KR20160062289A - 신규 암 치료용 살모넬라 균주 및 이의 용도 - Google Patents

신규 암 치료용 살모넬라 균주 및 이의 용도 Download PDF

Info

Publication number
KR20160062289A
KR20160062289A KR1020140164469A KR20140164469A KR20160062289A KR 20160062289 A KR20160062289 A KR 20160062289A KR 1020140164469 A KR1020140164469 A KR 1020140164469A KR 20140164469 A KR20140164469 A KR 20140164469A KR 20160062289 A KR20160062289 A KR 20160062289A
Authority
KR
South Korea
Prior art keywords
salmonella
strain
gene
dna
seq
Prior art date
Application number
KR1020140164469A
Other languages
English (en)
Inventor
임상용
윤현진
김동호
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020140164469A priority Critical patent/KR20160062289A/ko
Publication of KR20160062289A publication Critical patent/KR20160062289A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/42Salmonella
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명의 이중 돌연변이 유전자인 YC0843(ΔSTM2875, ΔrelA/spoT), YC0844(ΔSTM3096, ΔrelA/spoT) 및 YC0845(ΔSTM4332/4333, ΔrelA/spoT)는 정상기관에서 생존력은 크게 감소하고 살모넬라 감염으로 인한 부정적인 효과를 최소화하면서 종양의 크기를 억제하여 암 치료용 약학적 조성물로 유용하게 활용될 수 있음을 확인하였다.

