖는 것을 특징으로 하는 발전 시스템의 구동 방법.
  3. 연료 전지와 가스 터빈을 갖는 발전 시스템에 구비되고, 상기 연료 전지로부터 배출되는 배출 연료 가스를 연소시킨 연소 가스를 가스 터빈에 공급하는 연소기에 있어서,
    상기 연료 전지로부터 배출되는 상기 배출 연료 가스를 분사하는 제 1 메인 노즐과,
    상기 배출 연료 가스와는 종류가 상이한 연료 가스를 분사하는 제 2 메인 노즐과,
    상기 제 1 메인 노즐로부터의 상기 배출 연료 가스의 분사를 제어하는 제 1 메인 노즐 제어 밸브와,
    상기 제 2 메인 노즐로부터의 상기 연료 가스의 분사를 제어하는 제 2 메인 노즐 제어 밸브와,
    상기 연료 가스를 분사하는 파일럿 노즐과,
    상기 파일럿 노즐로부터의 상기 연료 가스의 분사를 제어하는 파일럿 노즐 제어 밸브를 갖는 것을 특징으로 하는 연소기.
KR1020167020727A 2012-11-21 2013-11-05 발전 시스템 및 발전 시스템의 구동 방법 및 연소기 KR101682870B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012255703A JP6004913B2 (ja) 2012-11-21 2012-11-21 発電システム、発電システムの駆動方法及び燃焼器
JPJP-P-2012-255703 2012-11-21
JP2013030336A JP5984709B2 (ja) 2013-02-19 2013-02-19 発電システム及び発電システムの駆動方法
JPJP-P-2013-030336 2013-02-19
PCT/JP2013/079923 WO2014080758A1 (ja) 2012-11-21 2013-11-05 発電システム及び発電システムの駆動方法ならびに燃焼器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020157010271A Division KR101707353B1 (ko) 2012-11-21 2013-11-05 발전 시스템 및 발전 시스템의 구동 방법 및 연소기

Publications (2)

Publication Number Publication Date
KR20160093740A true KR20160093740A (ko) 2016-08-08
KR101682870B1 KR101682870B1 (ko) 2016-12-05

Family

ID=50775943

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020157010271A KR101707353B1 (ko) 2012-11-21 2013-11-05 발전 시스템 및 발전 시스템의 구동 방법 및 연소기
KR1020167020727A KR101682870B1 (ko) 2012-11-21 2013-11-05 발전 시스템 및 발전 시스템의 구동 방법 및 연소기

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020157010271A KR101707353B1 (ko) 2012-11-21 2013-11-05 발전 시스템 및 발전 시스템의 구동 방법 및 연소기

Country Status (5)

