KR20160066079A - Method for making crack - Google Patents

Method for making crack Download PDF

Info

Publication number
KR20160066079A
KR20160066079A KR1020140169375A KR20140169375A KR20160066079A KR 20160066079 A KR20160066079 A KR 20160066079A KR 1020140169375 A KR1020140169375 A KR 1020140169375A KR 20140169375 A KR20140169375 A KR 20140169375A KR 20160066079 A KR20160066079 A KR 20160066079A
Authority
KR
South Korea
Prior art keywords
sample
test
tensile specimen
corrosion
tensile
Prior art date
Application number
KR1020140169375A
Other languages
Korean (ko)
Inventor
황일순
윤재영
최산해
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020140169375A priority Critical patent/KR20160066079A/en
Publication of KR20160066079A publication Critical patent/KR20160066079A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/024Corrosive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens

Abstract

The present invention relates to a method for generating a grain boundary stress corrosion crack of a high temperature nickel based heterogeneous metal welding portion. The method comprises: a first step of proving a rectangular sample and a tensile piece; a second step of sensitizing the rectangular sample; a third step of preforming a modified Huey test with respect to the sensitized rectangular sample; a fourth step of sensitizing the tensile piece; and a fifth step of performing a corrosion static load test with respect to the sample and the tensile piece.

Description

고온 니켈계 이종금속 용접부 비파괴검사용 입계응력 부식균열의 생성 방법{METHOD FOR MAKING CRACK}METHOD FOR MAKING CRACK FIELD OF THE INVENTION [0001]

본 발명은 고온 니켈계 이종금속 용접부 비파괴검사용 입계응력 부식균열의 생성 방법에 관한 것이다. The present invention relates to a method for producing intergranular stress corrosion cracking for nondestructive testing of high temperature nickel-based dissimilar metal welds.

원자력 발전소의 고령화에 따른 안전성 저하 현안이 대두되면서 비파괴검사법의 중요성이 점차 높아지고 있는데 이와 관련하여 본 발명은 원자력 발전 설비에 사용되는 니켈계 이종금속 용접부에 실제와 유사한 입계응력 부식균열을 상온에서 단기간에 생성하는 방법에 관한 것으로서 니켈계용접부를 일정 온도와 시간에서 열처리하여 입계에 Cr 고갈영역이 발생하며 부식환경에 예민화 (sensitization)된다. 예민화된 용접부에 특정 부식환경과 인장 응력을 가하여 입계응력 부식균열을 생성시??록 한다.
In this connection, the present invention relates to a nickel-based dissimilar metal weld joint used in a nuclear power generation facility, wherein a grain boundary stress corrosion crack similar to the actual one is exposed at a room temperature for a short period of time And the nickel-based welded part is heat-treated at a predetermined temperature and time to generate a Cr depletion zone in the grain boundary and sensitize to the corrosive environment. Apply a specific corrosion environment and tensile stress to the sensitized welds to create intergranular stress corrosion cracks.