Description

신규 암 치료용 살모넬라 균주 및 이의 용도{Novel Salmonella for treatment of cancer, and use thereof}
본 발명은 ppGpp 생산 유전자가 결실된 살모넬라속 균주에 살모넬라 병원성 유전자를 추가적으로 결실시킨 신규 이중 돌연변이 균주, 또는 이를 유효성분으로 함유하는 암 치료용 약학적 조성물을 제공하는 것이다.
저출산-고령화의 사회구조와 산업개발에 따른 환경악화, 식문화의 서구화로 인하여 암 발병률은 전 세계적으로 해마다 5% 이상 증가하고 있다. 이러한 암 발병률의 증가 추이는 고령인구의 건강관리 측면에서 암이 매우 심각하게 고려되어야 할 사항임을 시사할 뿐 아니라 사회구조 및 운동 부족, 잘못된 생활습관 등으로 인해 20, 30대 생산적 경제활동이 가능한 인구도 암으로부터 안전할 수 없음을 보여준다.
'국가 암 발생 통계(2007년)'에 따르면 평균수명까지 살 경우 남자는 3명 중 1명, 여자는 4명 중 1명이 암에 걸릴 확률이 있고, 세계보건기구(WHO)에서는 매년 1,200만 명의 새로운 암환자가 발생하고 700만 명이 암으로 사망할 것으로 추정하고 있다.
암이 인류가 정복해야 할 대상으로 여겨진 이후, 세포수준의 기본연구에서부터 전방위적인 항암치료에 대한 연구가 전 세계적으로 추진되어 왔다. 아직까지 암의 발생기전이 불명확하고, 재발방지 및 완치가 어려워 항암제에 대한 수요가 폭발적으로 늘어나고 있으며, 막대한 연구비가 연구소 및 기업체에 투자되고 있다. 하지만, 고가의 항암치료 비용은 직접적인 의료비용뿐만 아니라 발병 이후의 사회 경제활동의 위축, 재활 및 환자 간호에 따른 간접비용이 추가되어 암환자 가족 및 사회 구성원 전체에게 경제적으로 큰 부담이 되고 있으며 저비용의 새로운 기술도입이 요구되고 있는 실정이다. 현재 암조직의 내부로 약물을 전달하기 위한 유전자 전달체로 바이러스 벡터(viral vector), 나노입자(nano-particle)을 사용하는 비바이러스 벡터(non-viral vector), 혐기적 미생물을 사용하는 박테리아 벡터(bacterial vector)가 사용되고 있다. 이중 높은 약물전달 효율을 보여주는 바이러스 벡터는 항암치료뿐만 아니라 다른 질병의 유전자 치료에도 활용되고 있다. 하지만, 최근 보고되고 있는 바이러스 벡터의 부작용 사례들은 바이러스 벡터가 가지는 한계점(숙주세포의 범위가 넓고, 반복투여 시 면역부작용을 일으킴)을 여실히 보여주고 있어, 더욱 안전한 유전자 전달체의 개발이 요구된다.
이러한 실정에 맞추어, 약 100여 년 전 세균에 의한 암 억제현상이 보고된 후, 많은 연구진들에 의해 항암효과를 가지는 균주들이 개발되고 있으며 일부 연구 그룹에서는 이미 임상단계가 진행 중에 있다. 낮은 산소분압과 풍부한 영양분, 면역반응의 결핍 등으로 대표되는 암조직의 세포환경 체내에서 증식하는 병원성 균주가 선호하는 서식지의 특징이기도 하다. 특히 암조직의 중심에 위치한 네크로틱 영역(necrotic region)은 약물전달이 효율적으로 이루어지지 않고, 암의 전이 등을 유발한다고 알려져 있는데, 클로스트리듐(Clostridium), 비피도박테리움(Bifidobacterium), 살모넬라(Salmonella) 등은 암조직 중심에 있는 네크로틱 영역의 풍부한 영양분에 집적하여 증식하며, 이 과정에서 암조직의 축소 및 성장억제 등이 관찰되어 예로부터 항암치료를 위한 생균주로 사용되고 있다.
중국의 Dr. Xu 연구팀은 비피도박테리움 롱검(Bifidobacterium longum)을 경구투여하여 신생혈관생성 억제제인 엔도스테틴(endostatin)을 고형암 조직으로 전달하는 시스템을 고안하였으며, 이후 항암성 항생물질인 아드리아마이신(adriamycin)과의 혼합치료 연구 등을 보고하였다(Xu YF, et al., Cancer Gene Ther. 2007, 14(2):151-7; Hu B, et al., Cancer Gene Ther. 2009, 16(8):655-63).
1997년에 예일 대학의 Bermudes 박사는 새로운 항암표적 전달체로서 살모넬라의 가능성을 언급한 이래 미국국립암연구소(NCI)를 비롯한 다양한 연구팀에서 살모넬라의 암성장 저해 결과를 발표하였고 방사선치료와 연관하여 그 효과를 살펴보았다. 또한 바이온 제약회사(Vion Pharmaceuticals Inc.)와 협력하여 살모넬라 티피무리움(S. typhimurium)의 독성을 약화시킨 변이균주 VNP20009를 개발하고 전구체 약물 효소인 시토신디아미네이즈(cytosine deaminase)를 암세포 내에서 발현하도록 하여 임상실험을 시도한 바 있다.
2006년에 예일 대학의 Gnjatic 박사는 살모넬라의 종양표지자를 제3형태 분비시스템(Type III secretion system (TTSS))의 분비신호에 결합시켜 암 조직 내로 분비시킨 뒤, 체내의 CD8 T 세포를 활성화시켜서 암의 크기를 감소시킨 항암백신 개발시스템을 보고하였다(Nishikawa H, et al., J Clin Invest. 2006, 116(7):1946-54).
국내에서도 살모넬라를 이용한 항암연구가 진행되어 왔는데, 2010년 전남대학의 민정준 교수팀은 구아노신 5'-디포스페이트-3'-디포스페이트(guanosine 5'-diphosphate-3'-diphosphate(ppGpp)) 생성능력이 결여된 살모넬라 균주에 형광유전자를 결합하여 균주의 이동경로를 관찰하였고, 동시에 사이톨리신(cytolysin A) 유전자를 발현시켜 암 조직을 선택적으로 살상하도록 고안된 약독화 살모넬라 재조합 균주를 개발하였으며(Nguyen VH, et al., Cancer Res. 2010, 1;70(1):18-23), 2013년 동대학의 최현일 교수팀에서 안정적으로 항암치료물질을 암 조직에 전달할 수 있는 살모넬라 및 대장균 균주를 개발하였다(Kim K, et al., PLoS One. 2013, 8(3):e60511).
그러나, 기존에 병원성이 약화된 살모넬라를 이용한 항암 치료에서는 종양 세포 사멸 후 제거되지 않고 남은 잔존 살모넬라에 의한 부작용 발생이 우려되어 왔다. 잔존 살모넬라에 의한 만성 감염시, 보균자로서 다른 주변인에게로의 감염 우려가 있고, 면역 기능이 약화된 환자나 노약자에게는 병원성이 약화된 살모넬라에 의해 치명적인 폐혈증 발생이 가능하며, 만성 감염 시 생성된 항체는 자가면역질환(autoimmune disease)을 일으킬 가능성, 예를 들면, 관절염, 안염, 요도염 등이 발생할 우려가 있다.
따라서, 살모넬라를 이용한 항암치료기술개발에서 살모넬라의 종양조직에 대한 증식 특이성을 높이고, 정상 기관에서의 과다한 면역반응과 이로 인한 폐해를 최소화 하기위하여 종양 조직이 아닌 다른 정상 조직에서의 살모넬라 생존 능력을 효율적으로 조절하여, 정상 기관에서 살모넬라 감염 시 신속하게 제거될 수 있는 균주 개발이 필요하다.
이에, 본 연구자들은 종양 조직이 아닌 다른 정상 조직에서의 살모넬라 생존 능력을 효율적으로 조절하고 항암효과가 뛰어난 살모넬라 균주를 개발하기 위하여 노력한 결과, 기존에 알려진 ppGpp 생산 유전자가 결실된 살모넬라속 균주에 살모넬라 병원성 유전자인 hilD 유전자를 추가적으로 결여시킨 결과, 정상기관에서의 생존력은 감소하고 종양세포 크기는 현저히 억제됨을 확인함으로써, 상기 신규 균주를 항암용 조성물의 유효성분으로 유용하게 사용될 수 있음을 밝힘으로써 본 발명을 완성하였다.
본 발명의 목적은 ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주 및 이를 유효성분으로 함유하는 암 치료용 약학적 조성물, 약물전달용 조성물, 백신 조성물 및 살모넬라속 변이균주 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 제공한다.
또한, 본 발명은 ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라속 균주를 유효성분으로 함유하는 암 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 포함하는 약물전달용 조성물을 제공한다.
또한, ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 포함하는 백신 조성물을 제공한다.
아울러, 본 발명은 살모넬라 야생형 균주에 ppGpp 생산 유전자 및 살모넬라 병원성 유전자를 결실시키는 단계를 포함하는 살모넬라속 변이균주 제조방법을 제공한다.
본 발명은 ppGpp 생산 유전자가 결실된 살모넬라속 균주에 살모넬라 병원성 유전자를 추가적으로 결실시킨 신규 이중 돌연변이 균주로 정상기관에서의 생존력은 감소되고, 종양세포에서는 유의적인 항암효과를 나타내므로 상기 신규 이중 돌연변이 균주는 항암용 조성물의 유효성분으로 사용될 수 있다.
도 1은 균주 표지에 사용된 24-nt DNA 바코드 구조를 나타낸 도이다.
표적 유전자 대신 삽입된 135-nt 염기서열은 kan cassette 제거 후 남은 scar site (혹은 FRT)와 24-nt의 바코드 (N, purine 혹은 pyrimidine base; V, thymine base을 제외한 base), nested PCR의 scarF/scar primer가 인식하는 Priming site 4/1 등으로 구성되어 있다.
도 2는 qPCR CI법의 모식도를 나타낸 도이다:
① 바코드로 표지된 균주의 배양; ② 균주의 혼합; ③ INPUT 균주 혼합물에서 DNA 분리; ④주입(INPUT) DNA를 이용하여 실시간 PCR 실시 후 각 균주의 Ct값 측정; ⑤ 상기 ②의 균주 혼합물을 마우스로 감염; ⑥ 감염 시간 경과 별 숙주의 기관 채취; ⑦ 기관 내 생존 세균의 배양; ⑧ OUTPUT 균주 혼합물에서 DNA 분리; ⑨ 감염결과물(OUTPUT) DNA를 이용하여 실시간 PCR 후 각 균주의 Ct값 측정; ⑩ 주입 및 감염결과물에서의 Ct값 이용하여 CIqPCR 값 계산.
도 3은 qPCR CI를 통한 12 균주의 숙주 내 생존력을 비교한 그래프이다.
도 4는 전통적 CI 법을 이용한 3 균주의 숙주 spleen 내 생존력 비교한 도이다.
도 5는 Nramp1-/- 숙주를 이용한 3종 균주의 숙주 비장 내 생존력 비교한 그래프이다.
도 6은 YC0843, YC0844, YC0845 균주의 숙주 비장 내 생존력 비교한 그래프이다.
7은 종양 숙주에서 종양과 비장 내 YC0843의 증식속도 혹은 생존력 비교한 그래프이다.
도 8은 YC0843 균주의 종양 증식억제 효과를 나타낸 도이다.
이하, 본 발명을 상세히 설명한다.
본 발명의 ppGpp 생산 유전자 결손 약독화 살모넬라 균주는 암과 경색조직과 같은 살모넬라에 의해 표적화 가능한 질병의 진단과 치료적 목적으로 사용될 수 있다. 혐기성 그람 음성균인 살모넬라 균주는 암조직을 선택적으로 표적화하는 것으로 알려져 있을 뿐만 아니라(Bermudes et al., Adv. Exp. Med. Biol., 465: 57-63, 2000), 심근경색 및 뇌경색 등 경색조직을 선택적으로 표적화하는 것으로 밝혀졌다(WO2010/0137900A). 따라서, 살모넬라 균주는 암조직 및 경색조직에 대한 선택적 약물전달체로서의 가능성을 인정받고 있다. 특히, 살모넬라는 유전자 조작이 용이하므로, 특정 단백질 또는 핵산 약물을 발현하도록 유전자 변형될 수 있고, 약물이 화합물인 경우 해당 약물을 생산하는데 이용되는 생화학적 경로를 활용하여 상기 생화학적 경로에 필수적인 살모넬라 내부에 존재하지 않는 유전자를 도입하거나 상기 생화학적 경로가 우선적으로 적용되도록 다른 우회 경로를 차단하도록 우회 경로와 관련된 유전자를 불활성화시키는 유전자 조작을 통해 상기 약물이 살모넬라 균주의 대사작용에 의해 생산되도록 유전자 조작을 수행할 수 있다는 장점이 있다.
이에, 본 발명은 ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 제공한다.
상기 ppGpp 생산 유전자는 relA (서열번호 82)및 spoT (서열번호 83) 이고, 상기 살모넬라 병원성 유전자는 bcfH(서열번호 66), STM0829(서열번호 67)/STM0290(서열번호 68)/STM0291(서열번호 69), cstA(서열번호 70), glnQ(서열번호 71), STM0839(서열번호 72), STM1024(서열번호 73), sseA (서열번호 74), hilD (서열번호 75), yqgE (서열번호 76), yqgF (서열번호 77), rsd(서열번호 78), yjaG (서열번호 79), yjeJ (서열번호 80) yjeK (서열번호 81)로 구성된 군으로부터 선택되는 어느 하나 이상인 것이 바람직하고, hilD인 것이 보다 바람직하다.
상기 살모넬라속 균주는 살모넬라 티피무리움(Salmonella Typhimurium), 살모넬라 콜레라에슈이스(Salmonella choleraesuis) 및 살모넬라 엔테라이티디스(Salmonella enteritidis)로 구성된 군으로부터 선택되는 어느 하나인 것이 바람직하나, 이에 한정하지 않는다.
상기 ppGpp 생산 유전자가 결실된 살모넬라속 균주는 종양억제 효과를 나타낸다고 알려져 있으나, 정상 기관과 조직에서도 유의적인 생존력을 나타내어 살모넬라에 의한 감염이 발생할 수 있으며, 또한, 살모넬라 균의 병원성 유전자만을 결실시킨 균주도 정상 기관에서 병원성이 유지되어 치료용 균주로 활용 가능성이 미미하다. 그러나, 상기 ppGpp 생산 유전자 및 살모넬라 균의 병원성 유전자를 동시에 결실시킨 본 발명의 신규 이중 돌연변이 균주는 종양억제효과 및 정상기관에서의 생존력을 현저히 감소시킴으로써 항암용 치료제로 유용하게 사용할 수 있다.
본 발명의 구체적인 실시예에서, 본 발명자들은 살모넬라의 병원성에 중요할 것으로 생각되는 유전자(군) 12종이 각각 결여된 살모넬라 균주를 λ 파지(phage)를 이용한 상동재조합 방법을 이용하여 제작하였고(표 1 및 표 2 참조), Nramp1+/+ 129SvJ 숙주 모델 마우스에서 12 균주의 생존력을 검사한 결과, 감염 후 5일째 및 7일째의 숙주 내의 비장에서 생존력이 크게 감소된 균주 3종 ΔSTM1397, ΔSTM2875 및 ΔSTM4332/4333를 항암치료에 적합한 약독화된 균주로 선별하였으며(도 3 참조), 상기 선별된 균주 3종 ΔSTM1397, ΔSTM2875 및 ΔSTM4332/4333의 CI값을 참조 균주인 MA6054와 비교한 결과, 숙주 내 생존력이 감소함을 확인하였다(도 4 참조).
또한, Nramp1-/- BALB/c 마우스를 이용하여 정상 기관에서의 본 발명의 돌연변이 살모넬라 균주 생존 능력을 비교한 결과, 숙주 내 생존력은 야생형 균주와 비교하여 크게 다르지 않아 수 일 내에 숙주 동물이 사멸함에 따라 치료용 균주로서의 활용 가능성이 적음을 나타냈다(도 5 참조). 이를 극복하기 위하여, ΔSTM1397, ΔSTM2875 및 ΔSTM4332/4333 균주에 relA spoT 유전자를 추가적으로 제거하여 병원성에 중요한 ppGpp가 추가 결여된 이중 돌연변이 균주들을 제작하였고 이들의 숙주 내로 감염 후 생존력을 확인한 결과, 이중 돌연변이 균주인 YC0843 (ΔSTM2875, ΔrelA/spoT), YC0844(ΔSTM3096, ΔrelA/spoT) 및 YC0845(ΔSTM4332/4333, ΔrelA/spoT)는 야생형 SHJ2037(ΔrelA/spoT) 균주와 비교하여 정상기관에서의 생존력이 크게 감소함을 확인하였다(도 6 참조). 종양을 가진 숙주에서 이중 돌연변이 균주의 표적(targeting) 능력과 생존력을 야생형 SHJ2037와 비교하였을 때, 특히 YC0843 균주는 정상조직보다 종양조직으로의 표적 효과가 100배 이상 우수한 것을 확인하였고(도 7 참조), YC0843 균주의 종양에 대한 증식억제 효과를 조사한 결과, 종양의 무게가 1/3 가량 감소한 것을 확인하였다(도 8 참조).
따라서, 본 발명의 이중 돌연변이 균주인 YC0843 (ΔSTM2875, ΔrelA/spoT), YC0844(ΔSTM3096, ΔrelA/spoT) 및 YC0845(ΔSTM4332/4333, ΔrelA/spoT)는 정상기관에서 생존력은 크게 감소하여 살모넬라 감염으로 인한 부정적인 효과를 최소화하면서 종양의 크기를 억제하여 암을 치료하는데 유용하게 활용될 수 있음을 확인하였다.
본 발명은 ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 유효성분으로 함유하는 암 치료용 약학적 조성물을 제공한다.
또한, ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 포함하는 약물전달용 조성물을 제공한다.
또한, ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 포함하는 백신 조성물을 제공한다.
아울러, ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 유효성분으로 함유하는 암 개선용 건강기능식품을 제공한다.
상기 ppGpp 생산 유전자는 relA spoT 인 것이 바람직하다.
상기 살모넬라 병원성 유전자는 bcfH , STM0289/0290/0291, cstA , glnQ , STM0839, STM1024, sseA , hilD , yqgE/yqgF , rsd , yjaG , yjeJ/yjeK로 구성된 군으로부터 선택되는 어느 하나 이상인 것이 바람직하고, hilD인 것이 보다 바람직하다.
상기 살모넬라속 균주는 살모넬라 티피무리움(Salmonella Typhimurium), 살모넬라 콜레라에슈이스(Salmonella choleraesuis) 및 살모넬라 엔테라이티드(Salmonella enteritidis)로 구성된 군으로부터 선택되는 어느 하나인 것이 바람직하나, 이에 한정하지 않는다.
상기 본 발명의 ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라 균주는 살모넬라 병원성 유전자가 결실된 살모넬라속 균주를 제작한 다음, p22 박테리오파지(bacteriophage) 방법을 이용해서 ppGpp 생산 유전자인 relAspoT 유전자를 추가적으로 결실시킴으로써 제작할 수 있다.
상기 ppGpp 생산 유전자가 결실된 살모넬라속 균주는 종양억제 효과를 나타낸다고 알려져 있으나, 정상 기관과 조직에서도 유의적인 생존력을 나타내어 살모넬라에 의한 감염이 발생할 수 있으며, 또한, 살모넬라균의 병원성 유전자만을 결실시킨 균주도 정상 기관에서 병원성이 유지되어 치료용 균주로 활용 가능성이 미미하다. 그러나, 상기 pGpp 생산 유전자 및 살모넬라균의 병원성 유전자를 동시에 결실시킨 본 발명의 신규 이중 돌연변이 균주는 종양억제효과 및 정상기관에서의 생존력을 현저히 감소시킴으로써 항암용 치료제로 유용하게 사용할 수 있다.
상기 암을 예로 들면, 비소세포폐암, 신경모세포종, 염증성 골수섬유모세포종양, 종횡문근육종, 근섬유모세포종, 유방암, 위암, 폐암, 흑색종, 대형 B-세포 림프종, 전신성 조식구증, 염증성 근섬유아세포성 육종 또는 식도 편평 세포암 등에 유용할 수 있다.
본 발명의 약학적 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제조될 수 있다. 경구 투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 상기 고형제제는 하나 이상의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트, 수크로오스(sucrose), 락토오스(lactose) 또는 젤라틴 등을 섞어 제조될 수 있다. 또한, 단순한 부형제 이외에 마그네슘스테아레이트(magnesium stearate), 탈크 등과 같은 윤활제들도 사용될 수 있다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순 희석제인 물, 액체 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함될 수 있다. 비수성용제 및 현탁용제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
본 발명의 약학적 조성물은 목적하는 방법에 따라, 경구 또는 비경구로 투여될 수 있으며, 비경구 투여시 피부 외용 또는 복강내, 직장, 정맥, 근육, 피하, 흉부내 또는 국소적용 주사 주입방식을 선택하는 것이 바람직하다.
본 발명의 약학적 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도에 따라 그 범위가 다양하며, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 개별 투약량은 구체적으로 유효 약물이 1회에 투여되는 양을 함유한다.
본 발명의 약학적 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도에 따라 그 범위가 다양하며, 일일 투여량은 본 발명의 조성물의 양을 기준으로 0.0001 내지 100 ㎎/㎏이고, 바람직하게는 0.001 내지 10 ㎎/㎏이며, 하루 1 ~ 6 회 투여될 수 있다.
본 발명의 약학적 조성물은 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 더욱 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 의하여 한정되는 것은 아니다.
< 실시예 1> 항암치료용 살모넬라 균주 개발을 위한 후보 균주 제작
항암치료용 살모넬라 균주를 제작하기 위하여, 우선 기존의 자료를 바탕으로 살모넬라의 병원성에 중요할 것으로 생각되는 유전자(군) 12종을 선별하고 이들 12종의 유전자 혹은 유전자군이 각각 결여된 12종의 살모넬라 균주를 제작하여 ΔSTM0028, ΔSTM0289/0290/0291, ΔSTM0600, ΔSTM0828, ΔSTM0839, ΔSTM1024, ΔSTM1397, ΔSTM2875, ΔSTM3096, ΔSTM4156, ΔSTM4169, ΔSTM4332/4333으로 명명하였다.
구체적으로, 유전자 제거 방법은 λ phage를 이용한 상동재조합(homologous recombination)방법을 이용하였다.
24-뉴클레오티드(nucleotide(nt))로 이루어진 다양한 종류의 DNA 바코드(바코드)를 가진 pKD13-모드(mod) 플라스미드(Yoon H, et al., PLoS Pathog . 2009, 5(2):e1000306)들을 템플레이트(template)로 하고 Kan 카세트(kan 카세트) 및 DNA 바코드(DNA 바코드) 부분을 한 쌍의 프라이머 세트로 PCR 증폭하였다. 이때 한 쌍의 PCR 프라이머 세트는 각각 길이 60-nt로 pKD13-모드 템플레이트에 결합하는 3'말단의 20-nt이외에 제거하고자 하는 유전자와 염기서열 상동성을 가지는 40-nt 서열을 5'말단에 포함함으로써, PCR로 얻어진 DNA 생성물이 살모넬라 염색체의(chromosomal) DNA의 표적 유전자 부분과 상동재조합을 일으켜 표적 유전자를 kan 카세트와 DNA 바코드로 치환할 수 있도록 고안되었다. 총 12개 유전자(군)의 제거에 사용된 PCR 프라이머 서열은 하기의 표 1과 같다.
표적 유전자 대신 Kan 카세트 및 DNA 바코드로의 치환에 이용된 프라이머 서열
균주 유전자
명칭
프라이머 서열
(전진: 5’에서 3’으로)
프라이머 서열
(후진: 5’에서 3’으로)
ΔSTM0028 bcfH GGGAGGCTTTCCGAACTTATCGAACGAGACTTTTATTATGATTCCGGGGATCCGTCGACC
(서열번호 3)
CTCCTCTGAGCGAATATCACCCCTTCGCTTTCTGAATCGCGTGTAGGCTGGAGCTGCTCC
(서열번호 4)
ΔSTM0289/0290/0291 - CTATTTATTTTAATCCGGTATTAAAGGAGTCACTACCATGATTCCGGGGATCCGTCGACC
(서열번호 5)
CACAATTTAAATTTATTTAGCATTTTGCTTCAACTTCCCCGTGTAGGCTGGAGCTGCTCC
(서열번호 6)
ΔSTM0600 cstA GTAACATCTCTCTGGAACACCCAAACGGACAACAACTATGATTCCGGGGATCCGTCGACC
(서열번호 7)
TATTGATGTAAAAAGATTAGTGCGCGCCTTTCGCCTGCGTGTGTAGGCTGGAGCTGCTCC
(서열번호 8)
ΔSTM0828 glnQ TTATTTTGCGTCGTCTTGAAAGAAGGATGAAAATCCTGTGATTCCGGGGATCCGTCGACC
(서열번호 9)
CTGGAAGGGCGATATCTCAGGAGACGTGCTGTAAAAATTCGTGTAGGCTGGAGCTGCTCC
(서열번호 10)
ΔSTM0839 - TACTCTCCCGGAAAATAATTCAAAAGAACTCACCCGCTTGATTCCGGGGATCCGTCGACC
(서열번호 11)
CAATTACCCCGATTTCTCAATGAGCATTACACTCATCTTCGTGTAGGCTGGAGCTGCTCC
(서열번호 12)
ΔSTM1024 - ACACACTGCGCCATCCGAGCTATCGGAGGTGAGGCTTATGATTCCGGGGATCCGTCGACC
(서열번호 13)
GAAATCGGACGTGGACTCACGCTAAGTGAGAGCGAAATCCGTGTAGGCTGGAGCTGCTCC
(서열번호 14)
ΔSTM1397 sseA TTAGCACGTTAATTATCTATCGTGTATATGGAGGGGAATGATTCCGGGGATCCGTCGACC
(서열번호 15)
CTGAAGACATTATGCTTTACCTTTTTGTTTTTCCTGACGGGTGTAGGCTGGAGCTGCTCC
(서열번호 16)
ΔSTM2875 hilD GTAAGGAACATTAAAATAACATCAACAAAGGGATAATATGATTCCGGGGATCCGTCGACC
(서열번호 17)
TGTCTATGTTTTTTACAATTACCAAGCGGTAAAAATACTTGTGTAGGCTGGAGCTGCTCC
(서열번호 18)
ΔSTM3096/3097 yqgE/
yqgF
TGTCGTTTTTTTGAACCAGGAAACAGAACCTCTGACAATGATTCCGGGGATCCGTCGACC
(서열번호 19)
GCTGACAAAAACGGCTTTAATACCCCTGTTCAAAATAGCTGTGTAGGCTGGAGCTGCTCC
(서열번호 20)
ΔSTM4156 rsd GATTTATGGGATAAATTTAAAGTCACATTTGGAATCAATGATTCCGGGGATCCGTCGACC
(서열번호 21)
TTAATGAATAAATGAATTATTTTTTCATGACTCTTGTTTCGTGTAGGCTGGAGCTGCTCC
(서열번호 22)
ΔSTM4169 yjaG GGTAAACTGCCGCTAATTTCCGATTCGAGATTCCATCATGATTCCGGGGATCCGTCGACC
(서열번호 23)
ATCACGTTTTCTGGTGTCATTGCTGAAAATTTATACCGATGTGTAGGCTGGAGCTGCTCC
(서열번호 24)
ΔSTM4332/4333 yjeJ/
yjeK
GCCCTCTGAAATTGTTAACTGGTAGCTAAGCCACAAAATGATTCCGGGGATCCGTCGACC
(서열번호 25)
TCAGAGGGCGATATGGTTAGCGTTTTTCCTGCGATGATGCGTGTAGGCTGGAGCTGCTCC
(서열번호 26)
kan 카세트와 DNA 바코드를 포함하는 1.3 kb의 PCR 생성물 ~900 ng을, pKD46를 세포 내에 포함하고 있는 멸균증류수로 세척된 살모넬라 티피무리움 14028S(Salmonella Typhimurium; ATCC 14028S) 현탁액에 전기천공(electroporation) 방법을 통해 도입하고 카나마이신(Kanamycin) 배지에 배양하여 표적 유전자 대신 kan 카세트와 DNA 바코드가 치환된 콜로니를 가려냈다. 표적 유전자 대신 치환된 kan 카세트와 DNA 바코드의 존재는 프라이머 K1 (5-CAGTCATAGCCGAATAGCCT-3; 서열번호 1) 및 K2 (5TTGTCAAGACCGACCTGTCC-3; 서열번호 2)를 이용한 PCR을 통해 확인하였다. 이후 형질전환된 균주에 pCP20 플라스미드(Datsenko KA, et al., Proc Natl Acad Sci U S A. 2000, 6;97(12):6640-5)를 전기천공을 이용하여 도입하고 pCP20에 의한 FLP 재조합효소(recombinase)를 통해 kan 카세트를 제거하여, 인프레임 무극 삭제(in-frame nonpolar deletion) 균주를 제작하였다. 이와 같은 방법으로 제작된 삭제 균주의 DNA 바코드 부근 염기서열 구조는 도 1과 같다. kan 카세트가 제거된 콜로니는 항생제 배지 테스트뿐만 아니라 PCR을 통하여 kan 카세트의 제거를 확인함으로써 선별되었다. kan 카세트의 존재 유무 진단에 사용된 진단용 PCR 프라이머 서열(diagnostic PCR primer sequence)는 하기의 표 2와 같다.
Kan 카세트의 유뮤 확인에 사용된 진단용 프라이머 서열
균주 유전자
명칭
프라이머 서열
(전진: 5’에서 3’으로)
프라이머 서열
(후진: 5’에서 3’으로)
ΔSTM0028 bcfH TGGCAAAGTATTAATGACTATG
(서열번호 27)
GATCCCATAAAATGAATCTGAG
(서열번호 28)
ΔSTM0289/0290/0291 - TTATTTTCATGGCTCTTGTCAG
(서열번호 29)
TACAGCTTAGGTCATCCCATAC
(서열번호 30)
ΔSTM0600 cstA AAGGAAGTGATCTGGTTAACAC
(서열번호 31)
GGCACGCCAATCATCATTTTTG
(서열번호 32)
ΔSTM0828 glnQ CACCTCGTTGTTTATTGTTATC
(서열번호 33)
ATGACTCCTCCAGTGAGAAAAG
(서열번호 34)
ΔSTM0839 - TTTTGGAACGCTTTTTTGGCC
(서열번호 35)
CGCAGAAAACATTAAACAAATC
(서열번호 36)
ΔSTM1024 - ACCAATTTCATTAGGTCGCTTC
(서열번호 37)
ATTTCGGTTTCTAGCACATAAC
(서열번호 38)
ΔSTM1397 sseA TAGTACGTGAGGTTTGACTCG
(서열번호 39)
ATTTATTATTTGCGATAGCCTG
(서열번호 40)
ΔSTM2875 hilD CTGTTAGCGATGTCTGTCG
(서열번호 41)
AAAGGCAGGAGGGTTATG
(서열번호 42)
ΔSTM3096 yqgE/
yqgF
AATCTATTGCCCGATAAGGCAG
(서열번호 43)
TGAAGTTTCTATGGCGCAACC
(서열번호 44)
ΔSTM4156 rsd AAATGTCCCGCGTAAACAATC
(서열번호 45)
ATTATTGTCGCCACCGCTATTC
(서열번호 46)
ΔSTM4169 yjaG AGCGCTGTATGAAAGGGTATC
(서열번호 47)
GGAAATGCCAGAAAAGCACTC
(서열번호 48)
ΔSTM4332/4333 yjeJ/
yjeK
TTACCCGGTTTCACGAATTCAC
(서열번호 49)
TGCTGTATGGCGTAAGTAGTC
(서열번호 50)
< 실험예 1> qPCR 경쟁 지수( CI )를 이용한 병원성 결여 균주의 1차 선별 원리
상기 12 개의 유전자(군)들 중 실제 살모넬라의 숙주로의 감염 시 중요도를 실험적으로 평가하기 위하여, 자체 개발한 qPCR CI법(Yoon H, et al., Infect Immun. 2011, 79(1):360-368)을 이용하여 숙주 모델 마우스에서 12 균주의 생존력을 동시에 검사하였다.
구체적으로, 야생형(wild type)과 서로 다른 24-nt DNA 바코드로 표지된 돌연변이(mutant) 균주들의 배양액을 동량 혼합하고 주입하여 동일 숙주에 감염시켰다. 일정 시간이 지난 후 숙주 기관을 분리하여 이의 세포 파쇄액을 감염결과물 또는 생성물로서 사용하였다. 상기 생성물 시료 내 세균 수를 증가시키기 위해 숙주 기관의 파쇄액을 아가 플레이트(agar plate)에서 도말배양하고 생겨난 콜로니들의 혼합현탁액을 대상으로 네스티드 PCR(nested PCR)을 실시하여 DNA 바코드 부분을 증폭하였다. 네스티드 PCR은 1회의 95℃ 10분, 30회의 95℃ 30초, 50℃ 30초, 72℃ 30초, 및 1회의 72℃ 5분을 연속 수행함으로써 실시하였다. 네스티드 PCR에 사용된 프라이머 세트(scarF 및 scarR)는 도 1의 프라이밍 부위 4(Priming site 4) 및 프라이밍 부위 1(Priming site 1)을 인식하도록 설계되었고 이의 염기서열은 하기와 같다:
scarF: 5'- ATTCCGGGGATCCGTCGACCT-3'(서열번호 51), scarR: 5'- GTGTAGGCTGGAGCTGCTCC-3' (서열번호 52).
네스티드 PCR 생성물을 템플레이트로 하여 DNA 바코드를 분별할 수 있는 프라이머를 이용하여 실시간 PCR(real-time PCR)을 95℃ 15 초 및 60℃ 1 분, 50회 반복 수행하여 생성물 내 각 균주의 상대적인 증감 여부를 Ct값을 통해 나타냈다.
실시간 PCR 수행 시, 주입 시료도 마찬가지로 네스티드 PCR과 연속된 실시간 PCR을 통해 숙주 감염 시 사용된 각 균주의 상대적인 증감 여부를 Ct값을 통해 나타냈다. 생성물(OUTPUT) 시료와 주입(INPUT) 시료에서 얻어진 야생형과 특정 돌연변이 균주 사이의 Ct 값이 차이를 비로 나타내어, 특정 돌연변이 균주의 숙주 내 생존력을 야생형 균주와 비교하여 수치화하여 CI 값(CIqPCR)으로 나타냈다.
CIqPCR를 구하는 공식은 하기와 같다(수학식 1). CIqPCR 값이 1일 때 돌연변이 균주는 야생형 균주와 생존력에서 차이가 없음을 나타내며 1보다 클 때는 돌연변이 균주가 야생형 균주보다 생존력이 뛰어남을 나타내고, 1보다 작을 때는 돌연변이 균주가 야생형 균주보다 생존력이 떨어짐을 나타낸다. CIqPCR 공식에서 E는 PCR 증폭 효율로서 각 DNA 바코드의 실시간 PCR시 증폭 효율을 나타내는 상수이다.
Figure pat00001
한계점에서(threshold), 여기서, Q는 템플레이트 DNA 양 및 wt은 야생형, mutant는 돌연변이이다.
OUTPUT는 생성물시료 및 INPUT는 주입시료를 나타낸다.
Figure pat00002

본 발명에 사용된 12 균주의 표지에 쓰인 DNA 바코드의 염기서열을 하기의 표 3에 나타냈고, 각 DNA 바코드의 E값이 함께 표시되었다(도 2).
균주 24- nt 바코드 서열 (5'에서 3'으로) E ( PCR 효율) 값
ΔSTM0028 AATGCTGTTCTTGATCGTGATAGT
(서열번호 53)
1.94
ΔSTM0289/0290/0291 AAAAGACTGATTGCAAAAATAAGG
(서열번호 54)
1.58
ΔSTM0600 CAAAGTGCAATGAGAGTACTTGGC
(서열번호 55)
1.73
ΔSTM0828 ATCATTAATGCTCTGACCCTGAGC
(서열번호 56)
1.68
ΔSTM0839 AGTAATGTCATTGATATGGCTAAC
(서열번호 57)
1.53
ΔSTM1024 GTGGTTGCTCGGGATATTGGCAGT
(서열번호 58)
1.9
ΔSTM1397 ATTCCAATGCAAGGTGCAACCAGC
(서열번호 59)
1.86
ΔSTM2875 GGACGCATGATTGTTGGTGGGCGC
(서열번호 60)
1.79
ΔSTM3096 AGCCGTGAAAGTGTTGGCGTCCGG
(서열번호 61)
1.93
ΔSTM4156 ATTGGTAAAAGGCATGTGGACAGC
(서열번호 62)
1.71
ΔSTM4169 AGTATTGAAATTCACAAAAATCTG
(서열번호 63)
1.81
ΔSTM4332/4333 CGCAGTGGAGATGATGGTGTGGGT
(서열번호 64)
1.66
ΔSTM0314 (참조용) AGGGCGAACGCCAGTGCTGTTGCC
(서열번호 65)
1.87
< 실험예 2> 병원성 결여 후보 균주의 생존력 비교 확인
서로 다른 24-nt 바코드로 표지된 1종의 야생형과 상기 <실시예 1>에서 제작한 12종의 돌연변이 균주의 마우스 내 생존력을 비교하기 위하여, 상기 설명한 qPCR CI법을 이용하여 하기와 같은 실험을 수행하였다.
구체적으로, 총 13종의 살모넬라 균주를 루리아 버타니 액체배지(Luria Bertani(LB) broth)에 각각 접종 후 12시간 이상 배양하였다. 600 nm에서의 흡광도(Optical Density; OD600)를 측정하여 표준화 과정을 거친 후 동량에 해당하는 각 균주 배양액을 혼합한 후 PBS로 세척하고 희석하여 105 콜로니-형성 유닛(colony-forming unit)(CFU)/ml)농도의 균주 혼합 혼탁액을 준비하였다. Nramp1+/+ 129SvJ 암컷 마우스 (4-5 주령)에 104 CFU/mouse가 되도록 균주 혼합액을 복강 내 주사로 감염 (intraperitoneal infection; i.p. infection)시킨 후 2, 5 및 7일째에 병원성을 비교하였다.
Nramp1+/+ 129SvJ 마우스는 포식소체(phagosome)의 멤브린에 분포하는 Nramp1 (또는 Slc11a1) 단백질을 통하여 포식소체 내 살모넬라의 증식에 필수적인 철(iron), 마그네슘(magnesium)을 포함한 여러 인자들의 공급을 제한하여 살모넬라를 비롯한 다양한 병원성 균들에 대한 저항성이 향상된 종으로, 이러한 특징을 이용하여 장기간 감염에 관한 연구가 필요할 때 이용되는 종이다. 따라서, 일반적인 BALB/c 마우스를 야생형 살모넬라의 복강 내에 주사했을 때 일주일 이내 죽는 것에 비해, Nramp1+/+ 129SvJ 마우스는 접종량 조절 시에 1 개월까지 생존 가능하다(Wyllie S, et al., Microbes Infect. 2002, 4(3):351-359; Lawley TD, et al., PLoS Pathog. 2006, 2(2):e11. Epub 2006 Feb 24).
본 발명에서는 동시에 혼합하여 접종될 경우 감염 초기에 숙주가 죽는 것을 예방하기 위해 살모넬라 감염에 저항성을 어느 정도 가지는 Nramp1+/+ 129SvJ 마우스를 이용하였다. 마우스의 접종량은 균주 혼합혼탁액(INPUT)을 희석하여 아가 배지에 도말배양하여 생균 수를 측정하여 확인하였다. 주입 시료 중 2 x 108 CFU에 해당하는 세포현탁액을 증류수로 세척 후 템플레이트로 하여 네스티드 PCR 및 실시간 PCR을 연속 시행하여 주입시료 내 각 균주의 수를 Ct값을 통해 상대적으로 측정하였다.
숙주의 감염 후 2, 5 및 7일째에 마우스를 각각 5 마리씩 안락사시킨 후 비장(spleen)을 분리하여 0.1% 트리톤 X-100 용액에서 분쇄하고 균질화한 후 그 파쇄액을 아가 플레이트에 도말하여 비장 내 살모넬라를 증식시켰다. 다음날 플레이트 상의 콜로니들을 긁어내어 PBS를 이용하여 세포현탁액으로 만들어 생성물(OUTPUT) 시료로 사용하였다. 상기 생성물 시료 중 2 x 108 CFU에 해당하는 세포현탁액을 증류수로 세척한 후 템플레이트로 하여 네스티드 PCR과 실시간 PCR을 연속 시행하여 OUTPUT 시료 내 각 균주의 수를 Ct값을 통해 상대적으로 측정하였고, 주입 및 생성물 시료에서 얻어진 각 균주들의 Ct값들을 이용하여 각 균주의 숙주 내 생존력을 야생형 균주와 비교하였다.
그 결과, 도 3에 나타낸 바와 같이, 감염 후 5일 및 7일째의 숙주 내의 비장에서 10배 이상으로 생존력이 크게 감소된 균주 3종(ΔSTM2875, ΔSTM3096, 및 ΔSTM4332/4333)을 선별할 수 있었고, 상기 ΔSTM2875, ΔSTM3096, 및 ΔSTM4332/4333의 균주 3 종은 숙주로의 감염 2일 이후부터 비장 내 생존력이 크게 감소된 균주들로서 항암치료에 적합한 약독화된 균주로 선정하였다(도 3).
< 실험예 3> 경쟁력 지수( Competitive Index ( CI ))를 이용한 1차 선별된 균주의 검증
상기 <실험예 2>에서 선별된 ΔSTM2875, ΔSTM3096 및 ΔSTM4332/4333의 생존력을 재검사하기 위하여, 돌연변이 균주와 참조(reference) 균주를 포함한 총 2 종의 균주만 감염시켜 돌연변이 균주의 숙주 내 생존력을 비교하는 전통적 CI 법(Ho TD, et al., J Bacteriol. 2002, 184(19):5234-5239)을 실행하였다.
전통적 CI법은 1종의 돌연변이 균주와 참조로 작용할 1종의 야생형 균주를 혼합하여 두 균주 사이의 생존력을 비교하는 방법이다. 이때 야생형 살모넬라(MA6054; Ho TD et al., Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J Bacteriol . 2002, 184(19):5234-5239)는 염색체 DNA 내에 아라비노즈(arabinose)로 발현을 유도하는 β-갈락토시다제(β-galactosidase) 합성 유전자가 있기 때문에 돌연변이 균주와 혼합되어도 아라비노즈(1 mM) 존재 하에 기질인 5-브로모-4-클로로-3-인돌릴-β-D-갈락토피라노시데(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside(X-gal))(40 ㎍/㎖)을 분해하여 콜로니가 푸른색을 띄게 한다. 이러한 표현형의 차이를 이용하여 CI를 수행하였고, 전통적 CI 값을 구하는 공식을 하기와 같이 나타냈다.
Figure pat00003
CI 값이 1인 경우는 참조 균주와 돌연변이 균주 간에 생존력의 차이가 없음을 나타내고, CI <1 경우는 돌연변이 균주의 생존력이 참조 균주에 비해 낮음을 나타내고, CI >1인 경우는 돌연변이 균주의 생존력이 참조 균주에 비해 높음을 의미한다.
구체적으로, 참조 균주 MA6054와 3종의 돌연변이 균주인 ΔSTM2875, ΔSTM3096 및 ΔSTM4332/4333를 각각 LB 액체배지에 12시간 이상 배양 후 OD600 값을 이용하여 균주를 표준화하여 MA6054 균주와 각 돌연변이 균주가 1:1로 혼합되도록 PBS를 이용하여 섞은 후 Nramp1+/+ 129SvJ 마우스(암컷, 4-5 주령)에 104 CFU/마우스가 되도록 복강 내 주사하였다. 접종된 세균 수와 접종 시 사용된 주입 시료에서의 균주 간 비율은 아라비노즈 및 X-gal을 함유한 접종액을 아가 플레이트에 희석 및 도말하여 확인하였다. 감염 후 2, 5 및 7일째에 각 균주 별로 3마리씩의 마우스를 안락사시키고 비장을 분리하여 그 파쇄액을 희석하여 아라비노즈 및 X-gal이 함유된 배지에 도말배양하였다. 상기 <수학식 2>의 방법을 사용하여 생성물 시료에서 MA6054 균주와 각 돌연변이 균주 사이의 비를 구하고 주입 시료에서의 균주 간 비로 나누어 CI 값을 계산하였다.
그 결과, 도 4에 나타낸 바와 같이 3 종의 균주인 ΔSTM2875, ΔSTM3096 및 ΔSTM4332/4333는 상기 <실험예 2>의 qPCR CI 결과와 동일하게 Nramp1+/+ 129SvJ 마우스 감염 후 5일째부터 숙주 내 생존력이 감소됨을 확인함으로써, 3 종의 유전자가 결여될 경우 살모넬라의 숙주 내 비장 세포에서의 생존력이 감염 후 2일 이후부터 감소함을 검증하였다.
< 실험예 4> 감염 후 숙주 정상 기관에서의 살모넬라 균주 생존능력 비교 확인
살모넬라를 이용한 항암치료용 연구에서 일반적으로 사용되는 마우스 모델인 Nramp1-/- BALB/c 마우스를 이용하여 돌연변이 균주를 단독으로 감염시켰을 때 숙주 내의 증식 속도를 살펴보기 위하여, 하기의 실험을 수행하였다.
구체적으로, Nramp1-/- BALB/c 마우스에 돌연변이 균주 또는 야생형 살모넬라를 각각 접종한 후 숙주의 비장 내 생존력을 시간대 별로 비교하였다.
야생형 균주와 3 종의 ΔSTM2875, ΔSTM3096 및 ΔSTM4332/4333 균주를 각각 LB 액체 배지에 12시간 이상 배양 후, PBS로 세척 및 희석하였다. 상기 각각의 균주를 최종 균주 농도가 108 CFU/마우스가 되도록 Nramp1-/- BALB/c 마우스에 복강 내 주사하고, 상기 접종된 균의 수는 아가 플레이트에 희석 도말배양하여 확인하였다. 접종 후 시간대 별로 균주 당 3마리씩의 마우스를 안락사시킨 후, 숙주의 비장의 파쇄액을 희석하고 아가 플레이트에 도말배양하여 생균 수를 측정하였다.
그 결과, 도 5에 나타낸 바와 같이, Nramp1-/- BALB/c mice에서 각 균주의 증식 속도를 비교했을 때, 3 종의 돌연변이 균주는 야생형 균주와 크게 다르지 않은 생존력을 나타냈으나, 감염된 숙주가 모두 7일 이내 사멸되어 시간의 경과에 따른 비장 내 살모넬라의 생존력의 감소를 더 이상 비교할 수 없었다(도 5). 이는 상기 Nramp1+/+ 마우스를 이용한 <실험예 2> 및 <실험예 3>에서 선별된 3종의 균주는 살모넬라에 대한 저항력이 약화된 Nramp1-/- 숙주에서는 균주의 병원성이 강하게 작용함으로써 치료용 균주로서의 활용 가능성이 작음을 나타냈다.
< 실험예 5> ppGpp 생산 기전 및 살모넬라 병원성 유전자가 결실된 균주의 Nramp1 -/- BALB /c 마우스에서 비장 내 생존력 확인
<5-1> ppGpp 가 결여된 이중 돌연변이 균주 제작
상기 <실험예 4>에서 확인한 바와 같이, ΔSTM1397, ΔSTM2875, ΔSTM4332/4333 균주는 살모넬라에 대한 저항력이 약화된 Nramp1-/- 숙주에서는 균주의 병원성이 강하게 작용함으로써 치료용 균주로 이용 가능성이 낮다.
한편, ppGpp를 생산하지 못하는 ΔrelA/spoT 균주는 기존 살모넬라를 이용한 항암치료 연구에 널리 활용되어 오던 균주로서 감소된 병원성으로 인해 숙주로의 감염 시에도 안전한 것으로 알려져 있다.
이에, 본 발명자들은 ΔSTM1397, ΔSTM2875, ΔSTM4332/4333 균주에 relA spoT 유전자를 추가적으로 제거하여 병원성에 중요한 ppGpp가 추가 결여된 이중 돌연변이 균주를 제작하였다.
구체적으로, relA/spoT 유전자의 제거는 상기 3종의 각 돌연변이 균주에 P22 박테리오파지(bacteriophage)를 이용한 형질도입(transduction)을 통해 relA::cat, spoT::kan 형질을 도입함으로써 수행되었다(Margolin P. 1987. Generalized transduction. In Neidhardt F, Ingraham J, Low K, Magasanik B, Schaechter M, Umbarger H. 1987. Escherichia coli and Salmonella Typhimurium : Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.; Masters M. 1985. Generalized transduction. In Scaife J, Leach D, Galizzi A (eds). Genetics of Bacteria, p. 197-205. Academic Press, NY).
LB 액체배지에서 정체기(stationary phase)까지 배양한 SHJ2037 (relA::cat, spoT::kan; Song M, et al., J Biol Chem. 2004, 279(33):34183-34190) 균주에 P22 HT105/1 int-201 파지 용해물(108-109 플라크-형성 유닛/㎖)을 1:4로 첨가하고 8시간 이상 배양한 후 원심분리하여 상층액을 얻고, 여기에 클로로폼을 소량 첨가하여 멸균한 후 SHJ2037 기증세포의 P22 용해물을 확보하였다.
수용세포(recipient cell)로 사용될 3 종의 ΔSTM2875, ΔSTM3096 및 ΔSTM4332/4333 균주를 정체기까지 LB 액체배지에서 배양한 후, 각각 배양액 100 ㎕에 SHJ2037의 P22 용해물을 10 ㎕를 첨가하여(10:1) 37℃에서 15분간 반응시킨다. 상기 배양액에 LB EGTA(LB 액체배지에 있는 10 mM EGTA) 배지를 900 ㎕ 첨가하여 20분간 추가로 반응시킨 후 클로람페니콜(chloramphenicol)(20 ㎍/㎖)을 함유한 LB 아가 플레이트에 도말배양하여 형질도입이 일어난 콜로니를 확보하였다.
클로람페니콜 내성을 띈 콜로니들 중, EBU(트립톤 1%, 이스트 추출물 0.5%, NaCl 0.5%, 덱스트로즈 0.25%, K2HPO4 0.25%, 에반스 블루(evans blue) 0.00125%, 우라닌(uranine) 0.0025%) 플레이트에 배양하여 흰색의 표현형을 가지는 콜로니들을 1차 선별하여 용원파지(lysogenic phage)의 오염 가능성을 배제시키고, 연이어 1차 선별된 콜로니들을 P22 H5 파지의 용해물에 교차-스트리킹(cross-streaking)으로 감염시킨 후 깨끗한 플라크(clear plaque)를 형성하는지를 2차로 살펴봄으로써, 용원파지의 오염없이 relA::cat 형질만을 상동 재조합(homologous recombination)으로 획득한 콜로니를 선정하였다.
spoT::kan 형질 전환도 상기와 동일한 방법으로 카나마이신(kanamycin)(50 ㎍/㎖)을 포함한 배지에서 P22 형질도입을 이용하여 수행함으로써, YC0843(ΔSTM2875, ΔrelA/spoT), YC0844(ΔSTM3096, ΔrelA/spoT) 및 YC0845(ΔSTM4332/4333, ΔrelA/spoT)의 3 종의 이중 돌연변이를 제작하였다.
<5-2> 이중 돌연변이 균주의 생존력확인
상기 실험예 <5-1>에서 P22 형질도입으로 제작된 이중 돌연변이(double mutant) 3종(YC0843, YC0844, YC0845)을 항암치료용 균주로서의 개발 가능성을 살펴보기 위하여, 숙주의 정상 기관 중 살모넬라에 의한 시스템 감염(systemic infection)과 관련이 있는 비장 내에서 이중 돌연변이 균주의 생존력을 비교하였다.
기존 항암치료 연구에 활용되고 있는 ppGpp 결여 균주와 상기 이중 돌연변이 균주 사이의 생존력을 비교하기 위하여, SHJ2037(relA::cat, spoT::kan) 균주를 참조 살모넬라 균주로서 사용하였다. SHJ2037와 YC0843, YC0844 및 YC0845 균주를 각각 LB 액체배지에서 12시간 동안 배양한 후, PBS로 세척하고 BALB/c 마우스(수컷, 5 주령)에 복강 내 감염으로 108 CFU/마우스가 되도록 접종하였다. 접종에 사용된 살모넬라 혼탁액은 희석하여 도말배양함으로써 접종량 측정에 사용되었다. 숙주 감염 후 1, 2, 3 및 8일째에 각각의 균주 당 3마리의 마우스에서 비장을 분리하여 트리톤 X-100(0.1%)에서 균질화시킨 후 아가 플레이트에 도말배양하여 생균 수를 측정하였다.
그 결과, 도 6에 나타낸 바와 같이 3종의 균주 모두는 SHJ2037(ΔrelAspoT)에 비해 감염 후 2일째부터 증식정도가 감소되었고, 특히 YC0843(ΔSTM2875, ΔrelA/spoT)는 SHJ2037에 비해 10배 가까이 생존력이 감소하는 것을 확인하였다(도 6).
따라서, 종양을 가진 쥐에 살모넬라를 감염시킬 경우에 감염 후 1일 이내에 종양세포로 살모넬라가 군집화됨을 고려할 때, 감염 후 2일째부터 정상조직에서 빨리 제거될 수 있는 상기 YC0843과 같은 균주가 숙주의 면역 시스템 교란 및 살모넬라 감염으로 인한 부정적인 효과를 최소화하면서 동시에 종양의 증식을 억제하는 데에 적합할 것으로 기대한다.
< 실험예 6> 종양 조직 및 정상 기관에서의 YC0843 살모넬라 균주의 생존능력 비교 확인
상기 <실험예 5>에서 감염 후 2일째부터 정상 비장에서의 생존력이 크게 감소한 YC0843(ΔSTM2875, ΔrelA/spoT) 균주를 종양을 이식한 숙주 내로 감염시켰을 때, YC0843의 종양세포로의 표적화(targeting) 능력 및 종양의 증식에 대한 억제 효과를 조사하기 위하여, 하기와 같은 실험을 수행하였다.
구체적으로, CT-26 마우스 상피성 암 세포주(murine carcinoma cell line) (ATCC CRL-2638)를 글루코오스(4.5g/L)를 함유한 DMEM 배지(10% 소태아혈청, 1% 페니실린-스트렙토마이신 을 포함)에 배양한 후, PBS로 세척하고 107 세포/㎖의 농도로 세포를 희석하여 BALB/c 마우스(수컷, 5 주령)의 오른쪽 허벅지에 피하주사(subcutaneous infection; s.c. infection)하였다. 상기 종양세포를 주사한 후, 2일마다 종양의 크기를 측정하여 지름이 4-7 mm가 될 때까지, 또는 종양부피가 100-130 mm3 (길이*폭*깊이/2)(Length*Width*Depth/2) 될 때까지 종양조직을 증식시켰다. 적정 크기의 종양이 숙주에 자라게 되면 한 마리의 마우스 당 108 CFU의 살모넬라 균주를 복강 내 주사하였다. 접종에 사용된 살모넬라 균주는 SHJ2037 및 YC0843 균주로 LB 액체배지에 각각 12시간 배양한 후, PBS로 세척하고 106 CFU/㎕가 되도록 희석하여 100 ㎕씩을 마우스의 복강 내로 주사하여 숙주에 접종하였다. 접종에 사용된 살모넬라 균주의 수는 도말배양하여 생균 수를 측정하여 확인하였다. 감염 후 1, 2, 3 및 9일째에 각각의 균주에 대하여 3 마리의 마우스를 안락사시키고, 종양과 비장을 분리한 후 0.1% 트리톤X-100에서 균질화 과정을 거쳐, 그 희석 파쇄액을 아가 플레이트에 도말배양하여 생균 수를 측정하였다. 또한 분리한 각 조직의 무게를 측정하여 숙주 개체 기관 별 생균 수 측정값을 보정하였다.
그 결과, 도 7에 나타낸 바와 같이, CT-26 종양세포를 이식한 BALB/c 마우스에서 SHJ2037과 YC0843 균주의 종양 조직으로의 표적(targeting) 능력과 비장조직에서의 생존력을 비교하였을 때, YC0843 균주는 정상조직보다 종양조직으로의 표적 효과가 100배 이상 우수한 것을 확인하였다(도 7).
또한, 정상 기관인 비장 내에서 YC0843 균주 및 SHJ2037 균주의 생존력을 비교하였을 때, YC0843 균주가 SHJ2037에 비해 감염 2일째부터 생존력이 감소함을 관찰하였고(도 7), 이로인해 항암치료에 YC0843 균주를 사용할 경우 살모넬라 감염으로 인한 정상 기관의 피해를 감소시킬 수 있음을 확인할 수 있었다.
< 실험예 7> YC0843 에 의한 종양증식 억제 효과 확인
YC0843 균주의 종양에 대한 증식억제 효과를 조사하기 위하여, 상기 <실시예 6>에서 사용한 종양 마우스에 YC0843 균주를 감염시킨 후 살모넬라 대신 PBS로 모의(Mock) 감염시킨 종양 마우스와 비교하여 감염 9일째에 종양의 중량을 측정하였다.
그 결과, 도 8에 나타낸 바와 같이 YC0843 살모넬라 균주에 감염된 마우스는 살모넬라에 감염되지 않은 경우(Mock)에 비해 종양의 무게가 1/3 가량 감소한 것을 확인할 수 있었다(도 8). 따라서 종양세포로의 표적 능력은 유지하면서 정상 비장에서의 생존력은 감염초기에 크게 감소하는 YC0843(ΔSTM2875, ΔrelA/spoT) 균주는 살모넬라 감염으로 인한 부정적인 효과를 최소화하면서 종양를 치료하는데 유용하게 활용될 수 있음을 확인하였다.