Country Link
US (2) US10107190B2 (ko)
KR (2) KR101707353B1 (ko)
CN (1) CN104755722B (ko)
DE (1) DE112013005578B4 (ko)
WO (1) WO2014080758A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109529B2 (ja) * 2012-10-31 2017-04-05 三菱日立パワーシステムズ株式会社 発電システム
CN104755722B (zh) * 2012-11-21 2017-03-15 三菱日立电力系统株式会社 发电系统、发电系统的驱动方法和燃烧器
JP6021705B2 (ja) * 2013-03-22 2016-11-09 三菱重工業株式会社 燃焼器、および、ガスタービン
JP6628554B2 (ja) * 2015-10-29 2020-01-08 三菱日立パワーシステムズ株式会社 コンバインドサイクルプラント及びコンバインドサイクルプラントの運転制御方法
WO2017184877A1 (en) * 2016-04-21 2017-10-26 Fuelcell Energy, Inc. High efficiency fuel cell system with hydrogen and syngas export
US10541433B2 (en) 2017-03-03 2020-01-21 Fuelcell Energy, Inc. Fuel cell-fuel cell hybrid system for energy storage
US10573907B2 (en) 2017-03-10 2020-02-25 Fuelcell Energy, Inc. Load-following fuel cell system with energy storage
CN108678931B (zh) * 2018-04-09 2019-06-18 华南理工大学 一种压气机抽气储能提高冷热电联产系统灵活性的方法
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
JP6922016B1 (ja) * 2020-02-27 2021-08-18 三菱パワー株式会社 燃料電池システム及びその起動方法
US20230187677A1 (en) * 2021-12-14 2023-06-15 General Electric Company System and method of controlling combustor dynamics with a fuel cell
US20230234714A1 (en) * 2022-01-21 2023-07-27 General Electric Company Systems and method of operating a fuel cell assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144759A (ja) * 2004-11-25 2006-06-08 Toyota Central Res & Dev Lab Inc ガスタービン用予混合燃焼器およびその燃料供給制御方法
JP2008251247A (ja) * 2007-03-29 2008-10-16 Mitsubishi Heavy Ind Ltd 燃料電池ガスタービン複合発電システム及びその制御方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1201767A (en) * 1966-11-02 1970-08-12 Plessey Co Ltd Improvements in or relating to engine-starting gas turbine systems
JPS4912722B1 (ko) 1970-10-20 1974-03-27
JPS4912722A (ko) 1972-05-11 1974-02-04
US4503666A (en) * 1983-05-16 1985-03-12 Rockwell International Corporation Aircraft environmental control system with auxiliary power output
JPH0789494B2 (ja) * 1986-05-23 1995-09-27 株式会社日立製作所 複合発電プラント
US4753077A (en) * 1987-06-01 1988-06-28 Synthetic Sink Multi-staged turbine system with bypassable bottom stage
US4817389A (en) 1987-09-24 1989-04-04 United Technologies Corporation Fuel injection system
US5678647A (en) * 1994-09-07 1997-10-21 Westinghouse Electric Corporation Fuel cell powered propulsion system
JP3012166B2 (ja) 1995-02-01 2000-02-21 川崎重工業株式会社 ガスタービン燃焼システム
US5968680A (en) * 1997-09-10 1999-10-19 Alliedsignal, Inc. Hybrid electrical power system
JPH11343869A (ja) 1998-06-02 1999-12-14 Hitachi Ltd ガスタービン燃焼器およびその制御方法
US6255010B1 (en) * 1999-07-19 2001-07-03 Siemens Westinghouse Power Corporation Single module pressurized fuel cell turbine generator system
JP2002106844A (ja) * 2000-09-28 2002-04-10 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン燃焼器構造
US6585785B1 (en) * 2000-10-27 2003-07-01 Harvest Energy Technology, Inc. Fuel processor apparatus and control system
JP3700603B2 (ja) * 2001-04-06 2005-09-28 日産自動車株式会社 燃料電池システム
US6868677B2 (en) * 2001-05-24 2005-03-22 Clean Energy Systems, Inc. Combined fuel cell and fuel combustion power generation systems
JP4015498B2 (ja) 2002-07-31 2007-11-28 三菱重工業株式会社 複合発電システム
JP4579560B2 (ja) 2003-06-30 2010-11-10 川崎重工業株式会社 燃料電池・常圧タービン・ハイブリッドシステム
US6923642B2 (en) * 2003-10-08 2005-08-02 General Motors Corporation Premixed prevaporized combustor
JP4015656B2 (ja) * 2004-11-17 2007-11-28 三菱重工業株式会社 ガスタービン燃焼器
US7966830B2 (en) * 2006-06-29 2011-06-28 The Boeing Company Fuel cell/combustor systems and methods for aircraft and other applications
JP5001643B2 (ja) * 2006-12-27 2012-08-15 三菱重工業株式会社 排燃料燃焼器を備えた燃料電池システム
CN101743658B (zh) * 2007-07-27 2014-10-08 沃尔沃技术公司 用于运行燃料电池的方法以及燃料电池设备
ES2387320T3 (es) 2007-12-31 2012-09-20 Ansaldo Energia S.P.A. Metodo y dispositivo para controlar una planta de turbina de gas
JP5185657B2 (ja) 2008-02-27 2013-04-17 三菱重工業株式会社 コンバインドシステム
JP5185757B2 (ja) * 2008-10-01 2013-04-17 三菱重工業株式会社 ガスタービンの燃料制御方法および燃料制御装置ならびにガスタービン
GB2469043B (en) * 2009-03-30 2011-02-23 Lotus Car A reheated gas turbine system having a fuel cell
JP5183605B2 (ja) 2009-09-30 2013-04-17 株式会社日立製作所 低カロリーガス焚きガスタービンシステムおよびシステムの運転方法
US8667772B2 (en) * 2010-01-04 2014-03-11 General Electric Company Clutched turbine wheels
JP5529676B2 (ja) 2010-08-20 2014-06-25 三菱重工業株式会社 ガスタービン燃焼器の燃料供給系統およびガスタービン燃焼器の燃料供給方法
DE112013005226T5 (de) * 2012-10-31 2015-08-06 Mitsubishi Hitachi Power Systems, Ltd. Stromerzeugungssystem und -Verfahren zum Aktivieren von Brennstoffzellen in Stromerzeugungssystemen
US9806358B2 (en) * 2012-10-31 2017-10-31 Mitsubishi Hitachi Power Systems, Ltd. Power generation system, and methods for starting and operating fuel cell in power generation system
JP6109529B2 (ja) * 2012-10-31 2017-04-05 三菱日立パワーシステムズ株式会社 発電システム
JP6081149B2 (ja) * 2012-11-09 2017-02-15 三菱日立パワーシステムズ株式会社 発電システム及び発電システムにおける燃料電池排気の冷却方法
CN104755722B (zh) * 2012-11-21 2017-03-15 三菱日立电力系统株式会社 发电系统、发电系统的驱动方法和燃烧器
JP6053560B2 (ja) * 2013-02-20 2016-12-27 三菱日立パワーシステムズ株式会社 発電システム及び発電システムの運転方法
JP6228752B2 (ja) * 2013-04-26 2017-11-08 三菱日立パワーシステムズ株式会社 発電システム及び発電システムの起動方法
JP6290558B2 (ja) * 2013-09-03 2018-03-07 三菱日立パワーシステムズ株式会社 制御装置及び方法、それを備えた複合発電システム
JP6472638B2 (ja) * 2014-10-30 2019-02-20 三菱日立パワーシステムズ株式会社 複合発電システム、その制御装置及び方法並びにプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144759A (ja) * 2004-11-25 2006-06-08 Toyota Central Res & Dev Lab Inc ガスタービン用予混合燃焼器およびその燃料供給制御方法
JP2008251247A (ja) * 2007-03-29 2008-10-16 Mitsubishi Heavy Ind Ltd 燃料電池ガスタービン複合発電システム及びその制御方法