실제 원전을 가동함에 따라 용접부에 응력부식균열이 발생할 위험이 있는데 실제로, 2000년 V.C. Summer 원자로 출구 노즐 용접부의 누설, 2002년 Davis-Besse 원전 제어봉 관통관의 누설 및 상부 헤드의 붕산 부식과 같은 사고가 발생하였다.이에 따라 원전에서 주기적인 비파괴검사를 통한 예방정비 및 건전성 평가를 실시하는 것이 필수적이며, 비파괴 검사의 정확성과 신뢰도가 확보될 때 원전의 건전성을 달성할 수 있다. 이 비파괴검사를 위하여는 원전 운전중 발생하는 응력부식균열의 형상을 최대한 가깝게 모사할 수 있는 시편이 필요한데 이와 관련하여 대한민국 공개특허 제10-2011-0047825호 '원자력 발전소의 고온고압환경에서 사용된 히터 슬리브 노즐 관통관에 발생되는 응력부식균열에 대한 비파괴 검사의 성능 검증용 시편 제조방법' 이 개시된바 있는데 상기 발명에서는 운전중 발생하는 Alloy 600 모재와 Alloy 182 용접부 응력부식균열의 형상을 모사하기 위한 것이었으며 니켈계 이종금속 용접부에 관한 것은 아니었다. There is a risk of stress corrosion cracking in the welds as the actual nuclear power plant is operated. Summer Nuclear reactor outlet Nozzle leakage occurred in 2002, Davis-Besse Nuclear reactor control tube leakage pipe leakage and upper head boric acid corrosion occurred, and periodical nondestructive inspection It is essential that the integrity of the nuclear power plant can be achieved when the accuracy and reliability of nondestructive testing is ensured. For this non-destructive inspection, a specimen capable of simulating the shape of stress corrosion cracks occurring during operation of a nuclear power plant is required. In connection with this, a heater used in a high temperature and high pressure environment of a nuclear power plant of Korean Patent Application No. 10-2011-0047825 A method for manufacturing test specimens for verifying the performance of nondestructive testing against stress corrosion cracks generated in a sleeve nozzle pipe tube 'is disclosed. In this invention, the shape of the stress corrosion cracks of the Alloy 600 base material and Alloy 182 weld portion occurring during operation And was not about nickel-based dissimilar metal welds.

특히 원자로에 사용되는 저합금강, 스테인리스강에 니켈계 용접봉을 사용하여 용접하는 경우 입계균열이 용이하게 형성되지 않으며 이것은 용접시간, 용접온도, 사용되는 용액의 농도에 따라 그 결과에 큰 차이가 있기 때문이다.
Particularly, when a low alloy steel or stainless steel used in a nuclear reactor is welded using a nickel-based electrode, cracking of the intergranular cracks is not easily formed due to a large difference in the results depending on the welding time, the welding temperature and the concentration of the solution used to be.

본 발명은 상기한 바와 같은 목적을 달성하기 위하여 안출된것으로서, 고온 니켈계 이종금속 용접부 비파괴 검사의 성능을 검증하기 위한 시편을 제조하는 방법을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a method for manufacturing a specimen for verifying the performance of a high-temperature nickel-based dissimilar metal weld nondestructive inspection.

본 발명은 상기한 바와 같은 목적을 달성하기 위한 것으로서 고온 니켈계 이종금속 용접부 입계 응력부식균열의 생성방법을 제공하는데 사각샘플과 인장시편을 제공하는 제1단계와 상기 사각샘플을 예민화 열처리하는 제2단계와상기 여처리된 사각샘플에 대한 개량 휴이테스트를 진행하는 제3단계와;The present invention provides a method for producing intergranular stress corrosion cracking in a high temperature nickel-based dissimilar metal welding part, comprising: a first step of providing a rectangular sample and a tensile specimen; A third step of performing an improved feedback test on the square samples subjected to the filtering process;

상기 인장시편에 대한 예민화 열처리를 시행하는 제4단계와;상기 샘플과 인장시편에 대한 부식정하중시험을 하는 제5단계를 포함할 수 있다. A fourth step of performing an annealing heat treatment on the tensile specimen, and a fifth step of performing a corrosion static load test on the sample and the tensile specimen.

상기 사각 샘플은 섭씨 550 내지 650도내에서 46~50시간 열처리되는 것일수 있다.  The quadrangular sample may be heat treated at 550 to 650 degrees Celsius for 46 to 50 hours.

산화성 용액으로는 소듐테트라치오네이트(Sodium tetrathionate) 용액을 사용할 수 있다.
As the oxidizing solution, sodium tetrathionate solution may be used.

본 발명을 통해 실제 원자력발전소의 고온 환경에서 장시간 사용후에 발생하는 용접부 인공균열을 상온 환경에서 빠른 시간 내에 생성할 수 있다면 경제적으로 비파괴 검사 기술 성능을 개선할 수 있다. 비파괴 검사와 더불어 현재 개발되고 있는 실시간 감시 기술 성능 검사에도 유용하게 쓰일 수 있다. 본 방법은 니켈계용접부 뿐만 아니라 다른 스텐레스강 재료에도 적용이 가능하여 적용범위를 늘릴 수 있다.The present invention can economically improve the nondestructive testing technology performance if artificial cracks of welds occurring after prolonged use in a high temperature environment of a real nuclear power plant can be generated quickly in a room temperature environment. In addition to nondestructive testing, it can also be used to test the performance of real-time monitoring technology currently being developed. This method can be applied not only to nickel-based welds but also to other stainless steel materials, so that the application range can be increased.