<110> Korea Research Institute of Bioscience and Biotechnology <120> Novel Salmonella for treatment of cancer, and use thereof <130> 14p-02-17 <160> 83 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer K1 <400> 1 cagtcatagc cgaatagcct 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer K2 <400> 2 ttgtcaagac cgacctgtcc 20 <210> 3 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> bcfH-F <400> 3 gggaggcttt ccgaacttat cgaacgagac ttttattatg attccgggga tccgtcgacc 60 60 <210> 4 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> bcfH-R <400> 4 ctcctctgag cgaatatcac cccttcgctt tctgaatcgc gtgtaggctg gagctgctcc 60 60 <210> 5 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> STM0289-F <400> 5 ctatttattt taatccggta ttaaaggagt cactaccatg attccgggga tccgtcgacc 60 60 <210> 6 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> STM0289-R <400> 6 cacaatttaa atttatttag cattttgctt caacttcccc gtgtaggctg gagctgctcc 60 60 <210> 7 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> cstA-F <400> 7 gtaacatctc tctggaacac ccaaacggac aacaactatg attccgggga tccgtcgacc 60 60 <210> 8 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> cstA-R <400> 8 tattgatgta aaaagattag tgcgcgcctt tcgcctgcgt gtgtaggctg gagctgctcc 60 60 <210> 9 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> glnQ-F <400> 9 ttattttgcg tcgtcttgaa agaaggatga aaatcctgtg attccgggga tccgtcgacc 60 60 <210> 10 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> glnQ-R <400> 10 ctggaagggc gatatctcag gagacgtgct gtaaaaattc gtgtaggctg gagctgctcc 60 60 <210> 11 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> STM0839-F <400> 11 tactctcccg gaaaataatt caaaagaact cacccgcttg attccgggga tccgtcgacc 60 60 <210> 12 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> STM0839-R <400> 12 caattacccc gatttctcaa tgagcattac actcatcttc gtgtaggctg gagctgctcc 60 60 <210> 13 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> STM1024-F <400> 13 acacactgcg ccatccgagc tatcggaggt gaggcttatg attccgggga tccgtcgacc 60 60 <210> 14 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> STM1024-R <400> 14 gaaatcggac gtggactcac gctaagtgag agcgaaatcc gtgtaggctg gagctgctcc 60 60 <210> 15 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> sseA-F <400> 15 ttagcacgtt aattatctat cgtgtatatg gaggggaatg attccgggga tccgtcgacc 60 60 <210> 16 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> sseA-R <400> 16 ctgaagacat tatgctttac ctttttgttt ttcctgacgg gtgtaggctg gagctgctcc 60 60 <210> 17 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> hilD-F <400> 17 gtaaggaaca ttaaaataac atcaacaaag ggataatatg attccgggga tccgtcgacc 60 60 <210> 18 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> hilD-R <400> 18 tgtctatgtt ttttacaatt accaagcggt aaaaatactt gtgtaggctg gagctgctcc 60 60 <210> 19 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> yqgP/yqgF-F <400> 19 tgtcgttttt ttgaaccagg aaacagaacc tctgacaatg attccgggga tccgtcgacc 60 60 <210> 20 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> yqgP/yqgF-R <400> 20 gctgacaaaa acggctttaa tacccctgtt caaaatagct gtgtaggctg gagctgctcc 60 60 <210> 21 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> rsd-F <400> 21 gatttatggg ataaatttaa agtcacattt ggaatcaatg attccgggga tccgtcgacc 60 60 <210> 22 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> rsd-R <400> 22 ttaatgaata aatgaattat tttttcatga ctcttgtttc gtgtaggctg gagctgctcc 60 60 <210> 23 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> yjaG-F <400> 23 ggtaaactgc cgctaatttc cgattcgaga ttccatcatg attccgggga tccgtcgacc 60 60 <210> 24 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> yjaG-R <400> 24 atcacgtttt ctggtgtcat tgctgaaaat ttataccgat gtgtaggctg gagctgctcc 60 60 <210> 25 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> yjeJ/yjeK-F <400> 25 gccctctgaa attgttaact ggtagctaag ccacaaaatg attccgggga tccgtcgacc 60 60 <210> 26 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> yjeJ/yjeK-R <400> 26 tcagagggcg atatggttag cgtttttcct gcgatgatgc gtgtaggctg gagctgctcc 60 60 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> bcfH-F <400> 27 tggcaaagta ttaatgacta tg 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> bcfH-R <400> 28 gatcccataa aatgaatctg ag 22 <210> 29 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> STM0289/0290/0291-F <400> 29 ttattttcat ggctcttgtc ag 22 <210> 30 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> STM0289/0290/0291-R <400> 30 tacagcttag gtcatcccat ac 22 <210> 31 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> cstA-F <400> 31 aaggaagtga tctggttaac ac 22 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> cstA-R <400> 32 ggcacgccaa tcatcatttt tg 22 <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> glnQ-F <400> 33 cacctcgttg tttattgtta tc 22 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> glnQ-R <400> 34 atgactcctc cagtgagaaa ag 22 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> STM0839-F <400> 35 ttttggaacg cttttttggc c 21 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> STM0839-R <400> 36 cgcagaaaac attaaacaaa tc 22 <210> 37 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> STM1024-F <400> 37 accaatttca ttaggtcgct tc 22 <210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> STM1024-R <400> 38 atttcggttt ctagcacata ac 22 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> sseA-F <400> 39 tagtacgtga ggtttgactc g 21 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sseA-R <400> 40 atttattatt tgcgatagcc tg 22 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> hilD-F <400> 41 ctgttagcga tgtctgtcg 19 <210> 42 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> hilD-R <400> 42 aaaggcagga gggttatg 18 <210> 43 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> yqgP/yqgF-F <400> 43 aatctattgc ccgataaggc ag 22 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> yqgP/yqgF-R <400> 44 tgaagtttct atggcgcaac c 21 <210> 45 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> rsd-F <400> 45 aaatgtcccg cgtaaacaat c 21 <210> 46 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> rsd-R <400> 46 attattgtcg ccaccgctat tc 22 <210> 47 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> yjaG-F <400> 47 agcgctgtat gaaagggtat c 21 <210> 48 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> yjaG-R <400> 48 ggaaatgcca gaaaagcact c 21 <210> 49 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> yjeJ/yjeK-F <400> 49 ttacccggtt tcacgaattc ac 22 <210> 50 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> yjeJ/yjeK-R <400> 50 tgctgtatgg cgtaagtagt c 21 <210> 51 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> scarF <400> 51 attccgggga tccgtcgacc t 21 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> scarR <400> 52 gtgtaggctg gagctgctcc 20 <210> 53 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM0028 <400> 53 aatgctgttc ttgatcgtga tagt 24 <210> 54 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM0289/0290/0291 <400> 54 aaaagactga ttgcaaaaat aagg 24 <210> 55 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM0600 <400> 55 caaagtgcaa tgagagtact tggc 24 <210> 56 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM0828 <400> 56 atcattaatg ctctgaccct gagc 24 <210> 57 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM0839 <400> 57 agtaatgtca ttgatatggc taac 24 <210> 58 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM1024 <400> 58 gtggttgctc gggatattgg cagt 24 <210> 59 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM1397 <400> 59 attccaatgc aaggtgcaac cagc 24 <210> 60 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM2875 <400> 60 ggacgcatga ttgttggtgg gcgc 24 <210> 61 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM3096 <400> 61 agccgtgaaa gtgttggcgt ccgg 24 <210> 62 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM4156 <400> 62 attggtaaaa ggcatgtgga cagc 24 <210> 63 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM4169 <400> 63 agtattgaaa ttcacaaaaa tctg 24 <210> 64 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM4332/4333 <400> 64 cgcagtggag atgatggtgt gggt 24 <210> 65 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 24-nt-STM0314 <400> 65 agggcgaacg ccagtgctgt tgcc 24 <210> 66 <211> 846 <212> DNA <213> Salmonella-bcfH-gene <400> 66 atgtattatc acgcgttaaa actttcccga ctggcgatgt tgacgttggc aggcgttgcc 60 gtatccgcct cggcaatcgc cgccgattct gccccgacgt cgcaaattgg tccgacggcg 120 gaagcctaca tcgtcagtca tccggataaa gtgggagagg tcgtggcaac gtatttggcc 180 gaacatccgg aatttttggt cgccgccagc gagacgttgc atcagcgtca gcagattgcg 240 caacaacagg cgtatgttca actggcatta cagtatcgtg ctgagttgct cagtagcagc 300 agtccttccg ttgggcccaa cgaggcaaaa gcggcggtgg tgatgttctt tgattaccag 360 tgctcgtggt gcagcaaaat ggcgcctgtg gtcgaaaacc tgattaaggc gaacccggat 420 acccggttta ttttcaaaga gtttcctatt ttttcctccc gctggccggt atccggactg 480 gcggccagag tcggcgaaca ggtatggctt acacagggcg gggcgaaata tctcgactgg 540 cataatgcgc tttatgccac agggaaggtg gaaggcgcgt taacggaaca cgatgtctac 600 accctggcgc aacattatct aacgccgacg cagctggccg ccgtaaaaga agcgcaaagc 660 agcggtgcag tacatgatgc gctcctcact aaccaggcac tggcgcagca tatggacttt 720 agcggcacgc ctgcttttgt cgtcatgcct cagacgcaag acggtgatgt aaaacgggtg 780 accgtgatcc cgggaagcac gactcaggat atgttgcaaa tggcgattca gaaagcgaag 840 gggtga 846 <210> 67 <211> 2190 <212> DNA <213> Salmonella-STM0289-gene <400> 67 atgagttttg tatccacaaa taataaatcc ggtatgggag ggctgacgac aaccacgccg 60 ccgataaccg gagaaagtgg cggtgtcacc gcagattcag tcgccggaag cgtggcagat 120 gcggcggaat ccgccgtgga acaggctgcg ggatcgctat ttggcgcatt gccggagcca 180 tcaggactgg tgaaagccgc ggtagcagcg gcgcaggctg ccgccgccgc aggtatggcg 240 caggatgcgg tatcggccat cgtctctgct gttgcaggcg ggccgggggc gcataatgtg 300 acggtcagcg gcagcgccgt accgccgggc gcattactgt tcgccagcct ggacggcggc 360 gaaacattaa gtgaactgtt cagctatgtg gtacagctaa aaacgcccga caccctgaat 420 ctgggctatg tctccccggc ggccaacctg ccgctcaaac cgatggtggg caaagatctg 480 tgcgtcaaca tcgaactgga tggtggcggt aaacgacata tcagcgggct ggtcacggcg 540 gcgcgggtgg tgggccatga agggcgttcg gttacctatg agctgcgtat ggagccgtgg 600 gtaaaactgc tgacccatac cagcgactac aaagcattcc agaataaaac cgtggtggat 660 attctggatg aggttctggc ggaatatccc tacccggtgg aaaagcggct ggtggaaagc 720 tacccggtac gcacctggca ggtgcagtac ggtgaaactg attttgattt tcttcagcga 780 ctgatgcagg agtggggcat ctactggtgg tttgagcaca gcgaggacag ccacacgctg 840 gtgctggcgg atgccatcag cgcccacaaa gcatgtccgg actcgccgct ggtcgagtgg 900 caccaggaag ggctgaagct ggacaaggag tttatccaca ctatcacggc aaacgagagc 960 ctgcggactg gacagtgggt gctggatgat ttcgatttta cgaagccacg ttcattgctg 1020 gcaaacaccg tggcaaaccc gcgtgaaacc ggtcatgcca cctacgagca ttatgagtgg 1080 ccgggagact acttcgacaa gagtgaaggc gagatgctga cgcgcattcg tatggaagcg 1140 cagcgcagcc ccggcagtcg ggtgctgggg ggagggaata tccgcacact catgaccggt 1200 tataccttca cgctggaaaa ctatcccacc gccgaagtca atcaggaata tctgctgatg 1260 cagaccttgc tgtttgtgca ggacaacgcg cagcacagcg ggcaggacca gcactttacc 1320 ttttccaccc gttttgaact gcaccccacc cgcgaggtgt tccgcccgca gcggacggtg 1380 agcaaacccc acaccaaagg gccgcagagc gccatcgtca ccggcccggc gggccaggaa 1440 atctggacgg atcagtacgg gcgggtaaag gtacagtttg gttgggatcg ctacggcaaa 1500 atggatgaaa acagctcctg ctggatacgc gtcagctacc cgtgggcggg caaaggcttc 1560 gggatgatcc agatcccgcg tatcggccag gaagtgctgg tggatttcaa aaacggcgat 1620 ccggatctgc cgatcatcgt ggggcgtacc tacaaccagg acaccatgcc gccgtgggga 1680 ctgccgggaa tggcgtcgca gagcgggatc ttcagccact cgctgtatgg cgggccaacg 1740 aacggcaaca tgctgcgttt tgacgacaaa acgggcgcgg aggaagtgaa gttccacgcg 1800 gaaaaagatc tcaacaccac ggtgaagaat aatgaaacgc atacggttat ggtggatcgc 1860 actaaaacca ttattaaaaa tgaaaccaac agtattggtg aggacagaaa caccacggta 1920 acgaagaatg acggcctttc cgtaaaactg gcgcagacga tcaatatcgg caccacttat 1980 cgtttagatg ttggcgatca attcacgctt cgctgcggca atgcggcgct tgttttacat 2040 aaggacggct ccattgagtt ttgtggcaag caactgatgt