KR20160048134A - Co slip catalyst and method of using - Google Patents

Co slip catalyst and method of using Download PDF

Info

Publication number
KR20160048134A
KR20160048134A KR1020167007721A KR20167007721A KR20160048134A KR 20160048134 A KR20160048134 A KR 20160048134A KR 1020167007721 A KR1020167007721 A KR 1020167007721A KR 20167007721 A KR20167007721 A KR 20167007721A KR 20160048134 A KR20160048134 A KR 20160048134A
Authority
KR
South Korea
Prior art keywords
ceria
slip catalyst
catalyst
substrate
slip
Prior art date
Application number
KR1020167007721A
Other languages
Korean (ko)
Inventor
에릭 콘란 웨이거트
샤답 샤리프 뮬라
토드 하워드 벌린저
제프리 스콧 리엑
줄리안 피터 콕스
하이-잉 첸
Original Assignee
존슨 맛쎄이 퍼블릭 리미티드 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 존슨 맛쎄이 퍼블릭 리미티드 컴파니 filed Critical 존슨 맛쎄이 퍼블릭 리미티드 컴파니
Publication of KR20160048134A publication Critical patent/KR20160048134A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

린번 내연기관으로부터 배기가스를 처리하기 위한 CO 슬립 촉매가 개시된다. CO 슬립 촉매는 팔라듐 및 세리아 함유 재료를 포함한다. 본 발명은 또한 배기가스에서 과잉의 CO를 산화시키는 방법을 포함하는데, 여기서 과잉의 CO는 농후 배기 조건하에 상류 촉매의 주기적 접촉으로부터 결과된다. 방법은 100 내지 700℃의 범위의 온도에서 배기가스 중의 과잉의 CO를 CO 슬립 촉매와 접촉시키는 것을 포함한다. A CO slip catalyst for treating exhaust gas from a lean burn internal combustion engine is disclosed. The CO slip catalyst comprises palladium and ceria containing materials. The present invention also includes a method of oxidizing excess CO in the exhaust gas, wherein excess CO results from cyclic contact of the upstream catalyst under rich exhaust conditions. The method comprises contacting excess CO2 in the exhaust gas with a CO slip catalyst at a temperature in the range of 100 to 700 < 0 > C.

Description

CO 슬립 촉매 및 사용방법{CO SLIP CATALYST AND METHOD OF USING}CO SLIP CATALYST AND METHOD OF USING [0002]

본 발명은 린번 내연기관으로부터 배기가스를 처리하기 위한 CO 슬립 촉매, 및 배기가스에서 과잉의 CO를 처리하는 방법에 관한 것이다.The present invention relates to a CO slip catalyst for treating exhaust gas from a lean burn internal combustion engine and a method for treating excess CO in the exhaust gas.

내연기관은 탄화수소, 일산화탄소(CO), 질소 산화물, 황 산화물, 및 미립자 물질을 포함하는 여러가지 공해물질을 함유하는 배기가스를 생성한다. 점차로 엄격해지는 국가 및 지역 법률은 이러한 내연기관으로부터 방출시킬 수 있는 공해물질의 양을 낮추어 왔다. 배기가스가 대기로 방출되기 전에 깨끗이 하기 위해 많은 다른 기술들이 배기 시스템에 적용되어 왔다. The internal combustion engine produces exhaust gases containing various pollutants including hydrocarbons, carbon monoxide (CO), nitrogen oxides, sulfur oxides, and particulate matter. Increasingly stringent national and local laws have reduced the amount of pollutants that can be released from these internal combustion engines. Many other techniques have been applied to exhaust systems to clean the exhaust gases before they are released to the atmosphere.

린번 용도에서 생성된 배기가스를 깨끗이 하기 위한 한가지 제안된 방법은 3원 촉매(TWC)와 이어서 선택적 촉매 환원(SCR) 촉매를 이용한다. 미국 특허 제8,216,521호에 기술된 것과 같은 이 개념은 엔진 배기가스 스트림 내의 CO 및 탄화수소가 TWC 상에서 CO2 및 H2O로 주로 산화하게 되는 연장된 시간 기간 동안 희박(lean) 운전하기 위한 것이다. TWC 상에서 암모니아(NH3)를 생성하기 위해 주기적인 농후(rich) 상황이 사용된다. 희박 단계의 동안에 발생된 NOx를 선택적으로 환원하기 위해 NH3는 하류의 SCR 촉매에 의해 저장 및 사용된다. 이들 농후 상황들의 지속기간은 NOx 변환 타겟을 충족하기 위해 NH3의 적당한 양을 SCR에 제공하기 위한 최적화를 요한다. 불행하게도 더 긴 농후 상황들의 영향은 배기에서 과잉의 CO의 발생이다. 희박 및 농후 운전 단계들 둘다의 동안에 탄화수소, NOx, 및 CO의 높은 변환을 유지하는 것이 중요하다. NH3 발생을 최적화하기 위해 농후 펄스 시기가 더 길어짐에 따라, CO는 TWC 만을 사용하여 제어하는 것이 가장 어려운 종이 된다.One proposed method for purifying exhaust gases produced in lean-burn applications uses a three-way catalyst (TWC) followed by a selective catalytic reduction (SCR) catalyst. This concept, such as that described in U.S. Patent No. 8,216,521, is for lean operation during an extended period of time in which CO and hydrocarbons in the engine exhaust stream are primarily oxidized to CO 2 and H 2 O on the TWC. A periodic rich situation is used to produce ammonia (NH 3 ) on the TWC. NH 3 is stored and used by downstream SCR catalysts to selectively reduce NO x generated during the lean step. The duration of these enriched conditions requires optimization to provide the appropriate amount of NH 3 to the SCR to meet the NO x conversion target. Unfortunately, the effect of longer, thicker conditions is the generation of excess CO in the exhaust. It is important to maintain high conversions of hydrocarbons, NO x , and CO during both the lean and rich operating stages. As the rich pulse period becomes longer to optimize NH 3 generation, CO is the most difficult to control using only TWC.

높은 수준의 CO 변환을 유지하면서 더 긴 농후 상황들을 가능하게 하는 새롭고 개선된 촉매 및 방법을 개발하는 것이 요구된다. 본 발명자들은 농후 운전의 동안에 발생된 높은 농도의 CO를 변환할 수 있는 새로운 CO 슬립 촉매를 개발하였다.It is required to develop new and improved catalysts and methods that enable longer thicker conditions while maintaining a high level of CO conversion. The present inventors have developed a new CO slip catalyst capable of converting a high concentration of CO generated during rich operation.

본 발명은 린번 내연기관으로부터 배기가스를 처리하기 위한 CO 슬립 촉매이다. CO 슬립 촉매는 팔라듐 및 세리아 함유 재료를 포함한다. 본 발명은 또한 배기가스에서 과잉의 CO를 산화시키는 방법을 포함하는데, 여기서 과잉의 CO는 농후 배기 조건하에 상류 촉매의 주기적 접촉으로부터 결과된다. 방법은 100 내지 700℃의 범위의 온도에서 배기가스 중의 과잉의 CO를 CO 슬립 촉매와 접촉시키는 것을 포함한다. 본 발명은 희박 및 농후 운전 단계의 동안에 CO의 개선된 변환을 이끈다.The present invention is a CO slip catalyst for treating exhaust gas from a lean burn internal combustion engine. The CO slip catalyst comprises palladium and ceria containing materials. The present invention also includes a method of oxidizing excess CO in the exhaust gas, wherein excess CO results from cyclic contact of the upstream catalyst under rich exhaust conditions. The method comprises contacting excess CO2 in the exhaust gas with a CO slip catalyst at a temperature in the range of 100 to 700 < 0 > C. The present invention leads to an improved conversion of CO during the lean and rich operating phases.