도1내지 도7은 본 발명에 따른 입계응력부식균열 생성방법의 일실시예를 도시하는 도면1 to 7 are views showing one embodiment of a method for generating intergranular stress corrosion cracking according to the present invention

이하, 첨부된 도면을 참고로 하여 본 발명을 상세하게 설명한다. 도1은 입계응력부식균열 생성법에 대한 전체적인 흐름도를 도시한다. 니켈계 이종금속 용접부를 모사하기 위해 두 모재를 원자로 압력용기 노즐 재료인 저합금강(SA 508 Gr.3 Cl.1)과 배관재료 스테인리스강(STS304)을 니켈계 Alloy 182 용접봉을 이용해 V-groove 용접 하였다. 도2는 용접부단면과 용접 pass를 도시하고 있으며 도3은 각 위치별용접부 Alloy 182의 화학적 성분을 나타내며 그림4는 인장시험을 통한 물리적 성질을 나타내다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a general flow chart for the generation of intergranular stress corrosion cracking. In order to simulate nickel-based dissimilar metal welds, two base materials were welded to V-grooves using Ni-Alloy 182 welding rod with low alloy steel (SA 508 Gr.3 Cl.1) and piping material stainless steel (STS304) Respectively. FIG. 2 shows the cross-section of the weld and the weld pass, FIG. 3 shows the chemical composition of the weld joint Alloy 182 at each position, and FIG. 4 shows the physical properties through the tensile test.

이 후 부식저항성을 최대 낮출 수 있는 예민화 조건을 찾기 위해 사각샘플을 제작하고 인장시편을 가공하는데 이것은 사각샘플의 내식성을 떨어뜨려 응력부식균열 발생이 잘되도록 하는 것이 목적이다. 이후 사각샘플에 대한 열처리 정도를 확인하기 위하여 개량 휴이 테스트(modified Huey test)를 거친다. 이외에 디엘-이피알 시험, 미세조직 분석시험등이 수행될 수 있다.  Afterwards, rectangular specimens are fabricated and tensile specimens are processed to find the susceptibility conditions that can minimize the corrosion resistance. The purpose of this is to reduce the corrosion resistance of rectangular specimens so that stress corrosion cracking occurs well. Thereafter, a modified Huey test is performed to confirm the degree of heat treatment for the square sample. In addition, a DIA-EPIAL test, a microstructure analysis test, and the like can be performed.

그 결과 450℃~700℃의 온도 내에서 다양한 시간별로 열처리를 한 결과 약 600℃정도에서 48시간 열처리할 때 가장 예민화가 심한 것을 알 수 있다. As a result, it was found that the heat treatment was carried out at various temperatures within the range of 450 ° C. to 700 ° C., and it was found to be most sensitive when heat treatment was performed at about 600 ° C. for 48 hours.

그후 사각샘플과 인장시편을 가공하고 사각샘플을 예민화 열처리하게 된다. 이것은 사각샘플의 내식성을 떨어뜨려 응력부식균열 발생이 잘되도록 하는 것이 목적이다. The square and tensile specimens are then processed and the square samples are subjected to sensitizing heat treatment. The purpose of this is to reduce the corrosion resistance of square samples, so that stress corrosion cracking can occur well.

또한, 인장시편에 대한 예민화 열처리를 시행하게 된다. In addition, the annealing heat treatment for the tensile specimen is performed.