tacataccag cgatgtcatg 2100 caactgattg gtaaaggtat tgatatgaac ccggatggcg gcacagccgt aaccgccgat 2160 gatattgccc cccttctcac ctctgagtga 2190 <210> 68 <211> 447 <212> DNA <213> Salmonella-STM0290-gene <400> 68 atggatcgac cataccgcat acaggaaggg tgttttgtcc tgcctgaaac atttacggat 60 cgcagcgtca atatttttat cctggagggc aatgaacgaa catcgcccag cctgaatatt 120 tcccgcgata cgctaaaacc tgatgaagac ctgcccgcct atattgaccg ccagattgca 180 ctgatgaaaa aaaatctcgg tcagcaccgg gtattgtcgc gagcgcctgc acaggcagga 240 acgggcaatg atgcccttat gggggaacaa attgccgcca cccataaatc cgggaaaacg 300 gaagtgtacc agcgtcaggc cgggtttatt gcaacccctg gcaaggtact ggtcttcacc 360 ctgaccagtc cccgtccttt tgatgataaa gcagacctac tctggaacac ctggctggca 420 ggctttcagc cggataaaaa cgaataa 447 <210> 69 <211> 4095 <212> DNA <213> Salmonella-STM0291-gene <400> 69 atgtatgaag cagcccgtgt ggatgatcct atctaccaca ccagcgcgct cgccgggttt 60 cttatcggcg ctatcatcgg catcgccatt atcgcgcttg ccgcctttgc cttctttagc 120 tgcggttttc ttgccgggct gattctgggt tttatggccg atcaaatagc ctccggggta 180 ttgcaactgg gcgaggccat cgggcgctcc atccaccaca cggcaggaaa aatcctcacc 240 ggttcggaga atgtcagcac caacagtcgc ccggcggcgc gcgcggtact gagtacggtg 300 aaatgcgata accatatcgc agaaaaacgc atcgcccaag ggtcggaaaa tatctacatc 360 aacagccagc ccgccgcccg taaggatgac cacaccgaat gcgacgcggt gattgaagac 420 ggttcgccga atgtgtttct cggcggcggc acacagacgg tactggaaat cagttctgaa 480 attccggact ggctgcgcaa ggtggtggat gtattgtttg tcgtggcgag tctgctcggc 540 gggctggccg gggcgtggcg gcaggcggca aagctgggga cgaaatttgg cactaaatgt 600 gccgctaagt ttatcggcgg ggagcttgtc gggatggccg tgggtgaggc tatcagcggg 660 ctgttcagca atccggtgga tgtgaccacc gggcagaaaa tcctgctgcc ggaaacggac 720 ttcaccctgc ccggtcgcct gccggtcacc tgctcgcgtt tttacgccag ccacctggaa 780 actgtgggac tgttgggacg gggctggcgg ctgaactggg aaaccagcct gcgcgatgac 840 gatgaacaca tcacgctgac cggcgtacag gggcgggaac tgcgttaccc gaaaacgatg 900 ctgacgcccg gccaccagat atttgacccg gaagaacagt tatacctcag ccgcctgcat 960 gacgggcgtt acgtgctgca ttacaccgat cgcagctatt acgtatttgg tgattttgac 1020 agtgacggca tggcatacct gctgtttatg gagacgccgc accgccagcg cattgtcttc 1080 gggcacgaag gaggcagact ggtacggata gcctccagca gcgggcatca cctgttactg 1140 caccgcacac agaccccggc aggggagcgg ctgtcgcgaa ttgaactggt gcagggcggc 1200 acccgtggca atctggtgga gtaccggtat gacgataacg gtcaactgac cggcgtggtg 1260 aaccgggcgg gaacgcaggt gcgtcagttt gcttatgaaa acgggctgat gacggcgcac 1320 agcaatgcga cggggttcac ctgccgctac cgctggcagg aactcgacgg cgcgccgcgc 1380 gtgacggagc acgacaccag tgacggcgaa cattaccgct ttgactatga ttttgccgca 1440 ggcaccacca ccgtcaccgg caggcagggg gagacatggc agtggtggta cgacagggaa 1500 acgtatatca ccgcgcaccg gacgccgggc ggtggaatgt accgcttcac gtacaacgaa 1560 gaccacttcc ctgtcaacat tgagctgccc ggcggtcgca cggtggcgta tgaatatgac 1620 atccagaacc gggtggtgaa gacgacagat ccggaaggcc gggtgacgca gacgcagtgg 1680 aacggcgagt tcgacgaaat cacgcgcacg gcgctggacg atgacgctgt ctggaaaacg 1740 cagtacaacg cccacggcca gccagtgcag gagacggacc cggaagggcg ggtgacgcag 1800 tacgcttacg atgaacaggg gcagatgtgc agccggacgg atgcggcggg cggcacggtg 1860 gtgacggcgt tcgacagccg ggggcagatg acgcggtaca ccgactgttc agggcgcagc 1920 acaggatatg accacgatga ggacggcaac ctgacgcggg tgacggacgc ggaagggaag 1980 gtggtacgca tcagctacaa ccgacttggg ttgccggaga cggtaaactc accggggaaa 2040 cagcaggaca ggtatacctg gaatgcgctg gggctgatga gcagccaccg gcgcatcacg 2100 gggagcgtgg agagctggcg gtatacgccg cgcggtctgc tggcggcgca cacggatgag 2160 gagaagcgcg agacgcgctg gcagtacacg ccggaaggcc gggtggcagc gctgaccaac 2220 ggcaacgggg cgcagtaccg gttcagtcac gatgcggacg gcaggctggt gcgtgaggtt 2280 cgcccggacg gactgagccg tacttttatc ctggacgaca gcggttatct gacggcgata 2340 cagaccacgg gcacgcaggg cggcgtgcgg cgggagacgc agcagcggga tgcgctgggc 2400 cgtctgttac ggacggagaa tgaacacggc cagcggacgt tcagctacaa ccggctggac 2460 cagataacgg cagtgacgct cacgcccacg gaggcggggc aacagcagca ccggatgcag 2520 gccgacacgg tgcgttttga gtatgaccgc agcggctggc tgacggcgga gcacgcgggg 2580 aacggtagca tatgttatca gcgcgacgcg ctgggcaacc cgacggacat cacgctgccg 2640 gacgggcagc acctgacgca tctgtattac gggagcgggc atctgttaca gacggcgctg 2700 gacggcctga cggtgagcga gtatgagcgc gacagcctgc accgtcagat aatgcgcacg 2760 caggggcagc ttgcgacgta cagcggctat gacgacgacg ggctgctgag ctggcagcgc 2820 agtctggcgt ccggcagtgc ccctgttctt cctggccagc gcccggcgcg gcagggctgc 2880 gtgacgtcga gggactatta ctggaacaac cacggcgagg tgggcacgat tgacgacggc 2940 ctgcgtggca gcgtggtgta cagctatgac agaagcggtt acctgaccgg gcgctcaggt 3000 cagatgtatg accatgaccg ttattattac gataaggcgg gcaacctgct ggataacgaa 3060 gggcagggag cggtgatgag caaccggctg ccgggctgtg gtcgtgaccg ttacggctat 3120 aacgagtggg gcgagctgac cacgcggcgc gaccagcaac tggagtggaa cgcgcagggg 3180 cagctgacgc gggtcatcag cggcaacacg gagacgcact acggctacga tgcgctgggg 3240 aggcgaaccc gcaaggcgac gtacgggcgg cacacgggcc atacggcgcg gagccggacg 3300 gactttgtgt gggaggggtt caggctgttg caggagaacg tgcagcagca gggctggcgg 3360 acctatctgt acgatgcgga acagccgtac acgccggtgg cgagcgtgac ggggcgggga 3420 gaaagcaggc aggtgtggta ttaccacacg gatgtgacgg gcacgccgca ggaggtgacg 3480 gcggcggacg gaacgctggt gtgggcgggg tatatcaggg ggtttggaga gaatgcggcg 3540 gacatcagca acagcggggc gtactttcac cagccgctgc ggctgccggg gcagtatttt 3600 gacgacgaga cagggctgca ttacaatctg ttcagatatt atgcaccgga gtgtggacgg 3660 tttgtcagtc aggatccgat cgggctgagg ggcgggttaa acctttatca gtatgcgcca 3720 aatcctctca aatatataga cccacttggt ttaaccgcga ctgttgggcg atggatgggg 3780 cctgcggaat atcagcaaat gcttgatact gggacagtag tacaaagttc aacagggaca 3840 actcatgttg cctaccctgc tgatatagat gcttttggta agcaagcaaa aaatggtgct 3900 atgtatgttg aatttgatgt gcctgaaaaa tcattagtac ctacaaatga aggatgggca 3960 aaaatagtag ggccagattc tatcgaaggg cgattagcta aacgcaaagg tttgcctgtt 4020 cctgaaatgc caacagcaga aaacataact gtaaggggcg agaaaattaa tggggaagtt 4080 gaagcaaaat gctaa 4095 <210> 70 <211> 2106 <212> DNA <213> Salmonella-cstA-gene <400> 70 atgaataaat cagggaaata cctcgtctgg acagcgctct cagtattggg tgcgtttgcc 60 ctgggctata ttgcgttaaa tcgtggggaa cagatcaacg cgctatggat cgtggtggcg 120 tcggtctgtg tctatcttat tgcgtatcgt ttttatgggc tctatatcgc caaaaaagtg 180 ctggcggttg acccaacgcg tatgacgccc gcggtacgtc ataatgatgg tctggattat 240 gtcccgaccg ataaaaaagt gctgttcggt caccattttg cggccattgc tggcgcaggt 300 ccgctggtcg ggccggtact ggcggcgcag atgggctatc tgccggggat gatctggctg 360 ctggcgggcg tcgtgctggc gggagcggtg caggacttta tggtgctgtt cgtctcgacc 420 cggcgcgatg ggcgttcgct tggcgagctg gttaaagagg agatgggcgc gacggcaggg 480 gtgatcgcgc tggtggcctg ctttatgatc atggtgatca ttctggccgt cctggcgatg 540 atcgtggtga aagcgctgac ccatagcccg tggggaacgt acactgtcgc gttcactatt 600 ccactggcga tttttatggg catctacttg cgttatttgc gtccggggcg catcggcgag 660 gtgtcggtca ttgggctggt atttcttatt ttcgctatta tttccggcgg atgggtggcg 720 gcaagcccaa cctgggcgcc gtactttgat tttactggcg tgcagcttac ctggatgctg 780 gtgggttatg gttttgtcgc ggcggtactg ccggtctggc tgctgctcgc gccgcgtgat 840 tacctctcta ccttcctgaa aattggtacg attgtcggtc tggcggtcgg gattctgatt 900 atgcgtccga cgctgactat gccggcgctg accaaatttg ttgatggtac cggaccggtc 960 tggacgggcg acctgttccc gttcctgttt attaccatcg cctgcggcgc ggtctccggt 1020 ttccatgcgc tcatctcctc cggcacgacg ccgaagatgt tggccaacga aggccaggcc 1080 tgctttatcg gctacggcgg gatgttaatg gaatctttcg tcgccattat ggcgctggtc 1140 tccgcctgta ttatcgatcc gggtgtttac tttgcgatga atagcccgat ggcggtactg 1200 gcgccagcgg ggacagcgga tgtcgtagct tctgccgcgc aggtggtcag tagttggggt 1260 ttcgctatca cgccggatac gttacaccag attgccaatg aagtcggcga acaatccatt 1320 atctcccgcg caggcggagc gccaacgctg gcggtaggga tggcctacat tttacatggc 1380 gcgttgggcg gcatgatgga tgtggcgttc tggtatcact tcgccattct gtttgaagcg 1440 ctgtttattc tgacggcggt ggatgcgggc acccgtgcgg cgcgctttat gttgcaggat 1500 ttgttgggcg tagtgtcgcc agggctgaaa cgtaccgatt cgttgccagc gaacctgctt 1560 gctacggcat tgtgcgtgct ggcgtggggg tatttcctcc atcagggcgt ggtcgatccg 1620 ttgggcggta ttaacaccct gtggccgctg tttggcatcg ctaaccagat gctggcgggt 1680 atggcgctga tgctttgcgc cgtggtactg ttcaaaatga agcgtcagcg ttatgcgtgg 1740 gtcgcgctgg tgccgacggc ctggctgctg atttgtacgc tgacggcggg ttggcagaaa 1800 gcgtttagtc cggatgcgaa aatcggcttc ctggccattg ccaataagtt ccaggcgatg 1860 atcgacagcg gcaatattcc gccgcaatac accgaatcgc aactcgcgca gttggtattc 1920 aataaccgtc tggatgccgg gctaaccatc ttctttatgg tggtggtcgt ggtgctggcg 1980 gtcttctcta ttaagacggc gctggccgct ctgaagattg ataaaccgac ggcgaatgaa 2040 acgccgtatg agccgatgcc ggaaaatgtg gatgagatcg tgacgcaggc gaaaggcgcg 2100 cactaa 2106 <210> 71 <211> 723 <212> DNA <213> Salmonella-glnQ-gene <400> 71 gtgattgaat ttaaaaacgt ctccaagcac tttggcccca cccaggtgct acataacatt 60 gatttaaaca tccgtcaggg cgaagtggtt gtgattatcg gcccttccgg ttcgggtaaa 120 tccacgttat tacgctgtat caataaactg gaagagatca cctccggcga tctgattgtc 180 gatggtctga aagtcaacga tcctaaagta gacgaacggc tgattcgcca ggaagccggc 240 atggtgtttc aacagtttta tctgttcccg catctgaccg cgctcgaaaa cgtgatgttc 300 ggtcctctgc gcgtgcgcgg cgtaaagaaa gaagaagcgg aaaaacaggc gaaagctctg 360 ttagcgaaag ttggactggc ggaacgggcg caccactacc cctccgagct ttccggcggt 420 caacaacagc gcgtcgccat tgcccgagcg ctggccgtga agccgaaaat gatgctcttt 480 gacgagccaa cctccgctct ggaccctgaa ctgcgccatg aagtgctgaa agtcatgcag 540 gatctggcgg aagaaggcat gaccatggtc attgtcactc acgaaatcgg ctttgccgaa 600 aaagtcgcct cacggctgat ttttatcgat aaaggccgta ttgccgaaga tggcagtccg 660 caggcgttga tcgaaaaccc gccaagccca cgtttacagg aatttttaca gcacgtctcc 720 tga 723 <210> 72 <211> 744 <212> DNA <213> Salmonella-STM0839-gene <400> 72 ttgttgcgta attatcattc cagtatgaaa caggcaacgt gtgaacttgt ccctgaactg 60 gatttttttg gtttagcagg atggggtaag catgtaatat cgatggttgg atttaaaacg 120 ccttaccctc aggaatcaat cgaacaatgc gtcgcgccag ctcattatcc ccaggaagta 180 aaagagcaag tacgggcaac cagtgcaaat attattttat attataaggg gtatgatact 240 tcacctttag agcaatatgt tgcgttggct gtggttgcag gtgcattaag taacatgggg 300 gctgtcgctg tattaaatga atcggctcac acttcattac ctgcgggggt atttaagtct 360 caggagttgg gtaagcatag tctggaaatg ttgcgtgaag gtttcccgct gacctctcta 420 ttttgtggat ttgtgaaata tgaagttgag gatatcgaag gcgtatggat gcgtacctat 480 ggtgctgatt gctttgggct accagatttc gcagcacacg cacaaggtca tcacgaaggg 540 caaaaatatt ctgatatttt caataatgtt ctgcgttacc tgcttgaaag tggagcagaa 600 atggctgccg ggcataccat gcaagtcggt aaaacgacat ttatgaaact gcgcgatccc 660 cttgacgatg aatattactt acaggggcct ggaaccacat tagtggttga actgattgaa 720 gaagatgagt gtaatgctca ttga 744 <210> 73 <211> 126 <212> DNA <213> Salmonella-STM1024-gene <400> 73 atgaaaatgc acaacgatcc ccattcaatg gactcacaat ctatttttgc tggctcacaa 60 ttactgccaa tggaaaaaac ttctcatttg gctctgagcg tcggatttcg ctctcactta 120 gcgtga 126 <210> 74 <211> 327 <212> DNA <213> Salmonella-sseA-gene <400> 74 atgatgataa agaaaaaggc tgcgtttagt gaatatcgtg atttagagca aagttacatg 60 cagctaaatc actgtcttaa aaaatttcac caaatccggg ctaaggtgag tcaacagctt 120 gctgaaaggg cagagagccc caaaaatagc agagagacag agagtattct tcataaccta 180 tttccacaag gcgttgccgg ggttaaccag gaggccgaga aggatttaaa gaaaatagta 240 agtttgttta aacaacttga agtacgactg aaacaactta atgctcaagc cccggtggag 300 ataccgtcag gaaaaacaaa aaggtaa 327 <210> 75 <211> 930 <212> DNA <213> Salmonella-hilD-gene <400> 75 atggaaaatg taacctttgt aagtaatagt catcagcgtc ctgccgcaga taacttacag 60 aaattaaaat cacttttgac aaatacccgg cagcaaatta aaagtcagac tcagcaggtt 120 accatcaaaa atctttatgt aagcagtttc actttagttt gctttcggag cggtaaactg 180 acgattagca ataatcacga tacgatttac tgtgacgaac ctgggatgtt ggtgctcaaa 240 aaagagcagg tagttaacgt gacgcttgaa gaggtcaatg gccacatgga tttcgatata 300 ctcgagatac cgacgcaacg acttggcgct ctctatgcac ttatcccaaa cgagcagcaa 360 accaaaatgg cggtacccac agagaaagcg cagaagatct tctatacgcc tgactttcct 420 gccagaagag aggtatttga acatctgaaa acggcgttct cctgtacgaa ggatacaagc 480 aaaggttgca gtaactgtaa caacaaaagt tgtattgaaa atgaagagtt aattccttat 540 tttctgctgt tcctgcttac tgcttttctc cgactcccgg agagttatga gatcatcctt 600 agctcggctc agataacgtt aaaggagcgc gtttacaaca ttatatcttc gtcacccagt 660 agacagtgga agcttacgga tgttgccgat catatattta tgagtacgtc aacgctcaaa 720 cggaaacttg cagaagaagg taccagcttt agcgacatct acttatcggc aagaatgaat 780 caggcagcaa aacttttacg cataggcaac cataatgtta atgctgtagc attaaaatgt 840 ggttatgata gcacgtccta cttcattcaa tgtttcaaaa aatattttaa aactacgcca 900 tcgacattca taaaaatggc gaaccattaa 930 <210> 76 <211> 564 <212> DNA <213> Salmonella-yqgP-gene <400> 76 atgaatttac agcatcactt tcttattgcc atgcctgcgc tccaggaccc gattttccgc 60 cgttccgtgg tgtatatttg cgagcacaac caggacggcg ctatggggat tattgttaat 120 aagcctttgg aaaatctgca aattgaaggg attctggaaa aactaaaaat tacgccggaa 180 ccgcgcgatt cggcaattcg tcttgataaa gccgtgatgc tcggcggccc gctggcggaa 240 gatcgcggat ttattctcca tactccgccg tcacgtttcg cctccagcat tcgtatctca 300 gacaataccg tgattaccac ctcccgcgat gtgctggaaa cgttaggtac ccaacaacag 360 ccttccgatg tgctggtcgc gctgggctac gcctcctggg ataaaggcca gcttgaacaa 420 gagttgcttg ataacgcctg gcttaccgcg cccgccgatc tcaatatttt gttcaaaacg 480 cccattgccg agcgctggcg cgaagcggca aaacttattg gcattgatat tctgaccatg 540 cctggcgttg cggggcacgc ctga 564 <210> 77 <211> 417 <212> DNA <213> Salmonella-yqgF-gene <400> 77 atgagcggca ccttactggc ctttgacttc ggcacaaaaa gcatcggcgt tgcaatagga 60 caacgcatta ccggcaccgc ccgtccgctt ccggcaatca aagcacagga cggcacgccc 120 gactggacgc tcattgaacg tttgctgaaa gagtggcagc cggacgaaat tattgtcggg 180 ctaccgctca atatggatgg cactgaacag ccgctgacgg cgcgcgcacg taaattcgcc 240 aaccgtattc atgggcgttt cggggtaact gtcacgctgc acgatgaacg actcagcacc 300 gttgaagcac gctccggtct gtttgaacga ggtgggtatc gcgcgctgaa caaaggcaaa 360 gtggactcgg cctccgccgt gattatcctc gaaagctatt ttgaacaggg gtattaa 417 <210> 78 <211> 345 <212> DNA <213> Salmonella-rsd-gene <400> 78 atgttacaga aaaaaacaaa cccaatgata aaaaatttca attttgagta ttgtggattc 60 tctactttta ttacgccggt tgatggcgtt ggcgggattt tagtaaagtg gctctcaaac 120 aaacataatg taattgtccc aacgccttat acattcggtc aagaccccat tcctggcgtc 180 aatctttatc gtaatacaaa agcaaaattt gttatggcta acggtggtaa tagtcttccc 240 tgtgcgatgg caaaatataa tacaaaaact ggacaattta ttcatataac cagtgataat 300 gatttttcac caataatacg agaaacaaga gtcatgaaaa aataa 345 <210> 79 <211> 591 <212> DNA <213> Salmonella-yjaG-gene <400> 79 atgttacaaa acccgattca tttgcgtctg gagcggctgg aaagctggca gcacgttacc 60 tttatggcct gcttgtgcga gcgcatgtac ccgaactacg ccatgttttg caagcagacg 120 gaattcggcg acggacagat ctaccgtcgc attctggatc tgatctggga aaccctgacg 180 gtgaaagatg cgaaggtcaa tttcgatagc caactggaga agtttgaaga ggcgattccg 240 gcagccgacg actatgattt gtacggcgtt tacccggcga ttgatgcctg cgtcgcatta 300 agcgaattaa tgcattctcg tcttagcggc gaaacgctgg aacacgctat tgaggttagt 360 aagacttcca ttactacggt agcgatgttg gaaatgactc aggctggtcg ggaaatgacc 420 gatgaggagc tcaaaacgaa ccctgccgtt gaacaggaat gggatattca gtgggaaata 480 ttccgacttt tagccgactg cgaagaacgt gatattgaac tgataaaagg gctcagggca 540 gacctgcgcg aggctggcga gagcaatatc ggtataaatt ttcagcaatg a 591 <210> 80 <211> 858 <212> DNA <213> Salmonella-yjeJ-gene <400> 80 atggccttaa cgattaaggg actaaatacc ggcgttattc gtcacaatga taagtttatc 60 gcgctggcgc ttaaggtgaa gtcactgaga aataaagaaa cactgctttt ctttcctgtg 120 ctcgcgctgc gagacttgtt gatcggcctt gaacaccggc tttatctaca acactcgctt 180 ccggaacaag agcaggaaaa acgccagaaa gctaaaagca gtcatgtgct taaaatgcat 240 gagaatattc cggcaatact ccgtgaagag ctggaaaacg ccgatgttaa tcagcgtgtt 300 gaatctttag cgttgagcga taatacagaa aaagtattaa cctttacgtt aaagctgcac 360 aatggtagcc atcttgattt acaggtcggt gagtggcagg ttgaagttct ggtgatggct 420 attattcacg ccattaataa tgccgaaatg cgtgagctcg cattgcgtat ttcttcaatg 480 ctggactttt taccattata cgatgctgac tgcctggaaa acggtaatat cgaattcgat 540 acctataacc agcctgactg gaaacataat ctgtataacc attatttagc gctcgtttat 600 cgttatacgg atgaggcagg acaatcgcat gattgcggca ccatcattaa gacccgtagt 660 cagtcaggct ctaaagaagc tgaagcaata tcacgccgct tgctgaattt cagcccgcgt 720 cttaaaaagc tggaaggaaa accgtgtaag gtttttgtca gaacgcttgg aaccggtaaa 780 gcagcgcgtc tgacgcaaga tcaatgcatg cgcgcgttgc ataatctacg catggcatca 840 tcgcaggaaa aacgctaa 858 <210> 81 <211> 1029 <212> DNA <213> Salmonella-yjeK-gene <400> 81 atggcgcata ttgtaaccct aaatacccca ttgcgagaag attggttagc gcaacttgcc 60 gatgttgtga ccaatcccga cgaactgctg catcttttac agattgaagc tgatgaaaac 120 ctccgggcag gacaggacgc caggcgcttg tttgccctcc gcgtgccgcg cgcttttatt 180 gcgcgcatgg agaagggcaa ccctgacgat cctcttttac gtcaagtgct gacgtcccgg 240 gatgaattta ttgtcgcccc cggtttctcc accgacccgc tggaagagca acacagcgtg 300 gtgccaggat tattgcataa ataccaaaac cgggcgctat tgctggtaaa aggcggatgt 360 gcggtaaatt gccgctactg tttccgtcgt cacttcccgt atgcagagaa tcaaggcaat 420 aagcgcaact ggacagtcgc gctggagtat atcgccgcac acccggaact ggatgagatc 480 atcttttccg gcggcgatcc gctgatggcg aaagatcatg agctggactg gctgctcacg 540 caactggaag ccattaagca cgtcaagcgg ctacgcatcc acagtcggtt gcctatcgtc 600 atcccggcac gcattactga cgaactggtc gcccgctttg accagtcacg tctgcaaatt 660 ttgttggtga accatatcaa ccacgctaat gaagtggacg aggcgttcgg cctggcgatg 720 aagaaactgc gccacgtggg cgtcacgctt ctcaaccaga gcgtcctgct gcgtggcgtg 780 aatgataacg cgcgaacgct ggcgaatctg agcaacgcgc tatttgacgc cggcgtgatg 840 ccctattacc tgcatgtgct ggataaagtg cagggcgccg cgcattttat ggtcaccgat 900 gacgaagccc ggcaaatcat gcgcgaactg ctcacgctgg tatccggcta tatggtgcca 960 agactggcgc gtgaaatcgg cggcgaaccg agcaaaacac cgctggattt acagcttcgg 1020 cagtgctaa 1029 <210> 82 <211> 2235 <212> DNA <213> Salmonella-relA gene <400> 82 atggtcgcgg taagaagtgc acatattaat aaagctggtg aatttgatcc gaagaagtgg 60 atcgcaagcc tgggaatttc cagccagcag tcgtgtgagc gcttagccga aacctgggcg 120 tattgcctgc aacagacaca aggacatccg gatgcggatc tgttgctgtg gcgtggcgtg 180 gagatggtag aaattctttc cacgctgagt atggatatcg acacgctgcg ggcggcgcta 240 ctgttccctc tggccgacgc caacgtagtc agcgaagatg tactgcgcga aagcgtcggc 300 aaatctatcg ttaccctgat tcatggcgtg cgcgatatgg cggcgatccg tcagctaaac 360 gccactcata acgactctgt ttcttcggag caggttgata acgtccgtcg aatgttattg 420 gcgatggtgg atgatttccg ctgcgtggtg atcaaactgg ccgagcgaat cgctcatttg 480 cgcgaagtga aagaggcgcc ggaagatgag cgcgtgctgg cggcgaaaga atgtaccaac 540 atctatgcgc cgctcgccaa tcgtctgggc atcgggcaac tgaagtggga actggaagac 600 tactgtttcc gctacctgca tccggcggaa tacaaacgca tcgccaaact gctgcatgag 660 cgccgtctcg atcgcgaaca ttacatcgaa gagtttgttg gacatctgcg cgccgaaatg 720 aaaaacgaag gcgtgcaggc ggaggtctac ggacgaccaa aacatattta tagcatctgg 780 cgcaaaatgc agaaaaagca tctggcgttt gatgaactct ttgacgtgcg cgccgtgcgt 840 attgtcgctg aacgtctgca ggactgctac gccgcgttgg ggatagtgca tacgcactat 900 cgtcacctgc cggatgaatt cgatgattat gtcgctaacc cgaaaccgaa cggttaccag 960 tctatccaca ccgtggtcct gggaccgggc ggtaaaaccg ttgagatcca gatccgtacc 1020 aaacagatgc atgaagacgc cgaactgggc gtggcggcac actggaagta taaagaaggc 1080 gccgcgtccg gcggcgtgcg ctccggtcat gaagacagaa ttgcgtggct gcgtaagctg 1140 atcgcctggc aggaagagat ggccgattcc ggcgaaatgc tggatgaagt gcgcagccag 1200 gtgtttgacg atcgggtcta cgtttttacg ccaaaaggcg acgtggttga cttgcctgcc 1260 ggatctacgc cgctcgattt tgcttaccac atccacagcg atgttgggca ccgctgcatt 1320 ggcgctaaaa tcggcggccg tattgtgcca ttcacctatc agttgcagat gggtgatcaa 1380 attgaaatta tcactcagaa gcagccgaat cccagccgcg actggctgaa tccaaacctg 1440 ggctatgtga cgaccagccg cggacgctcg aaaattcacg cctggttccg caagcaggat 1500 cgtgacaaaa atatccaggc tggacggcag atcctcgacg atgagctggc gcatttgggg 1560 attagcctga aagaggccga aaaacatctg ctgccgcgct acaactttaa tgagctggaa 1620 gagttgctgg cggcgatagg cggcggcgat atccgtctta atcagatggt gaatttcctg 1680 caatcacagt tcaataagcc gagtgcagag gagcaggatg cagcggcgct gaaacagctt 1740 cagcaaaaaa catacgcgcc gcaaaatcgt cgtaaagacg acgggcgcgt ggtggtagaa 1800 ggcgtgggta atttgatgca ccacatcgcc cgctgctgcc agccgattcc gggggatgaa 1860 attgtcggct tcattactca agggcgaggg atttccgtgc accgggccga ctgcgaacag 1920 ctggcggaac tgcgctccca tgcgccggag cggatcgtag aggcggtatg gggcgagagc 1980 tactcggcgg gatattcgct ggtggtgcgc gtccaggcca acgatcgcag cggcttgcta 2040 cgcgatatca ccaccattct ggctaacgaa aaagtcaacg tgctgggcgt cgccagccgc 2100 agcgacatta aacagcagat cgccaccatt gatatgacca tcgagatcta caacctgcag 2160 gtgctgggcc gggtgctcgg taagctgaac caggtgccgg atgtgattga tgcacggcga 2220 ctgcacgggg ggtaa 2235 <210> 83 <211> 2112 <212> DNA <213> Salmonella-spoT gene <400> 83 ttgtatctgt ttgaaagcct gaatcaactg attcaaacct acctgccgga agaccagatt 60 aagcgtcttc ggcaggcgta tctcgttgca cgtgacgctc acgagggcca gacacgttca 120 agcggtgaac cctatatcac gcacccggtg gcggtggcct gtattctggc cgagatgaaa 180 ctcgactacg aaacgctgat ggccgctctg ctgcatgacg tgattgaaga tacccccgcc 240 acctatcagg acatggaaca gcttttcggt aaaagcgttg ccgagctggt agagggggtg 300 tcgaaacttg ataagctcaa gtttcgcgat aagaaagagg cgcaggccga aaactttcgc 360 aaaatgatta tggcgatggt gcaggatatc cgcgtcatcc tcattaagct tgctgaccgt 420 acccataaca tgcgcacgct gggctcgtta cgcccggata aacgtcgtcg tattgcccgt 480 gaaacgctgg aaatctacag tcctctggcg caccgtttag gtattcatca catcaaaacc 540 gagctggaag agctgggttt tgaagcgctg tatcccaatc gttaccgcgt catcaaagaa 600 gtggtaaaag cggcgcgcgg caaccgtaag gagatgatcc aaaaaatcct ctctgaaatc 660 gaaggacgtt tgcaagaggc gggaattccg tgtcgcgtta gcggtcgcga aaaacatctt 720 tactcgatct actgcaaaat ggtgctcaaa gagcagcgtt ttcactcgat catggacatt 780 tacgctttcc gcgtcatcgt tcatgactcc gatacctgct atcgcgtact cggccagatg 840 cacagtctct ataagccgcg tccgggacgg gtgaaagact atattgccat tcccaaagcg 900 aacggctatc agtctttgca cacctcaatg atcggcccgc acggcgttcc tgttgaagtc 960 cagatccgta ccgaagatat ggatcagatg gcggaaatgg gggtcgcggc gcactgggcg 1020 tataaagaac acggtgagac cagcaccacg gcgcagatcc gcgcccagcg ctggatgcag 1080 agcctgctgg agctacaaca gagcgccggt agttcgtttg aatttatcga aagcgtaaaa 1140 tccgatctct tcccggatga gatttacgtt ttcaccccgg aagggcgcat tgtcgaactg 1200 cccgctggcg ctacgccggt ggattttgcc tatgcagtgc ataccgacat cggccacgcc 1260 tgcgtcggcg cgcgtgtcga ccgccagcct tatccgctgt cgcagccgct tagcagcggt 1320 cagaccgtcg aaattattac cgcgccgggc gcgcgtccca acgccgcctg gctgaacttt 1380 gtcgtcagct ctaaagcgcg cgctaaaatt cgtcagttgc tgaaaaacct caaacgtgat 1440 gactccgtaa gcctgggccg tcgtctgctt aaccatgcct taggcggtag tcgtaagctg 1500 gcggaaattc cgcaggaaaa tattcagcgc gaattggatc gtatgaagct ggcaacgctt 1560 gacgatctgc tggcggaaat cggtctcggc aacgcgatga gcgtagtggt cgcgaaaaat 1620 ctgcagcaag gcgaagccgt ggtgccgacc gttgcgcaat cgaatcacgg ccacctgccg 1680 attaaaggcg cggatggcgt gcttatcacc tttgcgaagt gttgtcgtcc gatcccaggc 1740 gacccgatca tcgctcacgt cagcccaggt aaaggactgg tgatccacca cgaatcctgc 1800 cgtaatatcc gtggatacca gaaagagcca gagaaattta tggcggtcga atgggacaaa 1860 gagacggagc aggaattcat taccgaaatc aaggtggaaa tgtttaacca tcagggcgcg 1920 ctggctaacc tgacggcggc gattaatacc accacctcca atattcaaag cctgaatact 1980 gaagagaaag atggtcgcgt ctatagtacc tttattcgcc ttaccgcacg cgatcgcgta 2040 catctggcga atatcatgcg caaaatccgc gtgatgccag acgtcattaa agtcacccgt 2100 aaccgaaact ag 2112

Claims (14)

  1. ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주.
  2. 제1항에 있어서, 상기 ppGpp 생산 유전자는 relA spoT 인 것을 특징으로 하는 살모넬라속 균주.
  3. 제1항에 있어서, 상기 살모넬라 병원성 유전자는 bcfH, STM0289/0290/0291, cstA, glnQ , STM0839, STM1024, sseA , hilD , yqgE/yqgF , rsd , yjaG , yjeJ/yjeK로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 살모넬라속 균주.
  4. 제1항에 있어서, 상기 살모넬라 병원성 유전자는 hilD인 것을 특징으로 하는 살모넬라속 균주.
  5. 제1항에 있어서, 상기 살모넬라속 균주는 살모넬라 티피무리움(Salmonella Typhimurium), 살모넬라 콜레라에슈이스(Salmonella choleraesuis) 및 살모넬라 엔테라이티디스(Salmonella enteritidis)로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 살모넬라속 균주.
  6. 제1항에 있어서, 상기 살모넬라속 균주는 종양증식을 억제하는 것을 특징으로 하는 살모넬라속 균주.
  7. 제1항에 있어서, 상기 살모넬라속 균주는 정상조직에서 생존력이 감소되는 것을 특징으로 하는 살모넬라속 균주.
  8. ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 유효성분으로 함유하는 암 치료용 약학적 조성물.
  9. 제8항에 있어서, 상기 ppGpp 생산 유전자는 relA spoT 인 것을 특징으로 하는 암 치료용 약학적 조성물.
  10. 제8항에 있어서, 상기 살모넬라 병원성 유전자는 bcfH, STM0289/0290/0291, cstA, glnQ , STM0839, STM1024, sseA , hilD , yqgE/yqgF , rsd , yjaG , yjeJ/yjeK로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 암 치료용 약학적 조성물.
  11. 제8항에 있어서, 상기 살모넬라속 균주는 살모넬라 티피무리움(Salmonella Typhimurium), 살모넬라 콜레라에슈이스(Salmonella choleraesuis) 및 살모넬라 엔테라이티드(Salmonella enteritidis)로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 암 치료용 약학적 조성물.
  12. ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 포함하는 약물전달용 조성물.
  13. ppGpp 생산 유전자 및 살모넬라 병원성 유전자가 결실된 살모넬라(Salmonella)속 균주를 포함하는 백신 조성물.
  14. 살모넬라 야생형 균주에 ppGpp 생산 유전자 및 살모넬라 병원성 유전자를 결실시키는 단계를 포함하는 살모넬라속 변이균주 제조방법.
KR1020140164469A 2014-11-24 2014-11-24 신규 암 치료용 살모넬라 균주 및 이의 용도 KR20160062289A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140164469A KR20160062289A (ko) 2014-11-24 2014-11-24 신규 암 치료용 살모넬라 균주 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140164469A KR20160062289A (ko) 2014-11-24 2014-11-24 신규 암 치료용 살모넬라 균주 및 이의 용도

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160156022A Division KR101773580B1 (ko) 2016-11-22 2016-11-22 신규 암 치료용 살모넬라 균주 및 이의 용도

Publications (1)

Publication Number Publication Date
KR20160062289A true KR20160062289A (ko) 2016-06-02

Family

ID=56135471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140164469A KR20160062289A (ko) 2014-11-24 2014-11-24 신규 암 치료용 살모넬라 균주 및 이의 용도

Country Status (1)

Country Link
KR (1) KR20160062289A (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327091B1 (ko) * 2020-06-18 2021-11-16 전남대학교 산학협력단 암의 치료용 살모넬라 균주 및 이의 용도
WO2022270953A1 (ko) * 2021-06-23 2022-12-29 주식회사 이노백 Yjek 유전자가 결실된 살모넬라 티피뮤리움 균주 및 이를 포함하는 살모넬라 백신 조성물
US11541109B2 (en) 2019-01-08 2023-01-03 Korea Atomic Energy Research Institute Method for preparing live attenuated vaccine by irradiation and live attenuated vaccine composition prepared by the same
CN116478895A (zh) * 2023-03-28 2023-07-25 湖南大学 重组鼠伤寒沙门氏菌基因工程菌hcs1、菌剂及其应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11541109B2 (en) 2019-01-08 2023-01-03 Korea Atomic Energy Research Institute Method for preparing live attenuated vaccine by irradiation and live attenuated vaccine composition prepared by the same
KR102327091B1 (ko) * 2020-06-18 2021-11-16 전남대학교 산학협력단 암의 치료용 살모넬라 균주 및 이의 용도
WO2021256599A1 (ko) * 2020-06-18 2021-12-23 전남대학교 산학협력단 암의 치료용 살모넬라 균주 및 이의 용도
CN115916981A (zh) * 2020-06-18 2023-04-04 全南国立大学校产学协力团 治疗癌症的沙门氏菌株及其应用
WO2022270953A1 (ko) * 2021-06-23 2022-12-29 주식회사 이노백 Yjek 유전자가 결실된 살모넬라 티피뮤리움 균주 및 이를 포함하는 살모넬라 백신 조성물
CN116478895A (zh) * 2023-03-28 2023-07-25 湖南大学 重组鼠伤寒沙门氏菌基因工程菌hcs1、菌剂及其应用
CN116478895B (zh) * 2023-03-28 2024-03-19 湖南大学 重组鼠伤寒沙门氏菌基因工程菌hcs1、菌剂及其应用

Similar Documents

Publication Publication Date Title
TWI778025B (zh) 抗生素檢測及篩選系統
Pridgeon et al. Molecular identification and virulence of three Aeromonas hydrophila isolates cultured from infected channel catfish during a disease outbreak in west Alabama (USA) in 2009
Yazawa et al. Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors
US5876931A (en) Identification of genes
Yi et al. Antitumor effect of cytosine deaminase/5‐fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma 1
US20100021501A1 (en) Live vaccine strains of francisella
KR101725570B1 (ko) 그람 음성균에 대해 세포 사멸능을 갖는 포도비리대 박테리오파지
RU2543663C2 (ru) Применение бактерий, относящихся к группе нокардиоформных актиномицетов, для получения фармацевтической композиции и способ использования такой фармацевтической композиции
KR20160062289A (ko) 신규 암 치료용 살모넬라 균주 및 이의 용도
Spinosa The trouble in tracing opportunistic pathogens: cholangitis due to Bacillus in a French hospital caused by a strain related to an Italian probiotic?
KR102683896B1 (ko) Gm-csf의 분비를 위한 발현벡터 및 이에 의해 형질전환된 항암 재조합 균주
Middendorf et al. The pathogenicity islands (PAIs) of the uropathogenic Escherichia coli strain 536: island probing of PAI II536
KR101773580B1 (ko) 신규 암 치료용 살모넬라 균주 및 이의 용도
CN109971781B (zh) 一种新型转座子Tn6505及其应用
US20240287468A1 (en) Bacteriophages against vancomycin-resistant enterococci
KR102327091B1 (ko) 암의 치료용 살모넬라 균주 및 이의 용도
WO2022007741A1 (en) Genetically engineered live bacteria and methods of constructing the same
RU2717972C1 (ru) Штамм бактериофага Pseudomonas aeruginosa N 324 (500318), предназначенный для приготовления моно- и поливалентных лечебно-профилактических препаратов бактериофагов
Haider et al. The stress of carrying CRISPR-Cas
RU2241758C2 (ru) Способ определения микроорганизма с пониженной адаптацией к конкретной окружающей среде, днк (варианты), ген вирулентности, полипептид, способ определения соединения, антисмысловая нуклеиновая кислота, способ лечения хозяина и фармацевтическая композиция
Kim et al. Identification of genes that are dispensable for animal infection by Salmonella typhimurium
Mariani Corea Functional and Genetic characterization of new genomic islands from an E. coli strain associated with neonatal meningitis.
Tsai et al. A Suitable Streptomycin-Resistant Mutant for Constructing Unmarked In-Frame Gene Deletions
Nonyane Evaluation of five Bifidobacterium isolates as potential probiotics and genetic analysis of their ability to withstand oxidative stress

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment
A107 Divisional application of patent
WITB Written withdrawal of application