본 발명은 CO 슬립 촉매이다. CO 슬립 촉매는 팔라듐 및 세리아 함유 재료를 포함한다. 바람직하게는, CO 슬립 촉매는 본질적으로, 및 보다 바람직하게는 팔라듐 및 세리아 함유 재료로 구성된다. 세리아 함유 재료는 바람직하게는 세리아, 세리아-지르코니아, 세리아-지르코니아-알루미나, 또는 이들의 혼합물이다. 보다 바람직하게는, 세리아 함유 재료는 세리아이다. The present invention is a CO slip catalyst. The CO slip catalyst comprises palladium and ceria containing materials. Preferably, the CO slip catalyst consists essentially of, and more preferably, a palladium and ceria-containing material. The ceria-containing material is preferably ceria, ceria-zirconia, ceria-zirconia-alumina, or mixtures thereof. More preferably, the ceria-containing material is ceria.

CO 슬립 촉매는 바람직하게는 0.1 내지 30 중량퍼센트 팔라듐, 보다 바람직하게는 0.5 내지 5 중량퍼센트 팔라듐, 및 가장 바람직하게는 1 내지 4 중량퍼센트 팔라듐을 포함한다. CO 슬립 촉매는 백금 및 로듐과 같은 다른 귀금속을 함유할 수도 있고, 팔라듐은 유일한 귀금속으로서 바람직하다. The CO slip catalyst preferably comprises 0.1 to 30 weight percent palladium, more preferably 0.5 to 5 weight percent palladium, and most preferably 1 to 4 weight percent palladium. The CO slip catalyst may contain other noble metals such as platinum and rhodium, and palladium is preferred as the only noble metal.

바람직하게는, CO 슬립 촉매는 알칼리금속 및 알칼리토금속과 같은 촉진제를 더 포함할 수 있다. 바람직한 알칼리토금속은 바륨, 칼슘, 스트론튬, 또는 마그네슘을 포함한다. 바람직한 알칼리금속은 칼륨, 나트륨, 리튬, 또는 세슘을 포함한다. 구리 및 아연과 같은 다른 촉진제들이 알칼리금속 또는 알칼리토금속 촉진제의 대신에 또는 추가하여 첨가될 수 있다. Preferably, the CO slip catalyst may further comprise an accelerator such as an alkali metal and an alkaline earth metal. Preferred alkaline earth metals include barium, calcium, strontium, or magnesium. Preferred alkali metals include potassium, sodium, lithium, or cesium. Other promoters such as copper and zinc may be added instead of or in addition to the alkali metal or alkaline earth metal promoter.

CO 슬립 촉매는 바람직하게는 하나 이상의 무기 산화물 바인더를 포함할 수 있다. 바람직한 무기 산화물 바인더는 알루미나, 실리카, 티타니아, 지르코니아, 마그네시아, 니오비아, 탄탈륨 산화물, 몰리브덴 산화물, 텅스텐 산화물, 이들의 어떤 두가지 이상의 혼합 산화물 또는 복합 산화물(예를 들면 실리카-알루미나 또는 마그네시아-알루미나), 및 이들의 혼합물을 포함한다.The CO slip catalyst may preferably comprise one or more inorganic oxide binders. Preferred inorganic oxide binders are alumina, silica, titania, zirconia, magnesia, niobia, tantalum oxide, molybdenum oxide, tungsten oxide, any two or more mixed oxides or complex oxides of these (for example silica-alumina or magnesia- And mixtures thereof.

CO 슬립 촉매는 바람직하게는 기질 위에 코팅된다. 기질은 바람직하게는 세라믹 기질 또는 금속 기질이다. 세라믹 기질은 어떤 적합한 내화재료로도 만들어질 수 있는데, 예를 들면, 알루미나, 실리카, 티타니아, 세리아, 지르코니아, 마그네시아, 제올라이트, 질화규소, 탄화규소, 지르코늄 실리케이트, 마그네슘 실리케이트, 알루미노실리케이트 및 메탈로 알루미노실리케이트(코디어라이트 및 스포듀멘과 같은 것), 또는 이들의 어떤 두가지 이상의 혼합물 또는 혼합 산화물로 만들어질 수 있다. 코디어라이트, 마그네슘 알루미노실리케이트, 및 탄화규소가 특히 바람직하다. The CO slip catalyst is preferably coated over the substrate. The substrate is preferably a ceramic substrate or a metal substrate. The ceramic substrate can be made of any suitable refractory material such as alumina, silica, titania, ceria, zirconia, magnesia, zeolite, silicon nitride, silicon carbide, zirconium silicate, magnesium silicate, aluminosilicate, (Such as cordierite and spodumene), or mixtures of two or more of these, or mixed oxides. Cordierite, magnesium aluminosilicate, and silicon carbide are particularly preferred.

금속 기질은 어떤 적합한 금속으로도 만들어질 수 있고, 구체적으로 티타늄 및 스테인레스강과 같은 내열 금속 및 금속 합금, 뿐만 아니라 철, 니켈, 크롬, 및/또는 알루미늄, 추가로 다른 미량 금속을 함유하는 페라이트 합금으로 만들어질 수 있다. The metal substrate may be made of any suitable metal and may be made of a heat resistant metal and metal alloy, such as titanium and stainless steel, as well as a ferrite alloy containing iron, nickel, chromium, and / Can be made.

기질은 필터 기질 또는 관통형(flow-through) 기질이 될 수 있고, 가장 바람직하게는 관통형 기질, 특히 벌집모양 모노리스이다. 기질은 전형적으로 차량 배기가 통과하는 수많은 채널을 제공하도록 설계된다. 채널들의 표면은 촉매가 로딩되어 있다. The substrate may be a filter substrate or a flow-through substrate, and most preferably a penetrating substrate, in particular a honeycomb monolith. The substrate is typically designed to provide numerous channels through which the vehicle exhaust passes. The surfaces of the channels are loaded with catalyst.

본 발명의 CO 슬립 촉매는 본 분야에 잘 알려진 공정들에 의해 제조될 수 있다. CO 슬립 촉매는 바람직하게는 팔라듐 입자와 세리아 함유 재료 입자 사이의 높은 수준의 상호작용을 보장하기 위해 제조된다. 이것은 팔라듐 화합물(질산 팔라듐과 같은 것)을 사용하는 세리아 함유 재료 상의 함침과 이어서 하소 처리에 의해 달성될 수 있다. 대안으로는, 이 높은 상호작용은 팔라듐 및 세리아 함유 재료 입자의 공침에 의해 제조될 수 있다. The CO slip catalyst of the present invention can be prepared by processes well known in the art. CO slip catalysts are preferably prepared to ensure a high level of interaction between the palladium particles and the ceria-containing material particles. This can be achieved by impregnation with a ceria-containing material phase using a palladium compound (such as palladium nitrate) followed by calcination. Alternatively, this high interaction may be produced by coprecipitation of palladium and ceria-containing material particles.