상온 입계균열 부식환경을 만들기 위해 산화성 용액으로는 소듐테트라치오네이트(Sodium tetrathionate) 용액을 사용 하였는데 샘플의 표면에 페인팅 또는 코팅을 하여 산화성 용액에 국부적으로 노출시킴으로써 균열이 생성될 수 있도록 하였는데 소듐테트라치오네이트의 농도는 0.1M이며 실험은 상온에서 예민화된 용접부에 대한 인장시험이 진행되었다. 도5는 인장시편에 고정된 셀을 보여준다. 도6 (a)부터 (d)까지 각각 초기, 5시간, 13시간, 19시간 후의 실시간 관측 화면이며 5시간만에 균열이 생성되었음을 볼 수 있다. 위 균열은 광학현미경을 사용해 재관측 되었으며 이는 도7에 도시되었다. 광학현미경으로 관측하여 입계균열임을 확인할 수 있었으며 그림 8은 결과를 보여주고 있다. A sodium tetrathionate solution was used as an oxidizing solution to create a room-temperature intergranular cracking environment. The surface of the sample was painted or coated so that cracks could be generated by locally exposing it to the oxidizing solution. The concentration of Nate was 0.1M and the tensile test was carried out for the specimens welded at room temperature. 5 shows a cell fixed to a tensile specimen. 6 (a) to 6 (d), it can be seen that cracks were generated within 5 hours after the initial observation, 5 hours, 13 hours, and 19 hours after the observation. The upper cracks were re-observed using an optical microscope, which is shown in Fig. It was confirmed by the optical microscope that the cracks were intergranular cracks, and Fig. 8 shows the results.

기존 방법은 니켈계 Alloy 600에 같은 니켈계 Alloy 182 용접을 한 동종금속용접부에 대해 균열 생성법을 논하였으며, 본원 발명은 스테인리스강과 저합금강의 두 모재 사이의 이종금속용접부에 대해 균열 생성법에 관한 것이으로서 서로 다른 두 모재가 용접부에 섞이기 때문에 기존 발명에 비해 균열 생성이 용이하지 않음.The conventional method described a crack generation method for a nickel-based Alloy 600 welded with the same nickel metal alloy Alloy 182. The present invention relates to a crack generation method for a dissimilar metal weld between stainless steel and low alloy steel, Crack formation is not easy compared to the existing invention because two different base materials are mixed in the weld.

또한, 기존 방법은 4 point 벤딩을 이용하여 하중을 인가하였지만, 본원 발명은 간단한 정하중 인장 시험을 통해 균열을 생성할 수 있는것이 특징이다.
Also, in the conventional method, the load is applied by using 4 point bending, but the present invention is characterized in that a crack can be generated by a simple static load tensile test.

Claims (3)

고온 니켈계 이종금속 용접부 입계 응력부식균열의 생성방법으로서,
사각샘플과 인장시편을 제공하는 제1단계와
상기 사각샘플을 예민화 열처리하는 제2단계와
상기 여처리된 사각샘플에 대한 개량 휴이테스트를 진행하는 제3단계와;
상기 인장시편에 대한 예민화 열처리를 시행하는 제4단계와;
상기 샘플과 인장시편에 대한 부식정하중시험을 하는 제5단계를 포함하는, 고온 니켈계 이종금속 용접부 입계 응력부식균열의 생성방법
A method for generating intergranular stress corrosion cracking in a high-temperature nickel-based dissimilar metal welding part,
A first step of providing a square sample and a tensile specimen
A second step of subjecting the rectangular sample to an annealing heat treatment,
A third step of performing an improved feedback test on the processed rectangular samples;
A fourth step of performing an annealing heat treatment on the tensile specimen;
A fifth step of performing a corrosion static load test on the sample and the tensile specimen, and a fifth step of performing a corrosion static load test on the sample and the tensile specimen.
제1항에 있어서, 상기 사각 샘플은 섭씨 550 내지 650도내에서 46~50시간 열처리되는 것을 특징으로 하는, 고온 니켈계 이종금속 용접부 입계 응력부식균열의 생성방법The method of claim 1, wherein the quadrangular sample is heat treated within the range of 550 to 650 degrees Celsius for 46 to 50 hours. 제2항에 있어서, 산화성 용액으로는 소듐테트라치오네이트(Sodium tetrathionate) 용액을 사용하는 것을 특징으로 하는, 고온 니켈계 이종금속 용접부 입계 응력부식균열의 생성방법The method according to claim 2, wherein a sodium tetrathionate solution is used as the oxidizing solution. 2. The method according to claim 2, wherein the sodium tetrathionate solution is used as the oxidizing solution.
KR1020140169375A 2014-11-30 2014-11-30 Method for making crack KR20160066079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140169375A KR20160066079A (en) 2014-11-30 2014-11-30 Method for making crack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140169375A KR20160066079A (en) 2014-11-30 2014-11-30 Method for making crack