Also Published As

Publication number Publication date
US10107190B2 (en) 2018-10-23
DE112013005578B4 (de) 2022-05-05
CN104755722A (zh) 2015-07-01
CN104755722B (zh) 2017-03-15
WO2014080758A1 (ja) 2014-05-30
KR101707353B1 (ko) 2017-02-15
KR101682870B1 (ko) 2016-12-05
US20190024580A1 (en) 2019-01-24
DE112013005578T5 (de) 2015-09-03
KR20150056858A (ko) 2015-05-27
US10914233B2 (en) 2021-02-09
US20150285141A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
KR101682870B1 (ko) 발전 시스템 및 발전 시스템의 구동 방법 및 연소기
US10774740B2 (en) Gas turbine assembly and corresponding operating method
EP2578942A2 (en) Apparatus for head end direct air injection with enhanced mixing capabaliites
JP7291090B2 (ja) ガスタービンの燃焼器
AU2011285093A1 (en) A solid oxide fuel cell system
US9739488B2 (en) Gas turbine combustor with two kinds of gas fuel supply systems
JP2009205930A (ja) コンバインドシステム
JP2015132462A (ja) 希釈ガスを用いる2段燃焼配列
JP6474951B2 (ja) 燃焼器
KR101678325B1 (ko) 발전 시스템
US20140238034A1 (en) Turbomachine combustor assembly and method of operating a turbomachine
CN106468449B (zh) 带有用于稀释的冷却气体的连续燃烧布置
JP6004913B2 (ja) 発電システム、発電システムの駆動方法及び燃焼器
JP6148133B2 (ja) ガスタービン燃焼器及びガスタービンシステム
JP3706455B2 (ja) 水素燃焼タービン用水素・酸素燃焼器
JP2000329346A (ja) 予混合燃焼器及びその燃焼器を持つコージェネレーションシステム
JPWO2007069309A1 (ja) ガスタービン装置
JP5984709B2 (ja) 発電システム及び発電システムの駆動方法
CN115875693A (zh) 燃气轮机头部一体化燃烧室和燃气轮机发电系统
CN111623372A (zh) 运行顺序燃烧器的方法和包括顺序燃烧器的燃气涡轮
CN111623373A (zh) 用于燃气涡轮的顺序燃烧器、其运行方法和其整修方法
CN116358001A (zh) 适合供给有普通和高反应性燃料的提供有导燃喷枪的针对发电厂的燃气涡轮组件的预混烧嘴
CN112901352A (zh) 由至少两种不同燃料供给的燃气涡轮组件及其操作方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20191118

Year of fee payment: 4