바람직하게는, CO 슬립 촉매는 그것을 워시코트 과정을 사용하여 기질 상에 침착시킴으로써 제조된다. 워시코트 과정을 사용하여 CO 슬립 촉매를 제조하는 대표적인 공정이 이하에 제시된다. 이하의 공정은 본 발명의 다른 구체예에 따라 다양해질 수 있음이 이해될 것이다. Preferably, the CO slip catalyst is prepared by depositing it on a substrate using a washcoat process. A representative process for producing a CO slip catalyst using a washcoat process is presented below. It will be appreciated that the following process may be varied according to other embodiments of the present invention.

CO 슬립 촉매는 바람직하게는 워시코트 과정을 사용하여 제조된다. 팔라듐 화합물(아세트산 팔라듐 또는 질산 팔라듐과 같은 것)은 바람직하게는 워시코팅 단계에 앞서, 세리아 함유 재료 및 바인더가 사용되는 경우, 거기에 첨가된다. 팔라듐 화합물은 어떤 공지의 수단에 의해서도 세리아 함유 재료 상에 로딩될 수 있고, 첨가 방식은 특별히 중요한 것으로 생각되지 않는다. 예를 들면, 팔라듐 화합물은 지지된 팔라듐 재료를 제조하기 위해 함침, 흡착, 이온교환, 초기습식법, 침전 등에 의해 세리아 함유 재료에 첨가될 수 있다. 대안으로는, 세리아 함유 재료 및 바인더는, 사용된다면, 기질 상에 코팅될 수 있고, 이어서 코팅된 기질에 팔라듐 화합물이 첨가될 수 있다. The CO slip catalyst is preferably produced using a washcoat process. Palladium compounds (such as palladium acetate or palladium nitrate) are preferably added thereto prior to the washcoating step, where ceria-containing materials and binders are used. The palladium compound can be loaded onto the ceria-containing material by any known means, and the mode of addition is not considered particularly important. For example, a palladium compound may be added to the ceria-containing material by impregnation, adsorption, ion exchange, initial wetting, precipitation, etc. to produce supported palladium materials. Alternatively, the ceria containing material and the binder, if used, can be coated on the substrate, and then the palladium compound can be added to the coated substrate.

워시코팅은 바람직하게는 슬러리를 형성하기 위해 지지된 팔라듐 재료(또는 단지 세리아 함유 재료)의 미세하게 분할된 입자 및 선택적 바인더를 적당한 용매, 바람직하게는 물 중에서 먼저 슬러리형성시킴으로써 수행된다. 슬러리는 바람직하게는 5 내지 70 중량퍼센트 고형분을, 보다 바람직하게는 10 내지 50 중량퍼센트로 함유한다. 바람직하게는, 슬러리를 형성하기에 앞서, 실질적으로 모든 고형분 입자들이 평균직경으로 20미크론 미만의 입자를 갖는 것을 확실히 하기 위해 입자를 밀링하거나 다른 분쇄 공정을 거치게 한다. 촉진제와 같은 추가의 성분들도 또한 수용성 또는 수분산성 화합물 또는 착물의 혼합물로서 슬러리에 포함될 수 있다. Wash coating is preferably carried out by first slurrying the finely divided particles of the supported palladium material (or only ceria containing material) and the optional binder to form a slurry in an appropriate solvent, preferably water. The slurry preferably contains 5 to 70 weight percent solids, more preferably 10 to 50 weight percent. Preferably, prior to forming the slurry, the particles are milled or otherwise subjected to a grinding process to ensure that substantially all of the solid particles have less than 20 microns in average diameter. Additional components, such as accelerators, may also be included in the slurry as a water soluble or water dispersible compound or a mixture of complexes.

기질은 다음에 슬러리로 1회 이상 코팅하여 촉매 상의 촉매 재료의 원하는 로딩을 기질 위에 침착시키도록 할 수 있다. 만일 세리아 함유 재료 및 선택적 바인더가 기질 위에 침착되면, 팔라듐 화합물은 그 다음 백금 화합물(질산 백금과 같은 것)의 함침, 흡착, 또는 이온교환을 포함하는 어떤 공지의 수단에 의해서도 코팅된 기질에 첨가될 수 있다. The substrate can then be coated one or more times with the slurry to deposit the desired loading of the catalyst material on the catalyst onto the substrate. If the ceria-containing material and optional binder are deposited on the substrate, the palladium compound is then added to the coated substrate by any known means, including impregnation, adsorption, or ion exchange of a platinum compound (such as platinum nitrate) .

바람직하게는, 기질의 전체 길이가 슬러리로 코팅되어 CO 슬립 촉매의 워시코트가 기질의 전체 표면을 덮도록 한다. Preferably, the entire length of the substrate is coated with a slurry so that the washcoat of the CO slip catalyst covers the entire surface of the substrate.

촉매가 기질에 침착된 후, CO 슬립 촉매는 전형적으로 건조된 다음 고온에서 가열시킴으로써 하소된다. 바람직하게는, 하소는 300 내지 700℃에서 대략 1 내지 8 시간 동안 일어난다. After the catalyst is deposited on the substrate, the CO slip catalyst is typically calcined by drying and then heating at a high temperature. Preferably, calcination occurs at 300 to 700 < 0 > C for approximately 1 to 8 hours.

CO 슬립 촉매는 단일층 촉매 조제물일 수 있고 또는 다층 촉매로서 제조될 수도 있다. 예를 들면, CO 슬립 촉매는 각 층이 다른 양의 팔라듐 및/또는 세리아 함유 재료를 갖는 기질 상의 둘 이상의 층들로서 도포될 수도 있다. CO 슬립 촉매는 또한 또 다른 촉매 성분에 하층으로서 또는 상층으로서 또는 또 다른 촉매 성분의 후방 구역으로서, 예를 들면 선택적 촉매 환원 촉매 상의 하층 또는 후방 구역으로서 가해질 수도 있다.The CO slip catalyst may be a single layer catalyst preparation or may be prepared as a multi-layer catalyst. For example, the CO slip catalyst may be applied as two or more layers on a substrate with each layer having a different amount of palladium and / or ceria-containing material. The CO slip catalyst may also be added to another catalyst component either as a lower layer or as an upper layer or as a rear zone of another catalyst component, for example as a lower or rear zone on a selective catalytic reduction catalyst.

본 발명은 또한 배기가스에서 과잉의 CO를 산화시키는 방법을 포함하는데, 여기서 과잉의 CO는 농후 배기 조건하에 상류 촉매의 주기적인 접촉으로부터 결과된다. 본 발명의 방법은 100 내지 700℃의 범위의 온도에서 과잉의 CO를 CO 슬립 촉매와 접촉시키는 것을 포함한다. The present invention also includes a method of oxidizing excess CO in the exhaust gas, wherein the excess CO results from periodic contact of the upstream catalyst under rich exhaust conditions. The process of the present invention comprises contacting excess CO with a CO slip catalyst at a temperature in the range of from 100 to 700 < 0 > C.