Publications (1)

Publication Number Publication Date
KR20160066079A true KR20160066079A (en) 2016-06-10

Family

ID=56190461

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140169375A KR20160066079A (en) 2014-11-30 2014-11-30 Method for making crack

Country Status (1)

Country Link
KR (1) KR20160066079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020440A (en) * 2017-05-05 2017-08-08 抚顺中油检测工程有限公司 A kind of preparation method with human weld's crack defect test plate (panel)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020440A (en) * 2017-05-05 2017-08-08 抚顺中油检测工程有限公司 A kind of preparation method with human weld's crack defect test plate (panel)
CN107020440B (en) * 2017-05-05 2019-10-08 抚顺中油检测工程有限公司 A kind of production method with human weld's crack defect test plate (panel)

Similar Documents

Publication Publication Date Title
CN102590069B (en) Test sample used in stainless steel corrosion test and fabrication method thereof
Fan et al. Local failure behavior of a dissimilar metal interface region with mechanical heterogeneity
Madi et al. Low cycle fatigue of welded joints: new experimental approach
JP2012163478A (en) Standard test piece for non-destructive test and manufacturing method therefor
KR20160066079A (en) Method for making crack
Lee et al. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals
KR101083183B1 (en) Mehtod to manufacture mockup specimen for performance validation of nondestructive test about stress corrosion crack originated from PWR pressurizer heater sleeve nozzle in high temperature and pressure
CN114279944B (en) Method for evaluating coupling effect of heat aging, stress and corrosion of stainless steel welding material
CN108107111B (en) Nonlinear ultrasonic detection method for heat-resistant steel component
KR101499643B1 (en) Preparing method of specimen having intergranular stress corrosion cracking and the specimen having intergranular stress corrosion cracking thereby
JP2012026784A (en) Method for producing specimen for non-destructive inspection
CN112730112B (en) Environment fracture evaluation method suitable for reactor structural component material after long-term service
JPWO2003091709A1 (en) Generation and propagation method of intergranular stress corrosion cracking of specimen
JP2000214143A (en) Production of sham test piece for non-destructive inspection and non-destructive inspection method
Lee et al. Effect of oxide film on ECT detectability of surface IGSCC in laboratory-degraded alloy 600 steam generator tubing
KR101483847B1 (en) Connection device for controlled stress corrosion cracking in reactor, reactor with high rewwure and high temperature, method for growing for stress corrosion crack
Sanyal et al. Investigation of fracture behavior of steam generator tubes of Indian PHWR using PLT specimens
Le Delliou et al. European Project ATLAS+: Status of the WP1 Relative to the Experimental Program on Pipes and Specimens
JP3900852B2 (en) Method for forming stress corrosion cracks in welded joints
JPH10227754A (en) High temperature damage evaluation method for temper martensite stainless steel
RU149886U1 (en) NON-IMPRESSIBLE RECONSTRUCTED SAMPLE FOR DETERMINATION OF VISCOSITY OF DESTRUCTION OF IRRADIATED MATERIALS AT TESTS FOR STATIC BENDING
Kim et al. Creep-fatigue test of a SA 316SS structure and comparative damage evaluations based upon elastic and inelastic approaches
Moinereau et al. European Project ATLAS+: Status of the WP1 Relative to the Experimental Program on Pipes and Specimens
JP5392779B2 (en) Simulated stress corrosion cracking specimen and its manufacturing method
Roskosz Capabilities and limitations of using the residual magnetic field in NDT

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination