JP2012163478A - Standard test piece for non-destructive test and manufacturing method therefor - Google Patents

Standard test piece for non-destructive test and manufacturing method therefor Download PDF

Info

Publication number
JP2012163478A
JP2012163478A JP2011024943A JP2011024943A JP2012163478A JP 2012163478 A JP2012163478 A JP 2012163478A JP 2011024943 A JP2011024943 A JP 2011024943A JP 2011024943 A JP2011024943 A JP 2011024943A JP 2012163478 A JP2012163478 A JP 2012163478A
Authority
JP
Japan
Prior art keywords
specimen
hole
peripheral surface
crack
nondestructive inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011024943A
Other languages
Japanese (ja)
Other versions
JP5614313B2 (en
Inventor
Hajime Nakayama
元 中山
Yohei Sakakibara
洋平 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011024943A priority Critical patent/JP5614313B2/en
Publication of JP2012163478A publication Critical patent/JP2012163478A/en
Application granted granted Critical
Publication of JP5614313B2 publication Critical patent/JP5614313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a standard test piece for non-destructive test that is used to detect a crack-like defect in a pipe-end weld part through the non-destructive test.SOLUTION: A standard test piece 10 for non-destructive test that is used to detect a crack-like defect in a pipe-end weld part through the non-destructive test comprises: a test piece body 12 that is formed of carbon steel and includes a through-hole 15; a pipe body 14 that is inserted into the through-hole 15 and is formed of Cr-Mo steel; a space 17 that is provided between an outer periphery of the pipe body 14 and an inner periphery of the through-hole 15 in the test piece body 12; and a weld part 18 that welds all over the place between an outer periphery on one longitudinal end side of the pipe body 14 and an inner periphery on one longitudinal end side of the through-hole of the test piece body 12. The weld part 18 is injected with a corrosive liquid of the mixture of NaNOand KNOat a weight ratio of 50% to 50% into the space 17, and includes the crack-like defect induced by stress corrosion cracking.

Description

本発明は、非破壊検査用標準供試体及びその製造方法に係り、特に、化学プラント用チューブリアクタ等の管端溶接部における亀裂状欠陥を非破壊検査で検出するための非破壊検査用標準供試体及びその製造方法に関する。   The present invention relates to a standard specimen for nondestructive inspection and a manufacturing method thereof, and more particularly, to a standard specimen for nondestructive inspection for detecting crack-like defects in a pipe end weld such as a tube reactor for a chemical plant by nondestructive inspection. The present invention relates to a specimen and a manufacturing method thereof.

化学プラント用チューブリアクタや加圧水型原子炉(Pressurized Water Reactor ,PWR)用蒸気発生器等では、反応媒体や高温水等が通る多数の管体が管板に溶接固定されている。これらの多数の管体は、管板に設けられた穴に各々挿通されており、管端が管板と全周に亘って溶接されてシールされている。   In a tube reactor for a chemical plant, a steam generator for a pressurized water reactor (Pressurized Water Reactor, PWR), etc., a large number of tubes through which a reaction medium, high-temperature water and the like pass are welded and fixed to a tube plate. These many tube bodies are respectively inserted into holes provided in the tube plate, and the tube ends are welded and sealed over the entire periphery of the tube plate.

管端と管板との溶接された部分である管端溶接部に生じたブローホールや介在物等の欠陥を検査するために、放射性透過試験等の非破壊検査が行われている。特許文献1には、熱交換器、多管式反応器などにおいて、管体と、この管体を支持する管板との溶接状態や溶接欠陥の有無を検査するための放射線透過試験方法が記載されている。   In order to inspect defects such as blowholes and inclusions generated in the welded portion of the tube end, which is a welded portion between the tube end and the tube plate, a nondestructive inspection such as a radioactive transmission test is performed. Patent Document 1 describes a radiation transmission test method for inspecting the welded state of a tube body and a tube plate that supports the tube body and the presence or absence of weld defects in a heat exchanger, a multitubular reactor, and the like. Has been.

特開2009−180647号公報JP 2009-180647 A

ところで、放射線透過試験等の非破壊検査では、ブローホールや介在物のように体積の大きい欠陥は、比較的検出されやすいが、溶接割れや応力腐食割れ等の亀裂状欠陥は亀裂容積が小さいため検出され難い。そのため、従来の非破壊検査方法では、亀裂状欠陥の大きさ等を特定するのが難しいという問題がある。   By the way, in a non-destructive inspection such as a radiation transmission test, a large-volume defect such as a blowhole or an inclusion is relatively easy to detect, but a crack-like defect such as a weld crack or a stress corrosion crack has a small crack volume. Hard to detect. Therefore, the conventional nondestructive inspection method has a problem that it is difficult to specify the size of crack-like defects.

そこで、本発明の目的は、管端溶接部に発生した亀裂状欠陥をより精度良く非破壊検査で検出するための非破壊検査用標準供試体及びその製造方法を提供することである。   Therefore, an object of the present invention is to provide a standard specimen for nondestructive inspection and a method for manufacturing the same for detecting a crack-like defect generated in a pipe end welded portion with higher accuracy by nondestructive inspection.

本発明に係る非破壊検査用標準供試体は、管端溶接部における亀裂状欠陥を非破壊検査で検出するための非破壊検査用標準供試体であって、炭素鋼で形成され、貫通孔を有する供試体本体と、前記貫通孔に挿入され、CrーMo鋼で形成された管体と、を備え、前記管体の外周面と、前記供試体本体における貫通孔の内周面との間に隙間が設けられ、前記管体の長手方向における一端側の外周面と、前記供試体本体の貫通孔の長手方向における一端側の内周面との間を全周に亘って溶接した溶接部を有し、前記溶接部は、前記隙間に重量比で50%NaNOと50%KNOとを混合した腐食液を注入し、応力腐食割れにより導入された亀裂状欠陥を有していることを特徴とする。 The standard specimen for nondestructive inspection according to the present invention is a standard specimen for nondestructive inspection for detecting crack-like defects in a pipe end welded part by nondestructive inspection, and is formed of carbon steel and has a through hole. And a tube body inserted in the through hole and formed of Cr-Mo steel, between the outer peripheral surface of the tube body and the inner peripheral surface of the through hole in the test body body A welded portion that is welded over the entire circumference between the outer peripheral surface on one end side in the longitudinal direction of the tube body and the inner peripheral surface on one end side in the longitudinal direction of the through hole of the specimen body. And the weld has a crack-like defect introduced by stress corrosion cracking by injecting a corrosion solution in which 50% NaNO 3 and 50% KNO 3 are mixed in a weight ratio into the gap. It is characterized by.

本発明に係る非破壊検査用標準供試体の製造方法は、管端溶接部における亀裂状欠陥を非破壊検査で検出するための非破壊検査用標準供試体の製造方法であって、貫通孔を有する供試体本体を炭素鋼で形成し、管体をCrーMo鋼で形成する工程と、前記管体を前記貫通孔に挿入し、前記管体の外周面と前記貫通孔の内周面との間に隙間を設けて前記管体を位置決めする工程と、前記管体の長手方向における一端側の外周面と、前記貫通孔の一端側の内周面との間を全周に亘って溶接し、予備供試体を形成する工程と、前記隙間に重量比で50%NaNOと50%KNOとを混合した腐食液を注入し、前記予備供試体を250℃に加熱して、前記予備供試体の溶接部に応力腐食割れによる亀裂状欠陥を導入する工程と、を備えることを特徴とする。 A method for producing a standard specimen for nondestructive inspection according to the present invention is a method for producing a standard specimen for nondestructive inspection for detecting a crack-like defect in a pipe end welded portion by nondestructive inspection, wherein a through hole is formed. Forming a specimen body made of carbon steel and forming a tubular body from Cr-Mo steel; inserting the tubular body into the through hole; and an outer peripheral surface of the tubular body and an inner peripheral surface of the through hole. A step of positioning the tube body by providing a gap between the outer peripheral surface of one end side in the longitudinal direction of the tube body and the inner peripheral surface of the one end side of the through hole over the entire circumference. And a step of forming a preliminary specimen, injecting a corrosive solution in which 50% NaNO 3 and 50% KNO 3 are mixed in a weight ratio into the gap, and heating the preliminary specimen to 250 ° C. Providing a crack-like defect due to stress corrosion cracking in the weld of the specimen. And butterflies.

本発明に係る非破壊検査用標準供試体の製造方法において、前記亀裂状欠陥を導入する工程は、前記予備供試体を金属製容器に入れ、前記予備供試体と前記金属製容器との間の空間及び前記管体の管内に、重量比で50%NaNOと50%KNOとを混合した熱媒体が注入されて前記予備供試体が加熱されることが好ましい。 In the method for producing a standard specimen for nondestructive inspection according to the present invention, the step of introducing the crack-like defect is performed by placing the preliminary specimen in a metal container, and between the preliminary specimen and the metal container. It is preferable that a heat medium in which 50% NaNO 2 and 50% KNO 3 are mixed in a weight ratio is injected into the space and the pipe of the pipe body to heat the preliminary specimen.

上記構成によれば、管体と供試体本体の貫通孔との間の隙間に、重量比で50%NaNOと50%KNOとを混合した腐食液を注入し、管体と供試体本体との溶接部に応力腐食割れによる亀裂状欠陥を人工的に導入した非破壊検査用標準供試体を製造できるので、化学プラント用チューブリアクタ等の実機における管端溶接部の非破壊検査結果と、非破壊検査用標準供試体の非破壊検査結果と比較することにより実機の管端溶接部に発生した亀裂状欠陥をより精度良く特定することができる。 According to the above configuration, the corrosive liquid in which 50% NaNO 3 and 50% KNO 3 are mixed in a weight ratio is injected into the gap between the tube and the through hole of the sample body, and the tube and the sample body Can produce a standard specimen for nondestructive inspection, in which crack-like defects due to stress corrosion cracking are artificially introduced into the welded part, and the nondestructive inspection result of the pipe end welded part in an actual machine such as a chemical plant tube reactor, By comparing with the non-destructive inspection result of the standard specimen for non-destructive inspection, it is possible to identify the crack-like defect generated in the pipe end weld of the actual machine with higher accuracy.

本発明の実施の形態において、非破壊検査用標準供試体の構成を示す斜視図である。In embodiment of this invention, it is a perspective view which shows the structure of the standard specimen for nondestructive inspection. 本発明の実施の形態において、非破壊検査用標準供試体の構成を示す断面図である。In embodiment of this invention, it is sectional drawing which shows the structure of the standard specimen for nondestructive inspection. 本発明の実施の形態において、非破壊検査用標準供試体における製造工程のフローチャートである。In embodiment of this invention, it is a flowchart of the manufacturing process in the standard specimen for nondestructive inspection. 本発明の実施の形態において、供試体本体の貫通孔に管体を挿入して位置決めした状態を示す図である。In embodiment of this invention, it is a figure which shows the state which inserted and positioned the pipe body in the through-hole of the test body main body. 本発明の実施の形態において、予備供試体の構成を示す断面図である。In embodiment of this invention, it is sectional drawing which shows the structure of a preliminary test body. 本発明の実施の形態において、亀裂状欠陥の導入方法を示す模式図である。In embodiment of this invention, it is a schematic diagram which shows the introduction method of a crack-like defect. 本発明の実施の形態において、予備供試体を金属製容器に入れて腐食液と熱媒体とを注入した状態を示す断面図である。In embodiment of this invention, it is sectional drawing which shows the state which put the preliminary specimen into the metal container, and inject | poured the corrosive liquid and the heat medium. 本発明の実施の形態において、溶接継手の製作方法を示す図である。In embodiment of this invention, it is a figure which shows the manufacturing method of a welded joint. 本発明の実施の形態において、溶接後の冷却条件を変えた各試験片の各部位における表面の硬度分布を示すグラフである。In embodiment of this invention, it is a graph which shows the hardness distribution of the surface in each site | part of each test piece which changed the cooling conditions after welding. 本発明の実施の形態において、曲げ治具の構成を示す断面図である。In embodiment of this invention, it is sectional drawing which shows the structure of a bending jig. 本発明の実施の形態において、応力腐食割れ試験の結果を示すグラフである。In embodiment of this invention, it is a graph which shows the result of a stress corrosion cracking test. 本発明の実施の形態において、応力腐食割れが発生した試験片の外観写真である。In embodiment of this invention, it is an external appearance photograph of the test piece which the stress corrosion crack generate | occur | produced. 本発明の実施の形態において、図12の応力腐食割れの部位の表面を拡大した写真である。In embodiment of this invention, it is the photograph which expanded the surface of the site | part of the stress corrosion cracking of FIG. 本発明の実施の形態において、図12の応力腐食割れの部位の断面写真である。In embodiment of this invention, it is a cross-sectional photograph of the site | part of the stress corrosion cracking of FIG.

以下に、本発明の実施の形態について図面を用いて詳細に説明する。図1は、非破壊検査用標準供試体10の構成を示す斜視図である。図2は、非破壊検査用標準供試体10の構成を示す断面図であり、図2(a)は、非破壊検査用標準供試体10の全体構成を示す断面図であり、図2(b)は、非破壊検査用標準供試体10の溶接部を拡大した断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a standard specimen 10 for nondestructive inspection. FIG. 2 is a cross-sectional view showing the configuration of the standard specimen 10 for nondestructive inspection, and FIG. 2A is a cross-sectional view showing the overall configuration of the standard specimen 10 for nondestructive inspection, and FIG. ) Is an enlarged cross-sectional view of a welded portion of the standard specimen 10 for nondestructive inspection.

非破壊検査用標準供試体10は、加圧水型原子炉用蒸気発生器、熱交換器または化学プラント用チューブリアクタ等の実機における管端溶接部における亀裂状欠陥を非破壊検査で検出するために標準供試体として使用される。非破壊検査用標準供試体10は、供試体本体12と、管体14とを備えている。   The standard specimen 10 for nondestructive inspection is a standard for detecting non-destructive inspection of crack-like defects in pipe end welds in actual machines such as steam generators for pressurized water reactors, heat exchangers or tube reactors for chemical plants. Used as a specimen. The standard specimen 10 for nondestructive inspection includes a specimen body 12 and a tube body 14.

供試体本体12は、矩形状等に炭素鋼で形成されている。供試体本体12には、一端面から他端面まで貫通する貫通孔15が形成されている。貫通孔15は、その長手方向に対して直交する方向の断面が円形状に形成されている。   The specimen body 12 is formed of carbon steel in a rectangular shape or the like. A through hole 15 penetrating from one end surface to the other end surface is formed in the specimen body 12. The through-hole 15 has a circular cross section in a direction perpendicular to the longitudinal direction.

管体14は、円筒状等にCrーMo鋼(クロム−モリブデン鋼)で形成されている。管体14は、供試体本体12の貫通孔15に貫通孔15と軸心を揃えて挿入されている。   The tubular body 14 is formed of Cr-Mo steel (chromium-molybdenum steel) in a cylindrical shape or the like. The tube body 14 is inserted into the through hole 15 of the specimen body 12 with the through hole 15 and the axial center aligned.

管体14は、放射方向外方へ突出した突出部16を有している。管体14は、突出部16を貫通孔15の内周面に当接させることにより供試体本体12に位置決めされている。突出部16は、周方向の2箇所に設けられている。突出部16は、管体14の周方向の同一円周上に対向させるようにして設けられていることが好ましい。突出部16は、管体14の周方向に3箇所以上設けてもよい。突出部16が貫通孔15の内周面と当接しているので、管体14は、突出部16と貫通孔15の内周面との摩擦により位置ズレが抑えられている。   The tube body 14 has a protruding portion 16 that protrudes outward in the radial direction. The tube body 14 is positioned on the specimen body 12 by bringing the protruding portion 16 into contact with the inner peripheral surface of the through hole 15. The protrusions 16 are provided at two locations in the circumferential direction. The protrusions 16 are preferably provided so as to face each other on the same circumference in the circumferential direction of the tube body 14. Three or more protrusions 16 may be provided in the circumferential direction of the tube body 14. Since the protruding portion 16 is in contact with the inner peripheral surface of the through hole 15, the displacement of the tubular body 14 is suppressed by friction between the protruding portion 16 and the inner peripheral surface of the through hole 15.

管体14の外周面と貫通孔15の内周面との間には、隙間17が設けられている。隙間17は、周方向に同じ幅で設けられることが好ましい。隙間17は、後述する腐食液27を注入可能な幅で設けられている。隙間17の幅(管体14の外周面と貫通孔15の内周面との間の間隔)は、例えば、0.2mmから0.5mmである。   A gap 17 is provided between the outer peripheral surface of the tube body 14 and the inner peripheral surface of the through hole 15. The gap 17 is preferably provided with the same width in the circumferential direction. The gap 17 is provided with a width capable of injecting a corrosive liquid 27 described later. The width of the gap 17 (the distance between the outer peripheral surface of the tube body 14 and the inner peripheral surface of the through hole 15) is, for example, 0.2 mm to 0.5 mm.

管体14は、その長手方向の一端が供試体本体12と溶接されて固定されている。溶接部18は、管体14の長手方向における一端側の外周面と、供試体本体12の貫通孔15の長手方向における一端側の内周面との間を全周に亘って溶接シールして形成されている。   One end in the longitudinal direction of the tube body 14 is fixed to the specimen body 12 by welding. The welded portion 18 welds and seals between the outer peripheral surface on one end side in the longitudinal direction of the tube body 14 and the inner peripheral surface on one end side in the longitudinal direction of the through hole 15 of the specimen body 12 over the entire circumference. Is formed.

溶接部18は、溶接により肉盛された肉盛部19と、肉盛部19と管体14との接続部位と、肉盛部19と供試体本体12との接続部位とを含んでおり、肉盛部19だけでなく、肉盛部19の近傍のように溶接により熱影響を受ける領域も含んでいる。また、溶接シールすることにより、隙間17に後述する腐食液27を注入しても溶接部18から腐食液27が漏れないようにされている。   The welded portion 18 includes a built-up portion 19 that has been built up by welding, a connecting portion between the built-up portion 19 and the tube body 14, and a connecting portion between the built-up portion 19 and the specimen body 12. It includes not only the built-up portion 19 but also a region that is thermally affected by welding, such as the vicinity of the built-up portion 19. Further, by welding sealing, even if a later-described corrosive liquid 27 is injected into the gap 17, the corrosive liquid 27 does not leak from the welded portion 18.

溶接部18には、隙間17に腐食液27を注入して応力腐食割れにより導入した亀裂状欠陥20が形成されている。亀裂状欠陥20は、例えば、管体14と肉盛部19との接続領域に形成されている。亀裂状欠陥20は、例えば、100μmから500μmの長さで形成されている。   A crack-like defect 20 is formed in the welded portion 18 by injecting the corrosive liquid 27 into the gap 17 and introducing it by stress corrosion cracking. For example, the crack-like defect 20 is formed in a connection region between the tubular body 14 and the built-up portion 19. The crack-like defect 20 is formed with a length of 100 μm to 500 μm, for example.

次に、非破壊検査用標準供試体10の製造方法について説明する。   Next, the manufacturing method of the standard specimen 10 for nondestructive inspection is demonstrated.

図3は、非破壊検査用標準供試体10における製造工程のフローチャートである。非破壊検査用標準供試体10の製造工程は、供試体本体12と管体14とを準備する準備工程(S10)と、管体14を供試体本体12に位置決めする位置決め工程(S12)と、管体14を供試体本体12に溶接する溶接工程(S14)と、溶接部18に亀裂状欠陥20を導入する亀裂状欠陥導入工程(S16)と、を備えている。   FIG. 3 is a flowchart of the manufacturing process in the standard specimen 10 for nondestructive inspection. The manufacturing process of the standard specimen 10 for nondestructive inspection includes a preparation process (S10) for preparing the specimen body 12 and the tube body 14, a positioning process (S12) for positioning the tube body 14 on the specimen body 12, and A welding step (S14) for welding the tube body 14 to the specimen body 12 and a crack-like defect introduction step (S16) for introducing the crack-like defect 20 into the welded portion 18 are provided.

準備工程(S10)は、供試体本体12と管体14とを準備する工程である。供試体本体12は、例えば、板厚100mmの炭素鋼の板材から、幅100mm×長さ100mmのブロック状に切り出して形成される。炭素鋼には、例えば、溶接構造用圧延鋼材であるSM490が用いられる。   The preparation step (S10) is a step of preparing the specimen body 12 and the tube body 14. The specimen body 12 is formed, for example, by cutting out from a carbon steel plate material having a plate thickness of 100 mm into a block shape having a width of 100 mm and a length of 100 mm. For example, SM490, which is a rolled steel material for welded structures, is used as the carbon steel.

供試体本体12の一端面から一端面と対向する他端面までドリル等で穿孔して貫通孔15が形成される。貫通孔15は、管体14を貫通孔15に挿入したときに、貫通孔15の内周面と管体14の外周面との間に、例えば、0.2mmから0.5mmの隙間17が設けられるように形成される。   A through-hole 15 is formed by drilling from one end surface of the specimen body 12 to the other end surface facing the one end surface with a drill or the like. The through hole 15 has, for example, a gap 17 of 0.2 mm to 0.5 mm between the inner peripheral surface of the through hole 15 and the outer peripheral surface of the tube body 14 when the tube body 14 is inserted into the through hole 15. It is formed to be provided.

管体14は、チューブ状にCrーMo鋼で形成される。CrーMo鋼には、例えば、2.25Cr−1Mo鋼が用いられる。管体14にCrーMo鋼を使用するのは、応力腐食割れ(SCC)感受性が高いので応力腐食割れによる亀裂状欠陥を入れやすいからである。管体14は、金属材料の一般的な塑性加工である押出し成形等で成形される。管体14は、例えば、外径が20mmとなるように成形される。   The tube body 14 is formed of Cr—Mo steel in a tube shape. For example, 2.25Cr-1Mo steel is used as the Cr-Mo steel. The reason why Cr-Mo steel is used for the tube body 14 is that crack-like defects due to stress corrosion cracking are easily introduced because of high sensitivity to stress corrosion cracking (SCC). The tube body 14 is formed by extrusion molding or the like, which is a general plastic processing of a metal material. The tubular body 14 is formed, for example, so that the outer diameter is 20 mm.

位置決め工程(S12)は、管体14を供試体本体12の貫通孔15に挿入して位置決めする工程である。図4は、供試体本体12の貫通孔15に管体14を挿入して位置決めした状態を示す図であり、図4(a)は、管体14が供試体本体12に位置決めされた状態を示す断面図であり、図4(b)は、管体14が供試体本体12に位置決めされた状態を示す上面図である。   The positioning step (S12) is a step of positioning the tube body 14 by inserting it into the through hole 15 of the specimen body 12. FIG. 4 is a view showing a state in which the tube body 14 is inserted and positioned in the through hole 15 of the specimen body 12, and FIG. 4A shows a state in which the tube body 14 is positioned on the specimen body 12. FIG. 4B is a top view showing a state in which the tube body 14 is positioned on the specimen main body 12.

管体14は、突出部16を貫通孔15の内周面に当接させて位置決めされる。また、管体14は、管体14の長手方向の一端が供試体本体12の下端と略同じ位置となるように位置決めされる。突出部16は、後述する腐食液27の流路を確保するために周方向の一部に設けられる。突出部16は、例えば、管体14の管内に金属加工治具を挿入し、管体14を放射方向外方へ塑性変形させて形成される。突出部16は、管体14の外周面と貫通孔15の内周面との間の隙間17が周方向で略同じになるようにして形成される。   The tubular body 14 is positioned by bringing the protruding portion 16 into contact with the inner peripheral surface of the through hole 15. In addition, the tube body 14 is positioned so that one end in the longitudinal direction of the tube body 14 is substantially at the same position as the lower end of the specimen body 12. The protrusion 16 is provided in a part of the circumferential direction in order to secure a flow path for the later-described corrosive liquid 27. The protruding portion 16 is formed, for example, by inserting a metal processing jig into the tube of the tube body 14 and plastically deforming the tube body 14 radially outward. The protrusion 16 is formed such that the gap 17 between the outer peripheral surface of the tube body 14 and the inner peripheral surface of the through hole 15 is substantially the same in the circumferential direction.

このように、管体14は、突出部16を貫通孔15の内周面と当接させることにより、管体14の外周面と貫通孔15の内周面との間に腐食液27が注入可能な隙間17を設けて位置決めされる。また、突出部16が貫通孔15の内周面と当接しているので、摩擦により管体14の位置ズレが抑えられている。   In this way, the pipe body 14 causes the corrosive liquid 27 to be injected between the outer peripheral surface of the pipe body 14 and the inner peripheral surface of the through hole 15 by bringing the protruding portion 16 into contact with the inner peripheral surface of the through hole 15. A possible gap 17 is provided for positioning. Further, since the protruding portion 16 is in contact with the inner peripheral surface of the through hole 15, the displacement of the tubular body 14 is suppressed by friction.

溶接工程(S14)は、管体14を供試体本体12に溶接して予備供試体を形成する工程である。図5は、予備供試体21の構成を示す断面図である。管体14の長手方向における一端側の外周面と、貫通孔15の一端側の内周面との間を全周に亘って溶接してシールし、予備供試体21を形成する。溶接方法には、例えば、アーク溶接やTIG溶接等が用いられる。溶接棒には、炭素鋼等を用いることができる。また、管体14がCrーMo鋼で形成されているので、CrーMo鋼を溶融させるために、入熱を多くすると共に、溶接棒の供給を少なめにすることが好ましい。溶接は、例えば、2パス等で行われる。   The welding step (S14) is a step of welding the tube body 14 to the specimen body 12 to form a preliminary specimen. FIG. 5 is a cross-sectional view showing the configuration of the preliminary specimen 21. A preliminary specimen 21 is formed by welding and sealing between the outer peripheral surface on one end side in the longitudinal direction of the tube body 14 and the inner peripheral surface on one end side of the through hole 15 over the entire periphery. For example, arc welding or TIG welding is used as the welding method. Carbon steel or the like can be used for the welding rod. Moreover, since the pipe body 14 is formed of Cr—Mo steel, it is preferable to increase the heat input and reduce the supply of the welding rod in order to melt the Cr—Mo steel. Welding is performed, for example, in two passes.

溶接部18の硬度は、ビッカース硬度でHV400より大きいことが好ましい。溶接部18の硬度をHV400より大きくすることにより溶接部18の残留応力がより大きくなるので、溶接部18に残留応力を応力源とする応力腐食割れによる亀裂状欠陥20を入れやすくなる。溶接部18を更に硬化させるために、溶接前に供試体本体12を十分に冷却しておくことが好ましい。例えば、溶接前に、予め供試体本体12をドライアイスと液体窒素とを含む浴槽(バス)に浸漬等させて冷却しておけばよい。また、溶接直後に予備供試体21を水冷して溶接部18を硬化させてもよい。更に、溶接部18の硬度がHV400以下である場合には、予備供試体21を熱処理して焼きを入れることにより溶接部18を硬化させてもよい。   The hardness of the weld 18 is preferably greater than HV400 in terms of Vickers hardness. Since the residual stress of the welded portion 18 is increased by making the hardness of the welded portion 18 higher than HV400, the cracked defect 20 due to stress corrosion cracking using the residual stress as a stress source can be easily put in the welded portion 18. In order to further cure the welded portion 18, it is preferable that the specimen body 12 is sufficiently cooled before welding. For example, the specimen body 12 may be cooled in advance by immersing the specimen body 12 in a bathtub (bath) containing dry ice and liquid nitrogen before welding. Alternatively, the welded part 18 may be cured by water cooling the preliminary specimen 21 immediately after welding. Furthermore, when the hardness of the welded portion 18 is HV400 or less, the welded portion 18 may be hardened by heat-treating the preliminary specimen 21 and baking it.

亀裂状欠陥導入工程(S16)は、予備供試体21の溶接部18に亀裂状欠陥20を導入する工程である。亀裂状欠陥20は、溶接部18に応力腐食割れを生じさせて導入される。図6は、亀裂状欠陥20の導入方法を示す模式図である。   The crack-like defect introducing step (S 16) is a step for introducing the crack-like defect 20 into the welded portion 18 of the preliminary specimen 21. The crack-like defect 20 is introduced by causing stress corrosion cracking in the welded portion 18. FIG. 6 is a schematic diagram showing a method for introducing the crack-like defect 20.

金属製容器24は、予備供試体21を収容できる大きさで炭素鋼等で形成されている。金属製容器24は、例えば、予備供試体21を挿入可能な大きさの管材に底板を溶接し、応力除去焼鈍処理して成形される。金属製容器24の外側には、リボンヒータ等からなるヒータ26が設けられている。また、金属製容器24には熱電対等の温度計測器(図示せず)が取り付けられており、制御装置(図示せず)によりヒータ26を制御して金属製容器24内の温度調節が可能にされている。また、予備供試体21には、金属製容器24への出し入れを容易に行うために供試体本体12に吊り金具22が取り付けられている。   The metal container 24 is formed of carbon steel or the like with a size that can accommodate the preliminary specimen 21. The metal container 24 is formed by, for example, welding a bottom plate to a tube material having a size into which the preliminary specimen 21 can be inserted, and performing stress relief annealing. A heater 26 made of a ribbon heater or the like is provided outside the metal container 24. Further, a temperature measuring instrument (not shown) such as a thermocouple is attached to the metal container 24, and the heater 26 is controlled by a control device (not shown) so that the temperature inside the metal container 24 can be adjusted. Has been. Further, a suspension fitting 22 is attached to the specimen main body 12 so that the preliminary specimen 21 can be easily inserted into and removed from the metal container 24.

次に、予備供試体21を金属製容器24内にセットする。そして、管体14の外周面と貫通孔15の内周面との間の隙間17に腐食液27を注入する。金属製容器24と予備供試体21との間の空間と、管体14の管内とには、熱媒体28を入れる。図7は、予備供試体21を金属製容器24に入れて腐食液27と熱媒体28とを注入した状態を示す断面図である。   Next, the preliminary specimen 21 is set in the metal container 24. Then, the corrosive liquid 27 is injected into the gap 17 between the outer peripheral surface of the tube body 14 and the inner peripheral surface of the through hole 15. A heat medium 28 is placed in the space between the metal container 24 and the preliminary specimen 21 and in the tube of the tube body 14. FIG. 7 is a cross-sectional view showing a state in which the preliminary specimen 21 is placed in the metal container 24 and the corrosive liquid 27 and the heat medium 28 are injected.

腐食液27には、重量比で50%NaNOと50%KNOとを混合した混合液(溶融塩、融点は約200℃)が用いられる。50%NaNOと50%KNOとを混合した腐食液を250℃に加熱して所定時間保持することにより、溶接部18に応力腐食割れを発生させることができる。50%NaNOと50%KNOとを混合した混合液は、管体14の外周面と貫通孔15の内周面との間の隙間17に注入するために、予め200℃以上に加熱して溶融させてから注入される。 As the corrosive liquid 27, a mixed liquid (molten salt, melting point: about 200 ° C.) in which 50% NaNO 3 and 50% KNO 3 are mixed by weight is used. By heating the corrosive liquid in which 50% NaNO 3 and 50% KNO 3 are mixed to 250 ° C. and holding it for a predetermined time, stress corrosion cracks can be generated in the welded portion 18. In order to inject the mixed liquid of 50% NaNO 3 and 50% KNO 3 into the gap 17 between the outer peripheral surface of the tube body 14 and the inner peripheral surface of the through-hole 15, it is heated to 200 ° C. or higher in advance. It is injected after melting.

熱媒体28には、重量比で50%NaNOと50%KNOとを混合した混合液(溶融塩、融点は約150℃)が用いられる。50%NaNOと50%KNOとを混合した混合液は、250℃で加熱されたとき溶接部18に応力腐食割れを発生させることがない。また、50%NaNOと50%KNOとを混合した混合液は、熱伝導性に優れており、250℃に加熱しても蒸気圧が低く、大気圧下の開放系で加温ができるので取り扱いが容易である。50%NaNOと50%KNOとを混合した混合液は、各試薬を固体状態で金属製容器24に入れた後、ヒータ26で150℃以上に加熱して溶融させてつくられる。 As the heat medium 28, a mixed liquid (molten salt, melting point is about 150 ° C.) in which 50% NaNO 2 and 50% KNO 3 are mixed by weight is used. A mixed liquid obtained by mixing 50% NaNO 2 and 50% KNO 3 does not cause stress corrosion cracking in the weld 18 when heated at 250 ° C. In addition, a mixed solution obtained by mixing 50% NaNO 2 and 50% KNO 3 has excellent thermal conductivity, and has a low vapor pressure even when heated to 250 ° C., and can be heated in an open system under atmospheric pressure. So it is easy to handle. A mixed liquid in which 50% NaNO 2 and 50% KNO 3 are mixed is prepared by putting each reagent in a solid state in a metal container 24 and then heating it to 150 ° C. or higher with a heater 26 to melt it.

このように、50%NaNOと50%KNOとを混合した混合液による腐食液27と、50%NaNOと50%KNOとを混合した混合液による熱媒体28とを組み合わせて用いることにより、予備供試体21を250℃に加熱して溶接部18に応力腐食割れによる亀裂状欠陥20を導入することができる。応力腐食割れにより亀裂状欠陥20を導入するための250℃での保持時間は、例えば、500時間である。また、250℃での保持時間を調節することにより、亀裂状欠陥20の大きさを変えることができる。亀裂状欠陥20をより大きく形成するためには、250℃での保持時間をより長くすればよい。 Thus, the use in combination with 50% NaNO 3 the etchant 27 with a mixture obtained by mixing a 50% KNO 3, a heat medium 28 by 50% NaNO 2 and liquid mixture and 50% KNO 3 Thus, the preliminary specimen 21 can be heated to 250 ° C., and the crack-like defect 20 due to stress corrosion cracking can be introduced into the welded portion 18. The holding time at 250 ° C. for introducing the crack-like defect 20 by stress corrosion cracking is, for example, 500 hours. Further, the size of the crack-like defect 20 can be changed by adjusting the holding time at 250 ° C. In order to form the crack-like defect 20 larger, the holding time at 250 ° C. may be made longer.

次に、溶接部18に亀裂状欠陥20が導入されるまで予備供試体21を250℃で保持した後、予備供試体21が吊り金具22で引き上げられて洗浄される。なお、必要に応じて管体14の外周面と貫通孔15の内周面との間の隙間17を、管体14を放射方向外方に拡径(全厚拡管)して塞ぐようにしてもよい。以上により非破壊検査用標準供試体10の製造が完了する。   Next, after the preliminary specimen 21 is held at 250 ° C. until the crack-like defect 20 is introduced into the welded portion 18, the preliminary specimen 21 is pulled up by the hanging bracket 22 and cleaned. If necessary, the gap 17 between the outer peripheral surface of the tube body 14 and the inner peripheral surface of the through-hole 15 is closed by expanding the tube body 14 radially outward (full thickness expansion). Also good. Thus, the manufacture of the standard specimen 10 for nondestructive inspection is completed.

次に、非破壊検査用標準供試体10を用いた非破壊検査方法について説明する。非破壊検査方法には、放射線透過試験法、超音波探傷試験法等を使用することができる。まず、実機の管端溶接部の非破壊検査条件と同じ条件で非破壊検査用標準供試体10について非破壊検査を行い、非破壊検査用標準供試体10に導入された亀裂状欠陥20の検査データを取得する。なお、亀裂状欠陥20の大きさごとに検査データをデータベース化しておくとよい。   Next, a nondestructive inspection method using the standard specimen 10 for nondestructive inspection will be described. As the nondestructive inspection method, a radiation transmission test method, an ultrasonic flaw detection test method, or the like can be used. First, a nondestructive inspection is performed on the standard specimen 10 for nondestructive inspection under the same conditions as the nondestructive inspection conditions of the pipe end weld of the actual machine, and the crack-like defect 20 introduced into the standard specimen 10 for nondestructive inspection is inspected. Get the data. The inspection data may be stored in a database for each size of the crack-like defect 20.

放射線透過試験の場合には、非破壊検査用標準供試体10の溶接部18に放射線を照射して、溶接部18を透過した放射線でフィルムを感光させる。亀裂状欠陥20の部分では透過放射線の強度が周囲より大きくなるのでフィルムが強く感光される。亀裂状欠陥20の大きさごとに、感光されたフィルムからなる検査データを取得する。超音波探傷試験の場合には、非破壊検査用標準供試体10の溶接部18の表面から超音波を内部に伝搬させる。そして、亀裂状欠陥20で反射された超音波を検出する。亀裂状欠陥20の大きさごとに、亀裂状欠陥20で反射された超音波から得られた検査データを取得する。   In the case of the radiation transmission test, radiation is irradiated to the welded portion 18 of the standard specimen 10 for nondestructive inspection, and the film is exposed to the radiation transmitted through the welded portion 18. In the cracked defect 20 portion, the intensity of transmitted radiation is higher than that of the surroundings, so that the film is strongly exposed. For each size of the crack-like defect 20, the inspection data made of the exposed film is acquired. In the case of an ultrasonic flaw detection test, ultrasonic waves are propagated from the surface of the welded portion 18 of the standard specimen 10 for nondestructive inspection. Then, the ultrasonic wave reflected by the crack-like defect 20 is detected. For each size of the crack-like defect 20, inspection data obtained from the ultrasonic wave reflected by the crack-like defect 20 is acquired.

次に、実機の管端溶接部について放射線透過試験または超音波探傷試験を行い、管端溶接部の検査データを取得する。そして、実機の管端溶接部の検査データと、非破壊検査用標準供試体10の亀裂状欠陥20の検査データとを比較して、実機の管端溶接部の欠陥の大きさを定量的に評価する。このようにして、実機の管端溶接部における溶接割れや応力腐食割れ等の亀裂状欠陥を精度よく検出することができる。なお、放射線透過試験と超音波探傷試験について説明したが、他の非破壊検査試験方法についても上記と同様に行うことで亀裂状欠陥の検出精度が向上する。   Next, a radiation transmission test or an ultrasonic flaw detection test is performed on the actual pipe end welded portion, and inspection data of the pipe end welded portion is acquired. Then, the inspection data of the pipe end welded part of the actual machine and the inspection data of the crack-like defect 20 of the standard specimen 10 for nondestructive inspection are compared to quantitatively determine the size of the defect of the pipe end welded part of the actual machine. evaluate. In this way, crack-like defects such as weld cracks and stress corrosion cracks in the pipe end welds of the actual machine can be detected with high accuracy. Although the radiation transmission test and the ultrasonic flaw detection test have been described, the detection accuracy of crack-like defects is improved by performing other nondestructive inspection test methods in the same manner as described above.

また、非破壊検査用標準供試体10は、化学プラント用チューブリアクタに主に使用されている炭素鋼製管板とCr−Mo鋼製管体とを組み合わせた管端溶接部における溶接割れや応力腐食割れ等の非破壊検査だけでなく、その他の金属材料で形成された管板と管体とを組み合わせた管端溶接部の非破壊検査にも使用することができる。非破壊検査試験では、管板と管体との材質の影響よりも亀裂状欠陥による影響が大きいからである。   Moreover, the standard specimen 10 for nondestructive inspection is a weld crack and stress in the pipe end weld part which combined the carbon steel pipe plate and the Cr-Mo steel pipe mainly used for the tube reactor for chemical plants. It can be used not only for non-destructive inspection such as corrosion cracking but also for non-destructive inspection of a pipe end welded portion in which a tube sheet and a tube body formed of other metal materials are combined. This is because in the nondestructive inspection test, the influence of crack-like defects is greater than the influence of the material of the tube sheet and the tube body.

例えば、非破壊検査用標準供試体10は、加圧水型原子炉用蒸気発生器に使用されているNi基合金(Alloy52)クラッド製管板とNi基合金製(Alloy690)管体とを組み合わせた管端溶接部の非破壊検査にも使用することができる。なお、加圧水型原子炉用蒸気発生器に使用されている管端溶接部は全厚拡管されているので、非破壊検査用標準供試体10の管体14を全厚拡管して隙間17を塞いだものを使用すればよい。   For example, the standard specimen 10 for nondestructive inspection is a tube in which a Ni-based alloy (Alloy 52) clad tube plate and a Ni-based alloy (Alloy 690) tube used in a steam generator for a pressurized water reactor are combined. It can also be used for nondestructive inspection of end welds. Since the pipe end weld used in the steam generator for a pressurized water reactor is expanded in full thickness, the tube 14 of the standard specimen 10 for nondestructive inspection is expanded in full thickness to close the gap 17. You can use what is.

更に、非破壊検査用標準供試体10によれば、重量比で50%NaNOと50%KNOとを混合した腐食液27を注入して応力腐食割れにより亀裂状欠陥を人工的に導入していることから、溶接部に機械加工等で欠陥を入れるよりも実際の応力腐食割れと略同じ形態の亀裂状欠陥を模擬できるので、応力腐食割れ等による亀裂状欠陥の検出精度が向上する。 Furthermore, according to the standard specimen 10 for non-destructive inspection, a cracking defect is artificially introduced by stress corrosion cracking by injecting a corrosive solution 27 in which 50% NaNO 3 and 50% KNO 3 are mixed by weight. Therefore, it is possible to simulate a crack-like defect having substantially the same form as an actual stress corrosion cracking rather than putting a defect in the welded part by machining or the like, so that the detection accuracy of the crack-like defect due to the stress corrosion cracking or the like is improved.

炭素鋼とCr―Mo鋼との溶接部に対する応力腐食割れ特性について評価した。   The stress corrosion cracking properties for welds between carbon steel and Cr-Mo steel were evaluated.

まず、炭素鋼シート材と、Cr―Mo鋼シート材とを溶接して溶接継手の製作を行った。図8は、溶接継手32の製作方法を示す図であり、図8(a)は、溶接継手32の形状を示す図であり、図8(b)は、溶接条件を示す図である。   First, a welded joint was manufactured by welding a carbon steel sheet material and a Cr—Mo steel sheet material. FIG. 8 is a diagram illustrating a method for manufacturing the welded joint 32, FIG. 8A is a diagram illustrating the shape of the welded joint 32, and FIG. 8B is a diagram illustrating welding conditions.

溶接継手32は、長さ115mm×幅100mmの矩形状とした。炭素鋼シート材34には、溶接構造用圧延鋼材であるSM490を用いた。Cr―Mo鋼シート材36には、2.25Cr−1Mo鋼を用いた。そして、炭素鋼シート材34とCr―Mo鋼シート材36とを突き合わせた部位38をTIG溶接した。TIG溶接棒として、TGS−50を使用した。電流値を60(A)から100(A)とし、アーク電圧を9(V)から11(V)とした。   The weld joint 32 has a rectangular shape with a length of 115 mm and a width of 100 mm. As the carbon steel sheet material 34, SM490, which is a rolled steel material for welded structures, was used. 2.25Cr-1Mo steel was used for the Cr—Mo steel sheet material 36. And the site | part 38 which faced | matched the carbon steel sheet material 34 and the Cr-Mo steel sheet material 36 was TIG-welded. TGS-50 was used as a TIG welding rod. The current value was changed from 60 (A) to 100 (A), and the arc voltage was changed from 9 (V) to 11 (V).

TIG溶接後は、溶接部の硬度を変えるため冷却条件を変えて冷却した。第一の冷却条件では、溶接した後に空冷した。第二の冷却条件では、溶接直後に水槽に入れて水冷した。第三の冷却条件では、溶接後に空冷した後、900℃で15分間保持し、水槽に入れて水冷した。   After TIG welding, the cooling conditions were changed in order to change the hardness of the weld. In the first cooling condition, air cooling was performed after welding. Under the second cooling condition, the sample was placed in a water bath immediately after welding and cooled with water. In the third cooling condition, air cooling was performed after welding, and then held at 900 ° C. for 15 minutes.

次に、各溶接継手32から試験片を切り出した。試験片の形状を、幅20mm×長さ50mm×板厚2mmの矩形状とした。また、各試験片について、溶接部が試験片の幅方向の略中央で、且つ試験片の長手方向に沿って位置するように各溶接継手32から切り出した。   Next, a test piece was cut out from each weld joint 32. The shape of the test piece was a rectangular shape having a width of 20 mm, a length of 50 mm, and a plate thickness of 2 mm. Moreover, about each test piece, it cut out from each weld joint 32 so that a welding part might be located in the approximate center of the width direction of a test piece, and along the longitudinal direction of a test piece.

溶接後の冷却条件を変えた各試験片の表面硬さをビッカース硬さ試験により測定した。図9は、溶接後の冷却条件を変えた各試験片の各部位における表面の硬度分布を示すグラフである。図9に示すグラフの横軸は、幅方向の試験片の位置を表しており、グラフの縦軸は、ビッカース硬度(HV)を表している。   The surface hardness of each test piece with different cooling conditions after welding was measured by the Vickers hardness test. FIG. 9 is a graph showing the hardness distribution of the surface at each part of each test piece with different cooling conditions after welding. The horizontal axis of the graph shown in FIG. 9 represents the position of the test piece in the width direction, and the vertical axis of the graph represents Vickers hardness (HV).

第一の冷却条件(溶接後に空冷)の試験片では、特に、肉盛部とCr―Mo鋼との接続領域で高い硬度が得られた。第二の冷却条件(溶接直後に水冷)の試験片では、肉盛部、及び肉盛部とCr―Mo鋼との接続領域で硬度が高くなり、特に、肉盛部とCr―Mo鋼との接続領域でHV400より大きい硬度が得られた。第三の冷却条件(溶接後に空冷した後、900℃で15分間保持して水冷)の試験片では、炭素鋼側からCr−Mo鋼側まで、いずれも硬度が高くなり、特に、肉盛部とCr―Mo鋼との接続領域ではHV400より大きい硬度が得られた。   In the test piece under the first cooling condition (air cooling after welding), high hardness was obtained particularly in the connection region between the built-up portion and the Cr—Mo steel. In the test piece of the second cooling condition (water cooling immediately after welding), the hardness increases in the built-up portion and the connection region between the built-up portion and the Cr—Mo steel. A hardness greater than HV400 was obtained in the connection region. In the third cooling condition (after air cooling after welding, holding at 900 ° C. for 15 minutes and water cooling), the hardness increases from the carbon steel side to the Cr—Mo steel side. A hardness greater than HV400 was obtained in the connection region between Cr and Mo steel.

このように、第二の冷却条件または第三の冷却条件で冷却することにより、第一の冷却条件で冷却するよりも溶接部での残留応力が大きくなり、特に、肉盛部とCr―Mo鋼との接続領域で硬度がより高くなる結果が得られた。   As described above, by cooling under the second cooling condition or the third cooling condition, the residual stress in the weld becomes larger than that under the first cooling condition. The result is that the hardness is higher in the connection region with steel.

次に、試験片を曲げ治具にセットして定ひずみ曲げを負荷した状態で応力腐食割れを評価した。   Next, stress corrosion cracking was evaluated in a state in which a test piece was set on a bending jig and a constant strain bending was applied.

図10は、曲げ治具の構成を示す断面図である。曲げ治具には、CBB(Creviced Bent Beam)試験治具を使用した。試験片をCBB試験治具にセットすることにより、試験片には2%の曲げひずみが負荷される。   FIG. 10 is a cross-sectional view showing the configuration of the bending jig. A CBB (Creviced Bent Beam) test jig was used as the bending jig. By setting the test piece on the CBB test jig, 2% bending strain is applied to the test piece.

試験片をCBB試験治具にセットした状態で腐食候補液を入れた炭素鋼製容器に入れ、試験片を腐食候補液に浸漬した。腐食候補液には、NaNO試薬(昭和化学株式会社製、亜硝酸ナトリウム、コード番号1950−4260)NaNO試薬(昭和化学株式会社製、硝酸ナトリウム、コード番号1949−8289)、KNO試薬(昭和化学株式会社製、硝酸カリウム、コード番号1642−4280)を所定の混合比で混合した混合液(溶融塩)を使用した。なお、各試薬には、1級試薬を使用した。また、炭素鋼製容器の加熱温度を150℃から550℃とし、浸漬時間を500時間とした。そして、500時間浸漬後に、炭素鋼製容器からCBB試験治具を取り出して試験片を観察した。 With the test piece set on the CBB test jig, the test piece was placed in a carbon steel container containing the corrosion candidate solution, and the test piece was immersed in the corrosion candidate solution. Corrosion candidate solutions include NaNO 2 reagent (Showa Chemical Co., Ltd., sodium nitrite, code number 1950-4260) , NaNO 3 reagent (Showa Chemical Co., Ltd., sodium nitrate, code number 1949-8289), KNO 3 reagent A mixed solution (molten salt) obtained by mixing Showa Chemical Co., Ltd. (potassium nitrate, code number 1642-4280) at a predetermined mixing ratio was used. In addition, the first grade reagent was used for each reagent. Moreover, the heating temperature of the carbon steel container was set to 150 ° C. to 550 ° C., and the immersion time was set to 500 hours. And after immersion for 500 hours, the CBB test jig was taken out from the carbon steel container, and the test piece was observed.

図11は、応力腐食割れ試験の結果を示すグラフである。図11に示すグラフの横軸は、NaNO試薬とNaNO試薬とKNO3、試薬との合計に対するNaNO試薬の重量比での割合を表しており、グラフの縦軸は、加熱温度を表している。また、白丸のデータは、応力腐食割れが発生しなかったものを示しており、黒菱形(大)のデータと黒菱形(小)のデータとは、応力腐食割れが発生したものを示している。 FIG. 11 is a graph showing the results of the stress corrosion cracking test. The horizontal axis of the graph shown in FIG. 11, NaNO 2 reagent and NaNO 3 Reagents and KNO 3, represents the proportion of a weight ratio of NaNO 2 reagent to the sum of the reagent, the vertical axis of the graph represents the heating temperature ing. The white circle data indicates that no stress corrosion cracking occurred, and the black rhombus (large) data and the black rhombus (small) data indicate that stress corrosion cracking occurred. .

また、白丸のデータと黒菱形(大)のデータとは、第一の冷却条件(溶接後に空冷)の試験片についての試験結果であり、黒菱形(小)のデータは、第二の冷却条件(溶接直後に水冷)及び第三の冷却条件(溶接後に空冷した後、900℃で15分間保持して水冷)の試験片(溶接部を更に硬化させたもの)についての試験結果を示している。   The white circle data and black rhombus (large) data are the test results for the test piece of the first cooling condition (air cooling after welding), and the black rhombus (small) data are the second cooling condition. The test results are shown for the test piece (water-cooled immediately after welding) and the third cooling condition (air-cooled after welding, then water-cooled by holding at 900 ° C. for 15 minutes). .

図11のグラフから明らかなように、NaNO試薬を含まず、NaNO試薬及びKNO3、試薬を混合した混合液の場合には、加熱温度250℃で応力腐食割れが発生した。また、溶接部を更に硬化させた場合には、NaNO試薬を含まず、NaNO試薬及びKNO3、試薬を混合した混合液の場合だけでなく、5%のNaNO試薬を含んでいる混合液でも加熱温度250℃で応力腐食割れが発生した。なお、その他については、応力腐食割れの発生が認められなかった。 As apparent from the graph of FIG. 11, stress corrosion cracking occurred at a heating temperature of 250 ° C. in the case of a mixed liquid containing NaNO 3 reagent, KNO 3, and a reagent without containing the NaNO 2 reagent. In addition, when the welded part is further cured, it does not include the NaNO 2 reagent, not only in the case of the mixed solution in which the NaNO 3 reagent, KNO 3 and the reagent are mixed, but also the mixture that includes 5% NaNO 2 reagent. Even in the liquid, stress corrosion cracking occurred at a heating temperature of 250 ° C. In other cases, the occurrence of stress corrosion cracking was not observed.

表1は、図11のグラフのデータの一部をまとめた表である。50%NaNOと50%KNOとを混合した混合液を用いて250℃で加熱したものは、溶接部のCr−Mo鋼側で応力腐食割れが発生した。また、50%NaNOと50%KNOとを混合した混合液を用いた場合には、加熱温度200℃から300℃の場合にも応力腐食割れが発生しなかった。
Table 1 is a table in which a part of the data in the graph of FIG. 11 is summarized. Which was heated at 250 ° C. using a mixture obtained by mixing 50% NaNO 3 and 50% KNO 3, the stress corrosion cracking occurs in the Cr-Mo steel side of the weld. Further, when a mixed solution in which 50% NaNO 2 and 50% KNO 3 were mixed was used, stress corrosion cracking did not occur even when the heating temperature was 200 ° C. to 300 ° C.

図12は、応力腐食割れが発生した試験片の外観写真である。図13は、図12の応力腐食割れの部位の表面を拡大した写真である。図14は、図12の応力腐食割れの部位の断面写真である。このように、50%NaNOと50%KNOとを混合した混合液を用いて250℃で加熱したものは、Cr−Mo鋼粗粒の溶接熱影響部(HAZ)に粒界応力腐食割れによる亀裂状欠陥が発生した。 FIG. 12 is an appearance photograph of a test piece in which stress corrosion cracking has occurred. FIG. 13 is an enlarged photograph of the surface of the site of stress corrosion cracking in FIG. FIG. 14 is a cross-sectional photograph of the site of stress corrosion cracking in FIG. Thus, 50% NaNO 3 and is 50% KNO 3 and those heated at 250 ° C. using a mixed mixture, intergranular stress corrosion cracking in the weld heat affected zone of the Cr-Mo steel grit (HAZ) A crack-like defect occurred.

以上の評価試験結果から、応力腐食割れを発生させる腐食液27として50%NaNOと50%KNOとを混合した混合液を用いることにより、溶接部18に亀裂状欠陥20を導入することが可能になる。また、50%NaNOと50%KNOとを混合した混合液を用いた場合には、応力腐食割れを生じないので熱媒体28として使用することができる。 From the above evaluation test results, it is possible to introduce the crack-like defect 20 into the welded portion 18 by using a mixed liquid in which 50% NaNO 3 and 50% KNO 3 are mixed as the corrosive liquid 27 that causes stress corrosion cracking. It becomes possible. Further, when a mixed solution in which 50% NaNO 2 and 50% KNO 3 are mixed is used, stress corrosion cracking does not occur, so that it can be used as the heat medium 28.

次に、非破壊検査用標準供試体10の製造を行った。   Next, the standard specimen 10 for nondestructive inspection was manufactured.

炭素鋼SM490で形成された板厚100mmの板材から、幅100mm×長さ100mmで切り出し炭素鋼製ブロック(供試体本体12)を作製した。炭素鋼製ブロックの略中央をドリルで穿孔して、内径21mmの貫通孔を形成した。2.25Cr−1Mo鋼でCr−Mo鋼製管体(管体14)を押出し加工で成形した。Cr−Mo鋼製管体の外径を20mmとし、長さを150mmとした。   A carbon steel block (specimen body 12) was cut from a plate material of 100 mm thickness formed of carbon steel SM490 with a width of 100 mm and a length of 100 mm. A substantially center of the carbon steel block was drilled with a drill to form a through hole having an inner diameter of 21 mm. A Cr-Mo steel pipe (pipe 14) was formed from 2.25Cr-1Mo steel by extrusion. The outer diameter of the Cr-Mo steel pipe was 20 mm and the length was 150 mm.

次に、炭素鋼製ブロックの貫通孔にCr−Mo鋼製管体を挿入し、Cr−Mo鋼製管体の管内から加工治具を挿入して、周方向の一部を放射方向外方へ突出させて突出部を形成した。突出部は、周方向に間隔を空けて同一円周上に2箇所に設けた。そして、突出部を貫通孔の内周面に当接させて、Cr−Mo鋼製管体の位置決めを行った。また、Cr−Mo鋼製管体の外周面と貫通孔の内周面との間のルートギャップ(隙間17)は0.2mmとし、周方向でルートギャップが略等しくなるようにした。   Next, a Cr-Mo steel pipe is inserted into the through hole of the carbon steel block, a processing jig is inserted from the inside of the Cr-Mo steel pipe, and a part of the circumferential direction is radially outward. The protrusion was formed by projecting to. The protrusions were provided at two locations on the same circumference with an interval in the circumferential direction. And the protrusion part was made to contact | abut to the internal peripheral surface of a through-hole, and the positioning of the Cr-Mo steel pipe was performed. Further, the route gap (gap 17) between the outer peripheral surface of the Cr-Mo steel pipe and the inner peripheral surface of the through hole was set to 0.2 mm so that the route gaps were substantially equal in the circumferential direction.

次に、Cr−Mo鋼製管体の長手方向における一端側の外周面と、炭素鋼製ブロックの貫通孔の長手方向における一端側の内周面とをTIG溶接して周方向に亘ってシールしてモックアップ(予備供試体21)を形成した。溶接棒には、TGS―50を使用した。なお、溶接条件は、図8(b)に示す溶接条件と略同じ条件とした。   Next, the outer peripheral surface on one end side in the longitudinal direction of the Cr-Mo steel tubular body and the inner peripheral surface on one end side in the longitudinal direction of the through hole of the carbon steel block are TIG welded and sealed in the circumferential direction. Thus, a mock-up (preliminary specimen 21) was formed. TGS-50 was used for the welding rod. The welding conditions were substantially the same as the welding conditions shown in FIG.

次に、モックアップを炭素鋼製容器に入れ、応力腐食割れによる亀裂状欠陥の導入を行った。炭素鋼製容器は、内径200mmの有底円筒状とした。そして、モックアップを炭素鋼製容器に入れてセットした。   Next, the mock-up was put into a carbon steel container, and crack-like defects due to stress corrosion cracking were introduced. The carbon steel container had a bottomed cylindrical shape with an inner diameter of 200 mm. The mock-up was set in a carbon steel container.

炭素鋼製容器とモックアップとの間の空間と、Cr−Mo鋼製管体の管内とに重量比で50%NaNOと50%KNOとを混合したものを入れた後、炭素鋼製容器を加熱して溶融させて熱媒体とした。次に、予め200℃以上に加熱して溶融させた重量比で50%NaNOと50%KNOとを混合した混合液からなる腐食液をCr−Mo鋼製管体の外周面と貫通孔の内周面との間のルートギャップに注入した。そして、250℃で500時間保持することにより、溶接部に亀裂状欠陥を導入して非破壊検査用標準供試体を製造した。 After putting a mixture of 50% NaNO 2 and 50% KNO 3 in a weight ratio into the space between the carbon steel container and the mock-up and the inside of the Cr—Mo steel pipe, the carbon steel The container was heated and melted to obtain a heat medium. Next, a corrosive liquid composed of a mixture of 50% NaNO 3 and 50% KNO 3 in a weight ratio that was previously heated to 200 ° C. or higher and melted was applied to the outer peripheral surface of the Cr—Mo steel pipe and the through hole. Injected into the root gap between the inner peripheral surface of each of the two. And by hold | maintaining at 250 degreeC for 500 hours, the crack-like defect was introduce | transduced into the welding part and the standard specimen for nondestructive inspection was manufactured.

10 非破壊検査用標準供試体、12 供試体本体、14 管体、15 貫通孔、16 突出部、17 隙間、18 溶接部、19 肉盛部、20 亀裂状欠陥、21 予備供試体、22 吊り金具、24 金属製容器、26 ヒータ、27 腐食液、28 熱媒体   10 Standard specimen for nondestructive inspection, 12 Specimen main body, 14 Tube body, 15 Through hole, 16 Protruding part, 17 Clearance, 18 Welded part, 19 Overlay part, 20 Cracked defect, 21 Preliminary specimen, 22 Hanging Hardware, 24 Metal container, 26 Heater, 27 Corrosive liquid, 28 Heat medium

Claims (2)

管端溶接部における亀裂状欠陥を非破壊検査で検出するための非破壊検査用標準供試体であって、
炭素鋼で形成され、貫通孔を有する供試体本体と、
前記貫通孔に挿入され、CrーMo鋼で形成された管体と、
を備え、
前記管体の外周面と、前記供試体本体における貫通孔の内周面との間に隙間が設けられ、
前記管体の長手方向における一端側の外周面と、前記供試体本体の貫通孔の長手方向における一端側の内周面との間を全周に亘って溶接した溶接部を有し、
前記溶接部は、前記隙間に重量比で50%NaNOと50%KNOとを混合した腐食液を注入し、応力腐食割れにより導入された亀裂状欠陥を有していることを特徴とする非破壊検査用標準供試体。
A standard specimen for nondestructive inspection for detecting crack-like defects in a pipe end weld by nondestructive inspection,
A specimen body formed of carbon steel and having a through hole;
A tube inserted into the through hole and formed of Cr-Mo steel;
With
A gap is provided between the outer peripheral surface of the tubular body and the inner peripheral surface of the through hole in the specimen body,
Having a welded portion welded over the entire circumference between the outer peripheral surface on one end side in the longitudinal direction of the tube and the inner peripheral surface on one end side in the longitudinal direction of the through hole of the specimen body;
The weld has a crack-like defect introduced by stress corrosion cracking by injecting a corrosion solution in which 50% NaNO 3 and 50% KNO 3 are mixed in a weight ratio into the gap. Standard specimen for nondestructive inspection.
管端溶接部における亀裂状欠陥を非破壊検査で検出するための非破壊検査用標準供試体の製造方法であって、
貫通孔を有する供試体本体を炭素鋼で形成し、管体をCrーMo鋼で形成する工程と、
前記管体を前記貫通孔に挿入し、前記管体の外周面と前記貫通孔の内周面との間に隙間を設けて前記管体を位置決めする工程と、
前記管体の長手方向における一端側の外周面と、前記貫通孔の一端側の内周面との間を全周に亘って溶接し、予備供試体を形成する工程と、
前記隙間に重量比で50%NaNOと50%KNOとを混合した腐食液を注入し、前記予備供試体を250℃に加熱して、前記予備供試体の溶接部に応力腐食割れによる亀裂状欠陥を導入する工程と、
を備えることを特徴とする非破壊検査用標準供試体の製造方法。
A method of manufacturing a standard specimen for nondestructive inspection for detecting crack-like defects in a pipe end weld by nondestructive inspection,
Forming a specimen body having a through hole with carbon steel and forming a tube with Cr-Mo steel;
Inserting the tubular body into the through hole, positioning the tubular body by providing a gap between an outer peripheral surface of the tubular body and an inner peripheral surface of the through hole;
Welding between the outer peripheral surface on one end side in the longitudinal direction of the tubular body and the inner peripheral surface on one end side of the through-hole over the entire circumference, and forming a preliminary specimen;
A corrosion solution in which 50% NaNO 3 and 50% KNO 3 are mixed in a weight ratio is injected into the gap, the preliminary specimen is heated to 250 ° C., and the welded portion of the preliminary specimen is cracked due to stress corrosion cracking. Introducing a defect,
A method for producing a standard specimen for nondestructive inspection, comprising:
JP2011024943A 2011-02-08 2011-02-08 Standard specimen for nondestructive inspection and its manufacturing method Active JP5614313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024943A JP5614313B2 (en) 2011-02-08 2011-02-08 Standard specimen for nondestructive inspection and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024943A JP5614313B2 (en) 2011-02-08 2011-02-08 Standard specimen for nondestructive inspection and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2012163478A true JP2012163478A (en) 2012-08-30
JP5614313B2 JP5614313B2 (en) 2014-10-29

Family

ID=46842999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024943A Active JP5614313B2 (en) 2011-02-08 2011-02-08 Standard specimen for nondestructive inspection and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5614313B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548471A (en) * 2015-12-10 2016-05-04 中国石油大学(华东) Scanning device used for detecting defects on internal and external surfaces of pipeline
CN108760898A (en) * 2018-04-27 2018-11-06 中国石油天然气集团公司管材研究所 Composite bimetal pipe girth joint ultrasound examination reference block and its design method
CN108916658A (en) * 2018-06-06 2018-11-30 中国特种设备检测研究院 A kind of multi-functional tube channel detector test platform
CN109243639A (en) * 2018-09-10 2019-01-18 西安交通大学 Nuclear reactor steam generator heat-transfer pipe micro-crack amount of leakage experimental provision and method
CN111855952A (en) * 2020-07-31 2020-10-30 山西北方机械制造有限责任公司 Method and device for rapidly testing welding performance of 35# steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855558A (en) * 2015-12-09 2017-06-16 中国石油天然气股份有限公司 A kind of test device for testing interior detection sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138314A (en) * 1989-10-20 1991-06-12 Ishikawajima Harima Heavy Ind Co Ltd Production of pipe sample with stress corrosion cracking
JP2003003300A (en) * 2001-04-18 2003-01-08 Nisshin Steel Co Ltd Surface roughened steel sheet and surface roughening method
JP2007178104A (en) * 2005-12-28 2007-07-12 Dowa Holdings Co Ltd Heat transfer tube, method of manufacturing heat transfer tube, and fluidized bed furnace
JP2009180647A (en) * 2008-01-31 2009-08-13 Sumitomo Chemical Co Ltd Radiographic testing method of welding section

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138314A (en) * 1989-10-20 1991-06-12 Ishikawajima Harima Heavy Ind Co Ltd Production of pipe sample with stress corrosion cracking
JP2003003300A (en) * 2001-04-18 2003-01-08 Nisshin Steel Co Ltd Surface roughened steel sheet and surface roughening method
JP2007178104A (en) * 2005-12-28 2007-07-12 Dowa Holdings Co Ltd Heat transfer tube, method of manufacturing heat transfer tube, and fluidized bed furnace
JP2009180647A (en) * 2008-01-31 2009-08-13 Sumitomo Chemical Co Ltd Radiographic testing method of welding section

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548471A (en) * 2015-12-10 2016-05-04 中国石油大学(华东) Scanning device used for detecting defects on internal and external surfaces of pipeline
CN108760898A (en) * 2018-04-27 2018-11-06 中国石油天然气集团公司管材研究所 Composite bimetal pipe girth joint ultrasound examination reference block and its design method
CN108760898B (en) * 2018-04-27 2023-12-08 中国石油天然气集团有限公司 Reference block for ultrasonic detection of bimetal composite pipe girth weld and design method thereof
CN108916658A (en) * 2018-06-06 2018-11-30 中国特种设备检测研究院 A kind of multi-functional tube channel detector test platform
CN108916658B (en) * 2018-06-06 2023-06-16 中国特种设备检测研究院 Multifunctional in-pipeline detector test platform
CN109243639A (en) * 2018-09-10 2019-01-18 西安交通大学 Nuclear reactor steam generator heat-transfer pipe micro-crack amount of leakage experimental provision and method
CN109243639B (en) * 2018-09-10 2020-03-31 西安交通大学 Nuclear reactor steam generator heat transfer tube microcrack leakage amount experimental device and method
CN111855952A (en) * 2020-07-31 2020-10-30 山西北方机械制造有限责任公司 Method and device for rapidly testing welding performance of 35# steel
CN111855952B (en) * 2020-07-31 2022-10-28 山西北方机械制造有限责任公司 Method and device for rapidly testing welding performance of 35# steel

Also Published As

Publication number Publication date
JP5614313B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5614313B2 (en) Standard specimen for nondestructive inspection and its manufacturing method
Sedmak et al. Industrial safety of pressure vessels-Structural integrity point of view
JP7277286B2 (en) Plant inspection method
Lee et al. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals
Wu et al. Finite Element Analysis of Weld Residual Stresses in Austenitic Stainless Steel Canisters in Dry Storage of Spent Fuel.
JP2000214143A (en) Production of sham test piece for non-destructive inspection and non-destructive inspection method
JPH04240552A (en) Method for evaluating residual life of metal welding member under high temperature stress
Schmiedt et al. Influence of condensate corrosion on tensile and fatigue properties of brazed stainless steel joints AISI 304L/BNi‐2 for automotive exhaust systems: Einfluss von Kondensatkorrosion auf die Zug‐und Ermüdungseigenschaften der Edelstahllötverbindungen 1.4307/Ni 620 für Automobilabgassysteme
Coules et al. Measurement of the residual stresses in a PWR Control Rod Drive Mechanism nozzle
US5013370A (en) Method for localization of tensile residual stress and product produced thereby
JP2005061914A (en) Induction method and induction determining method for stress corrosion cracking
Yang et al. Estimates of mechanical properties and residual stress of narrow gap weld for leak-before-break application to nuclear piping
Gim et al. FE Welding Residual Stress Analysis and Validation for Spent Nuclear Fuel Canisiters
Sanyal et al. Assessment of axial cracking of a steam generator tube
Damjanović et al. Estimation of Residual Stresses in Pipe-Ring Specimens by Incremental Hole Drilling and X-Ray Diffraction Method
Hossain et al. Measurement of residual stresses in a type 316H stainless steel offset repair in a pipe girth weld
Tong et al. Intelligent Testing and Analysis of Dissimilar Steel Welds for Industrial Throttle Flowmeter
Gao et al. Investigation on residual stress in SA508/Inconel Metal/CF8A dissimilar welded joint for nuclear steam generator safe end using different processes
Takahashi et al. Development of Life Estimation Method for Nozzle Welds in Large Scale Piping of Modified 9Cr-1Mo Steel-Part II: Analytical Study
Hicks et al. Residual stress evaluation of small diameter stainless steel piping by experimental measurements and finite element analysis
Hurrell et al. Development of residual stress profiles for defect tolerance assessments of thick section electron beam welds
Udell et al. 1. General and reviews
JP4862696B2 (en) Stress corrosion cracking test specimen manufacturing method
Sharifi et al. Investigating the effect of crack geometries and weld mismatching In order to optimize ECA analysis of girth welded offshore pipelines
JP2008304212A (en) Test piece, and test piece manufacturing method of

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R151 Written notification of patent or utility model registration

Ref document number: 5614313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250