산화하는 가스와 환원하는 가스를 둘다 함유하는 배기가스의 조성 밸런스를 정의하는 전형적인 방법은 배기가스의 람다(λ) 값이다. 람다 값은 실제 엔진 공기-대-연료 비율/화학양론 엔진 공기-대-연료 비율로서 정의되는데, 여기서 1의 람다 값은 화학양론적으로 균형을 이룬(또는 화학양론) 배기 가스 조성을 나타낸다. 1보다 큰 람다 값(λ > 1)은 과잉의 O2 및 NOx를 나타내고 조성은 "희박"으로서 기술된다. 1 미만의 람다 값(λ < 1)은 과잉의 탄화수소 및 CO를 나타내고 조성은 "농후"로서 기술된다. A typical method of defining the composition balance of the exhaust gas containing both the oxidizing gas and the reducing gas is the lambda (?) Value of the exhaust gas. The lambda value is defined as the actual engine air-to-fuel ratio / stoichiometric engine air-to-fuel ratio, where a lambda value of 1 represents a stoichiometrically balanced (or stoichiometric) exhaust gas composition. A lambda value (lambda> 1) greater than 1 represents excess O 2 and NO x and the composition is described as "lean". A lambda value of less than 1 (lambda <1) represents excess hydrocarbon and CO and the composition is described as "rich".

린번 내연기관에서, 배기 촉매 성분들을 재생하기 위해서, 촉매 성분에 흡착된 NOx 종을 탈착하기 위해서, 그리고 다른 하류 촉매 성분들에서 사용하기 위한 암모니아를 발생시키기 위해서 주기적인 농후 배기 조건(λ < 1)하에 운전하는 것이 유용하다. 예를 들면, 연장된 희박 운전 동안에, 엔진 배기가스 스트림에서 CO 및 탄화수소는 3원 촉매(TWC) 성분 위에서 주로 CO2 및 H2O로 산화될 것이다. 주기적인 농후 상황은 TWC 상에서 암모니아(NH3)를 생성하기 위해 사용될 수 있다. NH3는 희박 단계의 동안에 발생된 NOx를 선택적으로 환원하기 위해 하류의 선택적 촉매 환원(SCR) 촉매에 의해 저장 및 사용된다. 이들 풍부 상황은 NOx 변환 타겟을 충족하기 위해 적당한 양의 NH3를 SCR에 제공하기 위한 최적화를 요한다. 더 긴 농후 사건의 영향으로서, 배기에서 과잉의 CO의 발생이 일어난다. 본 발명의 CO 슬립 촉매는 희박 운전 단계 및 농후 운전 단계 둘다의 동안에 CO의 더 높은 변환을 유지하기 위해 이 과잉의 CO를 산화시키는 것에 도움을 준다. In the Linburn internal combustion engine, in order to regenerate the exhaust catalyst components, it is necessary to remove the NO x species adsorbed to the catalyst component and to generate ammonia for use in other downstream catalyst components, ). &Lt; / RTI &gt; For example, during extended lean operation, CO and hydrocarbons in the engine exhaust gas stream will be oxidized primarily to CO 2 and H 2 O on a three-way catalyst (TWC) component. Periodic rich conditions can be used to generate ammonia (NH 3 ) on the TWC. NH 3 is stored and used by downstream selective catalytic reduction (SCR) catalysts to selectively reduce the NO x generated during the lean step. These abundance situations require optimization to provide an appropriate amount of NH 3 to the SCR to meet the NO x conversion target. As a consequence of the longer rich event, excess CO evolution occurs in the exhaust. The CO slip catalyst of the present invention helps to oxidize this excess CO to maintain a higher conversion of CO during both the lean operation and the rich operating phase.

본 발명 방법에서, 과잉의 CO는 농후 배기 조건하에 상류 촉매의 주기적인 접촉으로부터 결과된다. 바람직하게는, 상류 촉매는 3원 촉매(TWC)를 포함한다. In the process of the present invention, excess CO results from periodic contact of the upstream catalyst under rich exhaust conditions. Preferably, the upstream catalyst comprises a three-way catalyst (TWC).

3원 촉매 시스템은 본 분야에 잘 알려져 있다. TWC는 전형적으로 3가지 주된 기능: (1) CO의 CO2로의 산화; (2) 미연소 연료의 CO2 및 H2O로의 산화; 및 (3) NOx의 N2로의 환원을 수행한다. 3원 촉매는 바람직하게는 하나 이상의 백금족 금속 및 하나 이상의 무기 산화물 지지체를 포함한다. 백금족 금속(PGM)은 바람직하게는 백금, 팔라듐, 로듐, 또는 이들의 혼합물이다. Three-way catalyst systems are well known in the art. TWC typically has three main functions: (1) oxidation of CO to CO 2 ; (2) oxidation of unburned fuel to CO 2 and H 2 O; And (3) reduction of NO x to N 2 . The ternary catalyst preferably comprises at least one platinum group metal and at least one inorganic oxide support. The platinum group metal (PGM) is preferably platinum, palladium, rhodium, or mixtures thereof.

무기 산화물 지지체는 가장 통상적으로는 2, 3, 4, 5, 6, 13 및 14족 및 란타나이드 원소의 산화물을 포함한다. 유용한 무기 산화물 지지체는 바람직하게는 10 내지 700 m2/g 범위의 표면적, 0.1 내지 4 mL/g 범위의 기공 부피, 및 약 10 내지 1000 옹스트롬의 기공 직경을 갖는다. 무기 산화물 지지체는 바람직하게는 알루미나, 실리카, 티타니아, 지르코니아, 세리아, 니오비아, 탄탈륨 산화물, 몰리브덴 산화물, 텅스텐 산화물, 또는 이들의 어떤 두가지 이상의 혼합 산화물 또는 복합 산화물, 예를 들면 실리카-알루미나, 세리아-지르코니아 또는 알루미나-세리아-지르코니아이다. 알루미나 및 세리아가 특히 바람직하다. 지지체로서 기능하는 것에 더하여, 세리아(CeO2) 또는 세리아-지르코니아 혼합 산화물과 같은 세리아 함유 지지체는 TWC 내에 산소 저장 성분(OSC)으로서도 또한 기능할 수 있다. 무기 산화물 지지체는 또한 베타 제올라이트와 같은 제올라이트, ZSM 제올라이트, 페리에라이트, 또는 카바자이트도 될 수 있다.The inorganic oxide support most typically comprises oxides of elements 2, 3, 4, 5, 6, 13 and 14 and lanthanide elements. Useful inorganic oxide supports preferably have a surface area in the range of 10 to 700 m 2 / g, a pore volume in the range of 0.1 to 4 mL / g, and a pore diameter of about 10 to 1000 angstroms. The inorganic oxide supports are preferably alumina, silica, titania, zirconia, ceria, niobia, tantalum oxide, molybdenum oxide, tungsten oxide or any two or more mixed oxides or complex oxides thereof such as silica- Zirconia or alumina-ceria-zirconia. Alumina and ceria are particularly preferred. In addition to serving as a support, ceria containing supports such as ceria (CeO 2 ) or ceria-zirconia mixed oxides may also function as oxygen storage component (OSC) within the TWC. The inorganic oxide support may also be a zeolite such as beta zeolite, ZSM zeolite, ferrierite, or carbazite.

3원 촉매는 바람직하게는 상기한 바와 같이 기질 상에 코팅된다. 기질은 필터 기질 또는 관통형 기질이 될 수 있고, 가장 바람직하게는 관통형 기질, 특히 벌집모양 모노리스이다. 기질은 전형적으로 차량 배기가 통과하는 수많은 채널을 제공하도록 설계된다. 채널들의 표면은 3원 촉매가 로딩되어 있다. The ternary catalyst is preferably coated on the substrate as described above. The substrate can be a filter substrate or a penetrating substrate, and most preferably a penetrating substrate, especially a honeycomb monolith. The substrate is typically designed to provide numerous channels through which the vehicle exhaust passes. The surfaces of the channels are loaded with a three-way catalyst.

3원 촉매는 어떤 공지의 수단에 의해서도 기질에 첨가될 수 있다. 예를 들면, 무기 산화물 지지체 또는 PGM-함유 지지체 재료는 워시코트로서 기질에 도포 및 본딩될 수 있는데, 다공성의, 높은 표면적 층이 기질의 표면에 본딩된다. 워시코트는 전형적으로 수계 슬러리로부터 기질에 도포된 다음, 건조시키고 고온에서 하소시킬 수 있다. 만일 무기 산화물 지지체가 기질에 워시코팅되면, PGM 금속은 건조된 워시코트 지지체 층에 로딩(함침, 이온교환 등에 의함)된 다음, 건조시키고 하소시킬 수 있다. 기질에 로딩된 PGM의 바람직한 로딩은 0.02 내지 1.7 g/리터(1 내지 300 g/ft3) 촉매 부피이다. The ternary catalyst may be added to the substrate by any known means. For example, an inorganic oxide support or a PGM-containing support material can be applied and bonded to a substrate as a washcoat, wherein a porous, high surface area layer is bonded to the surface of the substrate. Washcoats are typically applied to substrates from aqueous slurries, then dried and calcined at elevated temperatures. If the inorganic oxide support is washcoated on the substrate, the PGM metal can be loaded (impregnated, ion exchanged, etc.) onto the dried washcoat support layer, then dried and calcined. The preferred loading of the PGM loading in the substrate is 0.02 to 1.7 g / liter (1 to 300 g / ft 3) a catalyst volume.

상류 촉매는 바람직하게는 TWC의 하류에 위치되는 선택적 촉매 환원(SCR) 촉매를 더 포함한다. SCR 촉매는 질소 화합물(암모니아 또는 우레아와 같은 것) 또는 탄화수소와의 반응에 의해 NOx를 N2로 환원하는 촉매이다(희박 NOx 환원). 바람직하게는, SCR 촉매는 바나디아-티타니아 촉매, 바나디아-텅스타-티타니아 촉매, 또는 전이금속/분자체 촉매로 구성된다. 전이금속/분자체 촉매는 전이금속 및 분자체, 예를 들면 알루미노실리케이트 제올라이트 및 실리코알루미노포스페이트를 포함한다. The upstream catalyst preferably further comprises a selective catalytic reduction (SCR) catalyst located downstream of the TWC. SCR catalysts are catalysts that reduce NO x to N 2 by reaction with nitrogen compounds (such as ammonia or urea) or hydrocarbons (lean NO x reduction). Preferably, the SCR catalyst comprises a vanadia-titania catalyst, a vanadia-tungsten-titania catalyst, or a transition metal / molecular sieve catalyst. Transition metal / molecular sieve catalysts include transition metals and molecular sieves, such as aluminosilicate zeolites and silicoaluminophosphates.

바람직한 전이금속은 크롬, 세륨, 망간, 철, 코발트, 니켈 및 구리, 및 이들의 어떤 두가지 이상의 혼합물을 포함한다. 철 및 구리가 특히 바람직하다. 분자체는 바람직하게는 베타 제올라이트, 포우저사이트(예를 들면, X-제올라이트 또는 NaY 및 USY를 포함하는 Y-제올라이트), L-제올라이트, ZSM 제올라이트(예를 들면, ZSM-5, ZSM-48), SSZ-제올라이트(예를 들면, SSZ-13, SSZ-41, SSZ-33), 페리어라이트, 모데나이트, 카바자이트, 오프레타이트, 에리오나이트, 클리노프틸로라이트, 실리칼라이트, 알루미늄 포스페이트 제올라이트(SAPO-34와 같은 메탈로알루미노포스페이트 포함), 메조포러스 제올라이트(예를 들면, MCM-41, MCM-49, SBA-15), 또는 이들의 혼합물이고; 보다 바람직하게는, 분자체는 베타 제올라이트, 페리어라이트, 또는 카바자이트이다. 바람직한 SCR 촉매는 Cu-CHA, 예를 들면 Cu-SAPO-34, Cu-SSZ-13, 및 Fe-베타 제올라이트를 포함한다.Preferred transition metals include chromium, cerium, manganese, iron, cobalt, nickel and copper, and mixtures of any two or more thereof. Iron and copper are particularly preferred. Zeolite, ZSM zeolite (e.g., ZSM-5, ZSM-48 (for example, zeolite) ), SSZ-zeolites (e.g. SSZ-13, SSZ-41, SSZ-33), ferrierite, mordenite, carbazite, opretite, erionite, clinoptilolite, (Including metal aluminophosphates such as SAPO-34), mesoporous zeolites (e.g., MCM-41, MCM-49, SBA-15), or mixtures thereof; More preferably, the molecular sieve is beta zeolite, ferrierite, or carbazite. Preferred SCR catalysts include Cu-CHA, such as Cu-SAPO-34, Cu-SSZ-13, and Fe-beta zeolite.

SCR 촉매는 바람직하게는 세라믹 또는 금속 기질에 코팅된다. 기질은 전형적으로 차량 배기가 통과하는 수많은 채널을 제공하도록 설계되고, 채널들의 표면은 바람직하게는 SCR 촉매로 코팅될 것이다. The SCR catalyst is preferably coated onto a ceramic or metal substrate. The substrate is typically designed to provide numerous channels through which vehicle exhaust passes, and the surfaces of the channels will preferably be coated with an SCR catalyst.

SCR 촉매를 위한 기질은 필터 기질 또는 관통형 기질이 될 수 있다. 바람직하게는, SCR 촉매는 필터 상에 코팅된다. SCR 촉매 및 필터의 조합은 선택적 촉매 환원 필터로서 알려져 있다. 선택적 촉매 환원 필터는 SCR의 기능성 및 미립자 필터를 조합하는 단일 기질 디바이스이다.The substrate for the SCR catalyst may be a filter substrate or a penetrating substrate. Preferably, the SCR catalyst is coated on the filter. The combination of SCR catalyst and filter is known as a selective catalytic reduction filter. The selective catalytic reduction filter is a single substrate device that combines the functionality of the SCR and the particulate filter.

이하의 실시예들은 본 발명을 단지 예시한다. 당업자들은 본 발명의 개념과 청구항들의 범위 내에서 많은 변형을 인식할 것이다.The following examples merely illustrate the invention. Those skilled in the art will recognize many variations within the scope of the inventive concepts and claims.

실시예Example 1: Pd/ 1: Pd / 세리아Celia CO 슬립 촉매의 제조 Preparation of CO slip catalyst

촉매 1은 코디어라이트 벌집모양 모노리스 상에 CeO2, Al2O3, 및 Pd (3 wt.%)의 주성분들을 갖는 CO 슬립 촉매를 코팅함으로써 제조된다. Catalyst 1 is prepared by coating a CO slip catalyst having major components CeO 2 , Al 2 O 3 , and Pd (3 wt.%) On a cordierite honeycomb monolith.

실시예Example 2: 실험실 시험 과정 및 결과 2: Laboratory test procedures and results

촉매 1 및 비교 표준 Pd-Rh TWC를 CO 산화 활성에 대해 시험한다. CO 슬립 촉매로부터의 리액터 코어를 새 것과 750℃에서 16시간 동안 열수 노화한 것을 평가하고 새 것인 비교 표준 TWC 리액터 코어의 성능과 비교하였다. 실험은 다음 과정을 사용하여 행하였다.Catalyst 1 and comparative standard Pd-Rh TWC are tested for CO oxidation activity. The reactor core from the CO slip catalyst was evaluated by hot aging at 750 ° C for 16 hours and compared to the performance of the new comparative standard TWC reactor core. The experiment was carried out using the following procedure.

촉매 시험 동안에 희박 (0% CO, 10% O2, 5% H2O, 8% CO2) 및 농후(1.5% CO, 0% O2, 5% H2O, 8% CO2) 조건을 시뮬레이션하기 위한 가스 혼합물을 제조한다. 가스 흐름은 30,000 hr-1의 공간 속도를 달성하기 위해 제어된다. 시험 동안에 각 샘플은 희박 가스 혼합물에서 전처리(pre-conditioning)되며, 이때 촉매 입구 온도는 500℃로 올라가고 5분간 유지된다. 이 전처리 단계에 이어서, 촉매는 희박 조건하에 100℃에서 안정화되는데 이때 성능은 10 사이클(희박 조건에서 5분, 농후 조건에서 30초) 동안에 측정된다. 이 사이클 성능은 또한 150, 200, 250, 및 300℃에서 측정된다. 결과를 표 1에 나타낸다.A lean (0% CO, 10% O 2, 5% H 2 O, 8% CO 2) and enriched (1.5% CO, 0% O 2, 5% H 2 O, 8% CO 2) condition during the catalyst test A gas mixture for simulation is prepared. The gas flow is controlled to achieve a space velocity of 30,000 hr &lt; -1 &gt;. During the test, each sample is pre-conditioned in a lean gaseous mixture, at which the catalyst inlet temperature is raised to 500 ° C and held for 5 minutes. Following this pretreatment step, the catalyst is stabilized at 100 ° C under lean conditions, where performance is measured during 10 cycles (5 minutes in lean conditions, 30 seconds in rich conditions). This cycle performance is also measured at 150, 200, 250, and 300 ° C. The results are shown in Table 1.

연구한 거의 모든 온도에서 CO 변환 시 열수 노화의 영향은 매우 적은 것을 알 수 있다. 이 촉매는 또한 새 것/ 노화된 것의 둘다의 조건에서 표준 TWC보다 상당히 더 양호하다. It can be seen that the effect of hydrothermal aging on CO conversion is very small at almost all the temperatures studied. This catalyst is also significantly better than the standard TWC under conditions of both fresh / aged.

여러 온도에서 1000 ppm CO 슬립에 대한 시간Time for 1000 ppm CO slip at various temperatures
촉매catalyst

1000 ppm1000 ppm CO 슬립에 대한 시간(초) Time for CO sleep (seconds)
100℃100 ℃ 150℃150 ℃ 200℃200 ℃ 250℃250 ℃ 300℃300 ° C 새 것 TWC *New TWC * 22 33 5.55.5 77 10.510.5 촉매 1 - 새것Catalyst 1 - New 14.514.5 18.2518.25 20.520.5 24.7524.75 26.2526.25 촉매 1 - 노화된 것Catalyst 1 - aged 17.517.5 19.7519.75 2121 24.2524.25 24.7524.75

* 비교예* Comparative Example

Claims (15)

린번 내연기관으로부터 배기가스를 처리하기 위한 CO 슬립 촉매로서, CO 슬립 촉매는 팔라듐 및 세리아 함유 재료를 포함하는 CO 슬립 촉매. A CO slip catalyst for treating exhaust gas from a lean burn internal combustion engine, the CO slip catalyst comprising palladium and a ceria containing material. 제 1 항에 있어서, 세리아 함유 재료는 세리아, 세리아-지르코니아, 세리아-지르코니아-알루미나, 및 이들의 혼합물을 포함하는 것을 특징으로 하는 CO 슬립 촉매.The CO slip catalyst according to claim 1, wherein the ceria-containing material comprises ceria, ceria-zirconia, ceria-zirconia-alumina, and mixtures thereof. 제 2 항에 있어서, 세리아 함유 재료는 세리아를 포함하는 것을 특징으로 하는 CO 슬립 촉매.The CO slip catalyst according to claim 2, wherein the ceria-containing material comprises ceria. 제 1 항에 있어서, CO 슬립 촉매는 0.5 내지 5 중량퍼센트 팔라듐을 포함하는 것을 특징으로 하는 CO 슬립 촉매.The CO slip catalyst according to claim 1, wherein the CO slip catalyst comprises 0.5 to 5 weight percent palladium. 제 1 항에 있어서, 하나 이상의 알칼리 금속 또는 알칼리 토금속을 더 포함하는 것을 특징으로 하는 CO 슬립 촉매.The CO slip catalyst according to claim 1, further comprising at least one alkali metal or alkaline earth metal. 제 1 항에 있어서, 알루미나, 실리카, 티타니아, 지르코니아, 마그네시아, 니오비아, 탄탈륨 산화물, 몰리브덴 산화물, 텅스텐 산화물, 및 이들의 어떤 두가지 이상의 혼합 산화물로 구성되는 군으로부터 선택된 하나 이상의 무기 산화물 바인더를 더 포함하는 것을 특징으로 하는 CO 슬립 촉매.The method according to claim 1, further comprising at least one inorganic oxide binder selected from the group consisting of alumina, silica, titania, zirconia, magnesia, niobia, tantalum oxide, molybdenum oxide, tungsten oxide and any two or more mixed oxides thereof Wherein the CO slip catalyst is a CO slip catalyst. 제 1 항에 있어서, CO 슬립 촉매는 기질에 코팅되는 것을 특징으로 하는 CO 슬립 촉매.The CO slip catalyst according to claim 1, wherein the CO slip catalyst is coated on the substrate. 제 7 항에 있어서, 기질은 세라믹 기질 또는 금속 기질인 것을 특징으로 하는 CO 슬립 촉매.The CO slip catalyst according to claim 7, wherein the substrate is a ceramic substrate or a metal substrate. 린번 내연기관으로부터의 배기가스에서 과잉의 CO를 산화시키는 방법으로서, 여기서 과잉의 CO는 농후 배기 조건하에 상류 촉매의 주기적 접촉으로부터 결과되며, 상기 방법은 100 내지 700℃의 범위의 온도에서 배기가스 중의 과잉의 CO를 CO 슬립 촉매와 접촉시키는 것을 포함하며, 여기서 CO 슬립 촉매는 팔라듐 및 세리아 함유 재료를 포함하는 것을 특징으로 하는 방법.A method for oxidizing excess CO in exhaust gas from a lean burn internal combustion engine wherein the excess CO results from cyclic contact of the upstream catalyst under rich exhaust conditions and wherein the process is carried out at a temperature in the range of from 100 to 700 & Contacting the excess CO with a CO slip catalyst, wherein the CO slip catalyst comprises palladium and ceria containing material. 제 9 항에 있어서, 세리아 함유 재료는 세리아, 세리아-지르코니아, 세리아-지르코니아-알루미나, 및 이들의 혼합물을 포함하는 것을 특징으로 하는 방법.10. The method of claim 9, wherein the ceria-containing material comprises ceria, ceria-zirconia, ceria-zirconia-alumina, and mixtures thereof. 제 10 항에 있어서, 세리아 함유 재료는 세리아를 포함하는 것을 특징으로 하는 방법.11. The method of claim 10, wherein the ceria containing material comprises ceria. 제 9 항에 있어서, CO 슬립 촉매는 0.5 내지 5 중량퍼센트 팔라듐을 포함하는 것을 특징으로 하는 방법.10. The process of claim 9, wherein the CO slip catalyst comprises 0.5 to 5 weight percent palladium. 제 9 항에 있어서, 하나 이상의 알칼리 금속 또는 알칼리 토금속을 더 포함하는 것을 특징으로 하는 방법.10. The method of claim 9, further comprising at least one alkali metal or alkaline earth metal. 제 9 항에 있어서, 알루미나, 실리카, 티타니아, 지르코니아, 마그네시아, 니오비아, 탄탈륨 산화물, 몰리브덴 산화물, 텅스텐 산화물, 및 이들의 어떤 두가지 이상의 혼합 산화물로 구성되는 군으로부터 선택된 하나 이상의 무기 산화물 바인더를 더 포함하는 것을 특징으로 하는 방법.The method according to claim 9, further comprising at least one inorganic oxide binder selected from the group consisting of alumina, silica, titania, zirconia, magnesia, niobia, tantalum oxide, molybdenum oxide, tungsten oxide and any two or more mixed oxides thereof . &Lt; / RTI &gt; 제 9 항에 있어서, CO 슬립 촉매는 기질에 코팅되는 것을 특징으로 하는 방법.10. The method of claim 9, wherein the CO slip catalyst is coated on the substrate.
KR1020167007721A 2013-08-28 2014-08-28 Co slip catalyst and method of using KR20160048134A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361871080P 2013-08-28 2013-08-28
US61/871,080 2013-08-28
PCT/US2014/053153 WO2015031611A1 (en) 2013-08-28 2014-08-28 Co slip catalyst and method of using

Publications (1)

Publication Number Publication Date
KR20160048134A true KR20160048134A (en) 2016-05-03

Family

ID=51585167

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167007721A KR20160048134A (en) 2013-08-28 2014-08-28 Co slip catalyst and method of using

Country Status (9)

Country Link
US (3) US9266064B2 (en)
EP (1) EP3038746A1 (en)
JP (1) JP2016534871A (en)
KR (1) KR20160048134A (en)
CN (1) CN105828933A (en)
DE (1) DE102014112361A1 (en)
GB (2) GB2519846B (en)
RU (1) RU2016110987A (en)
WO (1) WO2015031611A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824185B (en) * 2016-09-15 2021-03-26 丰田自动车株式会社 Exhaust gas purifying catalyst and method for producing same
MX2019009464A (en) * 2017-02-08 2019-10-15 Basf Corp Catalyst compositions.
EP3579970B1 (en) * 2017-02-08 2022-04-06 BASF Corporation Catalytic article
EP3404686B1 (en) 2017-05-18 2020-07-08 General Electric Technology GmbH A circuit breaker comprising a ceria-based catalyst for co conversion into co2
CA3071239A1 (en) * 2017-07-28 2019-01-31 Rohm And Haas Company Heterogeneous catalyst
US10830118B2 (en) * 2019-01-31 2020-11-10 Hyundai Motor Company After treatment system and after treatment method for lean-burn engine
EP3815780B1 (en) 2019-10-30 2024-06-19 Umicore AG & Co. KG Diesel oxidation catalyst
EP3865209A1 (en) 2020-02-17 2021-08-18 UMICORE AG & Co. KG Diesel oxidation catalyst
US11801491B1 (en) * 2022-04-21 2023-10-31 GM Global Technology Operations LLC Three-way catalyst with reduced palladium loading and method of making the three-way catalyst

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691643B2 (en) * 1991-01-08 1997-12-17 財団法人石油産業活性化センター Exhaust gas purification method
GB9226434D0 (en) * 1992-12-18 1993-02-10 Johnson Matthey Plc Catalyst
WO1995000235A1 (en) * 1993-06-25 1995-01-05 Engelhard Corporation Layered catalyst composite
GB9511421D0 (en) 1995-06-06 1995-08-02 Johnson Matthey Plc Improvements in emissions control
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
JP3981915B2 (en) * 2001-04-03 2007-09-26 日産自動車株式会社 Exhaust gas purification system
US7276212B2 (en) * 2001-10-01 2007-10-02 Engelhard Corporation Exhaust articles for internal combustion engines
KR101095405B1 (en) 2002-09-13 2011-12-16 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Process for treating compression ignition engine exhaust gas
WO2004030798A1 (en) * 2002-10-05 2004-04-15 Johnson Matthey Public Limited Company Exhaust system for a diesel engine comprising a nox-trap
US7329629B2 (en) * 2002-10-24 2008-02-12 Ford Global Technologies, Llc Catalyst system for lean burn engines
JP2005021880A (en) 2003-06-13 2005-01-27 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and exhaust gas cleaning catalyst system
JP4681922B2 (en) * 2005-04-01 2011-05-11 エヌ・イーケムキャット株式会社 Oxidation catalyst for exhaust gas purification, and exhaust gas purification system using the same
US7550124B2 (en) * 2006-08-21 2009-06-23 Basf Catalysts Llc Layered catalyst composite
US7758834B2 (en) * 2006-08-21 2010-07-20 Basf Corporation Layered catalyst composite
US7517510B2 (en) * 2006-08-21 2009-04-14 Basf Catalysts Llc Layered catalyst composite
FR2905371B1 (en) 2006-08-31 2010-11-05 Rhodia Recherches & Tech HIGH REDUCIBILITY COMPOSITION BASED ON NANOMETRY CERIUM OXIDE ON A CARRIER, PREPARATION METHOD AND USE AS CATALYST
JP4787704B2 (en) * 2006-09-15 2011-10-05 第一稀元素化学工業株式会社 Catalyst system used in automobile exhaust gas purification device, exhaust gas purification device using the same, and exhaust gas purification method
US20080072578A1 (en) * 2006-09-21 2008-03-27 Kumar Sanath V Treatment Systems and Methods for Internal Combustion Engine Exhaust Streams
US20080085231A1 (en) * 2006-10-05 2008-04-10 Frederic Vitse System and method for reducing nitrogen oxides emissions
GB0620883D0 (en) * 2006-10-20 2006-11-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine
EP1916029B1 (en) 2006-10-23 2014-06-04 Haldor Topsoe A/S Method and apparatus for the purifiction of exhaust gas from a compression ignition engine
KR20080047950A (en) 2006-11-27 2008-05-30 나노스텔라 인코포레이티드 Engine exhaust catalysts containing palladium-gold
EP2127744B1 (en) * 2007-02-01 2018-07-18 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Exhaust gas purification apparatus comprising a catalyst system and exhaust gas purification method
JP4941731B2 (en) * 2007-03-15 2012-05-30 日産自動車株式会社 Exhaust gas purification system
US8038951B2 (en) * 2007-08-09 2011-10-18 Basf Corporation Catalyst compositions
US7922988B2 (en) * 2007-08-09 2011-04-12 Michel Deeba Multilayered catalyst compositions
US7879755B2 (en) * 2007-08-09 2011-02-01 Basf Corporation Catalyst compositions
EP3536919A1 (en) * 2008-02-05 2019-09-11 BASF Corporation Gasoline engine emissions treatment systems having particulate traps
EP2255875A4 (en) 2008-03-19 2012-02-29 Ict Co Ltd Catalyst for cleaning internal combustion engine exhaust gas and method for cleaning exhaust gas using said catalyst
DE102008032200A1 (en) 2008-07-09 2010-01-21 W.C. Heraeus Gmbh oxidation catalyst
WO2010064497A1 (en) * 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
US8291695B2 (en) 2008-12-05 2012-10-23 GM Global Technology Operations LLC Method and apparatus for controlling exhaust emissions in a spark-ignition direct-injection engine
US8216521B2 (en) 2008-12-05 2012-07-10 GM Global Technology Operations LLC Method and apparatus for ammonia formation in a catalytic converter
US7981390B2 (en) * 2008-12-23 2011-07-19 Basf Corporation Small engine palladium catalyst article and method of making
WO2010077843A2 (en) * 2008-12-29 2010-07-08 Basf Catalysts Llc Oxidation catalyst with low co and hc light-off and systems and methods
US8211392B2 (en) * 2009-01-16 2012-07-03 Basf Corporation Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
US9440192B2 (en) * 2009-01-16 2016-09-13 Basf Corporation Diesel oxidation catalyst and use thereof in diesel and advanced combustion diesel engine systems
BRPI0924120B1 (en) * 2009-02-20 2020-11-17 Umicore Ag & Co. Kg method for purifying exhaust gas from a diesel engine in a system
JP5481931B2 (en) * 2009-05-22 2014-04-23 マツダ株式会社 Exhaust purification device and exhaust purification method
JP2011140011A (en) * 2010-01-08 2011-07-21 Toyota Motor Corp Method for producing co oxidation catalyst and co oxidation catalyst obtained thereby
JP4998579B2 (en) * 2010-04-01 2012-08-15 トヨタ自動車株式会社 Exhaust purification catalyst
US9242242B2 (en) * 2010-09-02 2016-01-26 Basf Se Catalyst for gasoline lean burn engines with improved NO oxidation activity
US8668877B2 (en) * 2010-11-24 2014-03-11 Basf Corporation Diesel oxidation catalyst articles and methods of making and using
US8617496B2 (en) * 2011-01-19 2013-12-31 Basf Corporation Three way conversion catalyst with alumina-free rhodium layer
JP2012154259A (en) * 2011-01-26 2012-08-16 Mazda Motor Corp Exhaust gas purification catalytic system
EP3175917A1 (en) * 2011-03-24 2017-06-07 Umicore Shokubai Japan Co., Ltd. Oxidation catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
US8959894B2 (en) * 2011-03-24 2015-02-24 GM Global Technology Operations LLC Manganese-based oxides promoted lean NOx trap (LNT) catalyst
JP5768474B2 (en) * 2011-04-28 2015-08-26 日産自動車株式会社 Exhaust gas purification system
US20120308439A1 (en) * 2011-06-01 2012-12-06 Johnson Matthey Public Limited Company Cold start catalyst and its use in exhaust systems
GB2492175B (en) * 2011-06-21 2018-06-27 Johnson Matthey Plc Exhaust system for internal combustion engine comprising catalysed filter substrate
US9044734B2 (en) * 2011-09-23 2015-06-02 Basf Se Diesel oxidation catalyst with layered structure containing ceria composition as palladium support material for enhanced HC and CO gas conversion
JP5709005B2 (en) * 2011-10-26 2015-04-30 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
BR112014015601A8 (en) 2011-12-22 2017-07-04 Johnson Matthey Plc nox pickup, internal combustion engine exhaust system, and method for treating an internal combustion engine exhaust gas
JP5806131B2 (en) * 2012-01-20 2015-11-10 エヌ・イーケムキャット株式会社 NOx storage denitration catalyst
GB201220912D0 (en) * 2012-11-21 2013-01-02 Johnson Matthey Plc Oxidation catalyst for treating the exhaust gas of a compression ignition engine
CN104968431A (en) * 2012-11-29 2015-10-07 巴斯夫欧洲公司 Diesel oxidation catalyst comprising palladium, gold and ceria
KR101459436B1 (en) * 2012-12-17 2014-11-07 현대자동차 주식회사 Catalyst for purifying gas of internal combustion device

Also Published As

Publication number Publication date
US20160129422A1 (en) 2016-05-12
GB2519846B (en) 2018-01-24
GB2554029A (en) 2018-03-21
RU2016110987A3 (en) 2018-05-17
GB2519846A (en) 2015-05-06
RU2016110987A (en) 2017-10-03
WO2015031611A1 (en) 2015-03-05
GB201720856D0 (en) 2018-01-31
US20170284262A1 (en) 2017-10-05
JP2016534871A (en) 2016-11-10
US10221742B2 (en) 2019-03-05
EP3038746A1 (en) 2016-07-06
GB201415211D0 (en) 2014-10-15
GB2554029B (en) 2018-08-08
US20150064085A1 (en) 2015-03-05
CN105828933A (en) 2016-08-03
US9694349B2 (en) 2017-07-04
US9266064B2 (en) 2016-02-23
DE102014112361A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
EP3077084B1 (en) Cold start catalyst and its use in exhaust systems
EP3626330B1 (en) Passive nox adsorber consisting of palladium and small pore zeolite
EP2714267B1 (en) Cold start catalyst and its use in exhaust systems
JP6134708B2 (en) Catalytic substrate and exhaust system for internal combustion engine
US10221742B2 (en) CO slip catalyst and method of using
EP2802408B1 (en) Improved nox trap
EP3077112B1 (en) Exhaust gas catalyst containing two different palladium-molecular sieve catalysts
JP7231555B2 (en) NOx adsorption catalyst
US11358127B2 (en) NOx adsorber catalyst
JP2020515395A (en) Three-layer NOx adsorber catalyst
GB2521904A (en) Three-way catalyst and its use in exhaust systems

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid